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Abstract

The use of trait-based approaches to understand ecological communities has increased in
the past two decades because of their promise to preserve more information about commu-
nity structure than taxonomic methods and their potential to connect community responses
to subsequent effects of ecosystem functioning. Though trait-based approaches are a power-
ful tool for describing ecological communities, many important properties of commonly-used
trait metrics remain unexamined. Previous work in studies that simulate communities and
trait distributions show consistent sensitivity of functional richness and evenness measures
to the number of traits used to calculate them, but these relationships have yet to be studied
in actual plant communities with a realistic distribution of trait values, ecologically meaningful
covariation of traits, and a realistic number of traits available for analysis. Therefore, we pro-
pose to test how the number of traits used and the correlation between traits used in the cal-
culation of functional diversity indices impacts the magnitude of eight functional diversity
metrics in real plant communities. We will use trait data from three grassland plant communi-
ties in the US to assess the generality of our findings across ecosystems and experiments.
We will determine how eight functional diversity metrics (functional richness, functional even-
ness, functional divergence, functional dispersion, kernel density estimation (KDE) richness,
KDE evenness, KDE dispersion, Rao’s Q) differ based on the number of traits used in the
metric calculation and on the correlation of traits when holding the number of traits constant.
Without a firm understanding of how a scientist’s choices impact these metric, it will be diffi-
cult to compare results among studies with different metric parametrization and thus, limit
robust conclusions about functional composition of communities across systems.
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Introduction

Trait-based diversity measures have advanced the field of community ecology by increasing
our understanding of both community assembly and diversity impacts on ecosystem functions
[1, 2]. Functional diversity metrics allow researchers to quantify multiple facets of diversity,
place an emphasis on mechanisms of community assembly, and provide a ‘common currency’
by which communities can be compared across sites and ecosystems [3, 4]. Traditional mea-
sures for characterizing communities, such as species richness and species ordinations, use
species’ taxonomic classifications as discrete units, but functional diversity metrics can pre-
serve more information about community assembly and function by including traits of species
organized on continuous axes [5, 6].

Several aspects of functional and taxonomic diversity have been extensively studies. Scien-
tists have probed functional diversity’s correlation with species richness [7, 8] and ecosystem
functioning [4], the importance of intraspecific trait variation for diversity [4, 9, 10], and the
ecological hypotheses that functional diversity metrics can test, such as optimal strategies or
functional turnover [6, 11]. Many taxonomic measures of community diversity have been
extensively studied for their mathematical properties to allow these metrics to be comparable
across sites and ecosystems, such as Shannon’s diversity and Simpson’s evenness that have
mathematical characteristics linked to species number [12, 13]. Similarly, functional diversity
metrics have mathematical characteristics that may cause the number or type of traits used to
calculate the metric to impact the measure. For example, multidimensional metrics are calcu-
lated with additional dimensions for each additional trait included, and the correlation
between traits affects the importance of each dimension to the metric. Therefore, functional
diversity could differ among replicate plots or sites simply because of the number or types of
traits used to calculate the metric without any underlying ecological basis. Though single-trait
indices are an effective tool for linking trait diversity to specific ecosystem processes [14, 15],
indices based on multiple traits may better match ecological theories of community assembly
around multidimensional niche space [16-18]. As use of multi-trait functional diversity
increases, it is important to determine the conditions under which they reflect ecological pro-
cesses as opposed to mathematical patterns.

Studies using simulated communities have tested whether the number and correlation of
traits used in functional diversity metrics can impact the magnitude of the metric [7, 19].
Using simulated data, Legras et al. [19] showed that functional richness and functional diver-
gence metrics decreased with increased trait number, but functional evenness metrics were
not responsive to increasing trait numbers. Also using simulated data, Cornwell et al. [7]
showed that convex hull volume (commonly referred to as “functional richness”) tended to
decrease with increasing correlation among traits included in the metric calculation, and that
the decrease was greater in more species-rich communities. The limitations of functional
diversity metrics described in these studies with simulated community data could be exacer-
bated when applied in natural communities. Calculating functional diversity measures in natu-
ral communities poses additional challenges both ecological and practical. Real plant
communities are non-random assemblages of species which are influenced by competitive
interactions, coexistence, mutualisms, niche partitioning, and environmental filtering among
many other processes of community assembly [20-25]. Functional diversity metrics are likely
to exhibit patterns due to ecologically meaningful correlation of traits in real communities, in
particular, among suites of traits typically used in community ecology such as the leaf eco-
nomic spectrum and root economic spectrum [26, 27]. Moreover, real data collection intro-
duces constraints on trait data, such as realistic numbers of traits collected given limited
resources and missing trait data, particularly for rare species. Functional diversity metrics,
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therefore, are most often calculated with fewer traits and fewer species than those in studies
based on simulated communities.

The field lacks clear guidelines for researchers to follow when choosing the number and
types of traits to include when calculating functional diversity metrics. Decisions are often
based on researcher intuition and the practices of similar studies, but such intuition and
interpretation of trait selection can be improved by rigorous exploration of the impact of
trait selection on diversity metrics [4, 28, 29]. These decisions can fall along a spectrum of
options ranging from selecting the minimum number of traits needed to calculate a metric
to using every trait available. For example, some studies suggest that researchers use a small
number of traits related to certain ecosystem properties or other topics of interest (e.g.,
[8]), regardless of how correlated they may be. Other studies use all available traits in order
to maximize the dimensions of diversity being studied in an effort to comprehensively
assess the niche space that species and communities occupy (e.g., [30]). Choosing traits
that are highly correlated can result in an underrepresentation of the diversity of functions
present by overemphasizing groups of traits which describe similar processes, such as traits
involved in the leaf economics spectrum [31]. Further, functional diversity metric calcula-
tion in high dimensional space can require dimensionality reduction-another decision that
can impact the value of the metric calculated. However, few studies scrutinize how these
decisions can impact conclusions when using functional diversity metrics to characterize
communities.

Here, we aim to understand how the number of traits and correlation between traits impact
functional diversity values. We will focus on eight measures of functional diversity that express
principal facets of community trait composition (see Table I for more details on each metric):
functional richness (FRich), functional evenness (FEve), functional divergence (FDiv), func-
tional dispersion (FDis), Rao’s Q, kernel density estimation (KDE) richness, KDE evenness,
and KDE dispersion [31-34]. We will use trait data from real (natural/intact and experimental)
plant communities, which will allow us to understand how these metrics respond to a realistic
spread of traits and species richness. In this study, we will use trait data collected from three U.
S. grasslands, which range from tallgrass prairie to desert grassland, to test impacts of trait
number and identity in functional diversity metric values. Our dataset includes plant traits col-
lected on location at these three sites that include both naturally assembled and planted
communities.

Specifically, we ask:

1. Do functional richness, functional evenness, and functional dispersion vary with respect
to the number and correlation of traits used? Based on findings from [19], we expect
functional richness, KDE richness, functional dispersion, and functional divergence to
decrease with increasing numbers of traits, but for Rao’s Q to increase [35] and func-
tional evenness to be unresponsive to the number of traits. We do not have a priori
hypotheses for KDE evenness and KDE dispersion since properties of these metrics have
yet to be explicitly studied. Based on [7], we expect that functional richness will be
greater when traits are less correlated. However, we do not have directional hypotheses
for the rest of the metrics.

2. Is metric sensitivity to trait number/type consistent across sites and experiments? If metric
sensitivity is consistent across sites, it will be easier to standardize functional diversity met-
rics across different studies. If sensitivity is not consistent across sites, further investigation
will be necessary to understand the consequences of this when comparing functional diver-
sity across sites.
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Table 1.

Functional diversity
metric

Functional richness

Kernel density
richness

Functional evenness

Kernel density
evenness

Functional dispersion

Functional divergence

Rao’s quadratic
entropy

Kernel density
dispersion

Abbreviation

FRich

KDE richness

FEve

KDE evenness

FDis

FDiv

Rao’s Q

KDE
dispersion

Ecological relevance

Functional space filled by the community

Functional space filled by the community

The similarity trait abundances within the
community

Similarity of trait abundances within the
community

Average trait difference between individuals
within the community

Average trait difference between individuals
within the community

Average trait difference between individuals
within the community

Average trait difference between individuals
within the community

https://doi.org/10.1371/journal.pone.0272791.t001

Methods

Site descriptions

Examples of usage

De Vries and Bardgett 2016

(50]

De la Riva et al. 2018 [51]
Lourenco Jr. et al. 2021 [52]

Soares et al. 2022 [53]
Piano et al. 2020 [54]

Pavlek & Mammola 2020 [55]

De bello et al. 2012 [56]
Niu et al. 2016 [57]
Biswas et al. 2019 [58]

Soares et al. 2022 [53]
Piano et al. 2020 [54]
Zuo et al. 2021 [59]
Shovon et al. 2019 [60]

Griffin-Nolan et al. 2019 [61]
Janschke et al. 2019 [62]

Ebeling et al. 2017 [63]

Thakur & Chawla 2019 [64]

De Bello et al. 2009 [65]
Ebeling et al. 2014 [66]
Pillar et al. 2013 [67]
Wang et al. 2018 [68]

Piano et al. 2020 [54]

Greenop et al. 2021 [69]

Citations

Cornwell et al. 2006 [7], Villeger et al.
2008 [8]

Blonder 2018 [47], Mammola and
Cardosso 2020 [34]

Villeger et al. 2008 [8]

Mammola and Cardosso 2020 [34]

Laliberte and Legendre 2010 [33]

Villeger et al. 2008 [8]

Rao 1982 [70], Botta-Dukat 2005 [46]

Mammola and Cardoso 2020 [34]

Here we will use data from three grassland sites across the United States that span a range of
climate (MAP 250mm—866 mm, MAT 6°C—15°C) and species diversity. We will use two
sites with naturally assembled communities and one with a planted community in order to be

representative of the state of grassland studies where some use naturally assembled communi-
ties while others use planted communities.

Cedar Creek Ecosystem Science Reserve (East Bethel, Minnesota, USA) is in central Minne-
sota and classified as a tallgrass prairie. According to Koppen and Geiger classification, the cli-

mate is characterized as cold continental with hot summer, but without a dry season [Peel

2007]. The mean growing season (May—August) precipitation is approximately 420 mm, mean

minimum growing season temperature is 12°C, and mean maximum growing season tempera-
ture is 25°C (1982-2016 period; http://www.cedarcreek.umn.edu/research/data). Soils at
Cedar Creek are characterized as nutrient-poor entisols derived from a glacial outwash sand
plain [36]. The study from Cedar Creek consists of artificially planted communities.

Konza Prairie Biological Station (Manhattan, Kansas, USA) is in eastern Kansas in the Flint
Hills ecoregion. Konza is classified as a tallgrass prairie, and much of the site has remained

unplowed throughout its history [37]. Konza’s growing season extends from roughly May-Octo-

ber, with annual precipitation averaging 835 mm and average July air temperature of 27C [37].

The Sevilleta National Wildlife Refuge is in central New Mexico at the northern edge of the
Chihuahuan Desert. The Sevilleta includes desert grasslands, and the climate is characterized
as cold semi-arid according to the Koppen and Geiger classification [36]. The growing season
is characterized by two rainy periods (March—May and July—September) split by a dry
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period. The mean monsoon growing season precipitation is approximately 150 mm and the
mean monsoon growing season temperature is 22C.

Community composition data

We will use one to four studies at each site (n = 7 studies total) within one year to characterize
the functional diversity of grassland plant communities.

At Cedar Creek, we will use community composition data from all 16-species plots in a bio-
diversity, CO,, and nitrogen addition experiment (BioCON, n = 48). All 16-species plots were
originally planted with the same mixture of species (Achillea millefolium, Amorpha canescens,
Andropogon gerardii, Anemone cylindrica, Asclepias tuberosa, Bouteloua gracilis, Bromus iner-
mis, Elymus repens, Koeleria cristata, Lespedeza capitata, Lupinus perennis, Petalostemum villo-
sum, Poa pratensis, Schizachyrium scoparium, Solidago rigida, and Sorghastrum nutans) such
that all species were seeded at the same density in 1997. Plots are weeded every year to remove
invading species. Through time, the plots can lose species (and regain those), but could never
gain new species. Further, species abundances shifted from the equal proportion planted in the
first year. Every August, species abundances were visually estimated in a 1 m* permanent plot.
Here, we used data from 2020—the most recent year species abundances are available.

At both Konza and Sevilleta, we will use several studies as representative plant communi-
ties. This ensures that we will at least have one study per site if we need to drop observations
because trait coverage is too low (see below for discussion).

At Konza, we will use community composition data from 4 watershed transects with dif-
ferent burn frequencies and grazing patterns. Konza is dominated by a few C4 grass species
(Andropogon gerardii, Schizachyrium scoparium, Sorghastrum nutans), with the bulk of spe-
cies diversity made up by C3 grasses and forbs [37]. Specifically, we will use one watershed
that was burned annually but never grazed, one that was burned annually and grazed, one
that was burned every 20 years but never grazed, and one that was burned every 20 years
and grazed. Cover was estimated in permanent 1x1m plots twice per year. We will use the
maximum cover of the species between these two sampling times to get a cover estimate per
species. We will use data from the 2010 sampling because it was the same year that trait data
were collected at Konza.

At Sevilleta, we used community composition data from two observational sites, one in a
Great Plains grassland ecosystem and the other in a desert grassland ecosystem. The Great
Plains grassland is dominated by Bouteloua gracilis (blue grama), a long-lived, caespitose, C4
perennial grass common throughout much of the United States and Canada. The desert grass-
land is dominated by Bouteloua eriopoda (black grama), a stoloniferous C4 perennial grass
common in the southwestern United States and Mexico. These two dominant perennial
grasses account for about 80% of vegetative cover in their respective ecosystems. Each site has
30 1x1m quadrats which were assayed in September of 2018, at the peak of the post-monsoon
growing season and around the same time that trait data were collected. In each quadrat,
plants were identified to species and their percent ground cover was visually estimated.

Trait data

Trait data were collected for the individuals found at each of the different sites. Thus, our trait
data are representative of the traits actually found in the given community and not just an
average independent of location. Traits include measurements from leaves (e.g. specific leaf
area), stems (e.g. stem dry matter content), roots (e.g. root dry matter content), whole-plant
(e.g. height), and ecological attributes (e.g. amount of nitrogen in monoculture). Including
traits across these measurement categories provides a more-complete representation of
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community assemblages [38-41]. For detailed descriptions of trait collection protocols at each
site, see S1 File.

At Cedar Creek, we will use trait data collected in the monoculture plots of the BioCON
experiment. We will use trait data from monoculture plots that correspond to the CO, and N
treatments to match with 16-species community plots. Data were collected between 1998 and
2020. Some traits were collected over multiple years whereas others were only collected once.
In total, there were 10 distinct traits: specific leaf area (SLA), I* (the amount of light at the soil
surface in monoculture), R* (the amount of nitrogen in monoculture), root %C, root %N, total
root biomass, shoot %N, shoot %C, and seed mass.

At Konza, we will use trait data collected in a watershed that was burned annually and had
no grazers. In total there were 12 distinct traits: plant height, leaf area, specific leaf area, leaf
dry matter content, stomatal length, stomatal density, stomatal pore area index, leaf %N, leaf %
C, d13C, photosynthetic pathway, and growth form.

At Sevilleta, we will use trait data collected primarily from September to November of 2017
on individuals growing under ambient conditions near permanent ambient plots used to mon-
itor plant communities. The full suite of traits were often measured on the same individuals,
up to 10 individuals per species. In total there were 10 distinct traits: maximum plant height,
leaf dry matter content, specific leaf area, d15N, d13C, leaf %N, leaf %C, stem dry matter con-
tent, root dry matter content, and photosynthetic pathway.

For each trait at each site, we will calculate an average trait value based on all the measure-
ments for the given species and trait. We acknowledge that this obscures variation within a
given trait (intraspecific variation) for a species; such variation can be quite important for
some questions [10, 42-44]. The impacts of intraspecific variation in this study are minimized
by only using trait values collected at each site, but sufficient data were not collected for each
trait of each species to include intraspecific variation into our analysis. Before analysis, we will
remove species that have less than 100% trait coverage. We will, however, make sure that the
communities are still represented by at least 80% of species abundance-this approach de-
emphasizes the importance of rare species, but is a logistical constraint faced by many
researchers doing trait analyses. This will ensure that we are representing the community to
the best of our ability with the given trait data.

Brief background on functional diversity metrics

We will focus our analyses on eight common functional diversity metrics: functional richness
(FRich) [8], functional evenness (FEve) [9], functional dispersion (FDis), functional diver-
gence (FDiv), Rao’s Q, kernel density estimation (KDE) richness, KDE evenness, and KDE dis-
persion [33]. FRich is the multidimensional equivalent of a range [8]. It is calculated as the
convex hull volume that is made from all trait values for up to # traits in the community. The
number of dimensions used to calculate the final volume can be reduced from the total trait
number [45]. FEve is the minimum spanning tree to quantify the regularity of branch lengths
and the evenness in trait relative abundances. For each branch, J, of the minimum spanning

tree, the weighted evenness (EW) is calculated as EW, = % " ! where i and j are species, and w;

is the relative abundance of species i. Then, the partial welghted evenness (PEW) is then calcu-
lated for each branch as PEW, = —="—, where $ is the total number of species in the com-

3w
=1
s-1
Zl:l min(PEW” 5+1) 1 [9]

1
=57

munity. FEve is then defined as . FDis is the weighted mean distance

between species and a weighted-centroid. It is calculated as ZZ::J !

where a; is the relative
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abundance of species j and z; is the distance species j is from the weighted centroid [33]. FDiv
is a relative abundance-weighted spread of traits along a trait axis independent of functional

richness and is calculated as AA‘Z%% where dG is the mean distance of species to the weighted-

centroid and Ad is the sum of relative abundance-weighted deviances from the weighted-cen-
troid [9]. Rao’s Q measures the pairwise differences in traits between species in a community
and is calculated as Z:l Zj:"“d"jpi where S is the number of species in the community, dj; is

the functional difference between the i-th and j-th species, and p is a vector of relative abun-
dance values [46]. These five functional diversity metrics commonly incorporate distance mea-
sures by reducing dimensionality using principal coordinates analysis (PCoA) to return PCoA
axes which are used to calculate the functional diversity metrics. However, we will avoid this
dimensionality reduction when possible (for all metrics except FRich, see discussion in Func-
tional Diversity Calculations section). n-dimensional hypervolumes use Gaussian kernel den-
sity estimation (KDE) to create a relative abundance-weighted probability distribution of traits
in multidimensional space [34]. All KDE-based functional diversity metrics will be calculated
using the hypervolume and bat packages in R [34, 47]. KDE richness is the total volume of the
n-dimensional hypervolume created from unweighted trait values present in the community.
KDE evenness is the overlap between the abundance-weighted »n-dimensional hypervolume
and a similar hypervolume in which all traits and abundances are distributed evenly. KDE dis-
persion is the average distance between random points within the #n-dimensional hypervolume
and the hypervolume centroid.

Functional diversity calculations

For each site, we will follow the same protocol for calculating functional diversity metrics.
We will calculate FRich, FEve, and FDis, FDiv, and Rao’s Q using the FD package in R [45]
using both Gower and Euclidean dissimilarity as the distance measure, along with using the
hypervolume package in R to calculate KDE n-dimensional hypervolumes which are passed
to the bat package to create KDE richness, KDE evenness, and KDE dispersion [34, 47].
Gower dissimilarity has the capacity to calculate distances with categorical traits, though
Euclidean dissimilarity is better for continuous traits. Functional diversity metrics from the
FD package and kernel density estimation are among the most-used metrics for quantifying
trait-based diversity within communities due to both ease of use and ecological relevance
[34, 45]. We will use dimensionality reduction where necessary in our analyses. First, PCoA
is done on the species-species matrix for each set of traits we consider. The categorical vari-
ables are taken into consideration in the creation of the distance matrix which is done using
Gower dissimilarity. Thus, the PCoA is done on the continuous distance values rather than
on the raw traits. Similar to Legras et al. [19], we are going to hold the number of dimen-
sions equal to 2 for only our calculation of functional richness (FRich) as the other metrics
do not require dimensionality reduction (note: FRich does not either if all traits are contin-
uous, but we have several categorical trats in our dataset). We will then conduct a sensitivity
analysis to determine if holding the number of dimensions equal to 3, 4, and the maximum
(dimensions = number of traits when using all continuous traits or dimensions = number
of traits-1 when including categorical traits) produce similar results. Each metric uses spe-
cies presence/absence or relative abundance in a plot along with its associated trait metrics.
We will calculate each metric using all possible combinations of two traits up to all possible
combinations of the maximum number of traits at each site. For example, at Sevilleta there
are 10 different traits so there are 45 2-trait calculations, 120 3-trait calculations, 210 4-trait
calculations, and so forth up to 10 9-trait calculations and 1 10-trait calculation. To measure
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the effects of trait correlation on functional diversity, we will focus on metrics calculated
with 4 traits only to standardize between sites. We will calculate the minimum, maximum,
and mean correlation between the traits at each site.

Statistical analyses

For each site separately, we will run mixed effects models to test the dependence of the three
functional trait metrics on trait number and on trait correlation using the Ime function from
the nlme package in R [48]. To examine how trait number impacts the values of a given func-
tional trait metric, we will run two models: Metric ~ trait number for 2-10 unique traits (the
max number of traits at Cedar Creek and Sevilleta) and Metric ~ trait number for all traits pos-
sible to make sure our inferences are not impacted by excluding combinations of 11 and 12
traits at Konza. To examine how trait identity impacts the values of a given functional diversity
metric, we will run 3 models for each site: Metric ~ min trait correlation, Metric ~ max trait
correlation, Metric ~ mean trait correlation. We will explore which functional form of the pre-
dictor variables best fit the spread of the functional metric data by fitting linear, quadratic,
cubic, and quartic fits. We will determine the models with the best fit using AIC values. We
will account for repeated samples within plots by fitting plot as a random effect and an autore-
gressive correlation structure. We will account for multiple comparisons by adjusting our p-
values using a Benjamini-Hochberg procedure [49].

Timeline

All trait and community data have already been collected that will be used in this study, but
none of the authors have analyzed any subset of the data in this way before.

We expect to finish cleaning data within 4 weeks of acceptance of the Registered Report
Protocol. We will then complete the rest of the analyses and create figures over the following 6
weeks. We will finish writing the manuscript in another 6 weeks after data analysis is
completed.

All code used for analyses will be uploaded to one of the author’s OSF site before the second
review stage.
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