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ABSTRACT

The relationship between biodiversity and spectral diversity is highly scale-dependent, and temporal variation in
leaf morphological, biochemical traits and canopy structure can alter this relationship. However, the temporal
dependence of the spectral diversity — biodiversity relationship is poorly understood, in part due to the diffi-
culties of obtaining consistent measurements across space and time. Using leaf pigments and leaf and canopy
reflectance throughout a growing season in the Cedar Creek prairie biodiversity experiment, we explored
phenological effects on the scale dependence of the spectral biodiversity — biodiversity relationship. Leaf
reflectance spectra displayed larger among-species variation than leaf pigments, indicating that leaf reflectance
contained more information for distinguishing species than some leaf trait measurements. At the canopy scale,
spectral variation derived using reflectance was mainly driven by among-species variation. The canopy scale
spectral diversity was also influenced by changing vegetation percent cover, key phenological events (e.g.,
flowering), and disturbance (drought). Our results revealed that contrasting phenological patterns of spectral
diversity metrics emerged at leaf and canopy scales. Because a misunderstanding of these contrasting temporal
effects across spatial scales can lead to possible misinterpretations of the spectral diversity — biodiversity rela-
tionship or of their underlying causes, more research effort is needed to understand these cross-scale temporal

effects.

1. Introduction

The temporal dimension of species distribution has long been
considered in ecology and evolution (Preston, 1960) but has been far
less explored than the spatial distribution of species (Magurran, 2007).
However, including the temporal dimension in biodiversity sampling is
critical, since spatial and temporal patterns of biodiversity influence
each other. Both the timing and duration of sampling can influence the
perception of species distribution, making the temporal dimension an
essential consideration in species abundance distribution analyses
(Magurran, 2007). Given that collecting biodiversity data is time-
consuming and expensive (Bonaldo et al., 2008), biodiversity datasets
are frequently incomplete and collected only over short periods
(Magurran et al., 2010). The phenology of grassland has been largely
neglected compared to that of forbs and woody plants due to the chal-
lenges of identifying species and reproductive stages in the field

* Corresponding author.
E-mail address: ranwangrs@gmail.com (R. Wang).

https://doi.org/10.1016/j.rse.2022.113169

(Primack and Gallinat, 2017).

Remote sensing offers the possibility to enhance biodiversity sam-
pling through time across large spatial extents and has been used to
assess multiple dimensions of biodiversity including phylogenetic,
taxonomic, and functional diversity (e.g., Schweiger et al., 2018; Wang
et al., 2018a; Wang et al., 2019; Wang and Gamon, 2019; Wang et al.,
20205 Stasinski et al., 2021). One advantage of using remote sensing to
monitor diversity is its potential to provide consistent, repeated obser-
vations that might reveal critical phenological information about di-
versity. However, when applied to studies of biodiversity, remote
sensing also poses certain challenges, one of which has been the shortage
of remotely sensed datasets at the temporal, spatial or spectral scales
needed to understand changing patterns of biodiversity (Gamon et al.,
2019).

The spectral diversity hypothesis (a.k.a. optical diversity) suggests
that spectral variation detected by remote sensing can be related to
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species, functional and phylogenetic diversity, because the phylogenetic
differences and resource limitations affect plant growth and leaf traits,
canopy structure and phenology, all of which can affect vegetation op-
tical properties (Gamon, 2008; Ustin and Gamon, 2010; Gamon et al.,
2019; Wang and Gamon, 2019). Physiological and structural traits
contribute to optical properties, yet both vary over time, and this
phenological influence on spectral diversity as an analog for biodiversity
has received limited attention (Gamon et al., 2020). The lack of un-
derstanding of the phenological component in the spectral diversity —
biodiversity relationship severely limits our ability to detect diversity
using remote sensing in part due to the limited perception of biodiversity
patterns over the short term. Without attention to the temporal
dimension, we are potentially missing much of the information that
could be used to assess biodiversity with remote sensing.

Understanding the temporal dynamics of the spectral diversity —
biodiversity relationship is expected to enhance diversity estimation
using remote sensing (Ustin and Gamon, 2010; Cavender-Bares et al.,
2017). Despite the recognized importance of the temporal component in
remote sensing of biodiversity, only limited work has considered
phenology in studies involving remote sensing of biodiversity (Rocchini
et al., 2015; Wang and Gamon, 2019; Gamon et al., 2020; Gholizadeh
et al., 2020). Previous studies in a Southern California Mediterranean
ecosystem revealed that the ability of optical measurements to distin-
guish plant functional types varied with season (Zutta, 2003). In a
prairie study, Gholizadeh et al. (2020) noted strong seasonal differences
in the ability for airborne imaging spectrometry to detect biodiversity,
and these differences were further modified by episodic disturbance (e.
g. fire). Additionally, because species differ in their phenological re-
sponses (such as different seasonal patterns of bud break or flowering), it
is possible that temporal trajectories of spectral data can further inform
biodiversity studies. Thus, capturing spectral data across time can help
identify the optimal time for distinguishing taxa with optical remote
sensing, which might improve the performance of spectral diversity
metrics in biodiversity estimation.

In this study, we used a time series of leaf and canopy reflectance
data at Cedar Creek Ecosystem Science Reserve, Minnesota, USA in the
summer growing season (late May to October) 2014 to investigate the
dynamics of spectral diversity at both leaf and canopy scales for this
prairie ecosystem. Besides the reflectance data, we also measured
pigment concentrations of chlorophyll, carotenoids—including photo-
protective xanthophyll cycle pigments—and anthocyanins, because the
seasonal changes of leaf pigments due to ontogeny (Gamon and Surfus,
1999), senescence (Cavender-Bares et al., 2000), light environment
(Logan et al., 1998) and stress (Verhoeven et al., 1999; Savage et al.,
2009; Ramirez-Valiente et al., 2015) can affect leaf spectra over time
(Gamon and Surfus, 1999), presumably influencing the spectral di-
versity — biodiversity relationship at both leaf and canopy scales. We
hypothesized that at the leaf scale, leaf reflectance could exhibit larger
among-species variation than leaf pigments; while at the canopy scale,
spectral diversity could also be influenced by changing vegetation
structure, cover, and key phenological events (e.g., flowering).

2. Materials and methods
2.1. Study site description

This study was conducted using the BioDIV experiment at the Cedar
Creek Ecosystem Science Reserve, Minnesota, USA (45.4086° N,
93.2008° W). The BioDIV experiment has maintained 168 prairie plots
(9 m x 9 m) with nominal plant species richness ranging from 1 to 16
since 1994 (Tilman, 1997). The species planted in each plot were orig-
inally randomly selected from a pool of 18 species typical of Midwestern
prairie, including C3 and C4 grasses, legumes and forbs. Weeding was
done 3 to 4 times each year for all the plots to maintain the species
richness (Tilman, 1997; Reich et al., 2012). Of the original 168 plots, we
selected 11 monocultures and 24 plots with six replicates of every other
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richness level (2, 4, 8, and 16) but with differing species combinations in
this study (Wang et al., 2016a; Cavender-Bares et al., 2017; Schweiger
et al., 2021).

2.2. Leaf reflectance

At the beginning of the season (late May to mid-June), leaf reflec-
tance measurements were taken once a week for the 11 monocultures,
since it was easier to identify those prairie species in the monoculture
plots than in the high richness plots when plants were young. From July
to early October, leaf reflectance measurements were taken every two
weeks for 17 prairie species (Table S1) in all of the 35 plots. We
randomly picked 3 leaves per plant on 5 plants per species to sample leaf
reflectance using a field spectrometer (Unispec, PP Systems, Amesbury,
MA, USA) coupled with a needle leaf clip (UNI501, PP Systems, Ames-
bury, MA, USA) with an internal halogen light source. The needle leaf
clip allowed a narrow field of view (0.6-mm-diameter), which enabled
sampling of small, narrow leaves (e.g. grass blades). For each species,
leaf measurements were preceded with a dark and a white reference
scan (Spectralon, Labsphere, North Sutton, NH, USA). Leaf reflectance
was calculated by dividing each leaf measurement by a white reference
scan after subtracting a dark spectrum from each measurement. The
spectrometer has a nominal spectral range from 350 to 1100 nm with
2-3 nm band spacing and 10 nm full width at half maximum (FWHM),
and a linear interpolation was used to estimate reflectance at 1-nm in-
tervals. To track the change of leaf ‘greenness’ through the season, we
used leaf-level NDVI formulated as follows:

NDVI — Psoo — Peso 1)
Ps00 T Peso

where p680 and p800 indicate the reflectance at 680 and 800 nm,
respectively. On each sampling day, leaf reflectance were taken from 10
am to 4 pm. This leaf reflectance dataset (doi: 10.21232/i6N36jZ7) is
available at the EcoSIS Spectral Library (ecosis.org).

2.3. Leaf pigments

To investigate the phenological properties of leaf pigments, we
sampled leaf materials to determine leaf pigment concentrations over
the growing season. Leaf disks (0.2 cmz) were collected using a hole
punch from the same leaves used for leaf reflectance sampling. These
leaf disks were wrapped in aluminum foil, stored in liquid nitrogen
immediately, and later transferred to a — 80 °C freezer for long term
storage. High-performance liquid chromatography (HPLC; Agilent 1200,
Agilent Technologies Inc., Santa Clara, California, USA) was used for
pigment analysis at the University of Minnesota following methods
previously described (Savage et al.,, 2009; Kothari et al., 2018;
Schweiger et al., 2018). We calculated pigment concentrations for total
chlorophyll (chlorophyll a and b), xanthophyll cycle pigment pools (V +
A + Z; the sum of violaxanthin, antheraxanthin and zeaxanthin con-
centrations), neoxanthin, lutein, p-carotene and anthocyanins.

2.4. Canopy reflectance

In the 35 plots, canopy spectral reflectance was measured every two
weeks over most of the 2014 growing season (late May to late August)
and once a month during senescence (September to October) with a
hand-held, dual-channel spectrometer (Unispec DC, PP Systems, Ames-
bury, MA, USA). On each sampling day, canopy reflectance were taken
from 11 am to 3 pm under clear skies, i.e. within about 2 h of solar noon.
Taking simultaneous measurements of both upwelling and downwelling
radiation and cross-calibrating with a white reference calibration panel
(Spectralon, Labsphere, North Sutton, NH, USA) allowed us to correct
for the atmospheric variation during the sampling period. The spec-
trometer foreoptic was held at a distance of 2 m above the ground,
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providing a ground sampling size (instantaneous field of view) of
approximately 0.5 m. In each plot, reflectance measurements were taken
at a half-meter interval along the northern-most plot edge on each
sampling date, providing a consistent subsample of each plot (n = 17)
over the growing season. Because of the relatively short stature of prairie
vegetation, a typical sample contained multiple individual plants and
anywhere from 1 to 16 species, depending upon the plot. The constraint
of sampling only the northernmost plot edge of each was imposed to
avoid disturbance from people entering the experimental plots and
because sampling the entire plot using automated means (e.g. a tram
system, Wang et al., 2016a) was prohibitive in terms of time (it takes
several weeks to fully sample 30 plots due to the time required to set up
automatic sampling).

To show the seasonal vegetation structural changes, canopy-level
NDVI was calculated using canopy reflectance values at 680 and 800
nm following Eq. (1). We also applied a vector normalization method
(Feilhauer, 2010) on the canopy reflectance data to calculate a bright-
ness corrected reflectance product that kept the overall spectral shape
while removing brightness differences. Vector normalization is often
used for plant trait studies where the effects of canopy structure and
illumination can cause large differences in “brightness,” possibly
obscuring certain leaf traits. This allowed us to compare non-normalized
reflectance spectra (influenced by brightness changes) to
vector-normalized spectra (minimizing the brightness changes). This
canopy reflectance dataset (doi:10.21232/C27Z070) is available at the
EcoSIS Spectral Library (ecosis.org).

2.5. Partitioning of variance at leaf and canopy scales

To better understand the component contributions to the variation in
the leaf pigment concentrations and the leaf and canopy reflectance
data, we partitioned the total variance (total sum of squares, SS;) into
within- (within species sum of squares, SS,,) and among-species (among-
species sum of squares, SS,) components at leaf and canopy scales using
a multivariate analysis of variance (MANOVA) method (Anderson,
2001). For the pigment data, we ran a principal components analysis on
the pigment correlation matrix and partitioned the variance of pigment
values in the principal components space to normalize differences in
absolute values among pigments. For the leaf and canopy (raw and
vector normalized) reflectance, MANOVA was applied for partitioning
the spectral variance based on Euclidean distance between spectra
(Price, 1994):

N
$S, =Y d*n )
i=1
M-1 M
$S =3 > d; 3
i=1 j=i+l
SS,, =SS, — SS, G

where S indicates species richness and M indicates total measurements.
d; is the distance from the centroid of i species to the centroid of all the
measurements multiplied by the number of individuals of the i species
(n), and dj is the distance between two individual spectra (i and j). The
Euclidean distance (d) between two spectra (p ; and p ), is the root mean
square difference between them, averaged over the whole spectral
range:

L& 1/2

d= N Z o1 () — po (%) T %)

i=1

where N is the number of wavelengths.
To compensate for the variation in sample size among different
sampling dates and compare variance partitioning across the growing
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season, we calculated the mean sum of squared (MSS) Euclidean dis-
tance deviations by dividing SS,, SS; and SS,, with their associated de-
grees of freedom as:

A
MSS, =
88 = ©®
SS,
MSS, =
S5, = Yl
A
MSS,, = 8
T ®)

2.6. Spectral diversity — biodiversity relationship at canopy scale

To investigate the spectral diversity — biodiversity relationship at the
canopy scale, we took ground vegetation percent cover measurements of
the selected 35 plots on June 19 and August 1 in 2014. Percent cover was
determined by visual inspection within nine 0.5 m x 0.5 m quadrats,
placed every meter, starting 50 cm from the north-facing edge of the plot
for a total of 9 subsamples per plot. Percent cover was estimated for each
species as the nearest 10% that each species occupied of the total
quadrat area, and then summed. Vegetation coverage did not necessarily
sum to 100% if bare ground was exposed, or if species overlapped (Wang
et al.,, 2016a). To represent the species diversity of each plot, we
calculated Shannon’s index (H) for each plot on a vegetation percent
cover basis as

D
H= — Zpi x logp; 9
=1

where D indicated the total number of species and p; was the percentage
cover of species i in the plot.

We calculated the coefficient of variation (CV) of the spectral
reflectance in space as the spectral diversity index for each plot as

1000 )
} : olp,

Sto (/A(/};) )

CVpin =  — (10$)

where p, denotes the reflectance at wavelength A, and 6(p;) and u(p,)
indicate the standard deviation and mean value of reflectance at
wavelength X across all the measurements in one plot, respectively. To
minimize the soil effects on canopy scale spectral diversity, we multi-
plied the spectral diversity indices by the vegetation percent cover
datasets to calculate soil corrected spectral diversity indices for each plot
on the same two sampling dates (Gholizadeh et al., 2018). CV was then
related to Shannon’s index for the two sampling dates to test the canopy-
scale spectral diversity — biodiversity relationship.

2.7. Time series spectral diversity at leaf and canopy scales

To investigate the seasonal dynamics of pigments and spectral di-
versity at leaf and canopy scales over the growing season, we calculated
the convex hull volume (CHV), which has been used as an index both in
trait-based community ecology (Cornwell et al., 2006) and spectral di-
versity (Dahlin, 2016), for each species using the first three PCs of leaf
pigments, leaf reflectance and canopy reflectance, respectively.

3. Results

The climate in this area typically features warm and wet summers.
However, in the summer 2014, a period of high temperatures and
drought occurred from July to early August (Fig. 1), leading to a decline
in surface soil moisture and a brief period of plant water stress (Wang
et al., 2016a). The drought affected plant phenology and, consequently,
the vegetation reflectance, expressed as decreases in canopy-level NDVI
in the mid-season (Fig. 1). It also provided clues on how a short period of
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Fig. 1. Time series of maximum daily air temperature, precipitation and leaf- and canopy-level NDVI in the summer 2014. Temperature and precipitation records
were collected from Cedar Creek weather station located approximately 0.76 km from the BioDIV experimental plots. The vertical bars of time series NDVI indicate

the standard deviation.

disturbance can affect the spectral diversity — biodiversity relationship.

Partitioning of the total sum of squares (SS) between the among-
species sum of squares (SS,) and the within-species sum of squares
(SS,,) allowed us to understand the among- and within- species contri-
butions to the total variation, presuming that a larger SS, to SS; ratio
indicated a larger difference between species than within species
(Anderson, 2001). For leaf pigments, the maximum MSS, occurred in
late June, while MSS,, and MSS; peaked in mid-July and decreased
during senescence (Fig. 2). The maximum SS, to SS; ratio was found in
mid-July with more than 60% of the total variation explained by the
among species variation, while in early June, less than 35% total vari-
ation was explained by among species variation.

For the leaf reflectance data, the maximum SS,/SS; occurred in mid-
July when about 70% of the total spectral variance was explained by the

among species variance (Fig. 3). The high temperature and drought at
peak season (Fig. 1) apparently affected the total- and within-species
spectral variance and coincided with an increase in the total and
within-species spectral variance and a decrease in among-species vari-
ance at the leaf-scale (Fig. 3). In early June, the among-species variance
in leaf reflectance spectra (SS,/SSy) was slightly higher than the same
ratio calculated using pigment data (Fig. 2) collected at a similar time.

For the monoculture canopy reflectance, among-species variance
explained most of the total variance across the growing season (Fig. 4).
For the canopy reflectance without vector normalization, the maximum
SS4/SS: value occurred in mid-June and was subsequently reduced
during the mid-season drought. The SS,/SS; derived using vector
normalized canopy reflectance was far less sensitive to the mid-season
drought, suggesting that the mid-season drought mainly affected
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Fig. 2. Proportion of among species variance (SS,) expressed relative to the total variance (SS,) and mean sum of squares (MSS) of within-species variance (SS,,),
among species variance (SS,) and total variance (SS,) over the course of the growing season derived using leaf pigment data.
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Fig. 3. Proportion of among species variance (SS,) expressed relative to the total variance (SS;) and mean sum of squares (MSS) over the course of the growing season

derived using leaf reflectance.

canopy albedo related to leaf or canopy structure, i.e. the “brightness” of
the spectra (Fig. S2 and Everitt and Nixon, 1986). The two peaks of SS,/
SS; ratio in the vector normalized canopy reflectance (Fig. 4) coincided
with flowering seasons of Lupinus perennis with purple flowers and
Amorpha canescens having leaves with dense, white pubescence (Fig. S3
in the supplemental section) that can increase visible reflectance values
(Ehleringer and Bjorkman, 1978; Doughty et al., 2011). In this case,
flowering and leaf pubescence appeared to alter the canopy-level spec-
tral diversity.

The soil corrected canopy-level spectral diversity indices (CV)
showed linear relationships with Shannon’s index on both sampling
dates (Fig. 5). The weaker relationships derived from the June 19 data
than from the August 4 data were largely influenced by the three points
that had low species diversity level (Shannon’s Index ~ 0.5) but high
spectral diversity (Figs. 5 and S3 in the supplemental section). These
three big spectral diversity values occurred in two plots dominated by
Lupinus perennis that had large number of purple flowers (Fig. S3 in the
supplemental section) and the Amorpha canescens monoculture that had
highly reflective leaves. In this case, flowering and leaf pubescence
appeared to confound the canopy level spectral diversity and increased
the spectral diversity values to a greater extent than the most species-
diverse plots.

The time series of convex hull volume (CHV) showed the change in
both the intraspecific (mean) and interspecific (standard error) diversity
through the season, revealing different seasonal patterns of spectral
diversity at leaf and canopy scales (Fig. 6). The largest CHV derived
using pigment data peaked in early June, while the maximum CHV
derived using leaf reflectance occurred in September (Fig. 6). Leaf
senescence caused increased spectral diversity, shown as large convex
hull volume (Fig. 6a), and small among-species variance to total vari-
ance ratio (Fig. 3). At the canopy level, vector normalization influenced
the PCA loadings across the wavelength (Fig. S2) and consequently
affected the phenological pattern of canopy CHV (Fig. 6). For CHV ob-
tained using canopy reflectance without vector normalization, CHV
values peaked around early July (Fig. 6b), a time when species-specific
traits that influence optical properties—such as flowers and leaf
pubescence—in addition to leaf pigments affected overall spectral di-
versity. For CHV calculated using vector normalized canopy reflectance,
a large CHV value occurred in the early August, indicating that the
vector normalized reflectance emphasized the variations in spectral

shape due to variation in pigments (Fig. 6a) by removing the brightness
variation caused by short-term water stress (Figs. 6b and S2 in the
supplemental section).

4. Discussion

Our results revealed a strong scale dependence on the seasonal
spectral biodiversity — biodiversity relationship in a prairie ecosystem,
resulting from contrasting phenological influences on spectral diversity
indices at leaf and canopy scales. Similarly, seasonal variation of
reflectance at the leaf scale was different from that of pigments, which
represent common leaf traits that affect both leaf and canopy reflectance
spectra. These results appeared to vary with the data analysis method
used (i.e., with or without vector normalization). The results of this
study indicate that different factors, both biological and statistical, affect
the seasonal patterns of spectral diversity at leaf and canopy scales.

4.1. Phenology of spectral diversity at the leaf scale

Leaf reflectance spectra comprise integrative representations of plant
phenotypes (Schweiger et al., 2018) that vary with time (Ustin and
Gamon, 2010). Besides variations in pigment, temporal changes in leaf
biochemical variation among species, such as variation in water and
structural carbohydrates can affect leaf reflectance (Roberts et al.,
2004). During the early to peak growing season, while pigment con-
centrations vary across species and functional groups (Kothari et al.,
2018), the among-species variation to total-variation ratio for leaf
reflectance was larger than its counterpart for leaf pigments (Figs. 2 and
3), indicating that leaf reflectance can reveal larger among-species
variation than leaf pigment concentrations. This agrees with observa-
tions that leaf reflectance spectra are aggregated indicators of leaf
biochemical and biophysical properties, and often contain more infor-
mation than a limited set of traditional plant traits (pigments in this
case), and generally outperform trait-based models in differentiating
plant species (Cavender-Bares et al., 2016; Schweiger et al., 2018),
detecting phylogenetic and functional diversity (Schweiger et al., 2018),
and tracking leaf age (Chavana-Bryant et al., 2017).

Another study that used the same pigment data (Kothari et al., 2018)
reported declining pigment concentrations in the early-to-midseason,
possibly due to the ontogenetic changes in the developing leaves
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Fig. 4. Proportion of among species variance (SS,) expressed relative to the total variance (SSp) and mean sum of squares (MSS) over the course of the growing season
derived using canopy reflectance (a) and vector normalized (b) canopy reflectance. The flowering season of each monoculture species is labeled separately in panel

(b) and the approximate flower color is indicated by the colored circles.

(Miyazawa et al., 2003; Fernandes et al., 2020). Unlike the decline in all
pigments for most phylogenetic linkages (Kothari et al., 2018), leaf
reflectance data exhibited larger temporal variations in the among-
species variation to total-variation ratio than pigment data (Figs. 2, 3
and 6). This might be because leaf pigments (particularly chlorophyll
and photoprotective carotenoid pigments), while varying with ontogeny
(Gamon and Surfus, 1999; Fernandes et al., 2020), season (e.g., Cav-
ender-Bares et al., 2000) and stress (e.g., Verhoeven et al., 1999; Savage
et al., 2009), are relatively conserved traits (Ustin et al., 2009; Kothari
et al., 2018), constrained by evolution within a narrow range of varia-
tion (Meireles et al., 2020).

4.2. Phenology of spectral diversity at the canopy scale

At the canopy scale, contributions of plant materials, including
leaves, branches and flowers, as well as shadow, soil, and other “back-
ground” (non-vegetative) materials, to the overall canopy optical
properties vary by season and by species, and can affect the spectral

diversity — biodiversity relationship in complex ways (Figs. 5 and S3 in
the supplemental materials). In this study, the canopy scale spectral
variation among the monocultures was dominated by among-species
variance (Fig. 4) indicating that canopy information appears to
improve species discrimination more than leaf spectra alone, in agree-
ment with previous studies at this site (Wang et al., 2018a). In this case,
monocultures used in this study served as a unique example of analyzing
the spectral variation at canopy scale, which could be helpful to un-
derstand the mechanics behind the diversity estimation using canopy
reflectance. However, the partitioning derived from the monocultures
may not fully represent the situation in high diversity plots, where
frequent species overlap occurs and the canopy reflectance measure-
ments are often mixed spectra of plant materials of different species and
competition may also lead to different intraspecific variation.

Unlike the large between-species variation achieved in the mono-
culture plots, no relationship between spectral diversity (Coefficient of
Variation) and species diversity (Shannon’s index) was found when
reflectance from all the plots was used but a clear relationship emerged
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expressed as convex hull volume of each species calculated using the first three
PCs, respectively. The vertical bars indicate the standard error.

upon soil correction (Fig. 5). This might be due to two reasons: first,
species discrimination is harder for high diversity areas than for low
diversity areas (Lopatin et al., 2017) and second, the spatial scale
dependence of the spectral diversity — biodiversity relationship can
cause weak relationships at spatial scales (pixel sizes) coarser than

typical crown sizes. Previous prairie spectral diversity studies at the
canopy scale showed that the ability to estimate taxonomic diversity (e.
g., species richness and evenness) as a function of sampling scale (pixel
size) declined rapidly above about 1-10 cm —corresponding to the size
of individual plants at this site (Wang et al., 2018a). The pixel size of
canopy reflectance collected in this study was approximately 0.5 m,
which is the sampling scale where spectral diversity — biodiversity
relationship became weak. Together with previous work, these findings
emphasize the need for high-resolution images in prairie diversity esti-
mation at fine scales (i.e., alpha diversity) (Lopatin et al., 2017; Wang
et al., 2018a).

4.3. Vector normalization effects on canopy spectral diversity

Vector normalization on canopy reflectance was applied to keep the
overall spectral shape while removing brightness differences caused by
illumination conditions (Feilhauer, 2010). By only focusing on the
variations in spectral shape, the vector normalization method can better
detect subtle absorption features associated with certain plant traits and
has been used to improve the performance of plant traits estimation
using canopy reflectance data via PLSR (Feilhauer, 2010, Serbin et al.,
2014). On the other hand, vector normalization reduces some of the
variation due to structure at both the canopy and leaf scales (i.e.,
anatomy and morphology). Thus, vector normalization can weaken the
ability to distinguish species or detect conditions that effect structure.
For example, drought stressed plants have higher reflectance at visible
wavelengths than non-stressed plants at both leaf and canopy levels, due
to lower pigment and water contents but more exposed soil background
(Everitt and Nixon, 1986). As a result, applying the vector normalization
can reduce the power to distinguish optical types by reducing the power
to detect the structural contribution to contrasting canopy-scale optical
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properties (Fig. S2 in the supplemental section and Ustin and Gamon,
2010).

4.4. Idiosyncratic effects on canopy spectral diversity

At the canopy scale, the optical properties of flowers or leaves of
particular species can have substantial effects on canopy reflectance
(Figs. 5, 6 & S3 in the supplemental section), complicating interpreta-
tion of the spectral diversity at particular seasons. Botanists rely largely
on flowers to distinguish plant species and flowering time to investigate
plant phenological responses to climate change (Munson and Long,
2017), but reproductive traits have generally not been considered in
remote sensing, except for a few studies (Carvalho et al., 2013; Land-
mann et al., 2015; Miillerova et al., 2017a, 2017b; Shen et al., 2010).
Flower display can increase the intraspecific spectral variability at
canopy scale (Clark et al., 2005), thus potentially increasing the within-
species variation and confounding the spectral diversity — biodiversity
relationship (Figs. 5 & 6) and weakening species discrimination using
spectral data (Roberts et al., 2004). On the other hand, flowers and leaf
pubescence enhances among-species variance at the canopy scale
(Figs. 4 and S2 in the supplemental section) and can be used to distin-
guish particular species at certain season. The few studies that do
examine the spectral effects of flowers have revealed that including
flowering information can improve the accuracy of species mapping
(Carvalho et al., 2013; Landmann et al., 2015; Miillerova et al., 2017a,
2017b). Therefore, flowering information, if properly used, can provide
a way to increase the accuracy of biodiversity estimation. The surrogacy
hypothesis (Magurran, 2004; Wang and Gamon, 2019) predicts that
diversity information provided at one taxonomic or sampling level can
provide information at another level. Similarly, spectral effects of
flowers can perhaps provide information on other trophic levels, e.g.,
pollinators, so can conceivably provide a link to larger community di-
versity levels beyond that of vegetation alone.

5. Conclusions and recommendations

The challenges of obtaining continuous or repeated remote sensing
and ground biodiversity measurements often constrains our ability to
investigate the spectral diversity — biodiversity relationship through the
growing season. By showing contrasting seasonal patterns at different
spatial scales for experimental prairie plots, this study demonstrated an
interaction of temporal and spatial scale dependence of the spectral
diversity — biodiversity relationship for prairie vegetation. Our results
revealed clear effects of phenology on the spectral diversity for prairie
plant species, and these effects varied between leaf and canopy levels, as
well as with the selected spectral diversity indices (Wang et al., 2018a,
2018b) and analysis method, e.g., whether or not vector normalization
is applied to canopy reflectance.

To fully implement the power of remote sensing in biodiversity
studies, it is critical to include phenological information in the future
remote sensing of biodiversity work, which can guide our biodiversity
sampling campaign in terms of identifying the best season for overall
distinguishing species or monitoring particular species and under-
standing the disturbance induced successional changes in species di-
versity. For example, the post-fire diversity of Mediterranean
ecosystems is influenced by fire severity, life form, resource availability
and landscape features (Keeley et al., 2005; Capitanio and Carcaillet,
2008) and is further confounded by the impacts of climate change
(Slingsby et al., 2017). In this study, we focused data from one single
field season due to limited resources but acknowledge that a careful
experimental design with data from multiple years could provide a
better understanding of the spectral diversity — biodiversity relationship
in the future. Emerging (e.g. EnMAP) and planned (e.g. Surface Biology
and Geology, SBG) satellites with imaging spectrometers (Schimel et al.,
2020) may help address phenological effects on biodiversity detection,
but these sensors are designed to sample at scales (30-45 m pixels) too
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coarse for detecting alpha diversity, at least for most short-statured
grassland communities (Barnett et al., 2019; Gamon et al., 2020; Schi-
mel et al., 2020). The relatively lower cost of flying drones compared to
airborne campaigns may soon make it more affordable to get a time
series dataset to investigate the phenology in remote sensing of biodi-
versity (Holman et al., 2019), particularly at spatial scales between
those of field and satellite measurements. However, most current drone
technology lacks the spectral detail and accurate georeferencing capa-
bilities needed for detecting biodiversity at fine spatial scales over time
(Gamon et al., 2020). Assuming phenological sampling methods can be
improved (e.g. via drones), further attention should also be given to
different analytical methods often applied to different scales, as these
may led to somewhat different results.

Author contribution

RW: Conceptualization, Methodology, Software, Data curation,
Formal Analysis, Writing - original draft. JAG: Conceptualization,
Methodology, Resources, Funding acquisition, Writing - review & edit-
ing. JCB: Conceptualization, Methodology, Resources, Funding acqui-
sition, Writing - review & editing.

Data availability

These reflectance datasets are available at the EcoSIS Spectral Li-
brary (ecosis.org). The two datasets are leaf reflectance (doi: 10.21232
/i6N36jZ7) and canopy reflectance (doi:10.21232,/C2Z070).

The ground biodiversity data is available at the University of Min-
nesota Cedar Creek research project data catalog (https://www.ced
arcreek.umn.edu/research/data).

Declaration of Competing Interest
The authors have no conflict of interest to declare.
Acknowledgements

The authors acknowledge the help from the staff at the Cedar Creek
Ecosystem Science Reserve, particularly Troy Mielke and Kally Worm,
and research assistant Jonathan Anderson. We appreciate Keren Bitan,
Austin Pieper and Cathleen Lapadat for extracting pigment contents and
analyzing them using HPLC. This study was supported by a NASA and
NSF grant (DEB-1342872), NSF BII Implementation grant (DBI-
2021898), and NSF-LTER grants (DEB-1234162 and NSF DEB-1831944)
to J. Cavender-Bares, and by iCORE/AITF (G224150012 & 200700172),
NSERC (RGPIN-2015-05129), and CFI (26793) grants to J. Gamon. The
authors acknowledge constructive comments from two anonymous re-
viewers that greatly improved the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.rse.2022.113169.

References

Anderson, Marti, 2001. A new method for non parametric multivariate analysis of
variance. Austral Ecol. 26, 32-46.

Barnett, D.T., Adler, P.B., Chemel, B.R., Duffy, P.A., Enquist, B.J., Grace, J.B.,
Harrison, S., Peet, R.K., Schimel, D.S., Stohlgren, T.J., Vellend, M., 2019. The plant
diversity sampling design for the National Ecological Observatory Network.
Ecosphere 10 (2), e02603. https://doi.org/10.1002/ecs2.2603.

Bonaldo, A.B., Joana, E., Esposito, M.C., Ferreira, L.V., Hernandez, M.I.M., Lo-man-
hung, N.F., Maria, N.F., 2008. The cost-effectiveness of biodiversity surveys in
tropical forests. Ecol. Lett. 11, 139-150. https://doi.org/10.1111/j.1461-
0248.2007.01133.x.

Capitanio, R., Carcaillet, C., 2008. Post-fire Mediterranean vegetation dynamics and
diversity: a discussion of succession models. For. Ecol. Manag. 255 (3-4), 431-439.
https://doi.org/10.1016/j.foreco.2007.09.010.


http://ecosis.org
https://doi.org/10.21232/i6N36jZ7
https://doi.org/10.21232/i6N36jZ7
https://doi.org/10.21232/C2Z070
https://www.cedarcreek.umn.edu/research/data
https://www.cedarcreek.umn.edu/research/data
https://doi.org/10.1016/j.rse.2022.113169
https://doi.org/10.1016/j.rse.2022.113169
http://refhub.elsevier.com/S0034-4257(22)00283-8/optsTr0KMlUfq
http://refhub.elsevier.com/S0034-4257(22)00283-8/optsTr0KMlUfq
https://doi.org/10.1002/ecs2.2603
https://doi.org/10.1111/j.1461-0248.2007.01133.x
https://doi.org/10.1111/j.1461-0248.2007.01133.x
https://doi.org/10.1016/j.foreco.2007.09.010

R. Wang et al.

Carvalho, S., Schlerf, M., van der Puttena, W.H., Skidmore, A.K., 2013. Hyperspectral
reflectance of leaves and flowers of an outbreak species discriminates season and
successional stage of vegetation. Int. J. Appl. Earth Obs. Geoinf. 24 (1), 32-41.
https://doi.org/10.1016/j.jag.2013.01.005.

Cavender-Bares, J., Potts, M., Zacharias, E., Bazzaz, F.A., 2000. Consequences of CO, and
light interactions for leaf phenology, growth, and senescence in Quercus rubra. Glob.
Chang. Biol. 6 (8), 877-887.

Cavender-Bares, J., Meireles, J.E., Couture, J.J., Kaproth, M.A., Kingdon, C.C., Singh, A.,
Townsend, P.A., 2016. Associations of leaf spectra with genetic and phylogenetic
variation in oaks: prospects for remote detection of biodiversity. Remote Sens. 8 (3)
https://doi.org/10.3390/rs8030221.

Cavender-Bares, J., Gamon, J.A., Hobbie, S.E., Madritch, M.D., Meireles, J.E.,
Schweiger, A.K., Townsend, P.A., 2017. Harnessing plant spectra to integrate the
biodiversity sciences across biological and spatial scales. Am. J. Bot. 104 (7),
966-969. https://doi.org/10.3732/ajb.1700061.

Chavana-Bryant, C., Malhi, Y., Wu, J., Asner, G.P., Anastasiou, A., Enquist, B.J.,
Gerard, F.F., 2017. Leaf aging of Amazonian canopy trees as revealed by spectral and
physiochemical measurements. New Phytol. 214 (3), 1049-1063. https://doi.org/
10.1111/nph.13853.

Clark, M.L., Roberts, D.A., Clark, D.B., 2005. Hyperspectral discrimination of tropical
rain forest tree species at leaf to crown scales. Remote Sens. Environ. 96, 375-398.
https://doi.org/10.1016/j.rse.2005.03.009.

Cornwell, W.K., Schwilk, D.W., Ackerly, D.D., 2006. A trait-based test for habitat
filtering: convex hull volume. Ecology 87 (6), 1465-1471.

Dahlin, K.M., 2016. Spectral diversity area relationships for assessing biodiversity in a
wildland-agriculture matrix. Ecol. Appl. 26 (8), 2756-2766.

Doughty, C.E., Field, C.B., McMillan, A.M.S., 2011. Can crop albedo be increased through
the modification of leaf trichomes, and could this cool regional climate? Clim.
Chang. 104 (2), 379-387. https://doi.org/10.1007/510584-010-9936-0.

Ehleringer, J.R., Bjorkman, O., 1978. A comparison of photosynthetic characteristics of
Encelia species possessing glabrous and pubescent leaves. Plant Physiol. 62 (2),
185-190. https://doi.org/10.1104/pp.62.2.185.

Everitt, J.H., Nixon, P.R., 1986. Canopy reflectance of two drought-stressed shrubs.
Photogramm. Eng. Remote. Sens. 52 (8), 1189-1192.

Feilhauer, Hannes, et al., 2010. Brightness-normalized Partial Least Squares Regression
for hyperspectral data. J. Quant. Spectrosc. Radiat. Transf. 111, 1947-1957.

Fernandes, A.M., Fortini, E.A., de Miiller, L.A.C., Batista, D.S., Vieira, L.M., Silva, P.O., do
Amaral, C.H., Poethig, R.S., Otoni, W.C., 2020. Leaf development stages and
ontogenetic changes in passionfruit (Passiflora edulis Sims.) are detected by
narrowband spectral signal. J. Photochem. Photobiol. B Biol. 209 (July 2019),
111931. https://doi.org/10.1016/j.jphotobiol.2020.111931.

Gamon, J.A., 2008. Tropical sensing — Opportunities and challenges. In: Kalacska, G.,
Sanchez-Azofeifa, A. (Eds.), Hyperspectral Remote Sensing of Tropical and
Subtropical Forests. CRC Press Taylor&Francis Group, Boca Raton, FL, USA,
pp. 297-304.

Gamon, J.A., Surfus, S., 1999. Assessing leaf pigment content and activity with a
reflectometer. New Phytol. 143, 105-117.

Gamon, J.A., Somers, B., Malenovsky, Z., Middleton, E.M., Rascher, U., Schaepman, M.
E., 2019. Assessing vegetation function with imaging spectroscopy. Surv. Geophys.
40, 489-513.

Gamon, J.A., Wang, R., Gholizadeh, H., Zutta, B., Townsend, P., Cavender-Bares, J.,
2020. Consideration of scale in remote sensing of biodiversity. In: Cavender-
Bares, J., Gamon, J.A., Townsend, P.A. (Eds.), Remote Sensing of Plant Biodiversity.
Springer, New York.

Gholizadeh, H., Gamon, J.A., Zygielbaum, A.I.,, Wang, R., Schweiger, A.K., Cavender-
Bares, J., 2018. Remote sensing of biodiversity: soil correction and data dimension
reduction methods improve assessment of a-diversity (species richness) in prairie
ecosystems. Remote Sens. Environ. 206, 240-253. https://doi.org/10.1016/j.
rse.2017.12.014.

Gholizadeh, H., Gamon, J.A., Helzer, C.J., Cavender-Bares, J., 2020. Multi-temporal
assessment of grassland a- and f-diversity using hyperspectral imaging. Ecol. Appl.
https://doi.org/10.1002/eap.2145.

Holman, F.H., Riche, A.B., Castle, M., Wooster, M.J., Hawkesford, M.J., 2019.
Radiometric calibration of ‘commercial off the shelf’ cameras for UAV-based high-
resolution temporal crop phenotyping of reflectance and NDVI. Remote Sens. 11
(14), 1657. https://doi.org/10.3390/rs11141657.

Keeley, J.E., Fotheringham, C.J., Baer-keeley, M., 2005. Factors affecting plant diversity
during post-fire recovery and succession of mediterranear-climate shrublands in
California, USA. Divers. Distrib. 11 (6), 525-537. https://doi.org/10.1111/j.113.

Kothari, S., Cavender-Bares, J., Bitan, K., Verhoeven, A.S., Wang, R., Montgomery, R.A.,
Gamon, J.A., 2018. Community-wide consequences of variation in photoprotective
physiology among prairie plants. Photosynthetica 56 (1), 1-13. https://doi.org/
10.1007/511099-018-0777-9.

Landmann, T., Piiroinen, R., Makori, D.M., Abdel-Rahman, E.M., Makau, S., Pellikka, P.,
Raina, S.K., 2015. Application of hyperspectral remote sensing for flower mapping in
African savannas. Remote Sens. Environ. 166, 50-60. https://doi.org/10.1016/j.
r5e.2015.06.006.

Logan, B.A., Grace, S.C., Adams, W.W., Demmig-Adams, B., 1998. Seasonal differences in
xanthophyll cycle characteristics and antioxidants in Mahonia repens growing in
different light environments. Oecologia 116 (1-2), 9-17.

Lopatin, J., Fassnacht, F.E., Kattenborn, T., Schmidtlein, S., 2017. Mapping plant species
in mixed grassland communities using close range imaging spectroscopy. Remote
Sens. Environ. 201, 12-23.

Magurran, A.E., 2004. Measuring Biological Diversity. Blackwell Publishing, Malden,
Massachusetts.

Remote Sensing of Environment 280 (2022) 113169

Magurran, A.E., 2007. Species abundance distributions over time. Ecol. Lett. 10 (5),
347-354. https://doi.org/10.1111/j.1461-0248.2007.01024.x.

Magurran, A.E., Baillie, S.R., Buckland, S.T., Dick, J.M., Elston, D.A., Scott, E.M., Watt, A.
D., 2010. Long-term datasets in biodiversity research and monitoring: assessing
change in ecological communities through time. Trends Ecol. Evol. 25 (10),
574-582. https://doi.org/10.1016/j.tree.2010.06.016.

Meireles, J.E., Cavender-Bares, J., Townsend, P.A., Ustin, S., Gamon, J.A., Schweiger, A.
K., Schaepman, M.E., Asner, G.P., Martin, R.E., Singh, A., Schrodt, F., Chlus, A.,
O’Meara, B., 2020. Leaf reflectance spectra capture the evolutionary history of seed
plants. New Phytol. 228 (2), 485-493.

Miyazawa, S.I., Makino, A., Terashima, I., 2003. Changes in mesophyll anatomy and
sink-source relationships during leaf development in Quercus glauca, an evergreen
tree showing delayed leaf greening. Plant Cell Environ. 26 (5), 745-755. https://doi.
org/10.1046/j.1365-3040.2003.01011.x.

Miillerova, J., Bartalos, T., Briina, J., Dvorék, P., Vitkova, M., 2017a. Unmanned aircraft
in nature conservation: an example from plant invasions. Int. J. Remote Sens. 38
(8-10), 2177-2198. https://doi.org/10.1080/01431161.2016.1275059.

Miillerova, J., Brina, J., Bartalos, T., Dvorak, P., Vitkova, M., Pysek, P., 2017b. Timing is
important: unmanned aircraft vs. satellite imagery in plant invasion monitoring.
Front. Plant Sci. 8 (May), 887. https://doi.org/10.3389/fpls.2017.00887.

Munson, S.M., Long, A.L., 2017. Climate drives shifts in grass reproductive phenology
across the western USA. New Phytol. 213, 1945-1955. https://doi.org/10.1111/
nph.14327.

Preston, F.W., 1960. Time and space and the variation of species. Ecology 41 (4),
612-627.

Price, John, 1994. How unique are spectral signatures? Remote Sens. Environ. 49,
181-186.

Primack, R.B., Gallinat, A.S., 2017. Insights into grass phenology from herbarium
specimens. New Phytol. 213, 1567-1568. https://doi.org/10.1111/nph.14439.
Ramirez-Valiente, J.A., Koehler, K., Cavender-Bares, J., 2015. Climatic origins predict

variation in photoprotective leaf pigments in response to drought and low
temperatures in live oaks (Quercus series Virentes). Tree Physiol. 35 (5), 521-534.

Reich, P.B., Tilman, D., Isbell, F., Mueller, K., Hobbie, S.E., Flynn, D.F.B., Eisenhauer, N.,
2012. Impacts of biodiversity loss escalate through time as redundancy fades.
Science 336 (6081), 589-592. https://doi.org/10.1126/science.1217909.

Roberts, D.A., Ustin, S.L., Ogunjemiyo, S., Greenberg, J., Dobrowski, S.Z., Chen, J.,
Hinckley, T.M., 2004. Spectral and structural measures of Northwest forest
vegetation at leaf to landscape scales. Ecosystems 7 (5), 545-562. https://doi.org/
10.1007/5s10021-004-0144-5.

Rocchini, D., Hernandez-Stefanoni, J.L., He, K.S., 2015. Advancing species diversity
estimate by remotely sensed proxies: a conceptual review. Ecol. Informa. 25, 22-28.
https://doi.org/10.1016/j.ecoinf.2014.10.006.

Savage, J., Cavender-Bares, J., Verhoeven, A., 2009. Habitat generalists and wetland
specialists in the genus Salix vary in their photoprotective responses to drought.
Funct. Plant Biol. 36, 300-3009.

Schimel, D., Townsend, P.A., Pavlick, R., 2020. Prospects and pitfalls for spectroscopic
remote sensing of biodiversity at the global scale. In: Cavender-Bares, J., Gamon, J.
A., Townsend, P.A. (Eds.), Remote Sensing of Plant Biodiversity, pp. 503-518.
https://doi.org/10.1007/978-3-030-33157-3.

Schweiger, A.K., Cavender-Bares, J., Townsend, P.A., Hobbie, S.E., Madritch, M.D.,
Wang, R., Gamon, J.A., 2018. Plant spectral diversity integrates functional and
phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol.
Evol. 2 (6), 976-982. https://doi.org/10.1038/s41559-018-0551-1.

Schweiger, A.K., Cavender-bares, J., Kothari, S., Townsend, P.A., Madritch, M.D.,
Grossman, J.J., Gholizadeh, H., Wang, R., Gamon, J.A., 2021. Coupling spectral and
resource-use complementarity in experimental grassland and forest communities.
Proc. R. Soc. B Biol. Sci. 288, 20211290. https://doi.org/10.1098/rspb.2021.1290.

Serbin, S.P., Kingdon, C.C., Townsend, P.A., 2014. Spectroscopic determination of leaf
morphological and biochemical traits for northern temperate and boreal tree species.
Ecol. Appl. 24, 1651-1669. https://doi.org/10.1890/13-2110.1.

Shen, M., Chen, J., Zhu, X., Tang, Y., Chen, X., 2010. Do flowers affect biomass estimate
accuracy from NDVI and EVI? Int. J. Remote Sens. 31 (8), 2139-2149. https://doi.
org/10.1080/01431160903578812.

Slingsby, J.A., Merow, C., Aiello-Lammens, M., Allsopp, N., Hall, S., Mollmann, H.K.,
Turner, R., Wilson, A.M., Silander, J.A., 2017. Intensifying postfire weather and
biological invasion drive species loss in a Mediterranean-type biodiversity hotspot.
Proc. Natl. Acad. Sci. U. S. A. 114 (18), 4697-4702. https://doi.org/10.1073/
pnas.1619014114.

Stasinski, L., White, D.M., Nelson, P.R., Ree, R.H., Meireles, J.E., 2021. Reading light:
leaf spectra capture fine-scale diversity of closely related, hybridizing arctic shrubs.
New Phytol. 232, 2283-2294.

Tilman, D., 1997. The influence of functional diversity and composition on ecosystem
processes. Science 277, 1300-1302. https://doi.org/10.1126/
science.277.5330.1300.

Ustin, S.L., Gamon, J.A., 2010. Remote sensing of plant functional types. New Phytol.
186, 795-816.

Ustin, S.L., Gitelson, A., Jacquemoud, S., Schaepman, M., Asner, G.P., Gamon, J.A.,
Zarco-Tejada, P.J., 2009. Retrieval of foliar information about plant pigment systems
from high resolution spectroscopy. Remote Sens. Environ. 113, S67-S77. https://doi.
org/10.1016/j.rse.2008.10.019.

Verhoeven, A.S., Adams, W.W., Demmig-Adams, B., Croce, R., Bassi, R., 1999.
Xanthophyll cycle pigment localization and dynamics during exposure to low
temperatures and light stress in Vinca major. Plant Physiol. 120 (3), 727-737.

Wang, R., Gamon, J.A., 2019. Remote sensing of terrestrial plant biodiversity. Remote
Sens. Environ. 231, 111218 https://doi.org/10.1016/j.rse.2019.111218.


https://doi.org/10.1016/j.jag.2013.01.005
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0065
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0065
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0065
https://doi.org/10.3390/rs8030221
https://doi.org/10.3732/ajb.1700061
https://doi.org/10.1111/nph.13853
https://doi.org/10.1111/nph.13853
https://doi.org/10.1016/j.rse.2005.03.009
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0100
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0100
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0105
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0105
https://doi.org/10.1007/s10584-010-9936-0
https://doi.org/10.1104/pp.62.2.185
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0125
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0125
http://refhub.elsevier.com/S0034-4257(22)00283-8/optVxznPW3dlp
http://refhub.elsevier.com/S0034-4257(22)00283-8/optVxznPW3dlp
https://doi.org/10.1016/j.jphotobiol.2020.111931
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0140
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0140
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0140
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0140
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0145
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0145
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0160
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0160
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0160
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0165
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0165
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0165
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0165
https://doi.org/10.1016/j.rse.2017.12.014
https://doi.org/10.1016/j.rse.2017.12.014
https://doi.org/10.1002/eap.2145
https://doi.org/10.3390/rs11141657
https://doi.org/10.1111/j.I13
https://doi.org/10.1007/s11099-018-0777-9
https://doi.org/10.1007/s11099-018-0777-9
https://doi.org/10.1016/j.rse.2015.06.006
https://doi.org/10.1016/j.rse.2015.06.006
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0225
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0225
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0225
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0230
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0230
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0230
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0235
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0235
https://doi.org/10.1111/j.1461-0248.2007.01024.x
https://doi.org/10.1016/j.tree.2010.06.016
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0255
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0255
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0255
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0255
https://doi.org/10.1046/j.1365-3040.2003.01011.x
https://doi.org/10.1046/j.1365-3040.2003.01011.x
https://doi.org/10.1080/01431161.2016.1275059
https://doi.org/10.3389/fpls.2017.00887
https://doi.org/10.1111/nph.14327
https://doi.org/10.1111/nph.14327
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0290
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0290
http://refhub.elsevier.com/S0034-4257(22)00283-8/optp3PsJ6lA7n
http://refhub.elsevier.com/S0034-4257(22)00283-8/optp3PsJ6lA7n
https://doi.org/10.1111/nph.14439
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0300
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0300
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0300
https://doi.org/10.1126/science.1217909
https://doi.org/10.1007/s10021-004-0144-5
https://doi.org/10.1007/s10021-004-0144-5
https://doi.org/10.1016/j.ecoinf.2014.10.006
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0330
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0330
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0330
https://doi.org/10.1007/978-3-030-33157-3
https://doi.org/10.1038/s41559-018-0551-1
https://doi.org/10.1098/rspb.2021.1290
https://doi.org/10.1890/13-2110.1
https://doi.org/10.1080/01431160903578812
https://doi.org/10.1080/01431160903578812
https://doi.org/10.1073/pnas.1619014114
https://doi.org/10.1073/pnas.1619014114
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0370
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0370
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0370
https://doi.org/10.1126/science.277.5330.1300
https://doi.org/10.1126/science.277.5330.1300
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0390
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0390
https://doi.org/10.1016/j.rse.2008.10.019
https://doi.org/10.1016/j.rse.2008.10.019
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0400
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0400
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0400
https://doi.org/10.1016/j.rse.2019.111218

R. Wang et al.

Wang, R., Gamon, J.A., Montgomery, R.A., Townsend, P.A., Zygielbaum, A.IL, Bitan, K.,
Cavender-Bares, J., 2016a. Seasonal variation in the NDVI-species richness
relationship in a prairie grassland experiment (Cedar Creek). Remote Sens. 8 (2),
128. https://doi.org/10.3390/rs8020128.

Wang, R., Gamon, J.A., Schweiger, A.K., Cavender-Bares, J., Townsend, P.A.,
Zygielbaum, A.IL, Kothari, S., 2018a. Influence of species richness, evenness, and
composition on optical diversity: A simulation study. Remote Sens. Environ. 211,
218-228. https://doi.org/10.1016/j.rse.2018.04.010.

Wang, R., Gamon, J.A., Cavender-Bares, J., Townsend, P.A., Zygielbaum, A.L., 2018b.
The spatial sensitivity of the spectral diversity-biodiversity relationship: an

10

Remote Sensing of Environment 280 (2022) 113169

experimental test in a prairie grassland. Ecol. Appl. 28 (2), 541-556. https://doi.
org/10.1002/eap.1669.

Wang, Z., Townsend, P.A., Schweiger, A.K., Couture, J.J., Singh, A., Hobbie, S.E.,
Cavender-Bares, J., 2019. Mapping foliar functional traits and their uncertainties
across three years in a grassland experiment. Remote Sens. Environ. 221, 405-416.

Wang, Z., Chlus, A., Geygan, R., Ye, Z., Zheng, T., Singh, A., Townsend, P.A., 2020. Foliar
functional traits from imaging spectroscopy across biomes in eastern North America.
New Phytol. 228, 494-511. https://doi.org/10.1111/nph.16711.

Zutta, B., 2003. Assessing Vegetation Functional Type and Biodiversity in Southern
California Using Spectral Reflectance. MS thesis. California State University, Los
Angeles, CA, USA.


https://doi.org/10.3390/rs8020128
https://doi.org/10.1016/j.rse.2018.04.010
https://doi.org/10.1002/eap.1669
https://doi.org/10.1002/eap.1669
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0435
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0435
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0435
https://doi.org/10.1111/nph.16711
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0445
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0445
http://refhub.elsevier.com/S0034-4257(22)00283-8/rf0445

	Seasonal patterns of spectral diversity at leaf and canopy scales in the Cedar Creek prairie biodiversity experiment
	1 Introduction
	2 Materials and methods
	2.1 Study site description
	2.2 Leaf reflectance
	2.3 Leaf pigments
	2.4 Canopy reflectance
	2.5 Partitioning of variance at leaf and canopy scales
	2.6 Spectral diversity – biodiversity relationship at canopy scale
	2.7 Time series spectral diversity at leaf and canopy scales

	3 Results
	4 Discussion
	4.1 Phenology of spectral diversity at the leaf scale
	4.2 Phenology of spectral diversity at the canopy scale
	4.3 Vector normalization effects on canopy spectral diversity
	4.4 Idiosyncratic effects on canopy spectral diversity

	5 Conclusions and recommendations
	Author contribution
	Data availability
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Supplementary data
	References


