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Endophytes often have dramatic effects on their host plants. Characterizing the relationships among members of these
communities has focused on identifying the effects of single microbes on their host, but has generally overlooked interactions
among the myriad microbes in natural communities as well as potential higher-order interactions. Network analyses offer a
powerful means for characterizing patterns of interaction among microbial members of the phytobiome that may be crucial to
mediating its assembly and function. We sampled twelve endophytic communities, comparing patterns of niche overlap between
coexisting bacteria and fungi to evaluate the effect of nutrient supplementation on local and global competitive network structure.
We found that, despite differences in the degree distribution, there were few significant differences in the global network structure
of niche-overlap networks following persistent nutrient amendment. Likewise, we found idiosyncratic and weak evidence for
higher-order interactions regardless of nutrient treatment. This work provides a first-time characterization of niche-overlap network
structure in endophytic communities and serves as a framework for higher-resolution analyses of microbial interaction networks as
a consequence and a cause of ecological variation in microbiome function.

The ISME Journal (2022) 16:435-446; https://doi.org/10.1038/s41396-021-01080-z

INTRODUCTION
Persistent nutrient amendment (e.g. of nitrogen, phosphorus,
potassium, and other essential elements; hereafter “NPK") often
leads to reduced diversity [1-3] and community stability [4], but
increased productivity [5]. These, in turn, influence the composi-
tion and phenotype of soil and root microbes in grassland
communities [6, 7]. Increased nutrient supply rates have been
correlated with reductions in soil microbial growth efficiencies and
the breadth of nutrients used by soil microbes [8], and have been
shown to influence both leaf nutrient composition [9-12] and
plant metabolite production [13-15]. In particular, NPK amend-
ment increases both macronutrient (i.e. N, P, and K; 9, 11), and
micronutrient (e.g. Ca and Zn; 11) levels within plant leaves, as
well as altering plant carbon allocation [15] and production of
enzymes [14] and defensive compounds [13]. Against this
backdrop of widespread direct and indirect effects of NPK
amendments on plants and their associated soil communities,
recent work has begun to explore the impacts of nutrient
amendments on foliar endophytes; [16, 17] Kinkel unpublished).
Microbial symbionts are critical to plant health and productivity
[18-23], yet the effects of individual taxa can vary from
mutualistic, as in the case of nitrogen-fixing rhizobacteria and
mycorrhizae, to antagonistic, as in the case of pathogenic bacteria
and fungi. Moreover, host-symbiont interactions represent but a
small fraction of the total, complex network that makes up the

phytobiome. Substantial evidence exists that both a microbiome’s
composition and its concomitant web of interactions can have
dramatic Within-host Microbial Interactions and Plant Parasites:
From Pairwise Interactions to the Microbiomeeffects on host
plants [24-26], and that these effects can differ from those
expected from summing the effects of all pairwise relationships
[27-29], but see 4). Compositional changes in endophytic bacterial
and fungal communities in response to NPK amendment have
been shown in some cases;[17, 22, 30, 31] Kinkel unpublished).
Even when the taxonomic composition is unchanged, however,
functional (phenotypic) characteristics of fungal endophytic
communities can shift in response to NPK amendment (16; Kinkel
unpublished). In particular, resource use phenotypes among
fungal, but not bacterial, communities were seen to be
significantly different in leaves from nutrient-amended vs. control
plots (Kinkel unpublished)). While shifts in resource use among
endophytic populations in response to changes in nutrient
amendments may not be surprising, the causes of these shifts
and their implications for microbiome dynamics and function are
unknown [21, 23, 32]. Critically, it remains to be answered whether
or not the extensive effects of nutrient amendment on microbial
composition and phenotype extend into the structure of the
microbial interaction network.

Network analysis is an approach for analyzing systems of
interconnected components and is used across a range of
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disciplines [33-39]. In biological systems, network analyses have
proven particularly appropriate in the study of microbiomes,
where hundreds of microbes can interact in complex ways
[32, 39-44]. In general, network analysis seeks to answer questions
about patterns of connection (are their groups of strongly
interacting individuals?; are specialist interactions a subset of
generalist interactions?) and influence (do some individuals have
disproportionate impacts on the rest of the community?). Yet
attempts to integrate network science into ecology, which
involves applying methods developed idiosyncratically across
multiple scientific disciplines to ecological questions, have proved
challenging. In particular, ecologists have struggled to link metrics
of network structure to biologically relevant variation in commu-
nity composition, diversity, or stability, as well as to key
environmental variables such as nutrient inputs, abiotic factors,
or disturbance [39, 45].

Here, we characterize the network structure of microbial
resource-niche overlap within endophytic communities in plants
that have received long-term soil NPK amendments and from
non-amended plants. We evaluate the roles of bacterial and fungal
populations within niche-overlap networks considering local
(node- or isolate-specific) measures of network structure and
highlight differences between fungal and bacterial populations
from nutrient-supplemented versus control leaves. Next, we
determine how nutrient supplementation influences network
structure, comparing global and triad-scale network structures
between nutrient-amended and control plots. Finally, we inves-
tigate the possibility of higher-order interactions (HOI), in which
the interaction strength or direction between two species is
modified by the presence of a third species [46]. We assess the
prominence of HOI by comparing each network’s observed
structure to expectations based on the distribution of pairwise
interactions.

Notably, we are not constructing co-occurrence networks, in
contrast to the majority of studies looking at microbiome
composition in plants, animals, and the environment. Co-
occurrence networks are constructed by measuring the relative
abundances of operational taxonomic units (OTUs) within
individual samples and linkihng OTUs to one another if their
abundances correlate across space, conditions, or time. However,
strong correlations in abundance are, at best, implied interactions
between isolates, providing limited insight into explicit interaction
structure [39, 47]. Yet, microbes interact with one another in a
variety of concrete ways. They produce antibiotics that can be
used to directly inhibit their neighbors or to act as signaling
compounds at lower concentrations [48]. They interact through
the consumption of one another’s metabolic by-products and
through the secretion of enzymes that digest carbon sources
indiscriminately. Finally, they compete in the consumption of
limited resources in their environment. We focus on this final type
of interaction, looking at resource use phenotypes to infer
competitive interactions between isolates. This work introduces
a framework for the study of interaction networks among bacterial
and fungal foliar endophytes in the presence or absence of an
experimental treatment. These analyses provide insight into those
factors that influence the structure of endophytic interactions and
provide a framework for future analyses of microbial interaction
networks in relation to biotic and abiotic factors.

MATERIALS & METHODS

Data

This research utilized experimental plots at the University of
Minnesota’s Cedar Creek Ecosystem Science Reserve, part of the U.
S. National Science Foundation’s Long-term Ecological Research
network. The experimental plots are part of the global Nutrient
Network (www.nutnet.org) experiment and have received annual
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additions of Nitrogen, Phosphorus, and Potassium (NPK) since
2007, as well as a micronutrient mix applied once at the start of
the experiment [17, 49, 50].

We focused on endophytic microbes associated with the
tallgrass prairie species Andropogon gerardii (big bluestem). In
early September 2015, a single healthy mature leaf was collected
from each of 6 different plants within each treatment (nutrient-
amended soil, non-amended). Plants were stored on ice during
transport to the lab, and subsequently surface-sterilized by
immersing individual leaves for 1 min each in: sterile deionized
water, 75 % ethanol, 04125 % sodium hypochlorite (bleach
solution), 75 % ethanol, and sterile deionized water. Leaves were
immediately sectioned into 3 pieces of approximately equal size
using a flamed scalpel. One section of each leaf was randomly
selected for further study here.

Individual leaf sections were placed in 10 ml PBS buffer and
macerated using a Fisher Scientific™ Handheld Homogenizer (FSH
125) for 3 min. The resulting macerate and three dilutions (of 1072,
10~* and 107%) were each plated onto multiple nutrient media,
including: malt extract agar, water agar, starch-casein agar, and
pentachloronitrobenzene peptone agar. Plates were incubated at
either room temperature or 28 °C and were checked periodically
for newly emerging isolates. Microbes were randomly selected
from each medium for further study, purified through successive
transfers, and stored either in 20% glycerol stock suspensions
(bacteria, —80 °C) or on agar slants (fungi, 4 °C).

From the resulting collection of over 800 microbial isolates
(spanning 35 genera: 17 bacteria and 18 fungi; Tables S1 and S2), we
randomly selected up to 10 bacterial and 10 fungal isolates from
each leaf for further investigation. We refer to these collections of
co-occurring microbes as “communities” explicitly assuming that
each collection was sampled from a sympatric community existing
within a host leaf. For each microbial isolate, we evaluated resource
use on 95 carbon substrates using Biolog SF-P2 plates (Biolog,
Hayward, CA), as described previously [6, 51-55].

Niche overlap calculation

Growth efficiencies on each nutrient, quantified by optical
densities, were used to formulate a resource niche for each
isolate, and relative niche-overlap was calculated for each ordered
pairwise combination of isolates. Specifically, we calculate the
pairwise overlap

Wi_jn = Min (g'—”) m
gj,n

for each of the m(m — 1) ordered pairs of isolates i and j (where m
is the number of unique isolates) and for each substrate n for
which both isolates show non-zero growth. g;, indicates the
optical density of isolate i after 72 h of growth on nutrient source
n. This value can be thought of as the fraction of isolate j's growth
on substrate n that is matched by isolate i. We average these
values across substrates to get a single value for each ordered pair
of isolates:

1 95
Wi = _Zw'ﬂ' .
i—j 95 2 i—j,n

N.b. this approach explicitly treats all 95 substrates as equally
important in defining an isolate’s resource niche. These mean,
relative, pairwise niche overlap values (hereafter NO) were taken as a
proxy for the strength of competitive interaction of each isolate
against each other isolate and combined to form directed niche-
overlap networks for each of the communities. With the exception
of one of the control leaf sections for which we were unable to
collect ten bacterial isolates, each of these networks consisted of
twenty nodes (representing ten fungal and ten bacterial isolates). In
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the case of the exception, only five bacterial isolates were collected,
leading to a smaller network consisting of fifteen nodes (ten fungal
and five bacterial). Previous work has shown that niche overlap
metrics calculated using such data are significantly correlated with
antagonistic phenotypes among coexisting microbes, supporting
their use as a metric of interaction [54, 56]. Sensitivity to this
formulation of niche overlap is explored in the Supplementary
Information (Fig. S1 and S2 and Tables S3 to S2).

Creating a directed binary network

The above process produces a weighted (i.e. non-binary) niche-
overlap value for each pair of isolates. While such an approach has
the potential to offer additional nuance to our understanding of
the overall network structure, in most cases we found the results
did not differ qualitatively from those for binary representations
unless otherwise noted. Thus, while we report results for the
weighted networks in the Supplementary Information (Fig. S3 to
S5 and Tables S7 to S12), we focus on binary networks in the main
text. We use a threshold cutoff for NO in order to create a binary
interaction network. Here, we define a significant resource-
competitive interaction as a NO of greater than or equal to 75%.
The sensitivity of results to cutoff value is explored in the Supple-
mentary Information (Fig. S6 and S7 and Tables S13 to S18).
Explicitly, for each pair of isolates i and j, if Eq. (1) yields a value
greater than 0.75, we say that i has a significant niche overlap on j.
We signify this in the network by drawing an arrow: i — j.
Importantly, just because i significantly overlaps j does not mean
the reverse is true, i.e, in general, w;_; # w;_;). Binary networks are
plotted using a Fruchterman-Reingold algorithm in which nodes
are placed in space according to a balance of interactions pulling
nodes together and an underlying inter-node repulsion, resulting
in groups of connected nodes being placed more closely together
than more disconnected ones. This visual grouping is evaluated
statistically using a spin glass algorithm [57] to identify community
structure in the network and comparing community membership
to isolate kingdom using a x*-test.

Network structure metrics

One of the most fundamental properties of network structure is
the degree distribution, i.e. in how many competitive interactions
does each isolate participate? Because our networks are directed,
we are interested both in an isolate’s indegree (number of other
isolates whose resource niche significantly overlaps a focal
isolate’s resource niche) and its outdegree (number of other
isolates for which the focal isolate’s resource niche significantly
overlaps their resource niches). To characterize the shape of the
degree distribution, we measure several summary statistics,
including the mean, standard deviation, and skewness of the in-
and out-degree distributions. We also consider a combined
degree measure: the proportion of total degree that is inbound.
We calculate mean, standard deviation, and skewness for this
distribution across nodes as well.

In network theory, centrality measures have been developed to
quantify the importance of nodes within a network, and the many
different types of centrality differ in how they define importance.
Degree centrality measures the total number of incoming and
outgoing links from a node. Thus, isolates that have many and strong
interactions will have a higher degree of centrality. Closeness
centrality, on the other hand, looks at the wider pattern of
interactions, asking how many links separate a given node from all
other nodes in the network. A node with high closeness centrality will
have short paths to other nodes within the network. In more tangible
terms, this can be interpreted as an isolate’s influence on other
isolates in the community (and vice versa) being more proximate. We
calculate these two centrality measures for each isolate.

Finally, we calculate a suite of metrics that measure key
characters about the potential competitive links within the
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network. These include: (i) clustering coefficient; [58] (ii) intransi-
tivity, which has been suggested to be key for maintaining
diversity through the promotion of coexistence (Allesina and
Levine [59], Maynard et al. [60, 61], but see Gallien et al. [62]; and
(iii) triad counts, i.e. the number of each unique three-node
subgraph (“triad”) present in a network [63, 64]. Triad counts have
received attention recently as intermediate-scale structures and
potential “building blocks” of whole-network structures. Formal
definitions of each of these metrics can be found in the Supple-
mentary Information.

For each of the metrics above, we compared across isolate
kingdoms (bacteria or fungi) or nutrient treatments (NPK
amended or control) using Welch's t-Tests.

Differences of observed network structure from pairwise
expectations

While the biological effects of higher-order interactions (HOI) have
rarely been quantified in empirical systems [27, 65-67], one way in
which the presence or absence of such effects can be evaluated is
in deviation from predictions based on pairwise measurements
[46, 68]. In a network context, we can identify higher-order
interactions when aspects of the network structure (e.g. the
degree of clustering or the counts of particular triads) deviate from
what we would expect in a network constrained solely by the
number and positioning of pairwise interactions. To this end, we
compare each structural metric of the empirically-assembled
networks from each host leaf to the distribution of that metric
generated from randomizations that preserve the in- and
outdegree distributions of each node (microbial isolate) in the
network, but randomize the connections between isolates (i.e. a
configuration model sensu [69]).

RESULTS

Co-occurring (within the same leaf segment) endophytic bacteria and
fungi exhibited a wide range of mean pairwise niche overlap (NO)
values. Distributions of NO differed between organisms from the
same vs. different kingdoms and in the presence vs. absence of long-
term NPK amendment (Fig. 1). While the percent NO between any
two isolates can range from 0 to 1, we observed highly non-uniform
distributions of NO, and distributions varied significantly depending
on nutrient treatment as well as kingdom of focal and partner isolate
(Fig. 1 and Table S19). For fungi competing against bacteria or other
fungi, and for bacteria competing against other bacteria, we observed
a high degree of NO among most pairs of co-occurring endophytes.
In contrast, bacterial NO on co-occurring fungal isolates tends to be
smaller; this is partially a consequence of the larger average niche
widths of fungi compared to bacteria (Welch's t-Test p < 0.001; Kinkel
unpublished). Collectively, the distribution of NO values highlights the
diversity of interaction patterns among microbes and draws attention
to differences between kingdoms.

Analysis of the roles of bacteria and fungi in endophytic
networks

Using the binary interaction data (NO greater than 75%), we
constructed networks for each community, detailing all pairwise,
directed interactions between isolate pairs (Fig. 2). When plotted,
a visual grouping of nodes according to the kingdom is apparent.
This “community structure” illustrates that isolates have greater
NO on average with members of the same kingdom than with
members of the other kingdom. However, when investigated
statistically, only a few of the NPK-supplemented networks show
significant grouping of isolates by kingdom (Table S20; [57, 70]).
Note that when weighted networks are considered (i.e. using the
raw NO values as interaction strengths), the strength of intra-
kingdom grouping is stronger in the Control treatment, relative to
those undergoing NPK supplementation (Table S20).
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Fig. 1 Distributions of niche overlap calculated by averaging the nutrient-wise overlaps between each pair of co-occurring isolates. We

divide these values according to treatment and interaction focal/partner kingdom. The solid black lines in each panel indicate the 0.75
thresholds utilized to formulate binary interaction networks from these values, while the dashed lines indicate the mean of each distribution.
All distributions are significantly different from one another in both mean and shape with the exception of the Bacteria — Bacteria

distributions across treatments (Table S19).

Considering each endophytic community independently, we
found differences in both degree and closeness centrality between
bacterial and fungal isolates (Table 1). While results were not
consistent across all networks, bacteria and fungi differed most
frequently within the control treatment and when considering the
degree of NO. Differences between fungi and bacteria in degree or
closeness centrality were rarely significant in nutrient-amended
leaves (Table 1). In control leaves, patterns of network structure
were dominated by fungal isolates overlapping a (usually bacterial)
co-occurring isolate’s resource niche. Thus, bacteria have higher
indegree on average, while fungi have higher outdegree. More-
over, bacteria have higher closeness centrality when inbound links
are considered (they tend to have their resource niches overlapped
by others), while fungi have higher closeness centrality when
considering outbound links (they tend to be more dominant
resource users). These differences between bacteria and fungi were
attenuated in the NPK-treated communities (fewer significant
differences in local structure between kingdoms), consistent with
an “equalizing” effect of nutrients on bacterial-fungal resource
competitive interactions in the presence of NPK (Table 1). Finally,
fungal isolates were less clustered than bacterial isolates (i.e. when
a bacterium interacts with two other isolates, those two isolates
tend to more often interact with each other, forming dense
aggregates of interacting microbes, whereas fungal interaction
partners are less likely to interact with one another; 58). This is due
in part because the bacterial interaction partners of fungi tend to
have smaller niche widths, limiting their ability to interact with the
other interaction partners of a focal fungal isolate.

Among all bacterial and fungal isolates, there was a negative
relationship between in- and outdegree: isolates whose niches
strongly overlapped their neighbors generally had fewer cases where
their neighbors’ niches strongly overlapped their own (Table 2). The
strength of the imbalance between in- and outdegree is captured by
the slope of the relationship between in- and outdegree (Fig. 3). This
slope was steeper for fungi than for bacteria (Table 2 and S3; slopes
ranging from —2.16 to —0.08). Slopes were not related to hosting
plant nutrient treatment, but were consistently more steeply negative
when the focal isolate was a bacterium or when the partner isolate
was a fungus (Table S21). Interestingly, the effect of taxonomy on the
relationship between in- and outdegree was largely constrained to
the kingdom, with finer classifications having a minimal contribution

SPRINGER NATURE

to explaining the variation (Table S22). Additional taxonomic
considerations are addressed in the Supplementary Information
(Fig. S8 to S10).

When considering nutrient treatment, interactions where the
partner isolate was a bacterium (i.e. Bacteria — Bacteria and Fungi
— Bacteria) tended to be more steeply negative in leaves
undergoing nutrient amendment, whereas interactions with
fungal partners (i.e. Bacteria — Fungi and Fungi — Fungi) were
less steeply negative (Table S21). The steepness of the relationship
between in- and outdegree can be construed as a group measure
of competitive ability. For a group to have a steep slope in Fig. 3,
the component isolates must have high indegree relative to their
outdegree; i.e. they must be weaker competitors on average. In
contrast, groups with shallower slopes have component isolates
with higher outdegree relative to their indegree; i.e. they tend to
dominate in their interactions with other isolates. Importantly, this
explanation does not take into account the potential life-history
strategy of being a specialist on an uncommon resource: such
isolates would have low in- and outdegree; i.e. they would have
few interactions in general. Additionally, all inference of interac-
tion strength from our calculations of niche overlap will depend in
part upon the complement of resources in situ.

Metrics of network structure

There were few significant differences in common measures of
network structure across treatments and none that were robust to
correction for multiple hypothesis testing (Table 3, S23, and S24).
That is, despite differences in the degree distributions, and
differences in relationships between in- and outdegree in nutrient-
amended and control leaves, we did not see differences across
nutrient treatments in network metrics including whole-network
clustering, intransitivity, and summary statistics of the degree
distribution. Likewise, there were few significant differences in
triad counts between nutrient treatments (Table 4; but see Sup-
plementary Information).

Is there higher-order structure in endophytic microbial
community interaction networks?

Looking at a wide range of network metrics, we probed for the
presence of higher-order interactions (HOI) by comparing the
empirically measured values for these metrics to expectations

The ISME Journal (2022) 16:435 - 446
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Fig.2 Network diagrams of each of the twelve niche-overlap networks (one for each leaf, numbered 1-6 for each treatment, control “C”
and NPK Supplemented “N”) generated by measuring resource use across 95 carbine substrates using Biolog MicroPlates. Blue nodes
signify bacterial isolates and pink nodes signify fungi. Links between nodes of the same kingdom share the color of the nodes being
connected, links that connect across kingdoms are colored orange. Nodes are arranged according to the Fruchterman-Reingold algorithm;
any spatial patterns are emergent properties of overall networks structure, though care should be taken in interpreting node positioning in
the absence of statistical analysis. All plotted networks consist of twenty nodes (ten bacterial and ten fungal), with the exception of control
leaf five (for which only five bacterial isolates were obtained), and control leaf four (“C4”; for which one fungal isolate was disconnected from
the giant component following thresholding of the niche overlap). This disconnected node was omitted to improve visual clarity, but included
in all other analyses.

particular networks, e.g. Control network 4 and NPK networks 1
and 5; and (ii) particular metrics, e.g. triads with two or fewer
interactions. This finding is consistent with some prior work
suggesting that only a subset of microbes participate in HOI
[27, 67].

based solely on each network’s pairwise interaction structure
(Table 5). We found that HOI was uncommon: most empirical
networks’ structures were indistinguishable from their randomiza-
tions based on pairwise interactions. Yet, there were some
idiosyncratic discrepancies from expectation, concentrated in (i)
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Table 1. Welch's Two-Sample t-Test comparing clustering and two measures of centrality (degree and closeness) between bacterial and fungal
isolates within each network.

Weights Direction Metric Control NPK Supplemented
Node clustering OmD Ooooooao
All Degree centrality 000000 oooooao
Closeness centrality o oo oo o OooDoooao
Degree centrality I Il OoOoOmO
Binary In Closeness centrality 0OO0DO 000000
Degree centrality EECEnm Oooooao
Qs Closeness centrality o wm oo oo OooDoooao
Node clustering EE00Nm oooooao
All Degree centrality O OOoO0oaO Oooooao
Closeness centrality o m o o o Ooooooao
Degree centrality EsE0OESm OooEO
Weighted ] Closeness centrality m m m o= = Oo0DO0®O
Degree centrality EEO00ON mm w R w R
O Closeness centrality EE00Nm oooooao

Each column represents an individual leaf, ordered as in Fig. 2 (C1-C6 and N1-N6). The p values have been corrected for multiple comparisons [80]. When
differences are significant, boxes are colored according to the isolated kingdom with the larger value for each metric (m for bacteria and m for fungi). The
intensity of the color indicates the level of significance: m/m, m/m, and m/m shades signifying p values < 0.001, < 0.01, and < 0.05, respectively. Empty boxes
signify p values > 0.05. Formal definitions of each metric can be found in the Supplementary Information.

Table 2. Linear model results for indegree by outdegree in each sympatric network, differentiated according to focal and partner isolates’ Kingdom
(each unique combination of color and panel in Fig. 3).

Treatment Focal Kingdom Partner Kingdom Estimate p value Adjusted R?
Any —0.88 < 0.001 0.50

Bactoria Bacteria —0.56 < 0.001 0.36

Fungi —2.16 < 0.001 0.59

Cloxatizall Any —0.32 < 0.001 0.34
Fungi Bacteria —0.08 < 0.001 0.18

ungi

Fungi —0.51 < 0.001 0.35

Any —0.81 < 0.001 0.60

Bacteria Bacteria —0.64 < 0.001 0.68

Fungi —-0.77 < 0.001 0.25

NPK Supplemented Any —0.33  <0.001 0.63
Fungi Bacteria —0.16 < 0.001 0.22

Fungi —-0.51 < 0.001 0.60

This analysis utilizes an average pairwise measure of niche overlap and binary interaction strengths. An analysis of variance in these slopes is presented in
Table S21.
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Fig. 3 In- by outdegree for each isolate according to isolate kingdom and host plant treatment. Panels are divided according to nutrient
treatment (rows) and focal isolate kingdom (columns). Colored points indicate the kingdom of the focal (for indegree) or partner (for
outdegree) isolate: orange indicates interactions between kingdoms, while within kingdom links are colored according to the kingdom, using
the same colors as in Fig. 2 (pink for fungi, blue for bacteria). Black points indicate values for each isolate interacting with all others (bacteria
and fungi). Thus, there are three points for each isolate in each panel: one for their interactions with other members of their same kingdom
(blue or pink for bacteria or fungi, respectively), one for interactions with the alternate kingdom (orange), and one for their total number of
interactions (black). Links are assigned when an isolate has greater than 75% niche overlap with another isolate. Points do not fall exactly on
integers due to slight jittering to improve readability. Lines indicate best-fitting linear models for each subset of the data. All slopes are

significantly different from O; Table 2).

In addition to calculating empirical p values (which indicate
whether or not an empirical value differs from expectations), we
also calculated z scores, which are a measure of the magnitude of
any differences (Table 5). We found fewer substantial deviations
(empirical values more than two standard deviations from the
mean of the distribution measured for the randomized networks)
than we saw significant differences in the p values, signifying that
some of the statistically significant deviations may be less likely to
represent biologically meaningful differences. In all cases, the
direction of the effect was consistent across networks within the
same treatment.

Taken together, our results suggest that HOI, when present, are
highly localized, both within particular networks, and within
particular structures in a given network; yet, the structures of the
endophytic networks analyzed here are largely constrained by
their pairwise interactions. This is consistent with previous results
that have suggested that, at least in small communities, the effects
of HOI are often overshadowed by the effects of pairwise
interactions [71].

DISCUSSION

While NPK amendments have been shown to have diverse effects
on microbial communities, it had not yet been addressed whether
these effects percolate into the structure of the interaction

The ISME Journal (2022) 16:435 - 446

networks of naturally-assembled microbial communities. We used
network analyses to characterize the structure of species
interactions within endophytic microbiomes under distinct
nutrient regimes. We found that the addition of NPK to hosts
plants altered networks so that the structure of bacterial and
fungal interactions became more similar to one another, suggest-
ing that the role of cross-kingdom interactions in community-wide
dynamics is altered significantly with plant nutrient conditions.
Second, we found that these changes were due to changes in the
degree distribution among isolates, especially reflecting changes
in fungal niche overlap, but not to changes in global network
structure. Finally, there was limited evidence for higher-order
interactions (HOI) in endophytic networks, though this varied for
communities from different leaves.

Nutrient amendments reduce inter-kingdom differences

When perennial host plants are exposed to long-term NPK
amendments, the interaction network patterns among endophytic
fungi become more similar to those of co-occurring bacteria. This
reflects a reduction in fungal niche overlap against fungi and
bacteria, as well as an increase in the overlap of bacteria on fungi
(Fig. 1). This is illustrated clearly in Fig. 3 by the increase in
Bacteria—Fungi interactions in NPK-amended treatments relative
to control treatments. Moreover, in contrast to control leaves,
when considering clustering and centrality there are almost no
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Table 3.

Welch’s two-sample t-Test comparisons of whole-network-scale metrics across treatments.

Metric Control NPK Supplemented p value
Network Clustering 0.78 0.71 o
Connectance 0.37 0.32 o
Intransitivity 0.26 0.34 i
Mean degree 7.49 6.42 i
Mean proportion degree inbound 0.54 0.56 o
Standard deviation of indegree 4.71 4.34 0
Standard deviation of outdegree 6.47 6.26 o
Standard deviation of

proportion degree inbound 0.33 0.35 o
Skewness of indegree 0.41 0.50 o
Skewness of outdegree 0.39 0.71
Skewness of proportion degree inbound -0.04 -0.06 0

Boxes are colored according to the treatment with the larger value for each metric, m for control, and m for NPK. Color intensity indicates the level of

significance, with m/m and m/

signifying p values < 0:01 and < 0:05, respectively. Empty boxes signify p values > 0:05. p values are uncorrected for multiple

hypothesis testing and applying such a correction makes all differences non-significant. We omit the outlying control network with fewer than twenty isolates;
inclusion of this community does not change these results qualitatively. Formal definitions of each metric can be found in the Supplementary Information.

significant differences between fungi and bacteria in NPK-
amended communities (Table 1), consistent with a loss in fungal
competitive advantage.

Nutrient treatments alter degree distribution, but not global
network structure

The significant loss in fungal competitive advantage, and
corresponding differences in degree distribution with NPK
amendment, did not translate into significant differences in global
network structure between treatments. Though endophytic
communities from non-amended leaves had greater clustering
and connectance, consistent with a greater role of species
interactions in community dynamics, these differences were not
statistically significant (Table 1). This may suggest a form of
functional replacement at the level of network structure, whereby
nodes with different degree signatures nonetheless fill similar
roles as components of larger structures within the network. This
could reflect some form of higher-order selection, for instance on
stabilizing network structures [72], that constrains endophytic
network structure. Indeed, the ranking of relative abundance of
triads 7-10 in our networks maps exactly on to a ranking of
relative stability noted by Borrelli et al. [72]. Triads 9 and 13 were
also found to be common in the soil communities analyzed by
Schlatter et al. [63], and were usually, though not always more
represented than other triads with the same number of
interactions.

Alternatively, the lack of differences in larger network
structures could result from limitations to capturing network
structure through community sub-samples. Recent work on
animal movement networks has suggested that, while local
network structures such as degree are relatively easy to recover
without comprehensive sampling, more complicated network
structures are nearly impossible to measure accurately without
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infeasible sampling coverage [73, 74]. In the case of endophytic
microbiomes, where there are potentially up to hundreds of
microbes interacting in close proximity, a sub-sample of twenty
microbes may simply be too few to detect the differences
present in the wider network structure, despite capturing
differences in-degree distribution. Finally, it could be that there
is too much variation among communities within each treatment
to successfully distinguish differences in network structure
among treatments. Further study of naturally-assembled endo-
phytic microbial community interaction networks across a range
of conditions and with larger sample sizes is needed to resolve
these questions.

Deviations from expected resource-competitive network
structure are rare

There is significant interest in HOI, in which interactions between a
collection of organisms are altered by the presence of other
organisms, both as a means of making ecological models more
realistic and for understanding their potential role as a stabilizing
force in large, complex communities [27, 75]. One of the common
approaches for identifying HOI in interaction networks is to
compare an empirical network structure to an ensemble of
random networks generated by rewiring the empirical network
while conserving its pairwise structure (i.e. degree distribution).
Differences between the empirical and randomly-rewired net-
works can be viewed as evidence for HOI. While recent research
has suggested that HOI are both common [27, 76, 77] and
important to community dynamics [67, 75], in this work we found
little evidence for either claim. Overall, there were few significant
differences between observed and predicted network structures,
and z scores suggested that many significant differences from the
rewired networks were small.
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Table 4. Welch'’s two-sample t-Test comparisons of network triad
counts across treatments.

Triad Control NPK Supplemented p value

o
Lo g 38:20 100.83 .
) Q!"0104.20 180.50 5
"0
5 & o 880 9.33 5
N 0/2\0269.80 318.83 5
s N, 13160 141.83 .
. j\o 3.20 4.50 .
. o’ﬂb 1.40 0.17 5
o &Y, 340 0.50 5
o L, 490.00 372.83 o
0. A 0.00 0.00 .
" of&@ 0.00 0.00 5
o A 9.60 1.83 .
13 A\ 57.60 15.50
" A 0.00 0.00 5
[*}
15 N 100 0.33 .
A 1.20 0.00 .

16. o+0

Boxes are colored according to the treatment with the larger value for each
metric, m for control, and m for NPK (none present). Empty boxes signify
p values > 0.05. x indicates cases where both treatments had no instances
of that particular triad. The single significant difference has a p value of
0.028. The p values are uncorrected for multiple hypothesis testing and
applying such a correction removes all significant differences. We omit the
outlying control network with fewer than twenty isolates; inclusion of this
community causes one other relationship to become significant: Triad 2
becomes significantly higher in NPK relative to Control plants.

One limitation to our analysis of HOI is the fact that several of
the endophytic networks had relatively few possible configura-
tions with the same degree distribution. Most dramatically, two
of the communities’ structures were nearly completely dictated
by their degree distribution; out of at least 1000 attempted
randomizations, fewer than five unique network configurations
were found. Even among networks that had more unique
randomizations, four additional networks yielded fewer than
twenty unique combinations of all metrics collected. In only one
case (leaf C4) did we find 1000 unique randomized networks in
our sampling. In other words, for most of these communities
there are very few possible distinct network configurations with
the empirical degree distributions. This is not a limitation
resulting from network size, but rather from these particular
networks’ highly nested structure [78]. Further research is
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needed to distinguish whether this nestedness is merely a
consequence of experimental sampling design, or if it is
representative of endophytic resource-competitive networks
more generally.

The importance of empirical systems

The study of microbial community assembly and structure has
been driven forward on two major fronts. First, there is an
enormous body of data on the relative abundance of microbial
populations across communities in natural habitats, allowing the
analysis of dynamics and construction of co-occurrence networks
across time and space. These data often have a sampling intensity
and complexity that reflects the real world, but introduce
assumptions about potential interactions between species that
are not readily verifiable [39, 47]. However, empirically measure
microbial interactions typically requires more work or resource-
intensive approaches, such as culturing microbes in isolation or in
small, synthetic communities [79], or inferring resource use from
metatranscriptomics or radioactive labelling.

Here, we provide a third path toward understanding micro-
biome assembly and function, complementary to these first two.
Isolation and characterization of interaction structures for
subsampled communities that have resulted from natural com-
munity assembly processes have the potential to yield essential
insights into the organization of microbial interactions in situ.
Notably, naturally occurring microbial communities are generally
much larger than sampled here, which inevitably influenced our
ability to detect the full complexity of endophytic competitive
interaction network structure. For instance, we find a complete
turnover of isolates between communities, something which may
not be expected with comprehensive sampling. As a conse-
quence, while looking for generalizable patterns across commu-
nities within a treatment, these efforts were potentially hampered
by the possibility of exaggerated inter-community variation.
Likewise, we rely upon culturability to identify microbial isolates,
introducing a potential bias to our sampling. Nevertheless, our
approach provides an important step forward in strategies for
studying microbial community interaction networks in natural
communities as an essential complement to the outstanding work
being conducted at the bench and chalkboard.

CONCLUSION

Endophytes are a critical component of healthy, productive
plant communities, and have important and sometimes
dramatic effects on their hosts. While much research has
focused on interactions among isolated species or within small,
synthetic communities, this work aims to provide a framework
for enhanced understanding of the structure of naturally-
assembled endophytic communities and their network of
species interactions. We focused on resource use and niche
overlap, one important means by which microbes have the
potential to interact with one another within host plants. We
considered network structures for communities in NPK-
amended and control leaves in three ways: (i) the network
degree distribution; (ii) the global network structure; and (iii) the
potential for HOI by contrasting network structure to an
expectation based on randomization.

We found widespread differences between microbial king-
doms and nutrient treatments in the degree distribution of
endophytic competitive in- and outdegree, in particular noting
that nutrient supplementation reduced the competitive advan-
tage of fungi over bacteria. These differences did not, however,
propagate into the global network structure. We found
remarkably few differences in global network structure across
treatments. Finally, we found limited evidence for higher-order
interactions, with significant interactions concentrated in select
communities and metrics. Collectively, these findings suggest
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Table 5.

Summary test for higher-order interactions in endophytic microbial networks.

p value

Z score

Metric/Triad Control

NPK Supplemented

Control NPK Supplemented
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Empirical p values (left) and z scores (right) for network structure metric comparisons between empirical and randomly-rewired networks. Each column
represents an individual leaf, ordered as in Fig. 2 (C1-C4 and N1-N6). Values less than 0.05 (—2) signify that the empirical value is significantly smaller than
expected, and are represented by v (v for values less than 0.01 (—4)). Likewise, values greater than 0.95 [2] signify that the empirical value is larger than
expected and are represented by ~ (2 for values greater than 0.99 [4]). Dashes (—) signify values between 0.05 and 0.95 (—2 and 2; i.e. non-significant
differences) and X indicates cases where all randomizations resulted in the same value for this metric/community combination. Two of the control leaves (C5
and C6) were omitted from this analysis because 1000 randomizations of these networks yielded only 1 and 4 unique network configurations, respectively.

that nutrient amendments to ecosystems can significantly
impact microbial interactions within endophytic communities,
but that their impact on global network structure is muted. This
work provides a foundation for further investigations into the
nature and relevance of microbial interaction structure for
community assembly and function. Further research is needed
to provide higher-resolution analyses of naturally-assembled
microbial communities to identify relationships between
microbial interaction network structures as a consequence
and cause of ecological variation, as well as their potential role
in ecosystem management and conservation.
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