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Abstract
1. Spectroscopy at the leaf and canopy scales has attracted considerable interest

in plant ecology over the past decades. Using reflectance spectra, ecologists
can infer plant traits and strategies—and the community- or ecosystem-level
processes they correlate with—at individual or community levels, covering more

individuals and larger areas than traditional field surveys.

. Because of the complex entanglement of structural and chemical factors that

generate spectra, it can be tricky to understand exactly what phenotypic infor-
mation they contain. We discuss common approaches to estimating plant traits
from spectra—radiative transfer and empirical models—and elaborate on their
strengths and limitations in terms of the causal influences of various traits on
the spectrum. Many chemical traits have broad, shallow and overlapping ab-
sorption features, and we suggest that covariance among traits may have an

important role in giving empirical models the flexibility to estimate such traits.

. While trait estimates from reflectance spectra have been used to test ecological

hypotheses over the past decades, there is also a growing body of research that
uses spectra directly, without estimating specific traits. By treating positions of
species in multidimensional spectral space as analogous to trait space, research-
ers can infer processes that structure plant communities using the information
content of the full spectrum, which may be greater than any standard set of
traits. We illustrate this power by showing that co-occurring grassland species
are more separable in spectral space than in trait space and that the intrinsic
dimensionality of spectral data is comparable to fairly comprehensive trait data-
sets. Nevertheless, using spectra this way may make it harder to interpret pat-

terns in terms of specific biological processes.

. Synthesis. Plant spectra integrate many aspects of plant form and function. The

information in the spectrum can be distilled into estimates of specific traits,
or the spectrum can be used in its own right. These two approaches may be
complementary—the former being most useful when specific traits of interest are
known in advance and reliable models exist to estimate them, and the latter being

most useful under uncertainty about which aspects of function matter most.
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1 | INTRODUCTION

The way plants interact with light is one of the key determinants of
their success in particular environments and one of most import-
ant processes structuring plant communities (Canham et al., 1994;
Pacala & Tilman, 1994; Williams et al., 2020). The balance between
striving for and avoiding excess light (Kothari et al., 2018; Kothari
et al., 2021) influences plant growth and architecture (Jucker
et al., 2015; Williams et al., 2017), water and resource use (Ellsworth
& Reich, 1993), creating complex environments that shape plant
communities. The processes surrounding plant light use are tightly
bound with a variety of chemical, morphological and anatomical ad-
aptations, ranging from trade-offs between fast and slow return on
investment traits (Wright et al., 2004), to cuticular structures reduc-
ing water loss through evaporation, and leaf thickness altering heat
dissipation. Because these adaptations alter how plants reflect and
absorb light, such optical properties provide a window into plant-
environment relationships.

When light interacts with plants, or any substance for that matter,
three things can happen: light can get (1) absorbed by plant tissues;
(2) scattered in the forward direction, which is called transmittance;
or (3) scattered in the backward direction, which is called reflec-
tance. The partitioning among these three processes depends on
the chemical and structural characteristics of plants, including leaf
chemistry, anatomy and morphology (Ustin & Jacquemoud, 2020)—
and, when measured from a distance, canopy architecture (Serbin
& Townsend, 2020). Spectroscopic methods measure absorptance,
transmittance, or (most often) reflectance of light in many narrow,
spectrally contiguous bands. While the first spectrometers were
laboratory instruments predominantly used for leaf-level studies,
today spectroscopy is used across multiple scales, from the leaf
level, to proximal remote sensing using spectrometers in a fixed
(e.g. in growth chambers, as scanners in a conveyor belt setting) or
moving fashion [e.g. fixed on bicycles, on unoccupied aerial vehicles
(UAVs)], to airborne and spaceborne remote sensing. Most remote
sensing instruments do not just measure one spectrum in their field
of view, but are ‘imaging spectrometers’ that capture reflectance
pixel per pixel in spatially co-registered images (Schaepman, 2007).
Measurements typically include the visible (wavelengths between
400-700nm, VIS), near-infrared (700-1000nm, NIR) and often also
the shortwave infrared (1000-3000nm, SWIR) ranges of the elec-
tromagnetic spectrum. Together, these ranges account for >94% of
solar radiation reaching the Earth's surface (American Society for
Testing and Materials, 2020), which makes plants' interactions with
light in these ranges particularly revealing about their adaptations to
the environment.

Reflectance spectroscopy is increasingly becoming an import-
ant tool in plant ecology. However, the spectral properties of plants

have been studied for several decades (Billings & Morris, 1951; Gates
et al., 1965; Knipling, 1970; Shull, 1929). For instance, Shull (1929)
described how variation in chlorophyll content throughout leaf on-
togeny changes spectral reflectance and examined spectral differ-
ences among plant species, between healthy and diseased plants,
green and albino plants, and upper and lower surfaces of leaves.
Gates et al. (1965) likewise describe changes in spectra with leaf de-
velopment and the use of spectra to differentiate plant and lichen
species. Starting around the 1970s, more and more studies began
using plants' spectra to predict their chemical and structural traits,
and the development of first airborne imaging spectrometers set
in motion plant trait mapping at the canopy level (Knipling, 1970).
Wessman et al. (1988) achieved a major milestone by creating maps
of canopy nitrogen (N) and lignin content based on spectral images
captured by NASA's AIS (Airborne Imaging Spectrometer).

Today's applications of spectroscopy range from modelling and
predicting leaf (Asner et al., 2014; Serbin et al., 2014) and canopy
traits (Asner et al., 2017; Singh et al., 2015), to detecting plant
stress (Asner et al., 2016) and natural enemies (Pontius et al., 2005;
Sapes et al., 2022 ), to differentiating species and broader taxo-
nomic clades (Féret & Asner, 2013; Meireles et al., 2020; Sapes
et al., 2022). Indeed, maps of species (Roth et al., 2015), functional
group composition (Schmidtlein et al., 2012; Schweiger et al., 2017),
and traits of individual plants (Asner & Martin, 2009) or plant com-
munities (Cavender-Bares et al., 2022) are highly valuable for in-
vestigating a plethora of ecological questions beyond the scale of
individual research plots. In addition to trait and species mapping,
plant spectroscopy over the past decade has also seen the grow-
ing use of spectra as integrated measures of plant phenotypes
(Cavender-Bares et al., 2017; Ustin & Gamon, 2010), including in
biodiversity-ecosystem function research (Schweiger et al., 2018,
2021; Williams et al., 2021) and as measures of plant diversity
(Draper et al., 2019; Féret & Asner, 2014; Frye et al., 2021; Rocchini
et al., 2010; Schweiger et al., 2018; Schweiger & Laliberté, 2022;
Wang & Gamon, 2019). Instead of mapping traits, these studies use
spectra of plants directly as a means to understand how plants inter-
act with their environment.

This wide range of ecological uses of spectra carries the prom-
ise of alleviating the geographic, taxonomic and temporal biases
in global plant data (Jetz et al., 2016), which arise because most
traditional field-based research in plant ecology occurs in mid-
latitudinal ecosystems of the global North (Meyer et al., 2016)
around the peak of the growing season. Imaging spectroscopy al-
lows consistent and repeated measurements of plant traits and plant
community characteristics across large spatial extents (Schimel
et al., 2013; Turner, 2014). Although it is unlikely that airborne
imaging spectroscopy can overcome geographic bias due to its
cost, current and upcoming satellite platforms, including EnMap
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(Chabrillat et al., 2021), CHIME (Rast et al., 2021), PRISMA (Cogliati
et al., 2021), and SBG (Cawse-Nicholson et al., 2021), promise more
equitable access through their open data policies. Simultaneous data
collections across spatial scales, including field data (Schweiger &
Laliberté, 2022), and the development of robust models for scaling
between different levels of observations (Gamon et al., 2020) will
allow global spectral biology to improve predictions of how vegeta-
tion composition and biogeochemistry will respond global environ-
mental change (Cavender-Bares et al., 2021).

This review addresses both the use of spectroscopy to derive
plant traits and its potential to go beyond commonly measured
traits by using spectra as integrated measures of plant phenotypes
(Figure 1), as well as the challenges of each approach. Our central
question is: What can spectroscopy contribute to plant ecology be-
yond providing more estimates of things (plant traits and taxonomic
groups) that we can already measure in other ways? Indeed, only a
handful of plant traits have distinct enough absorption features that
they can be predicted from spectra with physical models, and these
traits are not always the most important ones for understanding how
plants respond to or alter their environment (Section 2). However,
we argue that the phenotypic variation that spectra capture is likely
to also include a wide range of ecologically important factors that are
harder to characterize and are still not well understood (Section 3).
Lastly, many traits that are widely important—particularly those

(a) (b)

Radiative transfer

pertaining to organs not visible through remote sensing—have no
direct influence on the spectrum and can be estimated (if at all) only
via their covariance with other traits. Using spectroscopy effectively
in plant ecology requires understanding, or at least acknowledging,
how spectra are generated by the complex entanglement of many
structural and chemical factors with varied ecological relevance
(Ustin & Jacquemoud, 2020). We will discuss the challenges to using
the phenotypic information in spectral data, as well as potential

paths forward, by tackling the following questions:

1. What is the role of trait covariance in the detection of plant
traits that do not cause clearly identifiable absorption features
(Section 2)?

2. What can we learn by working directly with spectra compared to
spectrally derived plant traits (Section 3)?

3. How can we leverage the full information content of spectra and
how should the major dimensions of spectral variation be inter-
preted? What is the intrinsic dimensionality of spectra? (Section 4:

Case studies)

We focus on leaf- and canopy-level ‘hyperspectral’ instruments
that measure reflectance in tens to hundreds of wavelength chan-
nels (or spectral bands) with overlapping sensitivities in their spec-
tral response curves, allowing them to characterize spectra in a
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FIGURE 1 A conceptual figure illustrating what spectroscopy can do for plant functional ecology. (a) Plant traits (C = carbon content,
H,O = water content, LMA = leaf mass per area) can be mapped from spectra using radiative transfer models or empirical machine learning
approaches. (b) Spectra can also be used as integrated measures of plant phenotypes, as for example when assessing species hypervolume
size and position in spectral space along environmental gradients. Here, we depict a hypothetical gradient from wet to dry ecosystems. We
show the position of species in three-dimensional space of canopy reflectance spectra, e.g. along the three main axes of spectral variation.
Four traits are designated by arrows pointing in their direction of maximum correlation with the spectral axes: Soluble sugars, carotenoid
content (CAR), equivalent water thickness (EWT), and leaf angle distribution (LA). The arrow for LA is dashed to denote that it is a trait
that is seldom measured directly, but can strongly influence canopy spectra. In our hypothetical example, drought causes the species to
shift along the three spectral axes. Under drought, the species separate along Axis 2 (correlated positively with LA), a difference in drought
responses that may be hard to describe using directly measured traits alone. The pie chart depicts the percentage of spectral variation that
might be statistically explained by these four traits, with some variation left unexplained. (c) Spectral data can also be used directly to map

spectral diversity, for instance to estimate plant functional diversity
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continuous way. We will not cover multispectral sensors, such as the
Landsat and Sentinel satellites or multiband cameras, because they
lack the spectral resolution needed to infer many traits (Shiklomanov
et al., 2016) or to think about spectra in the continuous, integrative
way that we seek to highlight in this review.

2 | ESTIMATING PLANT TRAITS FROM
SPECTRA

2.1 | Physical and empirical approaches to
estimating plant traits from spectra

Estimating traits from spectra can save considerable amounts of time
and resources in the lab and field. For example, a hand-held spec-
trometer with a leaf clip allows users to derive traits from dozens
of leaves within a few hours without destructive sampling, material
transportation to the lab or chemical analyses. However, estimating
traits from spectra requires a model, typically either: (1) a physics-
based radiative transfer model (Féret et al., 2017; Féret et al., 2021;
Jacquemoud & Baret, 1990), or (2) an empirical model built using
multivariate techniques, among which the most commonly used for
spectral data is partial least-squares regression (PLSR; Burnett et al.,
2021; Martens et al., 2001; Wold et al.,1983).

Radiative transfer models (RTMs) like PROSPECT (Jacquemoud
& Baret, 1990) are based on physical principles which makes them
generally valid for the broad class of leaves that come close to
meeting their assumptions, and the approach can be extended to
the canopy scale (e.g. using PROSAIL; Jacquemoud et al., 2009).
In PROSPECT, leaves are represented as one or several absorbing
plates with rough surfaces, giving rise to isotropic scattering. The
model uses two classes of input variables: a leaf structure parameter
representing the average number of air-cell wall interfaces within
the mesophyll, and the contents of leaf chemicals. However, only
a handful of leaf traits have well-defined absorption features that
influence spectral reflectance in a strong, direct, and easily charac-
terized way. Prominent examples are various pigments, dry matter
content and water content (Figure 2), which can be estimated by in-
verting PROSPECT. In addition, the newest generation of PROSPECT
splits dry matter into protein and carbon-based constituents (Féret
etal,, 2021).

It is highly unlikely, though, that the number of leaf traits that
can be estimated from physical models will increase dramatically in
the future. This is because for most chemical traits, absorption fea-
tures in the 400-2500nm range measured by classic spectrometers
are actually harmonics or overtones of fundamental features in the
UV (10-400nm) and middle-infrared (2500-6000 nm) ranges (Ustin
& Jacquemoud, 2020). In addition, as countless chemical and struc-
tural leaf traits have subtle and often overlapping effects on spectral
reflectance, it is tricky to tease apart the specific effects of individ-
ual traits. While the traits that can be estimated using RTMs have
important functional roles, they are not necessarily those that are
most important for understanding plants' ecological strategies and

their effects in any particular environment; focusing only on this set
of traits can thus limit our ability to understand ecological processes.

This limitation of RTMs is a major motivation behind the use of
empirical machine learning techniques like partial least-squares re-
gression (PLSR). PLSR was specifically designed to reduce the sever-
ity of assumptions of multivariate linear regression (Martens, 2001,
Wold et al., 1983). Since its main purpose is prediction, PLSR does
not depend on a clear, mechanistic understanding of the relation-
ships among the dependent variables and the independent variables,
and it allows the use of many, highly collinear predictors. These
qualities make it well suited for spectral data, which are inherently
multicollinear. Using the sample x wavelength matrix (X) and the
sample x trait matrix (Y), PLSR calculates component vectors ori-
ented to maximize the total variance explained in X and Y and the
covariance between X and Y. Models created using PLSR or similar
algorithms have long been used in chemometrics to quantify chem-
ical components in the pharmaceutical and agricultural sectors, and
have in many cases become routine algorithms readily implemented
in proprietary instrument software (Marten et al., 1985). In vege-
tation spectroscopy, PLSR has been successfully applied to predict
leaf mass per area (LMA) and a series of chemical traits, including the
contents of N, carbon (C), carbon fractions (lignin, cellulose, hemicel-
lulose, soluble cell components), phosphorus (P), potassium (K), cal-
cium (Ca), magnesium (Mg) and pigment composition (chlorophylls
and carotenoids), at the leaf level (Schweiger et al., 2018; Serbin
et al., 2014) and scaled up to the canopy level (Asner et al., 2014;
Singh et al., 2015; Wang et al., 2019; Wang et al., 2020).

2.2 | Trait covariance and trait estimation

Trait mapping using empirical models on spectral data is an in-
creasingly common approach to inferring community or ecosys-
tem processes over large scales (Chadwick & Asner, 2018; Jucker
et al., 2018)—so it is important to know when trait models return
accurate enough estimates, and when they instead break down. At
times, PLSR and other empirical approaches to predicting traits from
spectra may seem unreasonably effective. It seems apt enough that
we can accurately predict chemical or structural traits that have
strong absorption features, like LMA or water content, at the leaf
and canopy scales (Asner et al., 2011; Serbin et al., 2019; Wang
et al., 2020). But leaf-level PLSR models can also let us predict
(with varying accuracy) nutrients or isotopes (e.g. K, Ca, Mg; 8*°N)
that have little direct, measurable impact on leaf absorption within
the VIS to SWIR range (Asner et al.,, 2011; Kothari, Beauchamp-
Rioux, Laliberté, et al., 2022; Nunes et al., 2017; Wang et al., 2020).
Similarly, PLSR models applied to remotely sensed imagery can yield
estimates of non-leaf traits like wood density (Jucker et al., 2018), or
even make reasonably accurate predictions of forest plots' dominant
mycorrhizal associations (Fisher et al., 2016; Sousa et al., 2021). The
apparent success of these models, however modest, creates a puz-
zle: How could a plant trait be predicted when it has no direct effect
on the spectrum?
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FIGURE 2 Example of a foliar reflectance spectrum. Indicated are the three main regions of the spectrum (visible [VIS], near-infrared
[NIR] and shortwave infrared [SWIR]), as well as the main groups of chemical and structural leaf traits influencing reflectance. The
absorption features of water are indicated by the four blue bars. Mapping additional leaf traits onto spectra is challenging, because the
primary absorption features of most chemical leaf components occur outside of the spectral range spectrometers typically measure
(400-2500nm). Because of this, what we actually detect are harmonics and overtones of these absorption features which are subtle and

overlapping, and cannot be illustrated in an easy way

A likely solution to this puzzle is that model-building algorithms
leverage the covariance of these unobservable traits with traits that
do directly influence spectral properties. For example, wood density
tends to correlate with leaf or whole-canopy traits like LMA or total
leaf area (Chave et al., 2009; Mencuccini et al., 2019), which influ-
ence reflectance spectra more directly. Drawing on Chadwick and
Asner (2016), Nunes et al. (2017) coined the term ‘constellation ef-
fect’ to describe how empirical models may predict a target trait by
leveraging its covariance with a constellation of other traits, a phe-
nomenon that can be confirmed using synthetic data (Figure 3). This
sort of effect may be most conspicuous among traits that have no
direct influence on the spectrum. However, it may also affect models
for traits that do have absorption features of their own if they also
covary with other traits that have strong absorption features.

Ecologists often expect traits to covary with each other in ways
that emerge from physical principles and evolutionary constraints
(Cavender-Bares et al., 2020). Particular suites of correlated traits
are given names like the leaf economics spectrum (Diaz et al., 2016;
Wright et al., 2004), the wood economics spectrum (Chave
et al., 2009) and Corner's rules (Corner, 1949). Reich (2014) provides
a broad overview of trait covariance within and across plant organs.
Many of the foundational papers on trait coordination are based on
analyses of global trait databases and have validated the reliabil-
ity of these correlations at global scales (Chave et al., 2009; Diaz
et al,, 2016; Joswig et al., 2022; Wright et al., 2004). However, these
patterns need not be consistent under all circumstances. Indeed,
trait correlations often become more variable or even reverse signs

at finer phylogenetic or spatial scales (Anderegg et al., 2018; Osnas

et al., 2018; Zhou et al., 2022). Biogeographic origins can also alter
the relationships between traits (Heberling & Fridley, 2012). In ad-
dition, although the leaf economics spectrum (Diaz et al., 2016;
Wright et al., 2004) and other low-dimensional trait spaces (Joswig
et al., 2022) have received great attention, real networks of trait co-
variance can be more complex and diffuse and may include traits
beyond those most commonly measured (Valverde-Barrantes, &
Blackwood, 2016; Wei et al., 2017).

The potential ubiquity and scale-dependence of constellation
effects raises the question of what attitude ecologists should take
towards models that may rely on them. This problem has analogues
in other domains: for example, statistical models of disease risk
from genomic data that work well within a population often transfer
poorly among populations. Mathieson (2021) argues that this phe-
nomenon emerges because the models leverage not just ‘core’ genes
with a direct causal effect, but also ‘peripheral’ genes whose influ-
ence is contingently mediated by the core genes. We might likewise
think of traits as lying along a continuum from core to peripheral,
where core traits are those that have a strong, direct influence on
the spectrum—which often allows them to be included in RTMs—as
well as strong correlations with other traits. Associations between
the spectrum and peripheral traits are mediated (at least in part) by
correlations between core and peripheral traits (Figure 3).

Even when the relationship between peripheral and core traits
seems empirically reliable, it may be hard to quell some lingering
doubt about using trait estimates from spectral models that rely
on constellation effects. The range of possible attitudes may be
illustrated by a case study: Ollinger et al. (2008) reported strong,
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positive correlations among stand-level foliar N concentration, C
assimilation, and remotely sensed canopy NIR reflectance across a
range of temperate and boreal forests. Re-examining the relation-
ship, Knyazikhin et al. (2013) argued that a positive correlation be-
tween foliar N and NIR reflectance made little sense in terms of the
physics of leaf-level radiative transfer. Instead, it arose as an artefact
of the disparate canopy structures and leaf surface characteristics
of N-poor conifer and N-rich broadleaf trees, which varied in rela-
tive abundance across the stands. The question arises: If the strong
correlation between foliar N and NIR reflectance is induced by can-
opy structure, should the models still be used to predict foliar N or
C assimilation? Knyazikhin et al. (2013) proposed that attempts to
retrieve leaf chemistry using remote sensing might generally be con-
founded by canopy structure and leaf-level albedo, and expressed
scepticism at empirical approaches that are not heavily reinforced by
radiative transfer modelling. Ina comment, Townsend et al. (2013) ar-
gued two points. First, increased spectral range and resolution could
improve direct empirical estimation of biochemical traits that, for
many of the reasons we discussed earlier, are not amenable to radia-
tive transfer modelling. Second, even when a relationship is indirect
and mediated by trait covariance, it need not be considered spurious.
In this case, they argued that correlations between leaf chemistry,
leaf structure and canopy structure arise from well-described and

ostensibly reliable physical and evolutionary constraints that re-
searchers can exploit for trait mapping. One might argue that trying
to avoid taking advantage of these correlations can in fact result in

worse predictions.

2.3 | When are empirical models good enough?

Regardless of the merits of different modelling approaches, we
can ask when empirical models that leverage trait covariance are
sound enough to use, given that relationships may shift across
regions or taxonomic scales. One might suspect that the rela-
tionship between foliar N and NIR reflectance that holds across
North America's temperate deciduous and boreal forests might
do a poor job of predicting N within deciduous forests alone, or
in non-forested biomes—but in this case, the relationship tends
to be quite robust (Hollinger et al., 2010; Wicklein et al., 2012).
However, traits may vary in the consistency of their correlations
with other traits across settings, which can be assessed by look-
ing at empirical patterns of trait covariance (Anderegg et al., 2018;
Shiklomanov et al., 2020). It may also be useful to examine model
performance across a range of ecosystems and species. For in-

stance, if an empirical model shows good performance across a
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wide range of species but poor performance within subgroups
(e.g. specific ecosystems, functional groups or species), it may sug-
gest that the model relies on global trait covariance patterns that
weaken at finer scales (Figure 3f). One interesting case study is
Meacham-Hensold et al. (2019), who used transgenic lines to show
that PLSR could predict photosynthetic parameters even when
their usual positive correlation with leaf N was broken. In addi-
tion, simulations coupling radiative transfer models with synthetic
trait datasets may elucidate when or how well trait covariance
networks propagate trait-spectral relationships to more peripheral
traits (Figure 3).

More generally, dramatic differences between the conditions
for which a model has been built and the conditions to which a
model is being applied carry a risk of inaccurate or biased estima-
tion (Schweiger, 2020). Best practices for predictive model building
include covering the range of values of the plant trait(s) of interest,
as well as the species, phenological stages, growth forms and envi-
ronments for which predictions shall be made (Burnett et al., 2021;
Schweiger, 2020). Notably, although the transferability of empirical
models has generally been considered limited, recent success in cal-
ibrating accurate continental-scale PLSR models for a range of traits
(Serbin et al., 2019; Wang et al., 2020) suggests that these models
can be applied across wide geographic ranges given that the train-
ing data covers these ranges adequately. At the same time, it seems
reasonable to expect that models that are specifically calibrated for
local sites and phenological stages might outperform global models,
but this still needs to be assessed. In any event, collecting external
validation data to assess on-site performance of empirical models
calibrated for a particular environment and time is good practice
(Burnett et al., 2021; Schweiger, 2020).

Besides asking when empirical models are valid, we can also ask
if there really are a few core traits whose clear influence on optical
properties and coordination with other peripheral traits aids the es-
timation of those other traits—and if so, what are these core traits?
Determining what directly drives a multivariate empirical model,
such as in PLSR, requires careful interpretation, and hints can come
from multiple sources. Interpretive tools like plots of model coeffi-
cients, loadings plots or the variable influence on projection (VIP)
metric for PLSR (Wold et al., 2001) offer heuristics for gauging which
bands help predict a given trait. Bands of high importance can be
checked against known absorption features of specific constituents
(e.g. Curran, 1989) for interpretation. For example, across studies,
many traits show high VIP across the green hump and the red edge
(Ely et al., 2019; Kothari, Beauchamp-Rioux, Laliberté, et al., 2022;
Yan et al., 2021), which suggests that their estimation may be
aided by their covariance with pigment contents or leaf structure.
Nevertheless, assigning unambiguous interpretations to these pat-
terns is often challenging because many components' features are
shallow and overlapping.

These considerations about constellation effects illustrate that
empirical models may often take advantage of trait covariance, es-
pecially for estimating traits that only have subtle influences on the
spectrum. More generally, they also underscore the complexity of

the relationships between the spectrum and traits that have varying
degrees of influence on it. Traits each influence reflectance at many
spectral bands, and each band is also influenced by the complex
physical interactions among many traits. These phenomena give rise
to the covariance among bands (which is likely further strengthened
by covariance among traits) that produces the distinctive shape of
spectra from green leaves (Figures 2 and 3b). The very complexity
of these interactions can make it challenging to disentangle all the
information in the spectrum into a discrete set of traits. At the same
time, the integrative nature of reflectance spectra motivates uses
that are not dependent on estimating standard traits, but use spec-
tra in their own right.

3 | BEYOND TRAITS: TREATING SPECTRA
AS THEIR OWN ENTITY TO CAPTURE
PLANT PHENOTYPES

31 |
traits?

Optical types: More than the sums of plant

In most cases, the spectrum of a plant is treated as an epiphenom-
enon of some set of underlying traits, which are the true deter-
minants of plant fitness. However, there are some circumstances
under which the spectrum itself may be treated as a trait subject
to ecological or evolutionary selection. Naturally, absorptance in
the VIS range corresponds to light capture by photosynthetic and
photoprotective pigments. Absorptance is also part of the leaf en-
ergy balance—a consideration that motivated some of the first stud-
ies of leaf optical properties (Billings & Morris, 1951; Shull, 1929).
This line of research was continued by later researchers, often with
a focus on avoidance of high leaf temperature (Blonder et al., 2020;
Ehleringer et al., 1981; Mooney et al., 1977)—and even extended to
flowers (Roddy, 2019). Another context in which spectral properties
themselves may or may not be adaptive is among plant-animal inter-
actions, where both the reflectance of plant tissues and the spectral
sensitivity of the animals' eyes matter. For example, the appearance
of a plant to potential herbivores may influence susceptibility to her-
bivory (Kemp & Ellis, 2019; Strauss & Cacho, 2013). Competition or
mutualism related to pollinator attraction may also influence the co-
occurrence of flowers with different optical properties (van der Kooi
etal., 2016). In such cases, the change in average spectral properties
or spectral diversity through time or space might indicate which en-
vironmental pressures shape those properties.

Even when the spectrum itself does not directly influence fit-
ness, another reason to use spectra directly to make ecological in-
ferences rather than estimating traits is that they integrate many
aspects of plant form and function into one single measurement
(Cavender-Bares et al., 2017). But what does this mean? If plants
are more than the sum of their traits, how can we get a handle on
the contributions to plant function of traits that are commonly mea-
sured vs more ‘fuzzy’ traits that might not even yet have a name? This
brings us to questions frequently asked in plant functional ecology:
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What are the ‘correct’ traits for investigating specific ecological phe-
nomena? What is the importance of traits that are not associated
with major, well-described axes of trait variation? And, are we even
able to define and measure all traits that matter for plant life? While
spectroscopy will not be able to answer these questions directly, it
can reduce barriers to investigating them further. For example, a
large share of effort in plant functional ecology goes towards mea-
suring a few traits (Kattge et al., 2020), which are relatively cheap
and straightforward to measure, and appear to be of general im-
portance across plant communities worldwide (Westoby, 1998).
However, recent work suggests that the effect of functional traits
on fitness is often multidimensional (Kraft, Godoy, & Levine, 2015)
and dependent on local context (Blonder et al., 2018); in many cases,
aspects of function that are less well-studied or more challenging
to measure may be important for understanding the role of plants
in their environment. Spectra can help us incorporate a broader set
of plant functions than we might otherwise be able to, including
ones that are seldom studied or that manifest in such diverse ways
across the plant tree of life that they are hard to measure in stan-
dardized ways (Pérez-Harguindeguy et al., 2013). These may include
defence compounds and other secondary metabolites (Couture
et al., 2016; Kokaly & Skidmore, 2015), cuticular waxes, leaf hairs
(Ehleringer et al., 1981), anatomical traits like mesophyll structure
(Karabourniotis et al., 2021) and canopy traits such as leaf inclination
angles and branching structure. In addition, the speed of leaf-level
or proximal spectral measurements lowers the barrier to incorpo-
rating intraspecific variation—an important yet oft-neglected aspect
in community ecology (Violle et al., 2012)—and even intra-individual
variation within canopies (Schweiger, Lussier Desbiens, et al., 2020).

The optical type concept (Ustin & Gamon, 2010) is central to
using spectra of plants as their own entities. It posits that, since
plants vie for resources, including light, nutrients and water which
all influence the spectral response, optical types can be delineated
along resource use axes that can be measured spectrally and capture
plant functional identity along a continuum. This concept gave rise to
a series of studies using spectral diversity, or the dissimilarity among
leaf or canopy spectra, as means to capture plant diversity (Draper
et al., 2019; Féret & Asner, 2014; Gholizadeh et al., 2018; Rocchini
et al., 2010; Schweiger & Laliberté, 2022; Wang & Gamon, 2019).
While the main axes of spectral variation have not yet been fully
described (Section 4.2), it has been shown that spectral dissimilarity
among plant species is associated with their functional dissimilar-
ity and evolutionary divergence time (Frye et al., 2021; Schweiger
et al., 2018). The association between plant spectral, functional
and phylogenetic distance is currently best understood at the leaf
level (Frye et al., 2021; Meireles et al., 2020; Schweiger et al., 2018).
Although leaf spectra do not capture all traits that shape how plants
interact with their environment, they do integrate many plant traits
that are important for resource capture and stress tolerance, includ-
ing the contents of pigments, water, cellulose and defence com-
pounds. Through trait covariance, they may also indirectly capture
other leaf traits like macro- and micronutrients, as well as traits of
other organs like flowers, stems, roots and seeds.

At the remote sensing level, variation in spectra captures differ-
ences in plant growth form, leaf orientation and plant architecture
as well as leaf traits. However, these structural canopy character-
istics are difficult to quantify spectrally and active remote sensing
techniques, including SAR (synthetic-aperture radar) and LiDAR
(light detection and ranging) are much better suited to derive in-
dicators of vegetation structure (Antonarakis et al., 2011; Bergen
et al., 2009; Lenoir et al., 2022). Nevertheless, plant growth form,
leaf orientation and canopy architecture create illumination patterns
that are influenced by the spatial distribution of light and shade, and
proportions of leaf tissue and bark (Gower et al., 1999; Kuusinen
et al., 2021). These illumination patterns may influence the spectral
signal in a way that contributes to spectral dissimilarities among spe-
cies, broader taxonomic or functional groups. Studies partitioning
the contributions of leaf and canopy traits to spectral diversity or
species differentiation are needed to clarify the degree to which ef-
fects of canopy structure on spectra benefit or hamper plant diver-
sity assessments using remotely sensed spectra.

3.2 | The spatial organization of plant
spectral diversity

Spectrometers can be operated from platforms, including UAVs, air-
planes and satellites, that cover a range of spatial scales. The size of
image pixels, or spatial resolution, depends mostly on the distance
between the sensor and the ground. While imaging spectrometers
operated from UAVs can achieve a spatial resolution of a few cen-
timetres, spectral images captured from airplanes typically have
spatial resolutions at the m-level and from satellites at the 30-m
level. The plant to pixel-size ratio is an important aspect of imag-
ing spectroscopy: when pixels exceed the size of individual plants,
a focal plant's surroundings—which can include neighbouring plants
and non-vegetated areas—add to the spectral signal. In other words,
while airborne data with 1 m pixels might capture individual trees
in a mature forest, the same pixel size would capture entire plant
communities in grassland ecosystems. This makes it necessary to
consider the spatial organization of plant diversity.

The partition between alpha-, beta- and gamma-diversity pro-
posed in Whittaker's (1960) classic work is particularly well suited
for working with continuous spatial information as provided by
imaging spectrometers. Plant alpha-diversity—the diversity within
communities—can best be estimated from spectral datawhenindivid-
ual plants are at least as large as image pixels (Fassnacht et al., 2016;
Schweiger & Laliberté, 2022; Wang et al., 2018). Therefore, while
it might make sense to estimate plant alpha-diversity by calculat-
ing spectral alpha-diversity from 2 m image pixels in forests, the
same approach might not make sense in grasslands. When individ-
ual plants are substantially smaller than image pixels, it seems more
useful to work at the beta-diversity scale, using the spectral dissim-
ilarity among image pixels to capture differences in plant commu-
nity composition (Schweiger & Laliberté, 2022). There are different
approaches to calculating spectral diversity, including metrics based
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on spectral species (Féret & Asner, 2014) and spectral information
content (Wang & Gamon, 2019). One of these approaches—spectral
variance partitioning (Laliberté et al., 2020)—has the interesting yet
under-explored property that it can be used to calculate the local
contributions of individual image pixels and the contributions of in-
dividual spectral bands to the spectral diversity of a particular area.
This property may help illuminate the spatial and spectral sources
of diversity patterns (Laliberté et al., 2020). However, it is not clear
whether the spectral contributions of non-vegetated areas should
be viewed as adding to the distinctiveness of plant communities or
as noise (Gholizadeh et al., 2018).

The spatial arrangement of spectral variation can be useful for
investigating community assembly or ecosystem function. Ecologists
are often keen to test hypotheses about processes from patterns of
functional diversity or functional identity through time or space; such
hypotheses could likewise be examined through the lens of spectral
diversity oridentity (i.e. position in spectral space). For example, Smith
et al. (2013) argued that functional diversity-area (FAR) relationships
could be used to make inferences about trait-based assembly mecha-
nisms; this method was later extended continuously over landscapes
using trait estimates derived from imaging spectroscopy (Duran
et al., 2019; Schneider et al., 2017). Inspired by the FAR approach,
Dabhlin (2016) constructed spectral diversity-area relationships using
imaging spectroscopy to consider the roles of environmental filtering
and stochastic drift in a mixed agricultural-forest landscape. Draper
et al. (2019) and Bongalov et al. (2019) have since addressed similar
questions by comparing the roles of the environment and geographic
distance in explaining spectral beta-diversity within highly diverse
tropical rainforests. These studies reveal the potential for spectral
data to shed light on core issues in community assembly over large
scales—and they are only possible because spectral dissimilarity or
diversity can act as a surrogate for functional dissimilarity or diversity
(Schweiger et al., 2018; Ustin & Gamon, 2010). However, the infer-
ence of ecological processes from patterns of spectral diversity may
face many of the same challenges and ambiguities as inference from
patterns of trait diversity (Kraft, Adler, et al., 2015).

3.3 | Spectra as integrated measures of
plant phenotypes

Studies that have used spectra as their own entity also include in-
vestigations into resource partitioning. Schweiger et al. (2018, 2021)
have found that individual plant growth as well as community produc-
tivity can be predicted from the spectral space an individual plant or a
plant community occupies. This means that individuals and communi-
ties that grow more show greater spectral variation and occupy larger
spectral hypervolumes than individuals and communities that grow
less. The authors propose that differences in resource use strategies,
in particular in light use, might be responsible for the large hypervol-
umes occupied by productive individuals, species and communities.
Using plant spectra in community ecology can provide an op-
portunity to differentiate plant characteristics that matter under

particular circumstances into those that are captured by specific
sets of traits and those that remain unmeasured but are captured
spectrally. One strategy could be partitioning the total variance of
the ecological phenomenon of interest into two fractions, one that
is explained by measured traits and one that is explained by spectra
alone (Figure 1b). Examining the wavelengths that contribute most
to the explanatory power of the spectral component could allow
drawing inferences about unmeasured, yet important traits that help
explain the ecological phenomenon of interest. Another strategy
could be to investigate the main axes of spectral variation together
with the traits that are associated with them. Through the succes-
sive inclusion of additional sets of traits, it might become possible
to decipher which characteristics of plants are captured spectrally.
In any case, it is likely that spectra capture characteristics of plants
yet to be named.

While this approach of treating spectra as a standalone entity
can be powerful, it does come with challenges. Changes in spectral
identity or diversity are not as immediately interpretable in biologi-
cal terms as changes in functional identity or diversity. Using spectra
on their own also makes it harder to control the weights assigned
to various aspects of plant function, as one might aim to do when
calculating functional diversity (Laliberté & Legendre, 2010). At the
leaf level, the greatest share of spectral variation is usually due to
overall NIR reflectance and the depth of water absorption bands in
the SWIR range, which are controlled mainly by factors like leaf sur-
face characteristics, mesophyll structure, LMA and water content.
At the canopy level and after accounting for illumination differences,
leaf area and leaf angle distribution might be the dominant factors
explaining spectral variation, followed by the foliar traits mentioned
above. But these traits may not always be commensurately import-
ant for fitness or ecosystem function, and traits that account for a
smaller share of total spectral variation may be more ecologically
important. In other words, although using spectra on their own may
allow ecologists to take advantage of more phenotypic information
than what most plant trait assessments typically capture, it may also
not allow them as much control over what information exactly their
analyses include. Methods to bring out the most salient information
about plant-environment interactions from spectra could be a useful

topic for future research.

4 | DIMENSIONALITY OF SPECTRA

As we have emphasized, plant reflectance spectra are powerful tools
because they integrate many aspects of plant form and function into
a single measurement. Much of this review is concerned with the
question: ‘What and how much information about plant function is
contained in the reflectance spectrum?’ This question is important
because the power of a trait dataset to explain or predict patterns
in community ecology depends on its intrinsic dimensionality—the
number of parameters needed to account for the dataset's proper-
ties (Laughlin, 2014). The logic of this claim is that each axis of phe-
notypic variation (or cluster of correlated traits) can be the subject
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of selection by different environmental filters, so including more
independent axes means that predictions can take into account the
effects of more filtering variables. For efficiency's sake, a researcher
might want to design a trait measurement campaign to include as
many independent dimensions with as few measurements as pos-
sible (Laughlin, 2014). Spectra might serve this goal—but only if the
phenotypic information they contain is relevant to the environmen-
tal filters that may be acting in a given community, which may not be
known in advance.

Spectral datasets are made up of a much larger number of vari-
ables (spectral bands) than the vast majority of trait datasets, but
spectral bands are often highly correlated—both because any given
trait influences multiple bands and because traits covary. Radiative
transfer models like PROSPECT can generate much of the variation
found in real spectra with just a few variables (eight in PROSPECT-
PRO; Féret et al., 2021), but are by necessity simplifications; the
intrinsic dimensionality of spectral data has seldom if ever been
explored empirically. Here, we use two example analyses to take a
look at the information spectra contain, with the hope that they will

inspire more comprehensive investigations in the future.

4.1 | Species differentiation in spectral versus
trait space

In this case study, we used fresh-leaf spectra and trait data of 902
individuals from 14 grassland-savanna perennials sampled in 35
plots of the Cedar Creek Biodiversity (BioDIV) experiment (see
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Supplementary Methods). The traits included are foliar C, N, soluble
cell compounds, hemicellulose, cellulose and lignin concentration
(%), the content of chlorophyll a+b (pmol m?), and ratios relative to
chlorophyll content of beta-carotene, lutein and xanthophyll (violax-
anthin + antheraxanthin + zeaxanthin) pigments. We z-standardized
each trait to mean O and standard deviation 1 across the dataset. We
used linear discriminant analysis (LDA) to illustrate species dissimi-
larity in spectral and trait space, and we tested the degree to which
plant species can be correctly identified based on spectra and traits
using partial least squares discriminant analysis (PLSDA; Brereton &
Lloyd, 2014).

Visual inspection of LDA results revealed that species were more
distinct in spectral than in trait space (Figure 4). In spectral space,
all non-graminoid species clearly separated along the first four LDs
(Figure 4a,b),and LDs 11 and 12 separated the graminoids (Figure 4c).
In trait space, however, only a few species formed distinct clusters,
and we found no combination of LDs that separated the four gram-
inoids species from each other (Figure 4d-f). As aresult, species iden-
tification models based on spectra (accuracy = 93%, Kappa = 0.81)
consistently outperformed species identification models based on
traits (overall accuracy = 66%, Kappa = 0.63; Figure 5).

To some extent, better separability of species based on foliar
spectra could be due to redundancy in the traits we measured. In
our case, light gradients are probably the dominant source of envi-
ronmental variation, and all leaf traits measured in our study are to
some degree influenced by variation in light. For instance, the ratio
of chlorophyll and carotenoid pigment levels reflects biochemical
acclimation to stress under different light environments (Gamon &
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FIGURE 4 Species clustering along linear discriminant axes (LDs) maximizes the differences among species based on (a-c) spectra and
(d-f) traits. Overall, species are more distinct in spectral space compared to trait space. In spectral space, it was even possible to distinguish
closely related and functionally similar graminoid species, which was not possible in trait space (d-f), along LD axes 11 and 12 that only
explain a small portion of the total variance in the data (c). The amount of total variance explained by each LD is shown in parentheses; for
species abbreviations and number of individuals per species see Supplementary Methods. Species' phylogenetic relationships and major

functional groups are shown on the right.
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FIGURE 5 Results from species identification models. Confusion tables for PLSDA (partial least squares discriminant analysis) models
showing the proportion of correctly identified (diagonal) and misidentified (off-diagonal) species based on (a) leaf spectra and (b) traits. For
species abbreviations and number of individuals per species see Supplementary Methods

Berry, 2012; Kothari et al., 2018). Likewise, the contents of different
carbon fractions are tied to morphological adaptations to light gradi-
ents (Niinemets, 2007), such as leaf thickness and LMA. In this way,
what we think of as multiple traits can also be thought of as differ-
ent proxies for the same or overlapping traits (Gamon et al., 2019).
Overall, leaf spectra seemed to capture differences in leaf chem-
istry, structure and morphology among species more completely
than the traits we measured. Interestingly, LDs 11 and 12, which
separated the graminoid species, each contributed <1% to the total
variation in leaf spectra, while LDs 1-4, which separated the other
species, accounted for more than 78%. This highlights that minor
axes of spectral variation can bring out important but subtle differ-
ences in species' foliar characteristics. Hypotheses regarding which
foliar traits might contribute most to LDs 11 and 12, and thus to
leaf-level differences among the four graminoid species in our study,
would be interesting to test. However, this would require additional
trait measurements. The spectral bands contributing most to spe-
cies' separability along the first LD axes aligned with regions in the
foliar spectrum indicative of leaf chlorophyll, carotenoid, lignin and
protein content (Figure S1). These foliar traits also contributed most
to species separability in functional trait space (Figure S1), and all
except chlorophyll content showed evidence of phylogenetic signal
(Table S1), indicating that these traits might contribute to species
identification across ecosystems.

4.2 | The dimensions of leaf spectra

Next, we sought to quantify the dimensionality of spectra. We
used fresh-leaf spectral and trait data from the Canadian Airborne
Biodiversity Observatory (CABO) comprising samples of woody

and herbaceous plants in Canada and Australia (see Supplementary
Methods). We included at most 10 samples per species (leaving
n = 905; species = 106). We z-standardized the reflectance at each
wavelength to avoid placing particular emphasis on bands that have
more absolute variation in reflectance and picked a subset of 73
spectral bands to reduce representation of highly correlated wave-
lengths. We considered the following nine foliar traits: equivalent
water thickness (EWT), LMA, C, N, hemicellulose, cellulose, lignin,
total chlorophyll and total carotenoids. We converted all traits be-
sides EWT and LMA to a normalization-independent basis (sensu
Osnas et al., 2018) to remove their statistical dependence on LMA.

Researchers have often found that leaf chemical traits are esti-
mated better from ground-leaf spectra than from fresh-leaf spectra
(Couture etal., 2016; Kothari, Beauchamp-Rioux, Laliberté, etal., 2022;
Wang et al., 2020). On some CABO samples, we had also measured
spectra after the samples were pressed like herbarium specimens,
and again after they were dried and ground (Kothari, Beauchamp-
Rioux, Laliberté, et al., 2022). Among these samples, we again chose
no more than ten samples per species (n = 228; species = 66), and
z-standardized and subsampled bands. Lastly, as a benchmark, we
used PROSPECT-D (Féret et al., 2017) to generate a synthetic dataset
of 1000 spectra with a known dimensionality of 4 by independently
varying leaf structure, chlorophyll, water and dry matter content. We
z-standardized and subsampled bands as in the real data.

We sought to describe and compare the intrinsic dimensionality
of the spectral and trait datasets. Inspired by Laughlin (2014), we
used a number of techniques for estimating dimensionality (Table 1)
and aimed to see what patterns emerged rather than attempt to
reach a single, precise estimate of the true dimensionality. Most of
these techniques are non-linear, meaning that they can account for
non-linear relationships among input variables like bands or traits.
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TABLE 1 Estimated intrinsic dimensionality using a variety of techniques on data from the Canadian Airborne Biodiversity Observatory

(CABO)

n =905 n=228

Spectra  Traits Fresh Pressed Ground PROSPECT Citation
Correlation integral 4.7 4.2 4.1 4.4 59 3.5 Grassberger and Procaccia (1983)
Maximum likelihood 4.4 4.5 3.8 4 4.9 3.6 Levina and Bickel (2004)
Manifold-adaptive nearest neighbour 4.3 5.0 4.5 4.4 5.8 3.4 Farahmand et al. (2007)
Non-iterative nearest neighbour 3.9 4.3 3.3 2.6 4.1 3.3 Pettis et al. (1979)
Minimum neighbour distance-maximum 4.7 4.7 4.2 4.4 5.2 3.7 Rozza et al. (2012)

likelihood

PCA scree test 5 5 5 6 4 Cattell (1966)
Isomap scree test 3 3 3 3 3 Tenenbaum et al. (2000)

The PROSPECT-generated dataset with a known dimensionality
of 4 had estimated dimensionality between 3 and 4. This result sug-
gests that these methods can capture the dimensionality of spectral
data, perhaps with a tendency towards underestimation. For both
the measured spectral and trait datasets, most methods returned
a dimensionality of about 4-5. Using many of the same methods,
Laughlin (2014) had shown that large whole-plant trait databases
tended to return a dimensionality of 4-6. The fact that leaf-level
spectra come close to (and sometimes exceed) the dimensionality of
large trait databases suggests that they may have great promise for
explaining and predicting community assembly. This potential could
be tested, for example, by using species' positions in spectral space
as inputs into predictive models of trait-based community assembly
(Laughlin & Laughlin, 2013).

On the samples with spectra from fresh, pressed and ground tis-
sue, fresh- and pressed-leaf spectra often had similar dimensionality
(mainly 3.5-4.5), but ground-leaf spectra were considerably higher
on average (mainly 4-6). We suspect that water and leaf structure
may reduce dimensionality by obscuring or overwhelming the small
absorption features of specific dry matter constituents in the SWIR
range (Elvidge, 1990; Peterson et al., 1988). But since water and leaf
or canopy structure are unavoidable in remote sensing—and import-
ant for plant function—this finding may have limited relevance for
inferring ecological processes over large scales.

Given an estimate of spectral dimensionality, one may wonder
what aspects of plant function the dimensions correspond to. We used
the manifold learning technique Isomap (Tenenbaum et al., 2000) on
the full fresh-leaf spectral data (n = 905) to visualize the major di-
mensions of leaf spectral variation and their relationship with traits.
Isomap approximates the geodesic distances among points on a
curved manifold and applies classical multidimensional scaling (MDS)
on the distance matrix. Because the relationship between spectral
bands is often non-linear, Isomap may be better suited than linear
methods to discovering the underlying structure of spectral data.

Much like MDS, the orientation of Isomap output is arbitrary.

Here, we rotated the Isomap coordinates using Procrustes analysis

to maximize its similarity to the trait dataset. We caution that,
while Procrustes analysis helps us interpret spectral variation in
terms of the traits in our dataset, it may obscure dimensions of
spectral variation that correspond to unmeasured traits. We focus
on the first four dimensions after rotation, following the esti-
mates in Table 1, but further dimensions may still have functional
importance.

The Isomap analysis helps to visualize the spectral differences
among functional groups (Figure 6). Conifers occupy much of the
quadrant high on both Axes 1 and 2, while many of the samples
high on Axis 1 but not 2 are forbs or wetland graminoids. Shrubs
and broadleaf trees tend to be low on both axes. EWT correlates
strongly with Axis 1 and LMA with Axis 2; the conifers with high
values on both axes have high EWT and LMA, while many forbs
and wetland graminoids have high EWT but not LMA. Functional
groups separate less along Axes 3 and 4, which correlate with a
greater variety of traits but less strongly. Axis 3 is associated with
high C and lignin and low EWT, while Axis 4 correlates primarily
with N and pigments. Low values along Axis 3 are dominated by
graminoids and forbs. These plots can give us a basic sense of the
way spectral variation is distributed among functional groups and
the traits that underpin it.

We hope these preliminary analyses provide the inspiration for
future exploration with larger spectral and trait datasets that repre-
sent a larger share of the world's floral diversity. It may be possible
to carry out similar analyses using remotely sensed imagery and map
plant traits or ecosystem functions onto the space of canopy spec-
tral variation (Feilhauer et al., 2011). New algorithms (e.g. UMAP;
Mclnnes et al., 2020) could allow researchers to interpret their
spectral data within a well-understood low-dimensional embedding,
much as they can for traits (Segrestin et al., 2021). Given the right
data and computational tools, ecologists could eventually describe
the major axes of spectral variation and their implications for plant
strategies. This advance would make it easier to discern the mean-
ing of changes in spectral identity or diversity across environmental

gradients.
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FIGURE 6 A visualization of spectral data from the Canadian Airborne Biodiversity Observatory (CABO) along four Isomap axes. The line
segment for each trait is oriented in the direction along which it shows the greatest change within the two-dimensional spectral space, and
its relative length within the panel is proportional to the Pearson's correlation coefficient (r) between the trait and that direction. All traits
besides LMA and EWT were made normalization-independent (sensu Osnas et al., 2018). hemi, hemicellulose; cell, cellulose; lign, lignin; chl,

total chlorophylls; car, total carotenoids

5 | CONCLUSIONS

At the leaf and canopy scales, vegetation reflectance spectra contain
an extraordinary wealth of information about the ways that plants
function. For much of the early history of vegetation spectroscopy,
the main way to distill this information into an interpretable form was
to calculate indices or estimate traits related to specific aspects of
plant function. Mainly within the last decade, researchers have begun
to use the full, multidimensional spectrum itself as a tool to investi-
gate ecological processes at the community or ecosystem scales.

In this review, we have sought to describe both the use of
spectroscopy to derive plant traits as well as the potential to use
spectra directly as integrated measures of plant phenotypes, and
also how these two approaches are complementary. The motiva-
tions for choosing to use spectra directly can be multifaceted. In
some cases, it may be motivated by a lack of models or in situ data
for a wide range of traits (Dahlin, 2016). It may also be motivated
by the aspects of plants' function governing their impacts on or
response to the environment in a given case being highly complex
or uncertain. And just as there are aspects of trait variation that
are not readily captured by reflectance spectra due to weak or
absent optical features, there are aspects of spectral variation that
have not yet been interpreted or modelled in terms of commonly
measured traits. Because these aspects of spectral variation stand
a good chance of being ecologically meaningful, spectra can com-
plement standard traits in assessing the ways plants impact and
respond to their environment.

With further methodological and conceptual improvements,
both approaches could continue to develop and complement each
other. Progress in the area of trait modelling and mapping may lead
to ensembles of machine learning methods that allow the mapping

of global trait distributions and associated uncertainties, combined
perhaps with local scale models adjusted to specific site conditions.
Global model repositories combined with cloud computing might
allow dynamic trait maps to be produced by selecting appropriate
models based on the scale of observation. Progress in the area of
using spectra as their own entity may lead to better understanding
regarding the separate contributions of suites of traits to spectral
variation and their role in ecosystem functions and processes. A
wider usage of spectral variance partitioning may also help us un-
derstand the ecological roles of rarely measured traits that affect
spectra, including leaf anatomy, surface hairs and waxes, defence
compounds, and—at the canopy level—leaf angle distribution.

As our examples illustrate, plant reflectance spectra serve as in-
tegrative measures of plant phenotypes that can be used to address
long-standing ecological questions at the community or ecosystem
scales. At the leaf scale, reflectance spectra can be measured quickly
and at low marginal cost from many samples. At the canopy scale,
imaging spectroscopy allows aspects of plant phenotypes to be
mapped continuously over entire landscapes. Among other objec-
tives, these advantages could help to lower the barriers to incorpo-
rating intraspecific variation and a broader range of plant functions
in our research.

In summary, spectroscopy of plants and vegetation is fundamen-
tally connected to functional ecology. Using spectra to draw ecolog-
ical inferences can benefit from a combination of spectral and trait
analyses. We hope that the growing incorporation of spectroscopy
into the standard toolkit of plant ecology will spur the advance-
ment of ecological remote sensing—in other words, remote sensing
grounded in ecological theory and praxis. Ultimately, this will allow
targeted and explicit assessment and monitoring of plant biodiver-
sity and ecosystem functions and processes, providing the basis for
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meaningful action to counteract negative effects of environmental

change from local to global scales.
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