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A B S T R A C T   

The relationship between biodiversity and spectral diversity is highly scale-dependent, and temporal variation in 
leaf morphological, biochemical traits and canopy structure can alter this relationship. However, the temporal 
dependence of the spectral diversity – biodiversity relationship is poorly understood, in part due to the diffi
culties of obtaining consistent measurements across space and time. Using leaf pigments and leaf and canopy 
reflectance throughout a growing season in the Cedar Creek prairie biodiversity experiment, we explored 
phenological effects on the scale dependence of the spectral biodiversity – biodiversity relationship. Leaf 
reflectance spectra displayed larger among-species variation than leaf pigments, indicating that leaf reflectance 
contained more information for distinguishing species than some leaf trait measurements. At the canopy scale, 
spectral variation derived using reflectance was mainly driven by among-species variation. The canopy scale 
spectral diversity was also influenced by changing vegetation percent cover, key phenological events (e.g., 
flowering), and disturbance (drought). Our results revealed that contrasting phenological patterns of spectral 
diversity metrics emerged at leaf and canopy scales. Because a misunderstanding of these contrasting temporal 
effects across spatial scales can lead to possible misinterpretations of the spectral diversity – biodiversity rela
tionship or of their underlying causes, more research effort is needed to understand these cross-scale temporal 
effects.   

1. Introduction 

The temporal dimension of species distribution has long been 
considered in ecology and evolution (Preston, 1960) but has been far 
less explored than the spatial distribution of species (Magurran, 2007). 
However, including the temporal dimension in biodiversity sampling is 
critical, since spatial and temporal patterns of biodiversity influence 
each other. Both the timing and duration of sampling can influence the 
perception of species distribution, making the temporal dimension an 
essential consideration in species abundance distribution analyses 
(Magurran, 2007). Given that collecting biodiversity data is time- 
consuming and expensive (Bonaldo et al., 2008), biodiversity datasets 
are frequently incomplete and collected only over short periods 
(Magurran et al., 2010). The phenology of grassland has been largely 
neglected compared to that of forbs and woody plants due to the chal
lenges of identifying species and reproductive stages in the field 

(Primack and Gallinat, 2017). 
Remote sensing offers the possibility to enhance biodiversity sam

pling through time across large spatial extents and has been used to 
assess multiple dimensions of biodiversity including phylogenetic, 
taxonomic, and functional diversity (e.g., Schweiger et al., 2018; Wang 
et al., 2018a; Wang et al., 2019; Wang and Gamon, 2019; Wang et al., 
2020; Stasinski et al., 2021). One advantage of using remote sensing to 
monitor diversity is its potential to provide consistent, repeated obser
vations that might reveal critical phenological information about di
versity. However, when applied to studies of biodiversity, remote 
sensing also poses certain challenges, one of which has been the shortage 
of remotely sensed datasets at the temporal, spatial or spectral scales 
needed to understand changing patterns of biodiversity (Gamon et al., 
2019). 

The spectral diversity hypothesis (a.k.a. optical diversity) suggests 
that spectral variation detected by remote sensing can be related to 
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species, functional and phylogenetic diversity, because the phylogenetic 
differences and resource limitations affect plant growth and leaf traits, 
canopy structure and phenology, all of which can affect vegetation op
tical properties (Gamon, 2008; Ustin and Gamon, 2010; Gamon et al., 
2019; Wang and Gamon, 2019). Physiological and structural traits 
contribute to optical properties, yet both vary over time, and this 
phenological influence on spectral diversity as an analog for biodiversity 
has received limited attention (Gamon et al., 2020). The lack of un
derstanding of the phenological component in the spectral diversity – 
biodiversity relationship severely limits our ability to detect diversity 
using remote sensing in part due to the limited perception of biodiversity 
patterns over the short term. Without attention to the temporal 
dimension, we are potentially missing much of the information that 
could be used to assess biodiversity with remote sensing. 

Understanding the temporal dynamics of the spectral diversity – 
biodiversity relationship is expected to enhance diversity estimation 
using remote sensing (Ustin and Gamon, 2010; Cavender-Bares et al., 
2017). Despite the recognized importance of the temporal component in 
remote sensing of biodiversity, only limited work has considered 
phenology in studies involving remote sensing of biodiversity (Rocchini 
et al., 2015; Wang and Gamon, 2019; Gamon et al., 2020; Gholizadeh 
et al., 2020). Previous studies in a Southern California Mediterranean 
ecosystem revealed that the ability of optical measurements to distin
guish plant functional types varied with season (Zutta, 2003). In a 
prairie study, Gholizadeh et al. (2020) noted strong seasonal differences 
in the ability for airborne imaging spectrometry to detect biodiversity, 
and these differences were further modified by episodic disturbance (e. 
g. fire). Additionally, because species differ in their phenological re
sponses (such as different seasonal patterns of bud break or flowering), it 
is possible that temporal trajectories of spectral data can further inform 
biodiversity studies. Thus, capturing spectral data across time can help 
identify the optimal time for distinguishing taxa with optical remote 
sensing, which might improve the performance of spectral diversity 
metrics in biodiversity estimation. 

In this study, we used a time series of leaf and canopy reflectance 
data at Cedar Creek Ecosystem Science Reserve, Minnesota, USA in the 
summer growing season (late May to October) 2014 to investigate the 
dynamics of spectral diversity at both leaf and canopy scales for this 
prairie ecosystem. Besides the reflectance data, we also measured 
pigment concentrations of chlorophyll, carotenoids—including photo
protective xanthophyll cycle pigments—and anthocyanins, because the 
seasonal changes of leaf pigments due to ontogeny (Gamon and Surfus, 
1999), senescence (Cavender-Bares et al., 2000), light environment 
(Logan et al., 1998) and stress (Verhoeven et al., 1999; Savage et al., 
2009; Ramirez-Valiente et al., 2015) can affect leaf spectra over time 
(Gamon and Surfus, 1999), presumably influencing the spectral di
versity – biodiversity relationship at both leaf and canopy scales. We 
hypothesized that at the leaf scale, leaf reflectance could exhibit larger 
among-species variation than leaf pigments; while at the canopy scale, 
spectral diversity could also be influenced by changing vegetation 
structure, cover, and key phenological events (e.g., flowering). 

2. Materials and methods 

2.1. Study site description 

This study was conducted using the BioDIV experiment at the Cedar 
Creek Ecosystem Science Reserve, Minnesota, USA (45.4086◦ N, 
93.2008◦ W). The BioDIV experiment has maintained 168 prairie plots 
(9 m × 9 m) with nominal plant species richness ranging from 1 to 16 
since 1994 (Tilman, 1997). The species planted in each plot were orig
inally randomly selected from a pool of 18 species typical of Midwestern 
prairie, including C3 and C4 grasses, legumes and forbs. Weeding was 
done 3 to 4 times each year for all the plots to maintain the species 
richness (Tilman, 1997; Reich et al., 2012). Of the original 168 plots, we 
selected 11 monocultures and 24 plots with six replicates of every other 

richness level (2, 4, 8, and 16) but with differing species combinations in 
this study (Wang et al., 2016a; Cavender-Bares et al., 2017; Schweiger 
et al., 2021). 

2.2. Leaf reflectance 

At the beginning of the season (late May to mid-June), leaf reflec
tance measurements were taken once a week for the 11 monocultures, 
since it was easier to identify those prairie species in the monoculture 
plots than in the high richness plots when plants were young. From July 
to early October, leaf reflectance measurements were taken every two 
weeks for 17 prairie species (Table S1) in all of the 35 plots. We 
randomly picked 3 leaves per plant on 5 plants per species to sample leaf 
reflectance using a field spectrometer (Unispec, PP Systems, Amesbury, 
MA, USA) coupled with a needle leaf clip (UNI501, PP Systems, Ames
bury, MA, USA) with an internal halogen light source. The needle leaf 
clip allowed a narrow field of view (0.6-mm-diameter), which enabled 
sampling of small, narrow leaves (e.g. grass blades). For each species, 
leaf measurements were preceded with a dark and a white reference 
scan (Spectralon, Labsphere, North Sutton, NH, USA). Leaf reflectance 
was calculated by dividing each leaf measurement by a white reference 
scan after subtracting a dark spectrum from each measurement. The 
spectrometer has a nominal spectral range from 350 to 1100 nm with 
2–3 nm band spacing and 10 nm full width at half maximum (FWHM), 
and a linear interpolation was used to estimate reflectance at 1-nm in
tervals. To track the change of leaf ‘greenness’ through the season, we 
used leaf-level NDVI formulated as follows: 

NDVI =
ρ800 − ρ680

ρ800 + ρ680
(1)  

where ρ680 and ρ800 indicate the reflectance at 680 and 800 nm, 
respectively. On each sampling day, leaf reflectance were taken from 10 
am to 4 pm. This leaf reflectance dataset (doi: 10.21232/i6N36jZ7) is 
available at the EcoSIS Spectral Library (ecosis.org). 

2.3. Leaf pigments 

To investigate the phenological properties of leaf pigments, we 
sampled leaf materials to determine leaf pigment concentrations over 
the growing season. Leaf disks (0.2 cm2) were collected using a hole 
punch from the same leaves used for leaf reflectance sampling. These 
leaf disks were wrapped in aluminum foil, stored in liquid nitrogen 
immediately, and later transferred to a − 80 ◦C freezer for long term 
storage. High-performance liquid chromatography (HPLC; Agilent 1200, 
Agilent Technologies Inc., Santa Clara, California, USA) was used for 
pigment analysis at the University of Minnesota following methods 
previously described (Savage et al., 2009; Kothari et al., 2018; 
Schweiger et al., 2018). We calculated pigment concentrations for total 
chlorophyll (chlorophyll a and b), xanthophyll cycle pigment pools (V +
A + Z; the sum of violaxanthin, antheraxanthin and zeaxanthin con
centrations), neoxanthin, lutein, β-carotene and anthocyanins. 

2.4. Canopy reflectance 

In the 35 plots, canopy spectral reflectance was measured every two 
weeks over most of the 2014 growing season (late May to late August) 
and once a month during senescence (September to October) with a 
hand-held, dual-channel spectrometer (Unispec DC, PP Systems, Ames
bury, MA, USA). On each sampling day, canopy reflectance were taken 
from 11 am to 3 pm under clear skies, i.e. within about 2 h of solar noon. 
Taking simultaneous measurements of both upwelling and downwelling 
radiation and cross-calibrating with a white reference calibration panel 
(Spectralon, Labsphere, North Sutton, NH, USA) allowed us to correct 
for the atmospheric variation during the sampling period. The spec
trometer foreoptic was held at a distance of 2 m above the ground, 
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providing a ground sampling size (instantaneous field of view) of 
approximately 0.5 m. In each plot, reflectance measurements were taken 
at a half-meter interval along the northern-most plot edge on each 
sampling date, providing a consistent subsample of each plot (n = 17) 
over the growing season. Because of the relatively short stature of prairie 
vegetation, a typical sample contained multiple individual plants and 
anywhere from 1 to 16 species, depending upon the plot. The constraint 
of sampling only the northernmost plot edge of each was imposed to 
avoid disturbance from people entering the experimental plots and 
because sampling the entire plot using automated means (e.g. a tram 
system, Wang et al., 2016a) was prohibitive in terms of time (it takes 
several weeks to fully sample 30 plots due to the time required to set up 
automatic sampling). 

To show the seasonal vegetation structural changes, canopy-level 
NDVI was calculated using canopy reflectance values at 680 and 800 
nm following Eq. (1). We also applied a vector normalization method 
(Feilhauer, 2010) on the canopy reflectance data to calculate a bright
ness corrected reflectance product that kept the overall spectral shape 
while removing brightness differences. Vector normalization is often 
used for plant trait studies where the effects of canopy structure and 
illumination can cause large differences in “brightness,” possibly 
obscuring certain leaf traits. This allowed us to compare non-normalized 
reflectance spectra (influenced by brightness changes) to 
vector-normalized spectra (minimizing the brightness changes). This 
canopy reflectance dataset (doi:10.21232/C2Z070) is available at the 
EcoSIS Spectral Library (ecosis.org). 

2.5. Partitioning of variance at leaf and canopy scales 

To better understand the component contributions to the variation in 
the leaf pigment concentrations and the leaf and canopy reflectance 
data, we partitioned the total variance (total sum of squares, SSt) into 
within- (within species sum of squares, SSw) and among-species (among- 
species sum of squares, SSa) components at leaf and canopy scales using 
a multivariate analysis of variance (MANOVA) method (Anderson, 
2001). For the pigment data, we ran a principal components analysis on 
the pigment correlation matrix and partitioned the variance of pigment 
values in the principal components space to normalize differences in 
absolute values among pigments. For the leaf and canopy (raw and 
vector normalized) reflectance, MANOVA was applied for partitioning 
the spectral variance based on Euclidean distance between spectra 
(Price, 1994): 

SSa =
∑S

i=1
d2

i *ni (2)  

SSt =
∑M−1

i=1

∑M

j=i+1
d2

ij (3)  

SSw = SSt − SSb (4)  

where S indicates species richness and M indicates total measurements. 
di is the distance from the centroid of ith species to the centroid of all the 
measurements multiplied by the number of individuals of the ith species 
(ni), and dij is the distance between two individual spectra (i and j). The 
Euclidean distance (d) between two spectra (ρ 1 and ρ 2), is the root mean 
square difference between them, averaged over the whole spectral 
range: 

d =

[
1
N

∑N

i=1
[ρ1(λi) − ρ2(λi) ]

2

]1/2

(5)  

where N is the number of wavelengths. 
To compensate for the variation in sample size among different 

sampling dates and compare variance partitioning across the growing 

season, we calculated the mean sum of squared (MSS) Euclidean dis
tance deviations by dividing SSa, SSt and SSw with their associated de
grees of freedom as: 

MSSa =
SSa

S − 1
(6)  

MSSt =
SSt

M − 1
(7)  

MSSw =
SSw

M − S
(8)  

2.6. Spectral diversity – biodiversity relationship at canopy scale 

To investigate the spectral diversity – biodiversity relationship at the 
canopy scale, we took ground vegetation percent cover measurements of 
the selected 35 plots on June 19 and August 1 in 2014. Percent cover was 
determined by visual inspection within nine 0.5 m × 0.5 m quadrats, 
placed every meter, starting 50 cm from the north-facing edge of the plot 
for a total of 9 subsamples per plot. Percent cover was estimated for each 
species as the nearest 10% that each species occupied of the total 
quadrat area, and then summed. Vegetation coverage did not necessarily 
sum to 100% if bare ground was exposed, or if species overlapped (Wang 
et al., 2016a). To represent the species diversity of each plot, we 
calculated Shannon’s index (H) for each plot on a vegetation percent 
cover basis as 

H = −
∑D

i=1
pi × logpi (9)  

where D indicated the total number of species and pi was the percentage 
cover of species i in the plot. 

We calculated the coefficient of variation (CV) of the spectral 
reflectance in space as the spectral diversity index for each plot as 

CVplot =

∑1000

λ=400

(
σ(ρλ)

μ(ρλ)

)

N
(10)  

where ρλ denotes the reflectance at wavelength λ, and σ(ρλ) and μ(ρλ) 
indicate the standard deviation and mean value of reflectance at 
wavelength λ across all the measurements in one plot, respectively. To 
minimize the soil effects on canopy scale spectral diversity, we multi
plied the spectral diversity indices by the vegetation percent cover 
datasets to calculate soil corrected spectral diversity indices for each plot 
on the same two sampling dates (Gholizadeh et al., 2018). CV was then 
related to Shannon’s index for the two sampling dates to test the canopy- 
scale spectral diversity – biodiversity relationship. 

2.7. Time series spectral diversity at leaf and canopy scales 

To investigate the seasonal dynamics of pigments and spectral di
versity at leaf and canopy scales over the growing season, we calculated 
the convex hull volume (CHV), which has been used as an index both in 
trait-based community ecology (Cornwell et al., 2006) and spectral di
versity (Dahlin, 2016), for each species using the first three PCs of leaf 
pigments, leaf reflectance and canopy reflectance, respectively. 

3. Results 

The climate in this area typically features warm and wet summers. 
However, in the summer 2014, a period of high temperatures and 
drought occurred from July to early August (Fig. 1), leading to a decline 
in surface soil moisture and a brief period of plant water stress (Wang 
et al., 2016a). The drought affected plant phenology and, consequently, 
the vegetation reflectance, expressed as decreases in canopy-level NDVI 
in the mid-season (Fig. 1). It also provided clues on how a short period of 
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disturbance can affect the spectral diversity – biodiversity relationship. 
Partitioning of the total sum of squares (SSt) between the among- 

species sum of squares (SSa) and the within-species sum of squares 
(SSw) allowed us to understand the among- and within- species contri
butions to the total variation, presuming that a larger SSa to SSt ratio 
indicated a larger difference between species than within species 
(Anderson, 2001). For leaf pigments, the maximum MSSa occurred in 
late June, while MSSw and MSSt peaked in mid-July and decreased 
during senescence (Fig. 2). The maximum SSa to SSt ratio was found in 
mid-July with more than 60% of the total variation explained by the 
among species variation, while in early June, less than 35% total vari
ation was explained by among species variation. 

For the leaf reflectance data, the maximum SSa/SSt occurred in mid- 
July when about 70% of the total spectral variance was explained by the 

among species variance (Fig. 3). The high temperature and drought at 
peak season (Fig. 1) apparently affected the total- and within-species 
spectral variance and coincided with an increase in the total and 
within-species spectral variance and a decrease in among-species vari
ance at the leaf-scale (Fig. 3). In early June, the among-species variance 
in leaf reflectance spectra (SSa/SSt) was slightly higher than the same 
ratio calculated using pigment data (Fig. 2) collected at a similar time. 

For the monoculture canopy reflectance, among-species variance 
explained most of the total variance across the growing season (Fig. 4). 
For the canopy reflectance without vector normalization, the maximum 
SSa/SSt value occurred in mid-June and was subsequently reduced 
during the mid-season drought. The SSa/SSt derived using vector 
normalized canopy reflectance was far less sensitive to the mid-season 
drought, suggesting that the mid-season drought mainly affected 

Fig. 1. Time series of maximum daily air temperature, precipitation and leaf- and canopy-level NDVI in the summer 2014. Temperature and precipitation records 
were collected from Cedar Creek weather station located approximately 0.76 km from the BioDIV experimental plots. The vertical bars of time series NDVI indicate 
the standard deviation. 

Fig. 2. Proportion of among species variance (SSa) expressed relative to the total variance (SSt) and mean sum of squares (MSS) of within-species variance (SSw), 
among species variance (SSa) and total variance (SSt) over the course of the growing season derived using leaf pigment data. 
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canopy albedo related to leaf or canopy structure, i.e. the “brightness” of 
the spectra (Fig. S2 and Everitt and Nixon, 1986). The two peaks of SSa/ 
SSt ratio in the vector normalized canopy reflectance (Fig. 4) coincided 
with flowering seasons of Lupinus perennis with purple flowers and 
Amorpha canescens having leaves with dense, white pubescence (Fig. S3 
in the supplemental section) that can increase visible reflectance values 
(Ehleringer and Björkman, 1978; Doughty et al., 2011). In this case, 
flowering and leaf pubescence appeared to alter the canopy-level spec
tral diversity. 

The soil corrected canopy-level spectral diversity indices (CV) 
showed linear relationships with Shannon’s index on both sampling 
dates (Fig. 5). The weaker relationships derived from the June 19 data 
than from the August 4 data were largely influenced by the three points 
that had low species diversity level (Shannon’s Index ≈ 0.5) but high 
spectral diversity (Figs. 5 and S3 in the supplemental section). These 
three big spectral diversity values occurred in two plots dominated by 
Lupinus perennis that had large number of purple flowers (Fig. S3 in the 
supplemental section) and the Amorpha canescens monoculture that had 
highly reflective leaves. In this case, flowering and leaf pubescence 
appeared to confound the canopy level spectral diversity and increased 
the spectral diversity values to a greater extent than the most species- 
diverse plots. 

The time series of convex hull volume (CHV) showed the change in 
both the intraspecific (mean) and interspecific (standard error) diversity 
through the season, revealing different seasonal patterns of spectral 
diversity at leaf and canopy scales (Fig. 6). The largest CHV derived 
using pigment data peaked in early June, while the maximum CHV 
derived using leaf reflectance occurred in September (Fig. 6). Leaf 
senescence caused increased spectral diversity, shown as large convex 
hull volume (Fig. 6a), and small among-species variance to total vari
ance ratio (Fig. 3). At the canopy level, vector normalization influenced 
the PCA loadings across the wavelength (Fig. S2) and consequently 
affected the phenological pattern of canopy CHV (Fig. 6). For CHV ob
tained using canopy reflectance without vector normalization, CHV 
values peaked around early July (Fig. 6b), a time when species-specific 
traits that influence optical properties—such as flowers and leaf 
pubescence—in addition to leaf pigments affected overall spectral di
versity. For CHV calculated using vector normalized canopy reflectance, 
a large CHV value occurred in the early August, indicating that the 
vector normalized reflectance emphasized the variations in spectral 

shape due to variation in pigments (Fig. 6a) by removing the brightness 
variation caused by short-term water stress (Figs. 6b and S2 in the 
supplemental section). 

4. Discussion 

Our results revealed a strong scale dependence on the seasonal 
spectral biodiversity – biodiversity relationship in a prairie ecosystem, 
resulting from contrasting phenological influences on spectral diversity 
indices at leaf and canopy scales. Similarly, seasonal variation of 
reflectance at the leaf scale was different from that of pigments, which 
represent common leaf traits that affect both leaf and canopy reflectance 
spectra. These results appeared to vary with the data analysis method 
used (i.e., with or without vector normalization). The results of this 
study indicate that different factors, both biological and statistical, affect 
the seasonal patterns of spectral diversity at leaf and canopy scales. 

4.1. Phenology of spectral diversity at the leaf scale 

Leaf reflectance spectra comprise integrative representations of plant 
phenotypes (Schweiger et al., 2018) that vary with time (Ustin and 
Gamon, 2010). Besides variations in pigment, temporal changes in leaf 
biochemical variation among species, such as variation in water and 
structural carbohydrates can affect leaf reflectance (Roberts et al., 
2004). During the early to peak growing season, while pigment con
centrations vary across species and functional groups (Kothari et al., 
2018), the among-species variation to total-variation ratio for leaf 
reflectance was larger than its counterpart for leaf pigments (Figs. 2 and 
3), indicating that leaf reflectance can reveal larger among-species 
variation than leaf pigment concentrations. This agrees with observa
tions that leaf reflectance spectra are aggregated indicators of leaf 
biochemical and biophysical properties, and often contain more infor
mation than a limited set of traditional plant traits (pigments in this 
case), and generally outperform trait-based models in differentiating 
plant species (Cavender-Bares et al., 2016; Schweiger et al., 2018), 
detecting phylogenetic and functional diversity (Schweiger et al., 2018), 
and tracking leaf age (Chavana-Bryant et al., 2017). 

Another study that used the same pigment data (Kothari et al., 2018) 
reported declining pigment concentrations in the early-to-midseason, 
possibly due to the ontogenetic changes in the developing leaves 

Fig. 3. Proportion of among species variance (SSa) expressed relative to the total variance (SSt) and mean sum of squares (MSS) over the course of the growing season 
derived using leaf reflectance. 
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(Miyazawa et al., 2003; Fernandes et al., 2020). Unlike the decline in all 
pigments for most phylogenetic linkages (Kothari et al., 2018), leaf 
reflectance data exhibited larger temporal variations in the among- 
species variation to total-variation ratio than pigment data (Figs. 2, 3 
and 6). This might be because leaf pigments (particularly chlorophyll 
and photoprotective carotenoid pigments), while varying with ontogeny 
(Gamon and Surfus, 1999; Fernandes et al., 2020), season (e.g., Cav
ender-Bares et al., 2000) and stress (e.g., Verhoeven et al., 1999; Savage 
et al., 2009), are relatively conserved traits (Ustin et al., 2009; Kothari 
et al., 2018), constrained by evolution within a narrow range of varia
tion (Meireles et al., 2020). 

4.2. Phenology of spectral diversity at the canopy scale 

At the canopy scale, contributions of plant materials, including 
leaves, branches and flowers, as well as shadow, soil, and other “back
ground” (non-vegetative) materials, to the overall canopy optical 
properties vary by season and by species, and can affect the spectral 

diversity – biodiversity relationship in complex ways (Figs. 5 and S3 in 
the supplemental materials). In this study, the canopy scale spectral 
variation among the monocultures was dominated by among-species 
variance (Fig. 4) indicating that canopy information appears to 
improve species discrimination more than leaf spectra alone, in agree
ment with previous studies at this site (Wang et al., 2018a). In this case, 
monocultures used in this study served as a unique example of analyzing 
the spectral variation at canopy scale, which could be helpful to un
derstand the mechanics behind the diversity estimation using canopy 
reflectance. However, the partitioning derived from the monocultures 
may not fully represent the situation in high diversity plots, where 
frequent species overlap occurs and the canopy reflectance measure
ments are often mixed spectra of plant materials of different species and 
competition may also lead to different intraspecific variation. 

Unlike the large between-species variation achieved in the mono
culture plots, no relationship between spectral diversity (Coefficient of 
Variation) and species diversity (Shannon’s index) was found when 
reflectance from all the plots was used but a clear relationship emerged 

Fig. 4. Proportion of among species variance (SSa) expressed relative to the total variance (SSt) and mean sum of squares (MSS) over the course of the growing season 
derived using canopy reflectance (a) and vector normalized (b) canopy reflectance. The flowering season of each monoculture species is labeled separately in panel 
(b) and the approximate flower color is indicated by the colored circles. 
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upon soil correction (Fig. 5). This might be due to two reasons: first, 
species discrimination is harder for high diversity areas than for low 
diversity areas (Lopatin et al., 2017) and second, the spatial scale 
dependence of the spectral diversity – biodiversity relationship can 
cause weak relationships at spatial scales (pixel sizes) coarser than 

typical crown sizes. Previous prairie spectral diversity studies at the 
canopy scale showed that the ability to estimate taxonomic diversity (e. 
g., species richness and evenness) as a function of sampling scale (pixel 
size) declined rapidly above about 1–10 cm —corresponding to the size 
of individual plants at this site (Wang et al., 2018a). The pixel size of 
canopy reflectance collected in this study was approximately 0.5 m, 
which is the sampling scale where spectral diversity – biodiversity 
relationship became weak. Together with previous work, these findings 
emphasize the need for high-resolution images in prairie diversity esti
mation at fine scales (i.e., alpha diversity) (Lopatin et al., 2017; Wang 
et al., 2018a). 

4.3. Vector normalization effects on canopy spectral diversity 

Vector normalization on canopy reflectance was applied to keep the 
overall spectral shape while removing brightness differences caused by 
illumination conditions (Feilhauer, 2010). By only focusing on the 
variations in spectral shape, the vector normalization method can better 
detect subtle absorption features associated with certain plant traits and 
has been used to improve the performance of plant traits estimation 
using canopy reflectance data via PLSR (Feilhauer, 2010, Serbin et al., 
2014). On the other hand, vector normalization reduces some of the 
variation due to structure at both the canopy and leaf scales (i.e., 
anatomy and morphology). Thus, vector normalization can weaken the 
ability to distinguish species or detect conditions that effect structure. 
For example, drought stressed plants have higher reflectance at visible 
wavelengths than non-stressed plants at both leaf and canopy levels, due 
to lower pigment and water contents but more exposed soil background 
(Everitt and Nixon, 1986). As a result, applying the vector normalization 
can reduce the power to distinguish optical types by reducing the power 
to detect the structural contribution to contrasting canopy-scale optical 

Fig. 5. Soil correction (“SC”) improved the relationship between canopy scale spectral diversity (Coefficient of Variation) and Shannon’s index on June 19 (a & c) 
and August 4 (b & d). Canopy reflectance (a & b) and vector normalized canopy reflectance (c & d) of all the plots were used. 

Fig. 6. Different phenological diversity patterns of pigment and leaf reflectance 
(a) and canopy reflectance and vector normalized canopy reflectance (b) 
expressed as convex hull volume of each species calculated using the first three 
PCs, respectively. The vertical bars indicate the standard error. 
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properties (Fig. S2 in the supplemental section and Ustin and Gamon, 
2010). 

4.4. Idiosyncratic effects on canopy spectral diversity 

At the canopy scale, the optical properties of flowers or leaves of 
particular species can have substantial effects on canopy reflectance 
(Figs. 5, 6 & S3 in the supplemental section), complicating interpreta
tion of the spectral diversity at particular seasons. Botanists rely largely 
on flowers to distinguish plant species and flowering time to investigate 
plant phenological responses to climate change (Munson and Long, 
2017), but reproductive traits have generally not been considered in 
remote sensing, except for a few studies (Carvalho et al., 2013; Land
mann et al., 2015; Müllerová et al., 2017a, 2017b; Shen et al., 2010). 
Flower display can increase the intraspecific spectral variability at 
canopy scale (Clark et al., 2005), thus potentially increasing the within- 
species variation and confounding the spectral diversity – biodiversity 
relationship (Figs. 5 & 6) and weakening species discrimination using 
spectral data (Roberts et al., 2004). On the other hand, flowers and leaf 
pubescence enhances among-species variance at the canopy scale 
(Figs. 4 and S2 in the supplemental section) and can be used to distin
guish particular species at certain season. The few studies that do 
examine the spectral effects of flowers have revealed that including 
flowering information can improve the accuracy of species mapping 
(Carvalho et al., 2013; Landmann et al., 2015; Müllerová et al., 2017a, 
2017b). Therefore, flowering information, if properly used, can provide 
a way to increase the accuracy of biodiversity estimation. The surrogacy 
hypothesis (Magurran, 2004; Wang and Gamon, 2019) predicts that 
diversity information provided at one taxonomic or sampling level can 
provide information at another level. Similarly, spectral effects of 
flowers can perhaps provide information on other trophic levels, e.g., 
pollinators, so can conceivably provide a link to larger community di
versity levels beyond that of vegetation alone. 

5. Conclusions and recommendations 

The challenges of obtaining continuous or repeated remote sensing 
and ground biodiversity measurements often constrains our ability to 
investigate the spectral diversity – biodiversity relationship through the 
growing season. By showing contrasting seasonal patterns at different 
spatial scales for experimental prairie plots, this study demonstrated an 
interaction of temporal and spatial scale dependence of the spectral 
diversity – biodiversity relationship for prairie vegetation. Our results 
revealed clear effects of phenology on the spectral diversity for prairie 
plant species, and these effects varied between leaf and canopy levels, as 
well as with the selected spectral diversity indices (Wang et al., 2018a, 
2018b) and analysis method, e.g., whether or not vector normalization 
is applied to canopy reflectance. 

To fully implement the power of remote sensing in biodiversity 
studies, it is critical to include phenological information in the future 
remote sensing of biodiversity work, which can guide our biodiversity 
sampling campaign in terms of identifying the best season for overall 
distinguishing species or monitoring particular species and under
standing the disturbance induced successional changes in species di
versity. For example, the post-fire diversity of Mediterranean 
ecosystems is influenced by fire severity, life form, resource availability 
and landscape features (Keeley et al., 2005; Capitanio and Carcaillet, 
2008) and is further confounded by the impacts of climate change 
(Slingsby et al., 2017). In this study, we focused data from one single 
field season due to limited resources but acknowledge that a careful 
experimental design with data from multiple years could provide a 
better understanding of the spectral diversity – biodiversity relationship 
in the future. Emerging (e.g. EnMAP) and planned (e.g. Surface Biology 
and Geology, SBG) satellites with imaging spectrometers (Schimel et al., 
2020) may help address phenological effects on biodiversity detection, 
but these sensors are designed to sample at scales (30–45 m pixels) too 

coarse for detecting alpha diversity, at least for most short-statured 
grassland communities (Barnett et al., 2019; Gamon et al., 2020; Schi
mel et al., 2020). The relatively lower cost of flying drones compared to 
airborne campaigns may soon make it more affordable to get a time 
series dataset to investigate the phenology in remote sensing of biodi
versity (Holman et al., 2019), particularly at spatial scales between 
those of field and satellite measurements. However, most current drone 
technology lacks the spectral detail and accurate georeferencing capa
bilities needed for detecting biodiversity at fine spatial scales over time 
(Gamon et al., 2020). Assuming phenological sampling methods can be 
improved (e.g. via drones), further attention should also be given to 
different analytical methods often applied to different scales, as these 
may led to somewhat different results. 
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