508

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023 .-:{.r_".-:.\‘\:/ l E E E
=

| l@

= CSS

Reinforcement Learning Enabled Autonomous
Manufacturing Using Transfer Learning and
Probabilistic Reward Modeling

Md Ferdous Alam™', Max Shtein, Kira Barton

and David Hoelzle

Abstract—Here we propose a reinforcement learn-
ing enabled physical autonomous manufacturing system
(AMS) that is capable of learning the manufacturing pro-
cess parameters to autonomously fabricate a complex-
geometry artifact with desired performance characteristics.
The poor sample efficiency of traditional RL algorithms
challenges real-world manufacturing decision making due
to a high variable cost from raw material, machine utiliza-
tion, and labor costs. To make decision making sample
efficient, we propose to leverage a first-principles based
source task for training, transfer effective representations
from trained knowledge, and then use these represen-
tations to interact with the physical system to learn a
probabilistic model of the target reward function. We deploy
this idea to a novel dataset obtained from a custom phys-
ical AMS machine that can autonomously manufacture
phononic crystals, a complex geometry artifact with spec-
tral response as performance characteristic. We demon-
strate that our method uses as low as 25 artifacts to model
the interesting part of the target reward function and find an
artifact with high reward. This task typically requires man-
ual design of phononic crystals and extensive empirical
iterations on the order of hundreds.

Index Terms—Reinforcement learning, transfer learning,
Gaussian process, autonomous manufacturing.

[. INTRODUCTION

N AUTONOMOUS manufacturing system (AMS) is
Acapable of fabricating an artifact that matches a
predefined desired artifact property without any human inter-
vention [1], [2]. AMS achieves this capability by learning the

Manuscript received 21 March 2022; revised 30 May 2022; accepted
15 June 2022. Date of publication 4 July 2022; date of cumrent ver-
sion 10 August 2022. This work was supported in part by NSF Award
CMMI under Grant 1727894. Recommended by Senior Editor C. Seatzu.
(Corresponding author: Md Ferdous Alam.)

Md Ferdous Alam and David Hoelzle are with the Department
of Mechanical and Aerospace Engineering, The Ohio State
University, Columbus, OH 43210 USA (e-mail: alam.92@osu.edu;
hoelzle.1@osu.edu).

Max Shtein is with the Department of Materials Science and
Engineering, University of Michigan, Ann Arbor, Ml 48109 USA (e-mail:
mshtein@umich.edu).

Kira Barton is with the Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
bartonkl@umich.edu).

Digital Object Identifier 10.1109/L.CSYS.2022.3188014

, Senior Member, IEEE,
, Member, IEEE

process parameters through intelligent decision making [3].
The idea of AMS goes beyond typical inverse design prob-
lems [4] as it takes into consideration not only a desired
performance characteristic from the artifact but the challenges
of manufacturability of such artifact as well. We describe AMS
as a ‘high variable cost environment’ (HVC-env) where data
collection has high sampling cost because of machine utiliza-
tion, materials and labor cost. Thus only a small number of
interactions are allowed with the physical system to learn the
process parameters. To this end, we aim to build manufac-
turing system that learns to fabricate an artifact with some
desired performance characteristics by sequentially manufac-
turing artifacts on the order of 10" or 107, observing the
corresponding output performance characteristics and taking
intelligent decisions accordingly. Due to the sequential nature
of the problem we consider reinforcement learning (RL) [5] to
facilitate decision making in such HVC-envs. Instead of lever-
aging black-box optimization methods, we propose to use RL
for such task for two reasons that will be explained through-
out this letter: (1) RL provides more flexible framework for
designing and building a physical AMS (2) RL can facilitate
intelligent decision making in complex, hard-to-model man-
ufacturing systems. RL has solved impressive tasks such as
mastering complex games [6] and floorplanning for computer
chip manufacturing [7].

In spite of these successes RL is still not considered suit-
able for many real-world applications due to poor sample
efficiency [8], [9]. Hence implementing RL in a HVC-env,
particularly for AMS, is even more challenging due to the
small interaction budget. To this end, we consider transfer
learning approaches to deploy RL in physical AMS [10], [11].
Transfer learning in the context of RL often helps to accel-
erate the learning procedure in a target task by transferring
knowledge from a source task. In this letter, we focus on
transfer learning between two tasks where the source and tar-
get task may have different reward distributions. We argue
that this problem setting is crucial for many real-world appli-
cations, such as AMS, because it is often easier to build an
inexpensive source task based on physics-based models and
then transfer knowledge to the expensive target task. While
leveraging data from these first-principles based models is a

2475-1456 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee_org/publications/rights/index_html for more information.

Authonzed licensed use limited to: The Ohio State University. Downloaded on September 30,2022 at 15:35:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8469-7591
https://orcid.org/0000-0003-1047-8078
https://orcid.org/0000-0002-3316-5878

ALAM et al.: REINFORCEMENT LEARNING ENABLED AUTONOMOUS MANUFACTURING

@ source

bandwidth, w(MHz)

5

0
0.2 0.4 0.8 0.8 1

L2
peak frequency, f. (MHz)

Fig 1 Distribution of the output features: Each reward value of a man-
ufactured phononic crystal artifact depends on the two output features
fe and w. The change in the distribution of f¢, w between the source and
target task, in turn, changes the reward functions. Two example spectral
responses for the same input feature values are also shown.

convenient idea, it comes with practical data-centric challenges
that make transfer learning in the context of RL challeng-
ing for AMS. For example, in an AMS it is highly likely
that black-box simulation engines and proprietary software are
used in designing artifacts. These simulation engines often fail
to accurately simulate complex manufacturing processes, uti-
lize inaccurate or simplified models and ignore limitations of
physical manufacturing systems. As a result, there exists dis-
crepancies between source and target artifact properties which
create discrepancies between the reward functions. This prac-
tical phenomena is visualized in Fig. |. Here we show the
distribution of output features obtained from Phononic crys-
tals, a certain manufactured artifact that we consider in this
letter as a proof-of-concept. It is easy to see that the distri-
bution of these output features changes from the source to
the target task which, in turn, changes the reward function.
Traditionally engineers have to iterate on the design process
numerous times to consider manufacturing issues which is
inefficient.

In this letter we propose methods based on transfer learn-
ing in RL that can make this whole process autonomous and
thus reduce a significant amount of manual process iteration.
In the RL context, this problem setting is analogous to making
data-efficient decisions in a target task by leveraging knowl-
edge from a source task that has an inaccurate reward model.
We draw motivation from previous studies [12] where reward
function has been modeled as Gaussian process considering
reward as a safety feature of the state. Our proposed method
primarily consists of two steps. First, the RL agent is trained
in a first-principles based source task. Second, a probabilistic
model, specifically a Gaussian process model, of the target
reward landscape in the physical manufacturing system is
learned by utilizing the source knowledge. A key challenge
in building a probabilistic target reward model is the sparsity
of rewards in many tasks. Fortunately, we can exploit the fact
that rewards are not sparse, but possibly nonlinear with respect
to the features of states, for applications like AMS. Thus it is
possible to build a probabilistic model of the reward function
based on the observed data. Our confributions can be sum-
marized as the following: 1) development of the conceptual

framework for autonomous manufacturing in the context of
sequential decision making, 2) development of a data efficient
sequential decision making process for AMS using transfer
RL, 3) dissemination of a novel experimental dataset for the
proposed AMS case study and demonstration of the effec-
tiveness of the proposed methods for this proof-of-concept
physical AMS.

[l. BACKGROUND AND PROBLEM FORMULATION

A. Sequential Decision Making and Reinforcement
Learning (RL)

The goal of sequential decision making is to maximize
a performance objective by sequentially taking actions and
observing corresponding feedback. We adopt the reinforce-
ment learning (RL) framework with usual Markov decision
process (MDP) [13] formalism to formulate sequential deci-
sion making in AMS. An MDP M is defined as a tuple
M=(X, A, P, R), where X is the state-space, A is the action-
space, P is the transition probability that describes the dynam-
ics of the system and R : A x A — R defines the reward
function. At timestep f, the agent interacts with the environ-
ment by taking action a; € A at state x, € X’ using a policy
w : X — A and transitions to the next state x4 € X
according to the conditional probability p(x;y1|x;, a;) while
receiving a scalar reward value Ry = R(x;, a;) as the feed-
back. Ultimately, the goal is to find a policy 7* that maximizes
the expected cumulative sum of discounted rewards, known as
return G;, from all states. One popular approach to address
this problem is to use the concept of value function [5]
where we can define action-value function of a policy m as
07" (x, a) = E™[Gy|x;, a;] to evaluate the policy. An improved
policy which is at least as good as m, can be found by using
dynamic programming (DP) approaches to choose the greedy
policy with respect to Q7 (%, a;). Under certain assump-
tions [14], this iterative policy evaluation and improvement
leads to the optimal policy =* that maximizes the expected
return. Another popular approach to find 7* is to use policy
gradient methods to directly optimize the parameterized policy
m instead of relying on value-functions. In this letter we only
consider value-function based methods although policy-based
methods are feasible.

B. Transfer in Reinforcement Learning

Let us consider a source task described by the MDP
Ms = (X, A, Rs,P). We aim to utilize knowledge from
M to accelerate learning in a target task, described by the
MDP M7 = (X, A, RT,P). Notice, only the reward func-
tion is different in these two MDPs. We also exploit the fact
that rewards in AMS are only dependent on the states, not
the state-action pairs, meaning R.(x, a) = R(x), because each
artifact in an AMS produces a reward that depends only on
the features of the state. In this problem setting, there are at
least two major challenges in RL transfer: identifying the types
of knowledge to transfer from the source to the target task
and evaluating the performance of the transfer [10]. Previous
studies suggest various types of transfer including represen-
tation transfer, instance transfer and parameter transfer. For

Authonzed licensed use limited to: The Ohio State University. Downloaded on September 30,2022 at 15:35:14 UTC from |EEE Xplore. Restrictions apply.

|EEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

510
__é(________________ ‘ baseline
! (manufacturi characterization | ! =
xt_.i [mﬂ unitu i raur!ilz H O R(x‘)
A F o B
Fig. 2. Reward generation in an AMS.

data-efficient decision making in M7, we choose a particular
type of representation transfer known as temporal abstrac-
tions. In this type of transfer, temporally extended actions,
also known as ‘options’, are identified in M and then exe-
cuted in M. As options are executed for multiple timesteps,
unlike regular single timestep primitive actions, learning can
be accelerated in M. It is important to note that options
form a semi-Markov decisions process (SMDP) in the context
of MDP [15]. Formally each option ¢ in an SMDP is described
by a three-element tuple Z = (Z, =, 8) where o initiates from
a state x € Z € A&, follows an intra-option policy = and then
terminates at state x’ with probability B.

C. Autonomous Manufacturing

To formalize autonomous manufacturing system in the con-
text of sequential decision making and MDP, let’s consider a
generic manufacturing process F,

g =F(x;)+& where t < T} (1)

where process output g, € RP*! quantifies the characteristic
properties of a manufactured artifact, process input x, € R7*!
quantifies manufacturing process parameters and & is the
unknown process noise, sample index f represents the time
index as well. Additionally, the interaction budget T, rep-
resents the total number of artifacts allowed for learning
to manufacture the artifact with desired characteristics. This
particular type of manufacturing system consists of both a
manufacturing unit and an in-situ characterization unit for
real-time characterization of the manufactured artifact. An
artifact-property quantification g, is obtained from each manu-
factured artifact as output from the characterization unit. Later,
a post-processing function A(-) takes g, as input and produces
a feature vector ¢, as output, ¢, = A(g;). The goal is to learn
the input x* that produces desired output features of an artifact,
¢, = A(gy), while not manufacturing artifacts more than the
interaction budget Tj. The learning process may start from
a random initial position Xp ~ U (Xmin, Xmax) OF a specific
initial position of interest. At each timestep, a loss is con-
structed based on the similarity between ¢, and ¢,; meaning
¢ = L(¢p,, ¢p,), where L(-) is ‘part-property quantification
similarity” (PQS), a similarity metric between the desired and
current output features of the artifact. To convert the loss
into reward values we use an arbitrary constant value as the
baseline such that

R; = baseline — £, = baseline — L(¢,, ¢;). (2)

Note that PQS can be a £2 norm or any distance metric or it
can be a custom designed similarity metric. The full reward
generation process is shown in Figure 2.

[1l. SAMPLE EFFICIENT LEARNING OF A PROBABILISTIC
MODEL OF THE TARGET REWARD FUNCTION

Our idea is to use transferred representations obtained from
M to learn a probabilistic model of the target reward func-
tion Ry(x) in My. A pseudocode explaining these ideas
can be found in the Algorithm 1. We use Gaussian process
(GP) [16] for the probabilistic modeling of R7(x) meaning
R7(x) ~ GP(u(x), k(x,x")). A GP describes a probability
distribution over functions which can be fully specified by
a mean function p(x) and a kernel or covariance function
k(x,x'). Initially, we train the agent in Mg using any RL
algorithm and then extract the optimal policy 73 from the
trained action-values Q"."; in case of value based RL methods
or directly optimized 7% in case of policy gradient methods.
Next we use 7§ to guide the agent in M7 to collect a dataset
from the target task, and build a GP posterior conditioned on
this dataset. Ideally we would like to interact with M7 using
all the actions suggested by J‘T;-. But as we want to keep the
number of interactions small, we use the transferred temporal
abstractions, otherwise known as options, from 73 to interact
with M.

At each time step we roll-out a trajectory Ty =
{X¢, ar, X1, ..., QryH_1, Xe g} upto horizon H using rrg.
Next we choose a subgoal state, Xgypgoq from this trajectory.
One way to choose Xgpgoal iS L0 choose the most visited state
within the trajectory rg. Alternatively Xgypgoal can be a care-
fully chosen state from ty. For example, the subgoal state can
be the state corresponding to the maximum change in rewards
within tg. In the simplest setting we can execute :r;. for a fixed
horizon of H in an open loop fashion where Xgyhgoar Would
be the last state of ry. In this way an option oy, is created
that starts from x, follows rrg and terminates at x' = Xsubgoal-
Thus each option can be described as o5 = (x, 7%, X'). We
only observe a target reward R7(x’) once the option termi-
nates. The option we have just created is directly obtained
from =& and does not account for the exploration needed
to overcome the bias induced by the source reward. Hence
instead of creating a single option from 7% we create a set
of options {o;}]' where each option is an e-greedy variant
of o,. This idea is somewhat close to ‘probabilistic policy
reuse’ [17] where guidance is provided from past learned sim-
ilar policies. This means that each option o; follows o, with
high probability most of the time and occasionally chooses
random action to explore according to small probability e,
{o;} = {0i:0; < e-greedy(o,)}),i = 1,...,m. In this way if
we choose n subgoals we will create n x m options which
will give us n x m target reward values R(-) ~ Ry (-). Now
we can create a dataset D = {Xain, Yirain} Of Observed target
rewards values, where Xiryin = [x(U, ..., x™7 y, 00
[RD, ... Re>m]T Using yirain it is possible to obtain
Ry, for the entire state-space Xy = A, which is
the GP posterior of Ry conditioned on the observed
reward,

p(ﬁT(x”Xtesh Xtrains Yirain) = N(ﬁ'}'—(x)mmsh Ziest) (3)
Hiest = KL (K + 0D Yinain @
Teest = Kix — KL (K + 02D 'K, (5)

Authonzed licensed use limited to: The Ohio State University. Downloaded on September 30,2022 at 15:35:14 UTC from |EEE Xplore. Restrictions apply.

ALAM et al.: REINFORCEMENT LEARNING ENABLED AUTONOMOUS MANUFACTURING 511

Algorithm 1 Learning GP Reward Model

I: input: Mg, interaction budget T}, data buffer D = ¢
2: while T}, is available do

3: Learn in Mg using any RL algorithm

Extract source optimal policy 7§

Create {o;} from :r; using method in Section III
implement {o;}, get {x:v} and target rewards {R;}
D <« DU Dy where dataset Dy = {(X}, R}))
Calculate posterior 727 from D using Eq. 4 and 5
9: Update source MDP, Mg = (X, A, ',Q;r(x), P)

10: end while

11: output: 77 < optimal policy from Mg

ol R

where Ky = k(xtest, Xeest): Ky = k(Xeest, Xirain), K =
k(Xirain, Xtrain) and k(-, -) is the kernel defined on the GP
prior. Our intuition is that the positive definite kernel can cap-
ture correlation in the state-space with respect to the rewards.
Throughout this letter we consider the squared exponential
kernel, k(x,x) = aﬁexp(—z—i.z-(x —x)T(x — x)). Using the
GP posterior as the estimated target reward function :‘QT(X)
we can find the estimated optimal policy 77 using any RL
algorithm. We can repeat this whole process until we run out
of T} to improve the learned GP model ’;qu(x}.

IV. CASE STUDY

This letter provides a proof-of-concept autonomous man-
ufacturing system where the task is to autonomously manu-
facture a type of material known as Phononic crystal (PnC).
PnC, an artificially designed material with complex repetitive
geometry, acts as an acoustic filter. Thus only certain sound
frequencies will pass through the material while blocking the
rest. Based on this property we aim to autonomously man-
ufacture a PnC that can exhibit a passband with two output
features: center frequency f. and bandwidth w. The specific
PnC we are considering in this letter has three dimensional
repetitive unit cell as shown in Fig. 3. This 3D unit cell can be
described by two input features: filament distance ., and fil-
ament diameter d, which dictates the passband characteristics
of the entire PnC artifact.

A. Autonomous Manufacturing System for PnCs
(AMSPnC)

We use a custom-built 3D printer as a proof-of-concept
autonomous manufacturing system which we call AMSPnC.
This modified 3D printer has a fused deposition based addi-
tive manufacturing unit for manufacturing PnC materials and
an ultrasonic transducer based in-situ characterization unit to
characterize the passband characteristics of PnCs in real-time.
Here, each state can be represented by the input features I,
and d. The software for AMSPnC is designed such that it
receives these input feature values and autonomously perform
the following sequence of operations; generate the Gcode,
manufacture a PnC artifact, transport PnC artifact to the char-
acterization location, characterize the artifact and post-process
the passband characteristics to produce output features, ¢(-).

Amphitude (@)

Fig. 3.
of PnC artifacts with 3D printing facility and ultrasonic transducer based
characterization facility; an unit cell of a PnC described by two input
features Iy, d and corresponding spectral response are also shown.

AMSPNC: experimental testbed for autonomous manufacturing

We consider a finite range of values for each of these vari-
ables; 1050pum > I, > 700pum and 600pum > d > 350um.
As we only allow a resolution of 50um to the 3D printer, we
end up with a finite state space size of |X| = 8 x 6 = 48.
Due to numerous issues associated with additive manufactur-
ing and heat transfer of a PnC artifact, it requires almost half
an hour for a single artifact to be 3D printed and character-
ized. At each state the agent can take 9 possible actions where
first eight actions are all the possible directions in the 2D state
space and the last action is staying at the same state.

B. Dataset

We develop two novel datasets to validate the proposed
methods. The source task is a collection of 48 Finite ele-
ment method (FEM) simulations of PnCs with various input
feature values. Each simulation takes approximately 20 min-
utes to perform. The target task uses an experimental dataset
that is created by autonomously manufacturing PnCs using
the AMSPnC machine. A full factorial Design-of-Experiment
(DOE) is performed to build a dataset of 48 artifacts, where
each sample is printed three times to account for the noise in
the experimental system, resulting in a total of 144 physically
manufactured PnC artifacts. It took almost two weeks to 3D
print all the samples for this experimental dataset. We pro-
vide a feature map in Fig. | for both datasets that shows the
distribution of the output features. Numerous studies on PnCs
support the fact that numerical simulations can not predict
experimental features accurately for many reasons including
microscale material irregularities [18].

C. Reward Generation

The passband spectrum obtained from PnC characterization
at timestep f acts as the artifact-property quantification g;. Now
we can follow the method described in Section II-C to generate
reward values. Initially, we use a two-term Gaussian approxi-
mation as A(-) to extract features f.,, w; from g, and generate
corresponding feature vector ¢,. Next we use predefined fixed
values, f. 4 and wy, as the desired output features and generate
corresponding feature vector ¢p;. Then we use a custom PQS
metric as follows,

£(¢r1 ¢d) =

Ifc,d _fr,r] 4 |wd = er.

6
Jed Wi ©

Authonzed licensed use limited to: The Ohio State University. Downloaded on September 30,2022 at 15:35:14 UTC from |EEE Xplore. Restrictions apply.

512

|EEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

! E
YOO TR0 00 850 0 G60 1000 1080

Ly (pm)

(b) Rt

mm TH0 BOD 50 %0)60- 1000 1050
Ly (pm)

(@ Rs

Fig. 4 Reward distributions in (a) source and (b) target where Rmax
represents the maximum reward value.

We intentionally omitted the detail mechanism for obtaining
a reward value experimentally from a 3D printed PnC artifact
as it is fairly complex and less pertinent to the study of the
proposed algorithm. For this letter we used f. 4 = 0.85 MHz
and wg = 0.15 MHz as the desired output features and baseline
value of 10.0 to calculate the rewards. Finally each reward is
generated using Eqn. 2. The reward distribution in the source
and target task for this specification can be seen in Figs. 4(a)
and 4(b).

D. Implementation Details

To train the agent in Mg we use off-policy random sam-
ple Q-learning, a simple variant of Q-learning algorithm that
collects samples using a random policy and then updates the
Q-values. The intention behind using random policy for data
collection is to break the sequential correlation between the
samples. Once trained for sufficiently long time, 10° timesteps
in this case, a greedy policy is extracted from the Q-values to
obtain 7. We perform two types of experiments to demon-
strate the effectiveness of our method. First, we use fixed
initial input feature values, I, = 800um,d = 400um, for
all experiments and later use random values within the range.
During each epoch =% is followed for a fixed horizon length of
H = 3 and the final state of this trajectory acts as the subgoal
state. Using the method described earlier we create 5 options
from this trajectory using high exploration value, € = 0.75.
Implementing these options provide us with a dataset D that
we use to build a GP posterior of R-7. We use zero mean GP as
the prior without loss of generality [16]. To optimize the hyper-
parameters associated with the GP equations, we restart the
optimization multiple times. This GP posterior, 7:’.7‘, is used
as the source reward to calculate fr(’]"r using random-sample Q-
learning algorithm. Instead of using all the subgoals to create
the dataset we create a set of options for one subgoal dur-
ing each epoch. Later we execute the optimal option extracted
from 77 from the current initial state to move to the next
state that acts as the initial state for the next iteration. We
repeat this process for 25 epochs. Finally the estimated target
optimal policy ﬁ,’;"r can be obtained by updating the dataset and
thus updating the GP posterior ﬁ'r. The performance of each
optimal policy is evaluated by calculating the total return for a
fixed number of timesteps obtained using the benchmark tar-
get optimal policy :!'rf;‘r and then subtracting the return obtained
from ﬁ’-’]"r. Due to the non-episodic nature of this problem we

18

l

l

W TR B0 B0 W0 w0 10 10 X
Loy {pem)

™ L) Lo 0 #0000 1S
Ly (um)

Fig. 5 Two examples of learned GP reward model using Algorithm 1.
Notice that only a certain portion of the state space is explored. The
reward values are normalized to have a maximum reward of 1.0.

call this performance evaluation metric A-regret where each
policy is executed for A timesteps.

. 1 * ~E
Rega () = (G (xo) — G (x0)))

where G’ (xo) = Zf:le is the undiscounted return while
policy m is executed for A timesteps starting from state Xp.
We perform 25 similar experiments to obtain the statistics of
the optimal policy performance. To show the effectiveness of
the learned policy 77 we compare it against two other tradi-
tional transfer methods, offline policy transfer and Q-function
transfer. Specifically, we compare ﬁu‘]‘r against offline imple-
mentation of x$ in the target task and g which is obtained
by transferring source Q-function to the target task.

E. Results and Discussion

Two learned reward models, 727, using temporal abstrac-
tions and corresponding maximum reward values are shown
in Fig. 5. Here the agent interacted with the target environ-
ment 25 times but the number of visited unique states are
only 22 and 15 respectively. For comparison, traditional full-
factorial design process requires 144 PnC artifacts to find the
high reward state which is described in Section I'V-B. Notice
that only a certain portion of the reward values have been
learned while rest of the reward values are zero due to the
GP prior with zero mean. In fact these zero rewards are not
important in learning the optimal policy in the target task
from this particular initial state. Hence, the agent was able
to explore only a ‘useful’ portion of the state-space to learn
the GP reward model. A comparison of the rewards is obtained
by executing each policy for 10 timesteps in the target task.
Here, rewards obtained from the learned optimal policy 77
is compared against rewards obtained from 77, 73 and 7o
from Q-function transfer as shown in Figure 6(z). The optimal
policy 777 obtained using the reward model performs better
than the offline policy 7% directly implemented on the target
task and performs very close to the target optimal policy rrj*r
benchmark. Q-function transfer improves the policy slightly
but is insignificant for this small number of timesteps. We also
show the A-regrets obtained from all of the 25 experiments
to demonstrate the effectiveness of ﬁ’j“r. Fig. 7 shows similar
results for randomly chosen initial states where, J-Ar,’;"r outper-
forms 7§, g and performs very close to 7. Finally we show
the 3D printed PnC artifacts suggested by an example 77 in
Fig. 8. It also visualizes the spectral response corresponding

Authonzed licensed use limited to: The Ohio State University. Downloaded on September 30,2022 at 15:35:14 UTC from |EEE Xplore. Restrictions apply.

ALAM et al.: REINFORCEMENT LEARNING ENABLED AUTONOMOUS MANUFACTURING 513

B —.— iy
;5 il —_— g
3 -
42| T —4—=7g
[] 2 4 [B 5 ED
timestep experiment mumber
(a) obtained rewards (b) A-regret
Fig. 6. Experiments using same initial state: (a) rewards obtained

using policy ﬁ.‘;_, rr.*r, ng and mg, rewards obtained from ﬁ."r are shown
within one standard deviation range, (b) A-regret from 25 experiments
calculated using Eq. (7) for the same initial state.

% .
48
[
A
E 44 :tu
Ed ===t
2 -3 | o
a8 £
as| e B,
—— T
B 3 3 3 5 o 5w 5
timestep experiment number
(a) obtained rewards (b) A-regret
Fig. 7. Experiments using random initial states: (a) rewards obtained

using policy w%-, :rx.‘r, mg and mg, all rewards are shown within one
standard deviation range, (b) A-regret from 25 experiments calculated
using Eq. (7) for these random initial states.

Sl il ill

e—

Fig. 8 An example :%;"r showing evolution of manufactured PnC arti-
facts; top: 3D printed PnC artifacts with corresponding unit cell, bottom:
spectral response comresponding to each artifact, dashed lines represent
desired passband characteristics.

to each 3D printed PnC artifact. It can be clearly seen that
a good correspondence between the desired and actual output
features of the spectral response is obtained using ﬁ,’;“r.

We anticipate two potential limitations of the proposed
method; the initial state may affect the performance of the
algorithm and the source optimal policy may not provide any
useful exploration in the target task. If the source policy fails
to provide useful representations to guide the agent in the tar-
get task, then this approach might not be very effective. This
makes sense because the purpose of using a source task is to
provide somewhat useful guidance in the target task.

V. CONCLUSION

For real-world implementation of RL algorithms in high
variable cost environments such as autonomous manufactur-
ing systems, transfer learning holds great potential. But this

approach becomes challenging when the source reward model
is inaccurate. Our proposed method of learning a probabilistic
model of the target reward function using effective representa-
tions from the source task, is a sample efficient approach for
building next generation of manufacturing systems. Using a
real-world case study of AMS, we empirically show that our
method outperforms traditional transfer learning approaches
in RL. It has the ability to generate high reward, thus creat-
ing high quality manufactured artifacts, despite source reward
inaccuracies and a high variable cost of sampling the target
task.

ACKNOWLEDGMENT

The authors would like to acknowledge Zhi Zhang for
helping with the experimental data collection.

REFERENCES

[1] M. E. Alam, M. Shtein, K. Barton, and D. J. Hoelzle, “A physics guided
reinforcement learning framework for an autonomous manufacturing
system with expensive data,” in Proc. Amer. Control Conf. (ACC), 2021,
Pp. 484-490.

[2] J. R. Deneault et al, “Toward autonomous additive manufacturing:
Bayesian optimization on a 3D printer,” MRS Bull., vol. 46, no. 3,
pp. 1-10, 2021.

[3] M. E Alam, M. Shtein, K. Barton, and D. J. Hoelzle, “Autonomous
manufacturing using machine learning: A computational case study with
a limited manufacturing budget,” in Proc. ASME 15th Int. Manuf. Sci.
Eng. Conf., 2020, pp. 1-12.

[4] Y. Augenstein and C. Rockstuhl, “Inverse design of nanophotonic
devices with structural integrity,” ACS Photon., vol. 7, no. 8,
pp. 2190-2196, 2020.

[5] R.S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[6] D. Silver et al., “Mastering the game of go without human knowledge.”
Nature, vol. 550, no. 7676, pp. 354359, 2017.

[7]1 A. Mirhoseini, A. H. Goldie, M. Yazgan, and J. W. Jiang, “A graph
placement methodology for fast chip design,” Nature, vol. 594, no. 7862,
pp. 207-212, 2021.

[8] M. Cutler and J. P. How, “Efficient reinforcement learning for robots
using informative simulated priors,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2015, pp. 2605-2612.

[9] A. Marco ef al., “Virtual vs. real: Trading off simulations and physical
experiments in reinforcement learning with Bayesian optimization,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2017, pp. 1557-1563.

[10] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning
domains: A survey,” J. Mach. Learn. Res., vol. 10, no. 7, pp. 16331685,
2009.

[11] A. Lazaric, “Transfer in reinforcement learning: A framework and a sur-
vey,” in Reinforcement Learning. Heidelberg, Germany: Springer, 2012,
pp. 143-173.

[12] M. Turchetta, F. Berkenkamp, and A. Krause, “Safe exploration in finite
Markov decision processes with Gaussian processes,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 29, 2016, pp. 4312-4320.

[13] M. L. Puterman, “Markov decision processes,” Handbooks Operations
Research Management Science, vol. 2. Basel, Switzerland: Baltzer, 1990,
pp. 331-434.

[14] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Sci., 1996.

[15] D. Precup, Temporal Abstraction in Reinforcement Learning, Univ.
Massachusetts Amherst, Amherst, MA, USA, 2000.

[16] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer School Machice Learning. Cham, Switzerland: Springer, 2003,
pp- 63-71.

[17] F. Femdndez and M. Veloso, “Probabilistic policy reuse in a rein-
forcement learning agent,” in Proc. 5th Int. Joint Conf. Auton. Agents
Multiagent Syst., 2006, pp. 720-727.

[18] A. Kruisovd et al, “Ultrasonic bandgaps
odic ceramic microlattices.” Ultrasonics, wvol. 82,
Jan. 2018.

in 3D-printed peri-
pp. 91-100,

Authonzed licensed use limited to: The Ohio State University. Downloaded on September 30,2022 at 15:35:14 UTC from |EEE Xplore. Restrictions apply.

