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nopageno Abstract— This paper presents a higher-order
spatial iterative learning control (HO-SILC) framework for
heightmap tracking of 3D structures that are fabricated by
additive manufacturing (AM) technology. In the literature, first-
order spatial ILC (FO-SILC) has been used in conjunction with
additive processes to regulate single-layer structures. However,
ILC has undeveloped potential to regulate AM structures that
are fabricated by the repetitive addition of material in a layer-
by-layer manner. Estimating the appropriate feedforward signal
in these structures can be challenging due to iteration varying
system parameters. In this paper, HO-SILC is used to iteratively
construct the feedforward signal to improve device quality of
3D structures. To have a more realistic representation of the
additive process, iteration varying uncertainties in the plant dy-
namics and non-repetitive noise in the input signal are included.
We leverage the existing FO-SILC models in the literature and
extend them to a HO-SILC framework that incorporates data
available from a previously printed device, as well as multiple
previously printed layers to enhance the overall performance.
Subsequently, the monotonic and asymptotic stability conditions
for the nominal HO-SILC algorithm are illustrated.

I. INTRODUCTION

There is a growing interest in additive manufacturing
(AM) technologies due to their potential for simplified pro-
cessing and freedom to design. Through AM, a 3D device is
generated by sequential addition of material on the surface
[1]-[3]. The performance of such devices depends on the
uniformity and consistency of the layers [2]. However, the
lack of real-time monitoring devices that can capture in situ
measurements has been a challenge for most AM systems.
Additionally, AM processes are innately iteration varying,
and the system parameters and plant dynamics change it-
eratively. Thus, the behavior of the printed layer depends
on topology interactions from previous layers, which vary
in real-world applications. Control methods that leverage
the iterative nature of these processes in the presence of
disturbances are needed.

Iterative Learning Control (ILC) is a powerful technique
that has been used to achieve accurate output tracking of a
reference trajectory over a short number of iterations [4].
Most ILC literature focuses on first-order ILC (FO-ILC)
where the feedforward signal comes from the most recent
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iteration. However, FO-ILC loses performance when uncer-
tainties are high. To improve performance and robustness
to iteration varying uncertainties, higher-order ILC (HO-
ILC) has been developed where the feedforward signal is
synthesized from multiple past-history data [5]-[10].

Recent work in the literature has focused on extending
temporal ILC to the spatial domain such that system param-
eters are defined based on spatial coordinates [11]. Spatial
ILC (SILC) has been demonstrated for topology control
for predominantly single-layer material deposition with AM
systems [11]-[13].

Our previous work introduced a FO-SILC framework
[14] that considered in-layer and layer-to-layer dynamics to
achieve uniform layers in multi-material 3D-structures. A
limitation of this framework stems from the additive process.
Error accumulation over multiple layers leads to increased
iteration varying system behavior [15]. However, the FO-
SILC framework in [14] only considers current layer errors,
Ae; j(x,y) rather than total error within the system, e; ;(x,y).

In this manuscript, we extend our earlier work in [14]
towards the development of a higher order SILC (HO-SILC)
framework that encompasses model uncertainties and spa-
tially varying dynamics from multiple layers of a 3D printed
component. The proposed HO-SILC framework incorporates
vertical learning through the combined effect of previous
layer spatial dynamics and layer-to-layer learning, and hor-
izontal learning from device-to-device. The proposed HO-
SILC differs from traditional HO-ILC frameworks due to the
2D aspect of the learning. HO-SILC incorporates learning
over two axes; along the device-axis (j horizontal) and
over multiple iterations in the layer axis (/ vertical). The
contributions of this work are:

1) A HO-SILC framework for 3D AM structures that
combines device-to-device and layer-to-layer learning
while considering iteration varying spatial dynamics.

2) A strategy for converting HO-SILC to a FO-SILC
format for analysis.

3) The development of learning filter designs that incor-
porate stability considerations.

Simulation results using a model of an electrohydrodynamic
jet (e-jet) printing process are used to demonstrate the feasi-
bility of the proposed HO-SILC framework in AM processes.

II. PRELIMINARIES

In this Section, preliminary notations and definitions that
will be used in the upcoming Sections will be defined.
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Fig. 1: Schematic of AM spatial dynamics described in Eq. (1).

A. Notation

The finite set of Z, for an odd and positive integer n
is defined as Z, = {152,352 . 153 L) with Z, £ {0}
A vectorization operator v(.) can be applied to a matrix,
P e R™" to convert it into a column vector form (denoted
by a bold variable), P € R”"*! given as

P 2 v(P) = vec(P").

where vec(.) is the conventional column-wise vectorization
operator. The Frobenius norm of a matrix P € R"*" is equal
to the /, norm of the vectorized matrix, ||P||r = ||[V(P)|2.

B. Definitions

e circ(p1,p2,---, pn) is defined as a block circulant matrix
with square submatrices of the same size, pi,pa,-..., Pn,
where 7 is an odd number. The ith block of the middle
column in circ(py, p2,...,pn) is always p; [13].

o A matrix is said to be block circulant with circulant
blocks (BCCB) if it is defined as

H=2 circ(Hiy ,Hsu,....Hy ) € RYNMN
2 2

2
1-N .3—N . N—-1
U NIOESS

where h(x,y) is a discrete function with (x,y) € Zy X Zy.

H; £ circ(h(i, ), € RVXN

III. GENERAL ITERATION VARYING SYSTEMS

Models describing the sequence of material addition and
heightmap evolution (illustrated in Figure 1) have been
introduced in [11] and [16]. In these models, the printed
topology at layer I, g;(x,y), is the sum of previous layer
topology, g;—1(x,y), and newly added material, Ag;(x,y). The
general simplified system model can be described using the
following 2-D convolution format [16],

giley) =g @)+ Y A" (e—my—n)« fim,n),
mely (D
nely
where f; is the input signal that denotes the droplet size
(cube root of droplet volume [16]). h;i”ln) describes the
spreading behavior of a printing material on the neighboring
coordinates when an input signal with magnitude one is
applied at coordinate (m,n) € Zy x Zy and layer [ — 1. The
system defined in Eq. (1) can be converted to the lifted-form
through the use of the vectorization operator as described in
[11]. For brevity, we present the lifted form of Eq. (1) in the
following equation,

g =g +H(g_)f, 2

Diagonal Learning
z (HO - SILC) A

Device = j+ 1

Device = j

Fig. 2: HO-SILC: learning occurs in horizontal direction from a previous
device and vertical direction from previous layers and topology. / denotes
layer index and j denotes iteration or device index.

with f; 2 v(fi(x,y)) e RMN*1 g & v(g/(x,y)) € RMNX! "and
H(g, ) € RMN*MN g the plant matrix associated with the
interval impulse response h;'ﬁ”ln). We will use H;_; instead of
H(g; ) for brevity. Note that Hy ; denotes that deposition
of material at the first layer (I = 1) on the substrate. For
a general additive manufacturing process, we are interested
in controlling the heightmap increment with respect to the
previous layer described as,

Ag 2 g —g  =H_f, 3)

The following assumptions are considered for the AM pro-
cess described in Eq. (2),

A : The plant spatial dynamics are causal in the temporal
and noncausal in the spatial domain, meaning that the
applied input at a given position will affect the output
in the advanced layers and surrounding coordinates
[11], [17].

A, : The plant is considered bounded input, bounded output
(BIBO) stable, meaning that there exist positive finite
scalars & and { such that given a bounded input,
If:(x,»)|| < &, the resulted output will always be
bounded, ||g;(x,y)|| < &, V(x,y) € RM*N,

A3z : The heightmap increments obey scalar multiplication
and linear superposition. Therefore, the model in
Eq. (1) does not capture drop coalescence effects.

Assumption A; denotes that the spatial dynamics of a
given plant (H;_;) are a function of previous layer topology
(g,_1) and the surrounding environment. Assumption Aj
holds for the additive system described in Eq. (2), given
that material addition to the substrate is bounded by a pre-
defined volume of available material. Furthermore, because
of actuator constraints, the input in Eq. (2) is limited by an
upper bound, & [13]. Assumption A3 simplifies the system
dynamics for control design. The plant model is linear
parameter-varying (LPV) integrator model of the heightmap
evolution that captures the wetting nonlinearities, however, it
still provides access to the linear control. Although many AM
processes exhibit coalescence/surface effects that preclude
linear superposition [16], [17], we capture these nonlineari-
ties through model uncertainty in the plant model in Eq. (2).

IV. HIGHER-ORDER SILC FOR 3D STRUCTURES

In our prior work in [14], we derived a FO-SILC frame-
work that used information from a previous device in the
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device-axis (horizontal learning) to construct the feedforward
input signal. In this work, we extend our previous framework
by combining layer-to-layer learning (vertical direction) with
device-to-device learning (horizontal learning) as presented
in Figure 2. We term the proposed SILC algorithm higher-
order SILC because learning occurs over one iteration in the
device-axis (j, horizontal) and N iterations in the layer axis
(I, vertical) as described in Figure 2. We will denote the order
of the HO-SILC framework by bold variable N to distinguish
it from the variables in Eq. (1).

For the multi-layer structure shown in Figure 2, a HO-
SILC update law is proposed,

N
fi 1 = (U +LiAe ;) + Y (L7 1 + LA 1) ()
i=i

with L?- and L! defined as the horizontal input and error
filters, respectively. L;? and L) are vertical input and error
filters for i <I. Ae; ; is the incremental layer error calculated
from the difference between the desired and actual height in-
crements. To incorporate information from all of the printed
layers, we choose N =L — 1, where L is the total number of
layers to be printed. The incremental error, Ae; ;, is calculated
from Eq. (3) as:

Ae ;& Agd — Ag ;= Ag? —H;_y jf1 (5

A. Design of Learning Filters

Here, we implement a norm optimal-SILC (NO-SILC)
algorithm [11] to design learning filters that are robust to
model uncertainty. We define a weighted error vector, e}f 1
as the following

e}/‘jjJrl £ Ae[,]#] + alAe[,11j+1 +...+ (XNAel,NJJrl ©)

e [1, ap,0n,..., OCN]T
where o; € [0,1] are user defined HO-SILC parameters that
weight the importance of previous layer errors. The quadratic
cost function that for the HO-SILC filters is

T
S = iQel  + (f e — ) TR(E 1 — £ )+

N @)
£ 1St 1+ Y Bl o1 —fimijr1)R
i=1

®r 1 — i j1),

where Q, S, and R € RYNXMN gpe symmetric positive definite
matrices that penalize the layer error, input signal, change in
the input signal from iteration to iteration, and change in the
input signal from layer to layer. Here we design weighting
matrices as identity matrices multiplied by positive scalars g,
s, and r such that Q =¢I, S=sI, and R=rI; f; € [0, 1] are
user defined parameters to weight the influence of previous
layer input signals, such that § £ [1, 81, Ba, ..., By|T. Note that
if o = 1,Vi in Eq. (6), and N =/ — 1, the cost function Eq. (7)
is optimized over the total error (over / printed layers). In
order to emphasize more recent layers, we set o; = ﬁ and

Bi= H H , with o, 8 € [0, 1).
Applying the assumption of iteration invariant desired

reference trajectories, we can relate two successive errors
(iteration to iteration) within the same layer,

Aeyjyr =Aey j+Hy ) —Hy jafy j (8)

Substituting Eqs. (6) and (8) into Eq. (7) and setting the
partial derivatives of with respect to f; ;11 equal to
zero, the following relationships is obtained tj or the filters
in Eq. (4) based on the nominal plant, Hp,

Lf [H§QH0+(S+R+RZ[5, 'HIQHy +R) (9a)

i=1

L) = [H) QHy + <s+R+RZﬁ,->r‘R/3,- (9b)
; i=1
N

L! = H)QHy+(S+R+R Y §)] 'H}Q (%)
i=1

LV =Llso; ,i=1,..,N. (9d)

If the iteration varying spatial dynamics converge to the
nominal model, hm H,; ; = Hy, the converged input would

—yo0

tend towards,

N
f.. = [Ho(1+ Z o)+ HQ) 'S (Al + Y gl )

i=1 i=1

10)

Under these conditions, the converged performance of the
system is obtained by substituting Eq. (10) into Eq. (5),

N
[(1=Y o)1+ (HjQ)'SH; '] ")Agf
i=1
N N (11)
—[(1=Y &)1+ HJQ) 'S ' Y aiag ;.
i=1 i=1
B. HO-SILC Transformation To FO-SILC

HO-ILC processes generally achieve faster convergence
as compared to FO-ILC, because HO-ILC uses information
from multiple past trials to construct a more comprehensive
input signal. However, in the ILC literature, there are few
research papers that consider monotonic convergence (MC)
of HO-ILC systems [18]. In comparison, the stability con-
dition of FO-ILC is well described in [19]. In this section,
we follow methods developed in [19]-[21] to convert the
HO-SILC update law in Eq. (4) to a FO-SILC update
law. Importantly, our approach requires a few additional
considerations given the spatial dynamics and layer-to-layer
interactions considered by HO-SILC and FO-SILC.

The HO-SILC algorithm defined in Eq. (4) can be ex-
pressed based on the closed-loop plant matrices by inserting
Eq. (5) into Eq. (4) as,

N
=T/ 1 i+ 2‘1 T jfiijn + (L

Aeo, =(I—

N
£ 41 i+ Y LY)Ag?
i=1
12)
with T} ; =L} —L¢H; j and T}, = L} —LY'H, ; ; denoting
the closed-loop horizontal and Vertlcal plant matrices for
i <1, respectively. Eq. (12) can be further simplified by

concatenating the input signals over the vertical axis, /,
T
2= ;,...8 8
2 j+1 =Dy 21+ K jz, i+ C
~1
Z] o = (I—DO—KO) C[

T c ]RIMNXI

13)

where D; ; € RIMNXIMN and K, ; € RIMNXIMN are diagonal

and upper triangular block matrices, and C; € RMN*1 jg
a constant vector. z;., is the converged input signal of the
transformed FO-SILC system. Dy and K¢ are nominal plant
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matrices associated with the horizontal and vertical learning
components of the update law.

T, 0 LI+ LY+ Ly
—1j .
. d
Dl,j = : .. : aCl = h : Ag
0 Th Le +LZ1
, ;
0,j L?
r v V; U Vi—1
0 Tl|—2,j+1 Tli3.j+l '”TI’,_/iITOI.lerl
) v v,
0 T;ls,_m o 'Tll.jJZrl TO{jil
K= ' ' ’ ) (14)
: 0 T‘;Ej+l TB?,+1
0 Tgfjﬂ
0 0

Eq. (13) can be further simplified to a FO-SILC format,
2] j+1 = F]"j ) ; +F,

_ _ (15)
F=(I-K. ;) 'D;, F.=1-K ;) 'C

We use the same notation as [19], [22] for transfer matrices
F,; and F,. The FO-SILC algorithm in Eq. (15) will be
used in the following section to investigate the asymptotic
and monotonic properties of the HO-SILC update law in
Eq. (12) leveraging methods described in [18], [19], [22].

V. NOMINAL STABILITY AND CONVERGENCE

In most control systems, a fundamental goal is to guaran-
tee the convergence of the tracking error to zero or within
a neighborhood of a nominal value over a small number
of iterations. In this section, we will combine the methods
developed in [13], [18], [22] to derive nominal stability
conditions for HO-SILC processes. Here we assume that the
iteration varying plant model, H; ;, remains in a bounded
neighborhood of the nominal plant, meaning ||H; ; —Hpl|| < k
for a positive finite scalar k and all /,j € N.

For the additive model in Eq. (2), the nominal plant matrix
results from the desired topology, Hy = H(g,). The nominal
matrices are:

Tg o0 0 Tgl "'TBH T;’)I—l
Dy=|: . |, K= . o
\ . .h 0 T(‘;l

O o To 0 - 0

In this case, the following properties are true:
« |IDol = |IT5]|

o Kol < XN T
o |[Th| = L~ LiH |
o T = L) — LY Ho |

The second property has an equal sign for BCCB matrices.
Theorem 1: The additive system in Eq. (2) controlled
by the FO-SILC in Eq. (15) (or HO-SILC in Eq. (4)) is
asymptotically stable for the nominal plant if and only if:

Proof: A nominal system representation of Eq. (15) is
asymptotically stable using contraction mapping if p(Fo) <
1, where Fy = (I-Ky)~'Dg. (I-Ko)~' is a strictly upper
triangular block matrix with block-diagonal matrices equal
to I; therefore, the eigenvalues of Fy are equal to the
eigenvalues of Dy. Dy is a diagonal matrix and its spectral
radius is equal to the spectral radius of the matrix T.
Therefore, the nominal system is stable if p(Tf) < 1. [ |

Although Theorem 1 provides a necessary condition for
BIBO stability, it is not sufficient for ensuring an absence of
large transient errors. In many manufacturing applications,
such as the optical sensor presented in [2], large transient
errors may introduce failures in the functional capabilities
of the printed device. Therefore, the controller should be
designed to regulate material deposition such that the layer
errors decrease from iteration to iteration and layer to layer.
Theorem 2: The additive system in Eq. (2) controlled by
the FO-SILC in Eq. (15) is monotonically convergent for the
nominal plant, ||Z; j11 —Zje|| < ||Z1,j — Z1 ||, if:

1 — [ Ko™

(18)
1 —[|Ko|

< [Dol| <1, |IF/ <,
where & is a positive scalar that ensures |F,| remains
bounded.

Proof: Ky is a strictly upper triangular block ma-
trix containing block matrices of higher-order terms, T €
RMNXMN " with [ block zero matrices, 0 € RYN*MN " along
the diagonal. From linear algebra, A’ is zero for a strictly
triangular matrix A # 0 € R/ with dimension [ [23], [24].
We use this property for strictly upper triangular block
matrix, Ko, to avoid matrix inversion using the fact that
(Ko)" = 0 (I here indicates layer number).

I-K)=(1-Ko)(I+Ko+K3+...+ K, (19)
which implies that
(1-Ko) ' = (I+Ko+K3+...+ K ™). (20)

Using Eq. (20), the monotonicity condition is simplified to
IFol| = || (1~ Ko) "Dy
= ||(I+ Ko+ K3 +... + K, Do ||
< (1+ 1Kol + Kol + ... + [ Ko=) [IDo]
where the right side of Eq. (21) is a geometric sum that can

. 1—||Ko||/~! . .
be rewritten as % x ||Dg||. The nominal representation

of the FO-SILC in Eq. (15) is monotonically convergent if

21

IFo|| < 1. For UKol o Dy < 1. [|Fo|| will always be
less than one. |
Figure 3 shows the design regions of learning filters

_ -1
that correspond to MCp = % X || Do|| = 1 for two

different layer numbers, where negative values below a
contour level of O relate to MCy stable regions for the
nominal system. Note that if ||Ko|| << 1, we can ignore
[ Kol|'~! for higher layers and the monotonic stability region

Tf) < 1 17 ; .
p(To) <1, 17 can be approximated by a line (||Ko|| + ||[Do| < 1). The
where p is the spectral radius. area below the dashed red line represents an approximation
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(a) stable region for / =5
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(b) stable region for [ = 15

Fig. 3: Monotonic nominal stability of HO-SILC: the negative area below contour level 0 is related to the MCy stable regions for the nominal system.

The area below the dashed red line is the approximated stable regions.

of the stable region defined by the MCy parameter. To
ensure monotonicity, we design the learning filters such that
Kol + Dol < 1 (or [Tl +XiZi [Ty fl1 < D. It can be
seen that as the number of layers increases the area related to
IKol|| + |Do|| < 1 approaches the stable boundary condition
deonoted by MCy = 0. Alternatively, as the number of layers
decreases, ||Ko||+||Do|| < 1 becomes more conservative, as
evident by the missing stable region shown with the dashed
blue lines in Figure 3a.

VI. SIMULATION SETUP

In this section, we apply the proposed HO-SILC frame-
work to a simulation study using a model of an e-jet printing
process. E-jet achieves material deposition using an elec-
trostatic field, allowing for superior resolution and material
diversity. Drop-on-demand printing is achieved using syn-
chronized substrate motion and high voltage pulses applied
to the nozzle tip of an e-jet printer, schematic shown in
Figure 4a. Varying the rectangular wave pulse-width (while
holding all other printing parameters constant) allows for
variation in printed droplet size. The simulation assumes
a known relationship between pulse-width and droplet size
(cube root of droplet volume [16]).

For this simulation, the device structure has the topology
given in Figure 2 with 100 nm layer heights for all layers.
Each layer is printed in a single printing pass on top of a
cured surface. The pitch size is set to 1 um for a domain

a)

Print Cure Scan
o Vs >N
% VN S'*h N
B
time (s) o
Ji-1 i
b) + g1

gi-1

Convolution with unique kernel solid surface

for each pixel and iteration Ag:

fi —
fix h(gi-1)

drop size array

solid surface

height Increment

Fig. 4: Heightmap evolution process. a) Schematic of an e-jet printer:
controlled device fabrication follows the print-cure-scan cycle. b) Evolution
of the solid surface topology as a heightmap signal is modeled as the
integration of a convolution of input f with kernel A.

g (nm)
200 [ 200 [ 200

L o1 B0
200 | 200 | 200 M3 Model ['179 [ 327 | 133
200 | 200 | 200 299 [R) E-
200 | 200 | 200

(a) Nominal model.

h(g)/10°

(b) Effect of nonflat surface.

Fig. 5: Topology dependent impulse response. The estimated impulse
response is spatially invariant (Method M3 of [16]), i.e. the same response
for all spatial coordinates of g. Note that the estimated impulse response is
iteration varying. a) Impulse of a flat surface. At left is a 4 x 4 pixel crop
of reference topology signal. At right is the 3 x 3 corresponding impulse
response. b) Impulse of a nonflat surface. At left is a 4 x 4 pixel of a spatially
varying g signal. At right is the 3 x 3 corresponding impulse response.

of 256 x 256 pixels. The desired output, g¢, is uniform
except for the ten outer rings of pixels, which are reduced
by half to better represent material drop-off at the edges.
Heightmap evolution from layer-to-layer is simulated accord-
ing to Eq. (1) and depicted in Figure 4b. h;T]") describes the
spreading behavior of a printed material on the neighboring
coordinates for an input signal with magnitude one applied

at coordinate (m,n) and layer [ — 1.

The dependence of hET’ln) on existing topology g is mod-

eled using the multivariate regression method (method M3)
from [16]. Method M3 results in a less accurate model than
other methods in [16]; however, the plant matrix associated
with M3 is BCCB. In this method, numerical simulations of
droplets spreading to equilibrium on nonflat surfaces are pre-
computed for an equilibrium contact angle associated with
a specific material/substrate combination: 15° for the ink
(NOA170) used in this simulation. Subsequently, an ordinary
least squares multivariate linear regression is performed,
where the elements from each 3 x 3 pixel crop of the
heightmap g are the predictor variables, and the elements
from each measured 3 x 3 pixel impulse response & are the
response variables. The fitted regression model is used to
. . . (m,n)

evaluate the spatially varying impulse response #;_;” for
the 3 x 3 pixel crop of the heightmap g; centered at pixel
coordinates (m,n), as shown in Figure 4b and Figure 5b.
Taking an average of h;T]n) over all spatial coordinates results
in a spatially invariant impulse response.

The nominal model, Ao, is calculated by evaluating the
impulse response for a uniform reference topology g;, as
shown in Figure 5a. In contrast, an example of an impulse
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(0.9,0.1) refer to HO-SILC which integrates

horizontal learning from device to device with vertical learning from previous layers. Iteration j = 0 refers to the first device. (g =1, r =0.01, s = 0.03).

response prediction for a non-flat surface is provided in
Figure 5b. The impulse response A; ; is used to derive the
plant matrix H; ; in Eq. (2).

VII. SIMULATION RESULTS

In this section, simulation results of the system described
in Section III using HO-SILC are investigated. A multi-layer
structure with L = 10 layers is considered (Figure 2). Note
that a selection of B =0 and o = 0 results in a FO-SILC
update law [14]. To satisfy ||Ko|| + |Dol| < 1, we set  =0.1
and a = 0.9 for the HO-SILC update law. This results in
Dol = TGl = 0.1612 and [|Kol[1 = LI} [Ty [l = 0.7363.
Note that in this case, MCy = 0.5724.

It is important to note that the inputs of the first iteration
at the first layer are zero, fi | = 0, implying that there is no
prior knowledge of the appropriate inputs. This results in no
material being deposited during the first iteration of the first
layer. However, the input of the first device at higher layers,
[ > 2, comes from the last device in the previous layer, such
that f; | =f;_; ; where J is the total number of iterations. In
e-jet printing, droplet volume has a standard variation of 25%
over a wide range of droplet sizes [25]. Therefore; a normally
distributed white noise with variance of 0.25 pum is added
to the mput signal such that Aglj =H;_ £ ;o0 (Iynx1 +
N (0,0.25%)pnx1), where o denotes Hadamard product and
1 is a vector of ones. The input will be constrained to positive
definite values to ensure an additive process.

Figures 6a and 6b show the Frobenius norm of the input
signal for FO-SILC and HO-SILC frameworks. The input
signal generated by the FO-SILC update law converges to
the nominal input with approximately the same offset at all
layers. On the other hand, the HO-SILC framework results
in monotonic convergence of the input to the nominal input
over the layers. The nominal input signal is slightly larger for
HO-SILC based on the higher-order coefficients in Eq. (10).

Figures 7a and 7b present the Frobenius norm of the
incremental errors, Ae; ;. Figure 7a shows that the final
incremental errors of the FO-SILC update law are in the same
range over the layers. Figure 7b shows that by using HO-
SILC a significant improvement in the incremental error over

the layers is achieved. The first layer shows the highest error,
with the error signals decreasing due to vertical learning
through the iterations.

Figure 8 shows that HO-SILC demonstrates improvement
in overall performance (smaller total heightmap error) when
compared to FO-SILC. Larger values of o impose more
weighting on previous layer errors in Eq. (6) that results
in smaller total errors, €;;. This is consistent with the
performance metric in Eq. (11) for an ideal case where the
system behavior converges to the nominal state. On the other
hand, when considering the iteration varying system provided
in Eq. (2), larger values of 8 result in an increase in the
total error, especially for higher layers where the variation
between the nominal plant model and true plant dynamics
is more pronounced. As such, the higher-order control terms
associated with 8 result in a reduction of system robustness.

VIII. CONCLUSION

In this paper, we present a higher-order spatial ILC frame-
work for iterative systems with an application to additive
manufacturing processes. In multi-layer structures that are
fabricated using AM technologies, errors in previous layers
are compounded over multiple layers, resulting in significant
distortions of the final printed component. The proposed HO-
SILC framework combines device-to-device learning with
layer-to-layer learning to generate a feedforward signal that
addressed error propogation over layers. Simulation results
of an e-jet printing system demonstrate that HO-SILC can be
successfully employed in AM processes to regulate the input
of an iterative model and improve the heightmap reference
tracking. Higher order SILC has applications outside of
additive manufacturing systems. For example, any system
that exhibits spatially dependent dynamics through a repeti-
tive action (e.g. exoskeletons, robotic pick and place) could
benefit from a control framework that compensates for errors
across both a spatial and temporal domain. Importantly,
spatial interactions are often disjointed temporally and are
commonly ignored. The proposed framework addresses this
issue by incorporating spatial information into the control
law. Future work will focus on stability of spatially and itera-
tion varying HO-SILC framework to determine the maximum

6552

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 19:45:40 UTC from IEEE Xplore. Restrictions apply.



Fig.

=0, 3=0

100 T T T T T
—o—1-1
90 + =2 |
=3
80 22 v x l:{ 1
. 701! %+gﬁ§<<3 K, B;éb I v t; ]
g i Yoaded A =7
2 wf Eﬁ“’*‘ Al s
&= ! & =
e “TEY B 8 <“> 4 i=10) ]
H 0
4 Vo214 *
= 40t ‘L 1
! 5 10 15
30"; 1
it anddedestentiin Dottt o s tid
10 . . . . .
0 5 10 15 20 25 30

Iteration j
(a) Frobenius norm of the incremental error.

7: Convergence of SILC: (a,f) =

(0,0) refer to FO-SILC which only has horizontal learning. (a,f) =

«=0.9, #=0.1
100 T T T T T
—-0--i=1
+ =2
=3
80 x =4 |
i v o l=5
—_ : =6
g H A =7
£ 60n o oi=8
) 1 > =9
? 1 4 =10
g 40 1
=
1
1
20§ ]
i
AHAAARARRRFARARRARARAARLARARADS
0 \ \ \ \ \
0 5 10 15 20 25 30

Iteration j
(b) Frobenius norm of the incremental error.

(0.9,0.1) refer to HO-SILC which integrates

horizontal learning from device to device with vertical learning from previous layers. HO-ILC offers better performance over the layers compared to the
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Fig. 8: Total error comparison: HO-SILC results in a lower total error [15]
compared to FO-SILC. o =0 and 8 = 0 refer to FO-SILC, which only has
horizontal learning (iteration to iteration). (¢ =1, r =0.01, s = 0.03).
allowable uncertainty around the nominal plant such that [16]
the iterative system remains stable. In addition, future work
will include implementation of HO-SILC on an experimental ~ [17]
platform. (18]
REFERENCES

[1] I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technolo- [19]
gies: 3D printing, rapid prototyping, and direct digital manufacturing,
second edition, 2015. [20]

[2] B. Iezzi et al., “Electrohydrodynamic jet printing of 1d photonic crys-
tals: Part ii—optical design and reflectance characteristics,” Advanced
Materials Technologies, vol. 5, p. 2000431, 2020.

[3] P. M. Theiler, F. Liitolf, and R. Ferrini, “Non-contact printing of optical (21]
waveguides using capillary bridges,” Opt. Express, 2018.

[4] Y. Wang, F. Gao, and F. J. Doyle, “Survey on iterative learning control, (22]
repetitive control, and run-to-run control,” 2009.

[5] X. Bu, F. Yu, Z. Fu, and F. Wang, “Stability analysis of high-order
iterative learning control for a class of nonlinear switched systems,” (23]
in Abstract and Applied Analysis, vol. 2013.  Hindawi, 2013.

[6] Y.-S. Wei and X.-D. Li, “Robust higher-order ilc for non-linear

: f . . ; L [24]
discrete-time systems with varying trail lengths and random initial
state shifts,” IET Control Theory & Applications, vol. 11, pp. 2440- [25]
2447, 2017.

[71 Z. Bien and K. M. Huh, “Higher-order iterative learning control
algorithm,” in IEE Proceedings D (Control Theory and Applications),
vol. 136, no. 3. IET, 1989, pp. 105-112.

[8] Y. Chen, Z. Gong, and C. Wen, “Analysis of a high-order iterative
learning control algorithm for uncertain nonlinear systems with state
delays,” Automatica, vol. 34, pp. 345-353, 1998.

6553

M. Q. Phan and R. W. Longman, “Higher-order iterative learning
control by pole placement and noise filtering,” IFAC Proceedings
Volumes, vol. 35, pp. 25-30, 2002.

S. S. Saab, “On higher-order iterative learning control algorithm in
presence of measurement noise,” in Proceedings of the 44th IEEE
Conference on Decision and Control. IEEE, 2005, pp. 2451-2456.
D. J. Hoelzle and K. L. Barton, “On Spatial Iterative Learning
Control via 2-D Convolution: Stability Analysis and Computational
Efficiency,” IEEE Trans. Control Syst. Technol., 2016.

Z. Wang et al., “An application of spatial iterative learning control to
micro-additive manufacturing,” in 2016 American Control Conference
(ACC). IEEE, 2016, pp. 354-359.

B. Altin, Z. Wang, D. J. Hoelzle, and K. Barton, “Robust Monotoni-
cally Convergent Spatial Iterative Learning Control: Interval Systems
Analysis via Discrete Fourier Transform,” 2018.

Z. Afkhami et al., “Spatial iterative learning control for multi-material
three-dimensional structures,” ASME Letters in Dynamic Systems and
Control, vol. 1, 2020.

L. Aarnoudse et al., “Multi-layer spatial iterative learning control for
micro-additive manufacturing,” IFAC-PapersOnLine, vol. 52, pp. 97—
102, 2019.

C. Pannier, M. Wu, D. Hoelzle, and K. Barton, “LPV models for jet-
printed heightmap control,” in 2019 Amer. Control Conf. Philadelphia,
PA: IEEE, 2019.

C. P. Pannier et al., “An electrohydrodynamic jet printer with inte-
grated metrology,” Mechatronics, vol. 56, pp. 268-276, dec 2018.
H.-S. Ahn, K. L. Moore, and Y. Chen, [terative learning control:
robustness and monotonic convergence for interval systems. Springer
Science & Business Media, 2007.

M. Norrlof and S. Gunnarsson, “Time and frequency domain conver-
gence properties in iterative learning control,” Int. J. Control, 2002.
N. Amann, D. H. Owens, and E. Rogers, “2d systems theory applied
to learning control systems,” in Proceedings of 1994 33rd IEEE
Conference on Decision and Control, vol. 2. 1EEE, 1994, pp. 985—
986.

E. Rogers and D. H. Owens, Stability analysis for linear repetitive
processes.  Springer, 1992, vol. 175.

M. Norrlof and S. Gunnarsson, “A frequency domain analysis of
a second order iterative learning control algorithm,” in Proceedings
of the 38th IEEE Conference on Decision and Control (Cat. No.
99CH36304), vol. 2. IEEE, 1999, pp. 1587-1592.

A. Cayley, “A memoir on the theory of matrices.” Proceedings of the
Royal Society of London Series I, vol. 9, pp. 100-101, 1857.

T. Crilly, “Cayley’s anticipation of a generalised cayley-hamilton
theorem,” Historia Mathematica, vol. 5, pp. 211-219, 1978.

D. J. Hoelzle and K. L. Barton, “A new spatial iterative learning
control approach for improved micro-additive manufacturing,” in 2014
American Control Conference. IEEE, 2014, pp. 1805-1810.

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 19:45:40 UTC from IEEE Xplore. Restrictions apply.



