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plant functional traits from the past and across biomes. However, many trait
measurements are destructive, which may preclude their use on valuable speci-
mens. Researchers increasingly use reflectance spectroscopy to estimate traits
from fresh or ground leaves, and to delimit or identify taxa. Here, we extend this
body of work to non-destructive measurements on pressed, intact leaves, like

those in herbarium collections.

. Using 618 samples from 68 species, we used partial least-squares regression to

build models linking pressed-leaf reflectance spectra to a broad suite of traits, in-
cluding leaf mass per area (LMA), leaf dry matter content (LDMC), equivalent water
thickness, carbon fractions, pigments, and twelve elements. We compared these

models to those trained on fresh- or ground-leaf spectra of the same samples.

. The traits our pressed-leaf models could estimate best were LMA (R? = 0.932;

%RMSE = 6.56), C (R? = 0.855; %RMSE = 9.03), and cellulose (R?> = 0.803;
%RMSE = 12.2), followed by water-related traits, certain nutrients (Ca, Mg, N,
and P), other carbon fractions, and pigments (all R? = 0.514-0.790; %RMSE =
12.8-19.6). Remaining elements were predicted poorly (R < 0.5, %RMSE > 20).
For most chemical traits, pressed-leaf models performed better than fresh-leaf
models, but worse than ground-leaf models. Pressed-leaf models were worse
than fresh-leaf models for estimating LMA and LDMC, but better than ground-
leaf models for LMA. Finally, in a subset of samples, we used partial least-squares
discriminant analysis to classify specimens among 10 species with near-perfect
accuracy (>97%) from pressed- and ground-leaf spectra, and slightly lower ac-

curacy (>93%) from fresh-leaf spectra.

. These results show that applying spectroscopy to pressed leaves is a promising

way to estimate leaf functional traits and identify species without destructive
analysis. Pressed-leaf spectra might combine advantages of fresh and ground
leaves: like fresh leaves, they retain some of the spectral expression of leaf

structure; but like ground leaves, they circumvent the masking effect of water
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collections.
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1 | INTRODUCTION

The world's herbaria together contain more than 390 million spec-
imens (Thiers, 2021) which are an incomparably rich source of in-
formation about global plant diversity. Herbarium specimens are
collected for many reasons—often to document where a species is
present or to serve as vouchers for taxonomic studies. But these
specimens are often repurposed for new ends, unforeseen by their
collectors (Meineke et al., 2018). More than ever, ecologists and
evolutionary biologists seek to use herbarium specimens to mea-
sure functional traits (Heberling, 2022): for example, to evaluate
the long-term imprint of human activity on plant communities (Lang
et al., 2019; Meineke et al., 2018); to fill in gaps in sparse trait data-
bases (Perez et al., 2020); or to conduct comparative studies of clades
(Jardine et al., 2020). Measuring functional traits on herbarium spec-
imens carries the promise of letting us reach the inaccessible, includ-
ing the past or distant parts of the world. Using herbarium specimens
also allows researchers to benefit from the expertise of taxonomists
and refer back to the same specimens for further use—for example,
as sources of genetic data, or as references for species identification
from new collections (Heberling, 2022). Using specimens, research-
ers can address ecological and evolutionary questions that require
merging functional, genetic and distributional data at global scales.

Many functional trait measurements require destructive
sampling—for example, by grinding up tissue for chemical analyses.
Such measurements include most protocols to determine the ele-
mental or molecular composition of a sample (Pérez-Harguindeguy
et al, 2013). Because herbarium specimens are irreplaceable—
especially those from historical collections—curators may hesitate
to let them be destroyed, even in part, for ecological research. Using
specimens in functional ecology might be more feasible with new,
non-destructive techniques to estimate their traits.

Reflectance spectroscopy is a technique often used to es-
timate foliar functional traits non-destructively (Curran, 1989;
Jacquemoud & Ustin, 2019). Spectroscopy is the study of matter's
interactions with electromagnetic radiation across wavelengths
(Jacquemoud & Ustin, 2019); spectroscopic studies of leaves often
target reflectance—the proportion of incident radiation that is re-
flected—as a particularly revealing and easy-to-measure property.
A typical leaf reflectance spectrum comprises reflectance at many
narrow wavelength bands between about 350 and 2,500 nm, which
includes over 97% of energy from solar radiation reaching Earth's

absorption. Our study has far-reaching implications for capturing the wide

range of functional and taxonomic information in the world’s preserved plant

functional traits, herbarium collections, leaf chemistry, partial least-squares regression (PLSR),
reflectance spectroscopy, species identification

surface (American Society for Testing and Materials, 2020). Because
the leaf's chemical and structural makeup determines how it reflects,
absorbs and transmits light, reflectance within this range carries in-
formation about many plant traits (Cavender-Bares et al., 2017).

Two main approaches exist to estimate traits using the full infor-
mation in reflectance spectra. First, physics-based radiative trans-
fer models like PROSPECT can be inverted to estimate a handful
of traits with well-defined optical properties (Féret et al., 2017).
Second, statistical models, often created using machine learning
techniques like partial least-squares regression (PLSR), can estimate
an even wider range of traits, albeit in a less mechanistic (and per-
haps less general) way (Serbin & Townsend, 2020). This multivar-
iate empirical approach gives researchers the flexibility to predict
complex traits whose absorption features might not be as strong
or well defined (Curran, 1989). Likewise, multivariate classification
techniques like partial least-squares discriminant analysis (PLS-DA)
use the full spectrum to discriminate species, lineages or other kinds
of biological classes (Meireles, Cavender-Bares, et al., 2020).

Empirical approaches like PLSR are widely used to estimate plant
traits from spectroscopic data measured on fresh or ground leaves.
These traits include leaf N and leaf mass per area (LMA; Kothari,
Beauchamp-Rioux, Blanchard, et al., 2022; Serbin et al.,, 2014,
2019; Streher et al., 2020), pigments (Kothari, Beauchamp-Rioux,
Blanchard, et al., 2022; Yang et al., 2016), defence compounds
(Couture et al., 2016; Nakaji et al., 2019), non-structural carbo-
hydrates (Ely et al., 2019) and even photosynthetic capacity (Yan
et al., 2021). Leaf-level PLSR models have been used to address
such varied ecological topics as defence responses to herbivory
(Kula et al., 2020) and the role of biodiversity in ecosystem func-
tion (Schweiger et al., 2018). Although this multivariate statistical
approach is flexible, it is sensitive to the kind of leaf tissue used to
train the model. Existing PLSR models have mostly been trained on
reflectance spectra of fresh leaves (e.g. Serbin et al., 2019) or dried,
ground leaves (e.g. Serbin et al., 2014). Such models are not expected
to transfer to dried, intact leaves like herbarium specimens because
both drying and grinding cause major changes in reflectance.

We built PLSR models to estimate traits from the reflectance
spectra of pressed leaves, like herbarium specimens, and compared
their accuracy with models built from fresh or dried, ground leaves.
Our pressed leaf samples were prepared like herbarium speci-
mens but not yet mounted on paper, and our analyses might thus
serve as a proof of concept for the technique by setting aside the
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methodological challenges related to working with older mounted
specimens. Previously, Costa et al. (2018) had shown that a related
spectroscopic technique, Fourier transform-near infrared (FT-NIR)
spectroscopy, could predict several leaf structural traits from pressed
leaves of tropical trees. Here, we explicitly compare the accuracy of
trait estimation from the spectra of fresh, pressed and ground leaves
for many leaf chemical and structural traits from multiple biomes and
growth forms.

For most chemical traits, such as elemental composition or
carbon fractions, we conjectured that ground-leaf spectral mod-
els would be the most accurate, as others have found (Couture
et al., 2016; Serbin et al., 2014; Wang et al., 2020). Both drying
and grinding might be important in achieving this accuracy. Drying
may reveal minor absorption features of compounds in dry matter
within the short-wave infrared (SWIR) range that, in fresh leaves,
are obscured by the dominant effect of water absorption (Peterson
et al., 1988). Grinding homogenizes the variation in structure and
composition throughout the leaf lamina, which may allow us to cap-
ture a more even and representative sample of tissue (Richardson
et al., 2021). Since pressed leaves are dried but not ground, we pre-
dicted they would yield intermediate accuracy for chemical traits.

For structural traits like LMA, we instead expected fresh and
pressed leaves to outperform ground leaves because grinding disrupts
the leaf structure. For water-related traits like leaf dry matter content
(LDMC; dried mass divided by fresh mass), we expected fresh leaves to
outperform both pressed and ground leaves because they retain the
water absorption features that allow direct prediction of water content
(Carter, 1991). Likewise, because pigments tend to degrade after col-
lection, we expected to estimate their concentration best from fresh
leaves. We also assessed sample discoloration and considered whether
it reduces the accuracy of trait estimates, which may indicate whether
spectroscopy is useful on old or degraded specimens.

Finally, we asked whether pressed-leaf spectra can be used to iden-

tify samples to species. Reflectance spectra often show phylogenetic

signal in certain wavelength ranges because of phylogenetic conserva-
tism in their underlying traits (Diniz et al., 2020; McManus et al., 2016;
Meireles, O'Meara, & Cavender-Bares, 2020). This signal is what often
makes it possible to classify species or higher-level taxa from fresh-
leaf spectra (Cavender-Bares et al., 2016; Meireles, Cavender-Bares,
et al., 2020). Studies with tropical forest species have also shown that
FT-NIR absorbance spectra of pressed leaves can be used to classify
species or higher-level taxa (Durgante et al., 2013; Lang et al., 2015;
Prata et al., 2018). Based on these studies, Draper et al. (2020) pro-
posed using spectra of herbarium specimens as part of an integrative
process of species delimitation and identification. However, it remains
uncertain whether fresh- or pressed-leaf spectra are better suited to
the task of classifying species. Here, we compared the accuracy of su-
pervised classification from fresh-, pressed- and ground-leaf spectra
among the common species in our dataset. Because they preserve
some of the leaf structure (unlike ground leaves) and reveal the dis-
tinctive SWIR absorption features of macromolecules and other com-
pounds (unlike fresh leaves), pressed leaves may represent the best of

both worlds for distinguishing species using spectroscopy.

2 | MATERIALS AND METHODS

2.1 | Spectral and leaf trait measurements

We trained PLSR models on leaf reflectance spectra and traits meas-
ured as part of four projects conducted by the Canadian Airborne
Biodiversity Observatory (CABO). We validated the models both
internally and on an independent dataset of pressed tree and herb
samples collected at Cedar Creek Ecosystem Science Reserve (East
Bethel, MN, USA). Table 1 describes the projects and lists how many
samples and species they include for each growth form or func-
tional group. The leaf sampling procedure is described in Supporting

Information.

TABLE 1 A summary of CABO projects used for model building and internal validation (above the thick black line) and the Cedar Creek
dataset used for external validation (below the thick black line). The column heading ‘broadleaf’ refers to broadleaf trees only

Samples (species) per functional group

Project Description Broadleaf  Conifer Herb Shrub Vine Total
Beauchamp- Deciduous forest trees sampled throughout the growing season 405 (9) 405 (9)
Rioux in 2018 at several sites in southern Québec and Ontario
(Beauchamp-Rioux, 2022)
Dessain Forbs, grasses, shrubs and broadleaf trees from forests and open 31 (24) 15 (13) 26 (22) 72 (59)
areas sampled throughout the growing season in 2017 at four
sites in southern Québec
Boucherville  Forbs, grasses, shrubs and vines sampled in August 2018 from the 45 (8) 22 (3) 6(1) 73(12)
Parc national des Tles-de-Boucherville in southern Québec
Warren A single broadleaf evergreen tree species (Agonis flexuosa 68 (1) 68 (1)
[Willd.] Sweet) collected in November 2018 across a soil
chronosequence (Turner et al., 2018) in southwestern Australia
Total 504 (25) 60 (19) 48(23) 6(1) 618(68)
Cedar Creek  Forbs, grasses and broadleaf and coniferous trees sampled at 177 (10) 101 (4) 55(14) 333 (28)

Cedar Creek LTER in Minnesota in late summer and fall 2018
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For each CABO sample, we measured full-range reflectance spec-
tra (350-2,500nm) of the leaves at three stages: (a) freshly sampled, (b)
pressed and (c) oven-dried and ground into a fine powder. We measured
directional-hemispherical reflectance spectra of fresh leaves on the
adaxial surface of multiple leaves or leaf arrays from each sample using
spectroradiometers equipped with integrating spheres. We pressed a
portion of the sample and measured reflectance spectra on the adax-
ial surface of pressed leaves between 6 months and 3years later using
a spectroradiometer with a leaf clip (Figure S1). Lastly, we measured
ground-leaf spectra using a spectroradiometer with a benchtop reflec-
tance probe that pressed loose leaf powder into an even pellet with
very low transmittance. We trimmed all spectra to 400-2,400nm.
Detailed notes on measurement and post-measurement processing of
reflectance spectra are found in Supporting Information.

While measuring pressed-leaf spectra, we inspected each
pressed specimen by eye to note signs of discoloration in prepa-
ration or storage. While all leaves have some changes in their ap-
pearance as they dry, we were particularly interested in the loss of
green colour, such as blackening, browning or the development of
a silvery or whitish finish on the leaf surface. We scored each leaf
on a discrete scale from O to 4 (see examples in Figures S2-S5). A
score of O indicates no noticeable discoloration. Scores 1 through 4
indicate increasing discoloration, from 1 (either <10% blackening/
browning or development of a slight silvery finish to the leaf) to 4
(>75% blackening/browning).

We measured the following leaf structural and chemical traits on
each CABO sample: LMA (kg/m?), LDMC (mg/g), equivalent water
thickness (EWT; mm), carbon fractions (soluble cell contents, hemi-
cellulose, cellulose and lignin; %), pigments (chlorophyll a, chloro-
phyll b and total carotenoids; mg/g) and concentrations of a variety
of elements (Al, C, Ca, Cu, Fe, K, Mg, Mn, N, Na, P, Zn; % or mg/g).

Protocol summaries are in Supporting Information.

2.2 | Partial least-squares regression modelling for
trait estimation

We used a PLSR modelling framework to predict each trait from
each of fresh-, pressed- and ground-leaf spectra across the full
range (400-2,400nm). PLSR is suited to handle spectral datasets,
which have many collinear predictors, because it projects the spec-
tral matrix onto a smaller number of orthogonal latent components
in a way that maximizes the ability to predict the response varia-
ble. We simply used reflectance values as predictors, since calcu-
lating various common transformations of reflectance (see Serbin
et al., 2014) did not increase predictive accuracy in preliminary
tests. We also did not transform any trait values to reduce skew-
ness, again finding in preliminary tests that it did not improve pre-
dictive accuracy enough to warrant the added complexity. Some
studies restrict the wavelengths used in prediction, often to ranges
known or assumed to contain features relevant to a given trait (e.g.
Serbin et al., 2014). We considered that the 400-1,300nm range
might be most liable to change in storage due to degradation of

photosynthetic pigments and accumulation of brown pigments that
absorb in the near-infrared range (NIR; Fourty et al., 1996). Thus,
we also built pressed-leaf models restricted to 1,300-2,400nm
(‘restricted-range models’), which might be expected to generalize
better to datasets that include older or more discoloured leaves. We
present these results mainly in Supporting Information.

Our methods for model calibration and validation largely follow
Burnett et al. (2021). First, we randomly divided the data into cal-
ibration (75%) and validation (25%) datasets, stratified by growth
form. We began by fitting a model for each trait on the calibration
dataset. We selected the smallest number of components for which
the root mean squared error of prediction (RMSEP) from 10-fold
cross-validation fell within one standard deviation of the global min-
imum. We used this number of components—a different number for
each trait—in further analyses to predict traits on the internal vali-
dation dataset. We calculated the variable importance in projection
(VIP) metric for calibration models to see which parts of the spec-
trum were most important for predicting each trait (Wold, 1994).

To test how well we could predict traits on the internal validation
subset, we first did a jackknife analysis by iteratively (100x) divid-
ing the 75% calibration data further into random 70% training and
30% testing subsets. For each trait, we trained models on the 70%
using the previously determined optimal number of components and
predicted the remaining 30%. This analysis gave us a distribution of
model performance statistics across the 100 iterates (R2, %RMSE),
which reveals the sensitivity of model performance to randomly
varying sets of training and testing data.

Next, we applied the 100 jackknife models for each trait to the
25% internal validation subset, yielding a distribution of 100 predic-
tions for each validation sample. We quantified model performance
using R? and root mean squared error (RMSE) between measure-
ments and mean predictions. We also report the RMSE as a percent-
age of the 2.5% trimmed range of measured values (%RMSE), which
we used rather than the entire range (as in e.g. Burnett et al., 2021)
for robustness to outliers. For each trait, we also tested whether the
magnitude of residuals (observed minus predicted) in the validation
dataset varied among leaves with different discoloration scores. We
performed all statistical analyses in R v. 3.6.3 (R Core Team, 2020)
and used package plsv. 2.7.1 (Mevik et al., 2019) for PLSR modelling.

In our main set of models, we kept chemical traits on a mass basis
for consistency with the usual basis on which such traits (except pig-
ments) are measured and reported. However, some traits are most
often distributed proportionally to area and some users may have
reasons to prefer area-based estimates (Kattenborn et al., 2019), so
have we also made area-based models available (see Table S1 for
performance summary statistics). All models (mass- and area-based)
are available to download (see Data Availability Statement).

2.3 | External validation

To test how well our PLSR models would transfer to a fully inde-
pendent dataset, we applied the ensemble of pressed-leaf models
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for five traits (LMA, LDMC, EWT, N and C) to pressed-leaf spectra
from Cedar Creek, then compared the model-derived trait estimates
with measured values. Like most of the CABO dataset, the Cedar
Creek dataset comprises trees and herbs from northeastern tem-
perate North America, but it includes an entire functional group
(needleleaf conifers) absent among the CABO projects in this study.
We collected the spectra with the same instrument and foreoptic
as the pressed-leaf spectra in the CABO dataset, but used different
sampling, preparation and measurement protocols. We aimed to see
whether the inclusion of a new functional group and the various sub-
tle differences in protocols would affect the models' performance.
Full details on this dataset are provided in Supporting Information.

2.4 | Partial least-squares discriminant analysis
modelling for species classification

We tested the potential to classify species with fresh-, pressed- and
ground-leaf spectra using partial least-squares discriminant analy-
sis (PLS-DA; Barker & Rayens, 2003). We took spectra from the
10 most common species in our dataset—all of which are decidu-
ous trees except A. flexuosa, which is evergreen. Each species was
represented by at least 20 specimens (~480 total). For each tissue
type, we divided the full dataset into 60% calibration and 40% vali-
dation subsets, stratified by species. In the R library caret v. 6.0.84
(Kuhn, 2020), we trained models on the calibration subset using 10-
fold cross-validation repeated 10 times. We chose the number of PLS
components during cross-validation by maximizing Cohen's kappa
(k), which describes the agreement between the true and predicted
species identities while accounting for the probability of agreement
by chance. Imbalanced training data can bias classification algo-
rithms (Sun et al., 2009), so we used a two-step procedure to balance
classes while maintaining enough training data and avoiding over-
fitting. First, we downsampled within better-represented species
classes at random so that all classes had equal size, then chose the
number of components (n) that maximized x. Second, we upsampled
from less-represented classes at random with replacement so that
classes had equal size—again maximizing «, but restricting the range
of components evaluated to no more than the n chosen during the
downsampling step. We applied the cross-validated PLS-DA model
from the upsampling step to the validation subset and summarized
its performance using raw classification accuracy and «.

3 | RESULTS
3.1 | Patterns in traits and reflectance spectra

We saw large variation among samples in each of our target traits
within the CABO data, ranging from 1.4-fold variation in C to more
than 20-fold variation in traits like lignin, P, K and Zn (Table 2). The
ranges of most traits in our dataset covered a large portion of the
global distributions in the TRY dataset, but tended to be narrower

at both extremes (Kattge et al., 2020). Many traits—including LMA,
LDMC, EWT, cellulose and many elements—had distributions with
a pronounced skew (most often positive). Broadleaf trees tended to
have higher LDMC, C and lignin than other growth forms. Among
the herbs, grasses had very high hemicellulose and cellulose and low
lignin content, while forbs often had high N. Some of the trait vari-
ation was driven by specific projects; for example, A. flexuosa in the
Warren project tended to have particularly high LMA, Na and C and
low N.

Both pressed and ground leaves had higher median reflectance
across nearly the entire spectrum (Figure 1), as expected based on
changes in water content and structure (Carter, 1991). Indeed, water
absorption features (the largest of which are centered around 1,450
and 1,930nm) largely disappeared in pressed and ground leaves.
The red edge between the visible and NIR regions was also blunted
by both pressing and grinding, causing the global maximum of me-
dian reflectance to shift from 872nm (fresh) to 954 nm (pressed) to
1,313 nm (ground).

Within each tissue type, the coefficient of variation (CV) of
reflectance was generally highest where average reflectance was
lowest. Across tissue types, pressed-leaf spectra tended to show
greater absolute variation in reflectance throughout much of the
spectrum, particularly towards the tails of the distribution (e.g.
the middle 95% in Figure 1b). The species that have the most ex-
ceptionally reflective pressed leaves across the spectrum (mainly
Phragmites australis [Cav.] Trin. ex Steud., Phalaris arundinacea L.
and Asclepias syriaca L.) do not have particularly reflective fresh
leaves, leaving it uncertain why their pressed leaves are so reflec-
tive. In contrast, discoloured leaves tended to have lower reflec-
tance throughout the visible and NIR ranges (Figure S5). Unlike
pressed leaves, ground leaves showed very low absolute variation
in reflectance throughout the SWIR, likely because grinding elimi-
nates variation in leaf structure. However, they showed high vari-
ation from 700 to 1,100 nm, which may also result from varying
degrees of discoloration.

3.2 | Partial least-squares regression modelling for
trait estimation

Tested on the internal validation dataset, pressed-leaf models
performed best at predicting LMA (R? = 0.932; %RMSE = 6.56),
C (R> = 0.855; %$RMSE = 9.03) and cellulose (R* = 0.803;
%RMSE = 12.2). These traits were followed by a mixture of water-
related traits, carbon fractions and pigments, as well as N and Ca
(all R? = 0.582-0.790; %RMSE = 12.8-17.0). Although some other
elements (Mg, P) could be estimated with R?>>0.5 and %$RMSE < 20,
most models for other elements showed lower accuracy (Table 2;
Figures 2 and 3; Figures S6-512). In most cases, restricted-range
(1,300-2,400nm) models had similar predictive accuracy to full-
range models (Table S2).

We compared pressed-leaf models with both fresh-leaf and
ground-leaf models. The optimal number of components selected to
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FIGURE 1 Distributions of spectral reflectance and its
coefficient of variation (CV) among fresh (a), pressed (b) and ground
(c) leaf samples. A solid black line connects the median reflectance
at each wavelength. Dark blue and light blue ribbons denote the
middle 50% and 95%. The solid red line shows the coefficient of
variation at each wavelength. In (d), the medians of all three are
shown for comparison.

predict each trait was between 3 and 26. For any given trait, ground-
leaf models usually had the most components, often followed by
pressed-leaf models (Table 2). Fresh-leaf models were best for

predicting the structural and water-related traits—LMA, LDMC and
EWT (Figures 2 and 3; Figures S6-512). Ground-leaf models were
best for predicting chemical traits, like carbon fractions and most el-
ements. For most traits, pressed-leaf models had intermediate per-
formance, although for some (e.g. pigments, LDMC) both fresh- and
ground-leaf models performed better. Statistics from jackknife anal-
yses showed that model performance was more variable for traits
that were predicted less accurately (Figures S13-515). There was no
correlation between the magnitude of residuals from pressed-leaf
models and our discoloration index for any trait (p>0.05).

For all traits except LMA and Fe, the VIP metric for fresh-
leaf spectra showed a global maximum between 710 and 720nm
(Figure 4; Figures S16-518)—wavelengths slightly longer than the
typical inflection point of the red edge (Richardson et al., 2002).
Many traits also show high VIP across the green hump at ~530-
570nm. Bands in the NIR range were less important for predicting
most traits than much of the visible range. The SWIR range was gen-
erally important for predicting LMA, EWT, Na and pigments, and
many other traits showed several local peaks of importance, most
prominently at about 1,880 nm, but also near 1,480 and 1,720nm.

For predicting traits from pressed-leaf spectra, the general
trend held that visible reflectance and certain ranges in the SWIR
were important for predicting most traits, while the NIR and much
of the shorter SWIR (800-1,750nm) were less important (Figure 4;
Figures S16-518). The red edge peak of importance for most traits
was near 705 nm. Other prominent local maxima for many traits lay
close to 1,440, 1,720, 1,920, 2,130 and 2,300 nm. We saw broadly
similar patterns in ground-leaf spectra, except that VIP for most
traits was lower at longer SWIR wavelengths (2,000-2,400 nm).

3.3 | External validation

For most traits, pressed-leaf model performance on the external
validation dataset from Cedar Creek was not quite as strong as the
internal validation (Table 3; Figure 5). For C, the models performed
very poorly (R><0.05). Among the remaining traits, R? ranged from
0.350 (LDMC) to 0.876 (LMA). For N in particular, sRMSE was high
(37.8%) due to bias—N concentrations were underestimated for co-
nifers but slightly overestimated for remaining samples.

Since conifers were absent from the CABO training dataset, we
considered whether the models we built would extend to this new
functional group. For LDMC, models performed better when ex-
cluding conifers (R? = 0.406, %RMSE = 22.8) than when retaining
them (R2 = 0.350; RMSE = 24.7). In contrast, for LMA and EWT,
models performed better when retaining conifers. For LMA in par-
ticular, estimates for conifers were quite good, and their extension of
the trait range raised R? (from 0.752 to 0.876) and reduced %RMSE
(from 16.4 to 10.3). Restricted-range models yielded better external
validation R? for N and LDMC both including and excluding conifers
(Table S3; Figure 519). For LDMC in particular, this improvement re-
sulted from improved estimates for extremely discoloured samples
of Populus tremuloides Michx.
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3.4 | Partial least-squares discriminant analysis
modelling for species classification

PLS-DA models using pressed- and ground-leaf spectra showed
near-perfect performance at classifying species (Figure 6). Models
using fresh-leaf spectra were slightly worse but still showed strong
performance. The optimal fresh-leaf model, which had 28 PLS
components, correctly predicted the taxonomic identity of 175
of the 188 samples in the training dataset (x = 0.920; p<0.0001).
The best pressed-leaf model, which had 37 PLS components, cor-
rectly predicted 184 of the 188 samples (x = 0.975; p <0.0001). The
best ground-leaf model, which had 48 PLS components, correctly

predicted all 189 samples (x = 1; p<0.0001). The majority (>70%) of

misclassifications were between congenerics.

4 | DISCUSSION

We show that we can estimate a wide range of leaf functional traits
among 68 woody and herbaceous species from reflectance spectra of
pressed leaves (Table 2; Figures 2 and 3; Figures S6-512). Model perfor-
mance was highest for LMA, C and N, followed by a mixture of water-
related traits, carbon fractions, pigments and a few important elements
(Ca, Mg and P). Other elements could only be estimated with fairly low
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dashed horizontal line at 0.8 represents a heuristic threshold for importance suggested by Burnett et al. (2021). VIP plots for remaining traits

are in Supporting Information.

TABLE 3 Summary statistics for external validation of pressed-leaf PLSR models. The models were trained on CABO data (see Table 2)

and applied to a dataset collected at Cedar Creek

Including conifers

Excluding conifers

Trait Range R? RMSE
LMA (kg/m?) 0.0179-0.229 0.876 0.0186
LDMC (mg/g) 133-525 0.350 69.8
EWT (mm) 0.0602-0.372 0.666 0.0422
C (%) 35.7-59.8 0.027 4.58

N (%) 0.75-4.68 0.544 0.723

accuracy. These results show that pressed-leaf spectra provide an in-
tegrative measure of leaf phenotypes, much like fresh-leaf spectra
(Cavender-Bares et al., 2017), but with stronger potential to characterize
variation in chemical traits. Perhaps as a result, we could use pressed-
leaf spectra to classify species as accurately as ground-leaf spectra and
better than fresh-leaf spectra. Our results underscore the potential that
using reflectance spectroscopy on herbarium specimens could yield
rapid and non-destructive estimates of many functional traits, enabling

more expansive studies of trait variation across space and time.

4.1 | Comparing partial least-squares regression
analysis model performance

We compared pressed-leaf models to fresh-leaf and ground-leaf
models from the same samples. Our findings about which kind of tis-
sue was best for predicting each trait mostly supported our hypoth-
eses. Ground-leaf spectra showed the strongest performance for
most chemical traits, likely because grinding homogenizes the lamina

%RMSE Range R? RMSE %RMSE
10.3 0.0179-0.136 0.752 0.0132 16.4
24.7 133-504 0.406 65.6 22.8
17.1 0.0602-0.363 0.586 0.0337 18.6
25.6 35.7-54.1 0.025 4.40 27.2
37.8 0.75-4.68 0.548 0.797 31.5

and removes the potentially confounding influence of leaf structure
(Table 2). Pressed-leaf spectra showed intermediate performance
for most chemical traits, perhaps because, like ground leaves, they
lack the major water absorption features that mask the smaller fea-
tures of other compounds in the SWIR range (Peterson et al., 1988).
Contrary to our predictions, ground-leaf spectra performed about
as well as fresh-leaf spectra, and better than pressed-leaf spectra,
for estimating pigment concentrations. The same factors that pro-
vided an advantage to ground-leaf spectra in estimating chemical
traits also perhaps explain why pressed- and (especially for LMA)
ground-leaf spectra performed worse for estimating water-related
and structural traits (LMA, LDMC and EWT). Pressed-leaf models
may represent a good compromise in allowing many traits to be esti-
mated with mostly intermediate but nonetheless quite high accuracy.

Our pressed-leaf models often performed as well as fresh-
and ground-leaf models published here and elsewhere. For ex-
ample, our models for LMA had an RMSE (0.00970kg/m?) lower
than many fresh-leaf models from the literature, including Serbin
et al. (2019; 0.015kg/m?), Nakaji et al. (2019; 0.015kg/m? and
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Streher et al. (2020; 0.051 kg/m?). The ground-leaf models in Serbin 4.2 | Interpreting partial least-squares regression

et al. (2014) had a validation RMSE of 1.4 and 2.4 for cellulose and
lignin percentages, comparable with 1.38 and 1.81 for our pressed-
leaf models (Table 2). On the other hand, Serbin et al. (2014)'s
ground-leaf models for N performed better than our pressed-leaf
models (2014; validation RMSE = 0.13 vs. 0.297). Our models' error
could be within acceptable bounds for addressing many questions
about large-scale ecological or evolutionary patterns that encom-
pass a wide range of trait variation. For some traits (e.g. EWT, N,
K, Mn) many of the samples with the greatest errors were at the
poorly sampled tails of the measured trait distribution, which sug-
gests that more thorough sampling may be needed to ensure mod-
els can make reliable predictions at these extremes (Figures 2 and
3). Nevertheless, our external validation analyses indicate that our
models for some important traits—like LMA, LDMC, EWT and N, but
not C—can transfer reliably to other datasets and even sometimes to
new functional groups (Figure 5).

model performance

It may seem perplexing that we could succeed at all in predicting
LMA from ground-leaf spectra or LDMC and EWT from pressed-
and ground-leaf spectra. The ability to estimate these traits must
not result from the optical expression of the traits themselves. We
suggest that we instead sense these traits via their correlations with
other traits that have a stronger optical expression. This kind of ef-
fect—a ‘constellation effect’ (sensu Chadwick & Asner, 2016; Nunes
et al., 2017)—has been invoked to explain the ability to estimate
traits like rock-derived nutrients (Nunes et al., 2017) and 8°N (Serbin
et al., 2014) that are not known to have strong absorption features in
the measured range of wavelengths. However, models that rely on
such constellation effects could break down when patterns of trait
covariance vary (Kothari & Schweiger, 2022), which could make mod-
els for certain traits fail beyond the domain of the training data.
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FIGURE 6 Confusion matrices for partial least-squares
discriminant analysis from (a) fresh-, (b) pressed- and (c) ground-
leaf spectra. Rows specify the true species identity, while columns
specify the models' predictions. Each row sums to 100: Numbers
on the diagonal represent the percentage of specimens of each
species that were correctly classified, while off-diagonals represent
the percentage misclassified as other species. Full binomials:
Agonis flexuosa, Acer rubrum L., Acer saccharinum L., Acer saccharum
Marshall, Betula papyrifera Marshall, Betula populifolia Marshall,
Fagus grandifolia Ehrh., Populus grandidentata Michx., Populus
tremuloides Michx. and Quercus rubra L.

The potential role of constellation effects makes it important
to interpret how our models work. The VIP metric helps us un-
derstand what features are most important, but interpreting it
can be challenging because reflectance at a given band is never
driven by a single trait. Fresh-leaf VIP for most traits had peaks
in the visible and SWIR ranges, with a global maximum at 705nm
(Figure 4 and Figures S16-518). The pattern of high VIP along the
green hump and red edge is common in PLSR models from fresh
leaves (Ely et al., 2019; Streher et al., 2020; Yan et al., 2021; Yang
et al., 2016). The red edge (particularly 700-725nm) may be so
important because of its sensitivity to both chlorophyll content
and leaf structure (Richardson et al., 2002). Much of the visible
range was proportionally even more important for pressed- and
ground-leaf models, and most of the NIR was less important (ex-
cept for LMA; Figure 4; Figures S16-518). There were multiple
small VIP peaks in the SWIR. Although some (e.g. at 1,440 and
1,920 nm) lie within major water absorption features, any causal
link to the leaf's fresh water content is unlikely for pressed and
ground leaves. Many of these peaks also lie near broad absorption
features for many components of dry matter, including protein,
cellulose, lignin and starch, which complicates their interpretation
(Curran, 1989; Fourty et al.,, 1996).

With some exceptions, the VIP metric showed that the same
bands are often important for predicting different traits. This pat-
tern might be taken as an artefact of trait covariance: For example,
the three pigment pools covaried strongly (R? = 0.827-0.969) and had
nearly identical VIP across the spectrum (Figures S16-518). One might
take similarities in VIP further to imply that there are a small num-
ber of traits whose tight coordination with others underlies the per-
formance of all models through constellation effects. Nevertheless,
across the whole dataset, many traits covaried only weakly but still
shared VIP patterns. For example, EWT, cellulose, N and K were not
tightly coordinated (R? = 0.003-0.152) but shared similar patterns of
pressed-leaf VIP across the spectrum (Figure 4), including peaks at
705 and 1,920nm. While VIP is a useful heuristic, it does not show
the direction in which a band's reflectance alters trait estimates; the
same bands may matter for different traits in different ways. Here,
similarities in VIP do not appear to result solely from strong networks
of trait covariance. Nevertheless, the fact that we can estimate traits
like LDMC and EWT from pressed-leaf spectra appears to imply some
role for trait covariance, perhaps in a more diffuse way.
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4.3 | Partial least-squares discriminant analysis
modelling for species classification

PLS-DA models showed that fresh-, pressed- and ground-leaf
spectra alike could be used to classify species with perfect accu-
racy for ground leaves, near-perfect accuracy (>97%) for pressed
leaves and excellent accuracy (>93%) for fresh leaves (Figure 6). In
contrast to prior work that deliberately selected many congenerics
(Lang et al., 2015), our most common species were often distantly
related. Among the misidentified samples, most were mistaken for
congenerics, which implies that related species are more spectrally
similar (Meireles, O'Meara, & Cavender-Bares, 2020; Schweiger
et al., 2018). However, past studies using dry leaves have shown
great success with closely related species (Lang et al., 2015; Prata
et al., 2018) or even populations (Stasinski et al., 2021).

Our analysis reinforces that that pressed- or ground-leaf mod-
els might be particularly suited to the task of classifying or delim-
iting species (Figure 6). This finding is notable because measuring
spectra of pressed leaves in an herbarium is also much simpler than
measuring spectra of fresh leaves through an intensive field cam-
paign across the range of a clade. We conjecture that these models
have an advantage because drying reveals the absorption features
of multiple compounds in the SWIR range that might together
allow finer discrimination of species than water content does.
Indeed, ground-leaf spectra have greater intrinsic dimensionality
than fresh-leaf spectra (Kothari & Schweiger, 2022), which sug-
gests they have more independent axes of variation along which
species may separate. Our results support the growing practice of
using spectra of pressed herbarium specimens in species delimi-
tation and identification (Draper et al., 2020; Prata et al., 2018).
However, classification models from pressed or ground leaves
have less relevance for research using remotely sensed imagery,

which is typically dominated by fresh leaves.

4.4 | The future of spectroscopic trait estimation

Although trait predictions from spectral models are not perfect,
they have a few advantages over conventional trait measure-
ments: they (a) can be non-destructive, (b) are fast and require
relatively little training and (c) have very low marginal cost, despite
the high capital cost of buying a spectrometer (Costa et al., 2018).
These advantages could make it easier to address questions that
require large datasets of functional traits. But researchers may be
deterred if they must each build their own models tailored to par-
ticular uses—and for herbarium specimens, it might not be possible
to do the destructive trait measurements often needed to train
the models. Ideally, spectral models would be general enough that
researchers could confidently use them without further validation,
but this aim is not easy to achieve: for several reasons, a model
trained on any particular spectral dataset may make poor trait
predictions on new data. As with any other technique, the goal
for spectroscopic trait estimation is to improve model accuracy

and generality as much as they can be jointly improved. Below, we
discuss some challenges one by one, particularly as they concern
pressed leaves.

One concern is that the new data could be outside the range of
traits or optical propertiesin the training dataset (Schweiger, 2020).
A general model, if such a thing is possible, would need to repre-
sent the vast range of leaf functional traits and optical properties.
Another kind of concern about model generality concerns sample
preparation before spectral measurements. For example, particle
size influences ground-leaf spectra (Foley et al., 1998). For pressed
leaves, it may be particularly important to prepare samples in con-
sistent ways that preserve the leaves' anatomical integrity. In our
external validation analyses, we found that pressed-leaf mod-
els yielded reasonably accurate predictions of most traits, even
though the validation dataset differed in sample preparation pro-
tocols and included conifers, which were absent from the training
dataset. Nevertheless, even setting aside conifers, external vali-
dation for one trait (C) was very poor, and for another (N) showed
noticeable bias—enough that researchers might need to develop
their own correction factors to use the model in practice.

Another class of challenges concerns spectrometers and their
foreoptics. Spectra of fresh leaves can be measured with different
foreoptics, including integrating spheres, contact probes or leaf
clips. We used a leaf clip with pressed specimens because mounting
delicate pressed leaves in an integrating sphere could damage them.
While leaf clips and contact probes often have a higher signal-to-
noise ratio, they are less likely to produce consistent measurements
among instruments or replicate samples due to variation in viewing
geometry and anisotropic surface reflectance (Petibon et al., 2021).
The logistical constraint of having to use them on pressed leaves
could thus make it harder to compare data among instruments. In
theory, the greater inconsistency of leaf clip measurements could
have reduced the performance of our pressed-leaf models com-
pared with our integrating sphere-based fresh-leaf models, but we
still found that the former performed better for most chemical traits.

Another challenge is that while many herbarium specimens are
glued to a paper backing, measuring reflectance with a leaf clip or
probe usually requires placing a black absorbing background under
the sample to keep transmitted light from being reflected back into
the sensor. When unattached leaves are not available, using spectra
from these specimens may require new methods to correct for re-
flectance from the mounting paper.

Spectrometers and their software also vary subtly in their sen-
sors and techniques for processing spectra (Castro-Esau et al., 2006),
and in some cases researchers must take steps to reconcile spectra
measured from different instruments (Meireles, Cavender-Bares,
et al., 2020). Assuming that these kinds of technical challenges can
be overcome, our results and others encourage confidence about
building general models to estimate traits from a wide variety of
plants (Serbin et al., 2019). The creation of open libraries for spec-
tral data (like EcoSIS, https://ecosis.org/; or the CABO data portal,
https://data.caboscience.org/leaf) and spectral models (like EcoSML;
https://ecosml.org/) will contribute to this goal. Lastly, we note that
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many of the same concerns about discrepancies among sampling
and measurement protocols could arise when using existing spectral

libraries to aid in species identification (Draper et al., 2020).

4.5 | Implications for herbarium-based research

A particular challenge for herbarium specimens is that their optical
and chemical properties (especially light-sensitive pigments) may
degrade during preparation or storage. Such degradation could
make it hard to distinguish changes in the traits of living plants over
time from changes in storage. Even in this study, where no speci-
mens were collected before 2017, many underwent visible changes
in colour, including browning or blackening; ~12% were scored at 2
or higher, with large variation among species (e.g. 42% of Populus
grandidentata specimens, but 0% of Betula papyrifera specimens). We
found little evidence that such discoloration hinders trait estimation:
Both the results of our discoloration analyses and the similar per-
formance of full- and restricted-range models suggest that PLSR is
flexible enough to predict traits despite the variable influences of
discoloration in our specimens. This capacity likely depends on using
samples for model calibration that show a similarly wide range of
discoloration.

Our specimens were collected no more than 3years before
measurement, but ecologists may want to use specimens collected
decades ago. While our findings give reason to be optimistic that
properly calibrated models could return accurate estimates of
many traits from old or discoloured specimens, it remains untested
whether there are any limits to this potential. In general, not much
is known about long-term changes in specimen chemical (aside
from DNA) or optical properties (Lang et al., 2019). Colour changes
are known to accelerate under certain preparation and storage
conditions—including exposure to some chemical preservatives and
high light, drying temperature or humidity (Bridson & Forman, 1999;
Metsger & Byers, 1999)—which it may be worth avoiding when pos-
sible. Long-term studies of specimens—perhaps subjected to varying
preparation and storage techniques—could establish how chemical
and optical properties change over time and help refine these guide-
lines further.

Some of the challenges we describe pertain to projects
that would measure spectra on samples already collected, but
spectroscopy—like other novel uses for herbarium specimens—could
also prompt changes in collection practice. For example, it under-
scores the potential value of gathering and storing extra leaf material
(e.g. in fragment packets), which would circumvent the challenge of
measuring mounted leaves and aid destructive analyses of herbar-
ium specimens (Heberling, 2022). We propose that herbaria could
also incorporate spectroscopy into their operations by measuring
incoming specimens shortly after pressing, which could mitigate the
challenges caused by mounting and degradation.

Linking spectral data measured on herbarium specimens to
the digital record of the voucher could be a powerful tool to en-
able data synthesis, but it may require new informatic tools (Draper

et al., 2020). The hyperdimensionality of the reflectance spectrum
could make it hard to accommodate within existing standards like the
Darwin Core (Wieczorek et al., 2012), at least without extensions.
One could link records to external spectral databases like EcoSIS
or SPECCHIO (Hueni et al., 2020), which are also designed to store
metadata about instrumentation and processing. We would advo-
cate for coordination between herbarium managers and research-
ers who use reflectance spectroscopy, which could build agreement
about best practices for spectral measurement and curation and
allow data to be synthesized and compared across research groups.

We show that non-destructively measured pressed-leaf spectra
retain much of the information about many leaf functional traits found
in fresh-leaf spectra. While validating this technique on older speci-
mens will require extensive further research, our findings suggest that
reflectance spectroscopy could allow herbaria to take on a greater role
in plant functional ecology and evolution. Our study has far-reaching
implications for capturing the wide range of functional and phenotypic
information in the world's preserved plant collections.
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