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(2019)). Similarly, predictive iterative learning control in
and Yu and Hou (2016); Wang et al. (2016a) has a similar
idea that uses past information and a prediction of future
iterations to update its control input.

Through AM, a 3D structure is fabricated by repetitive
addition of material. The behavior of a printed layer
depends on interactions between the printed material and
the topography from previous layers. This results in an
iteration varying system in which the system parameters
and plant dynamics, H, change from layer to layer. The
ability to achieve robustness through control design highly
depends on the magnitude of the plant model variations,
∆H. To tackle the iteration varying behavior of many AM
processes and enable robust control designs, the system
dynamics can be formulated to ensure robustness under
interval uncertainty assuming plant model variations are
bounded (Altin et al. (2018); Ahn et al. (2007)). In our
previous work (Afkhami et al. (2021)), we applied higher-
order SILC (HO-SILC) (similar to Fig 1a) to a model
of an AM process. This higher-order controller leveraged
data from previous devices and previous layers within
the same device to construct an optimized input for
the next layer of a 3D structure. We term this type of
learning controller as backward learning. A drawback of
this previously presented HO-SILC framework was that it
was overly conservative for systems with minimal model
uncertainty since the controller was designed to ensure
robustness for the maximum amount of uncertainty, thus
causing the system to lose performance advancements.

To achieve a less restrictive bound on the prediction hori-
zon, researchers have introduced a finite-tail MPC formu-
lation that solves a constrained optimal control problem
based on prediction and optimization. MPC exploits the
system model to predict performance error signals for mul-
tiple steps (layers) in the future and consequently make in-
formed control decisions that work to achieve performance
gains across all of the layers. This approach is known as
a receding horizon strategy in which a sequence of input
signals for multiple steps (layers) in the future is planned,
and yet only the next control action is applied. The se-
quence of control inputs will be recomputed once new
information is available. Although closed-loop stability is
not generally guaranteed with an MPC framework, adding
a final/terminal cost can improve the stability properties
through improvements in convergence speed and tracking
error. Stochastic and adaptive MPC provide alternative
techniques that have been used to achieve these desirable
properties (Sun et al. (2013); Bichi et al. (2010)).

The work presented in this paper investigates whether the
integration of SILC with MPC into a combined learning
control framework will result in a layer-to-layer process
that is more robust to model uncertainty compared to
traditional SILC, and yet maintains the high performance
advancements expected from these control architectures.
Note that in the multi-layer structures considered in this
work, the layers are built on top of each other, such that
the printing behavior for a current layer depends directly
on the topography of the previous layers. The goal of this
work is to derive an integrated control framework that
leverages the information from previous layers using HO-
SILC, plus a prediction from future layers using MPC (see
Fig. 1b), to minimize the total error and individual layer

errors within an AM process simultaneously, while achiev-
ing uniform thin-film fabrication with minimal surface
roughness. The novel contributions of this work include:

• Derivation of a higher-order SILC framework for min-
imizing layer and total errors simultaneously (Fig 1a)
to more effectively fabricate 3D structures in a layer-
by-layer fashion.

• Development of a combined spatial ILC and terminal
cost MPC framework that incorporates backward
learning through SILC with forward learning using
MPC to improve the performance of AM processes.

• Demonstration and analysis of the performance ad-
vancements achieved through the implementation of
the combined learning control framework on a simu-
lated model of a high-resolution printing process for
the fabrication of 3D constructs.

The remainder of this paper is organized as follows. The e-
jet system and the layer-to-layer material addition process
is detailed in Section 2. The mathematical derivations of
the SILC and SILC-MPC controllers for AM structures
are detailed in Section 3. In Section 4, the numerical
simulation results for a multi-layer e-jet printed structure
are presented and the performance of SILC and SILC-
MPC controllers are compared. Finally, the conclusions are
given in Section 5. Complementary material is presented
in Appendix.

2. AM PROBLEM FORMULATION

The proposed learning control framework is designed for
additive manufacturing processes. In particular, this work
considers a model of a µ-AM process, known as Electrohy-
drodynamic jet (e-jet) printing. E-jet printing is a µ-AM
technique that enables fabrication of 3D components with
micro-scale spatial and nano-scale thickness resolution.
Figure 2B shows a multi-material e-jet printer located at
the University of Michigan. The main elements of this e-
jet printer are a conductive nozzle, grounded substrate,
translational stage, ink chamber containing liquid ink,
and an integrated atomic force microscopy (AFM) for
measurement of layer topography. A high voltage pulse
with short pulsewidth, tp, is applied at the nozzle tip as
shown in Fig 2A, pulling the liquid ink from the nozzle to
the substrate. By synchronizing the stage motion with the
applied voltage at each spatial location, drop-on-demand
printing is achieved with the ability to deposit a droplet
at a desired location. By placing droplets adequately close
to each other with fixed droplet-to droplet distance known
as pitch, uniform thin-films such as the one in Fig 2C-
E are fabricated (Afkhami et al. (2020a)). The sequence
of material addition and heightmap evolution of multi-
layer structures in an additive process is described as the
following 2D convolution equation (Pannier et al. (2019):

∆gl(x, y) �
∑

m∈ZM ,n∈ZN

h
(m,n)
l−1

(x−m, y − n) ∗ fl(m,n),
(1)

where gl(x, y) ∈ R
M×N and fl(x, y) ∈ R

M×N are the
deposited topography (output) and cube root of droplet
volume (input) at each spatial location (x, y) at layer
l, respectively. Droplet volume is controlled through the
applied pulsewidth, tp. Topography increment at layer l is

defined as, ∆gl(x, y) � gl(x, y)− gl−1(x, y). The response
2
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(a) SILC framework (b) SILC-MPC framework

Fig. 1. Block diagrams of SILC and SILC-MPC frameworks: Learning occurs in the vertical direction. A) SILC utilizes the knowledge
from previous layers to predict the optimized input of the next layer. The knowledge here refers to the input signal, fl, layer (or

incremental) error, ∆el, and total error, el at layer l, which is sum of the incremental errors over all layers, el =
∑

l

i=1
∆ei. B) Learning

occurs from previous layers using SILC design, as well as a prediction of future layer depositions using MPC design, by incorporating

a prediction of future layer errors, el+n, to predict the input signal of multiple layers ahead,
−→

f = (fl+1, ..., fl+Nmpc
). At each printing

pass, only the input signal of the first layer, fl+1, is considered. Here, each layer is one iteration and w−1 is the trial-delay operator.
−→e = (−→e T

l+1
, ...,−→e T

l+Nmpc
), −→g = (−→g T

l+1
, ...,−→g T

l+Nmpc
), ∆−→e = (∆−→e T

l+1
, ...,∆−→e T

l+Nmpc
), and ∆−→g = (∆−→g T

l+1
, ...,∆−→g T

l+Nmpc
). FB

operator takes a stacked vector, (for example −→e ), extracts its first block, −→e l+1, and applies the shift-delay operator to extract −→e l.

Fig. 2. High-resolution fabrication using e-jet printing tech-

nology. A) schematic of an e-jet printer with dual nozzles. B)
e-jet Printer testbed located at the University of Michigan. C),
D) and E) AFM scans and optical microscopy of a 40 × 40 µm2

thin-film pattern deposited by the e-jet system in Fig 2B.

of the build material to an impulse applied at coordinate
(m,n) and layer l−1 is given as hm,n

l−1 (x, y), which describes
the spatial distribution and spreading of the droplet into
nearby pixels. To better represent the printing environ-
ment, a normally distributed iteration-varying white noise
signal, ∆hl, is added to the plant model, with a mean and
variance of 0.00 and 0.2, respectively. Repetitive model
uncertainty is also added to represent unmodeled surface
variations or initial tilts within the system and is repre-
sented by ∆hrep = 0.1 ∗ h0. Combining these features
together, the iteration varying spatial impulse response
used for (1) will be hl = h(gl) + ∆hl + ∆hrep. Note that
the plant matrix, h(gl), is a function of previous layer
topography. We use the methods described in Pannier
et al. (2019); Afkhami et al. (2021, 2020b) to calculate
the impulse response for a given layer. In order to develop
the control framework, the 2D convolution in (1) needs to
be converted to the following input-output lifted- version,

∆−→g l = H(gl−1)
−→

f l (2a)

−→g l =

l∑

i=1

∆−→g i =

l∑

i=1

H(gi−1)
−→

f i (2b)

where −→g l � ν(gl(x, y)) ∈ R
MN×1 and

−→
f l � ν(fl(x, y)) ∈

R
MN×1 represent the vectorized forms of the output and

input signals through the use of ν(.) as a vectorization
operator that converts a matrix, P ∈ R

m×n, into a column

vector form,
−→
P ∈ R

mn×1. H(gl−1) ∈ R
MN×MN is the

iterative plant matrix associated with the iteration varying

impulse response h
(m,n)
l−1 , and H(g0) is the plant matrix

associated with the first layer deposited on the substrate,
which we assume to be a smooth pre-layer of cured ink.
In addition, the incremental layer-error (∆−→e l) and total
build error (−→e l) are defined as,

∆−→e l � ∆−→g d
l −∆−→g l = ∆−→g d

l −Hl−1
−→
f l,

−→e l �
−→g d

l −
−→g l =

l∑

i=1

∆−→e i,
−→g d

l =

l∑

i=1

∆−→g d
i

(3)

where ∆−→g d
l and −→g d

l are the desired incremental and total
build height maps at layer l.

3. CONTROLLER FORMULATION

In our previous work (Afkhami et al. (2021)), we used a
backward learning method through an SILC design similar
to Fig .1a that leveraged the data from previous iterations
to construct the optimized input. From a manufacturing
perspective, our goal was to develop a control framework
that regulates the deposition process to realize a vertically
stacked multi-layer/multi-material structure with consis-
tent layer thickness, which is a highly desirable character-
istic in many sensory applications, such as optical sensors
where uniformity and periodicity of the layers are of great
importance Afkhami et al. (2020a); Lequime et al. (2015).
In these examples, the norm optimal SILC (NO-SILC) cost
function was defined based on the layer errors, ∆−→e l. The
proposed SILC resulted in consistent layer deposition with
∆−→e l converging from layer-to-layer, resulting in uniform
layers. However, SILC did not weight the total build error
−→e l, resulting in the total error increasing over the layers.
In AM structures, the layer errors add up during the build
and may result in a large deviation from the desired height,
especially when the layer number is large. Therefore, if
the printing objective requires total device dimension con-
vergence as well as layer-by-layer convergence, minimizing

3
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the layer errors alone may not be sufficient. To address
this need, the work in this paper investigates a modified
backward learning controller that incorporates individual
layer as well as total device errors combined with a forward
learning approach that uses MPC to achieve a projection
in the printing process to enhance the control decisions.
The combined control architecture can be found in Fig .1.

3.1 SILC Framework

In this section, we use a norm-optimal SILC (NO-SILC)
framework to design robust learning filters. Assuming
a constant desired height for all layers, we modify our
previous cost function in Afkhami et al. (2022) to minimize
the total error and layer error simultaneously.

J ILC = ∆−→e T
l+1Q∆e∆

−→e l+1 +−→e T
l+1Q1

−→e l+1 +
−→
f T

l+1S1

−→
f l+1

+ (
−→
f l+1 −

−→
f l)

TR1(
−→
f l+1 −

−→
f l),

(4)

where Q∆e,Q1,S1,R1 are weighting matrices used to
weight the layer errors, total errors, control inputs and
change in control inputs. These matrices are generally
defined as identity matrices scaled by non-negative scalars
such that Q∆e = q∆eI, Q1 = q1I, S1 = s1I, R1 = r1I.
The optimal feedforward signal is achieved by solving the
following optimization problem,
∂J ILC

∂
−→
f l+1

= −H
T

l Q1(
−→e l + ∆−→e l + Hl−1

−→
f l − Hl

−→
f l+1) + S1

−→
f l+1

+ R1(
−→
f l+1 −

−→
f l) − H

T

l Q∆e(∆
−→e l + Hl−1

−→
f l − Hl

−→
f l+1) = 0.

(5)

Solving for the updated control signal, the SILC update
law and learning filters can be shown to simplify to:

−→
f l+1 = Lf

−→
f l + Le

−→e l + L∆e∆
−→e l (6a)

fl+1(u, v) = (Lf ◦ fl + Le ◦ el + L∆e ◦∆el)(u, v) (6b)

where ◦ is the Hadamard or entrywise product of two ma-
trices. Assuming H can be written as block circulant with
circulant blocks (BCCB) (Hoelzle and Barton (2016)),
(6b) is the equivalent frequency-domain representation of
(6a). BCCB matrices are defined in more detail in Hoelzle
and Barton (2016).

The control update, fl+1(u, v), is the 2D discrete Fourier
transform (DFT) representation of fl+1(x, y). More details
can be found in Hoelzle and Barton (2016). Note that the
update law in (6) is higher order because the total error in
a multi-layer structure is a function of the incremental er-

rors from all previous layers, el =
∑l

i=1 ∆ei. Importantly,
if one wanted to design an iteration invariant controller,
the learning filters must be based on the nominal plant H0

from (5) as demonstrated below:

Lf (u, v) =
(q1 + q∆e)H

∗
0 ◦H0 + r1

(q1 + q∆e)H∗
0 ◦H0 + (s1 + r1)

(u, v) (7a)

Le(u, v) =
q1H

∗
0

(q1 + q∆e)H∗
0 ◦H0 + (s1 + r1)

(u, v) (7b)

L∆e(u, v) =
(q1 + q∆e)H

∗
0

(q1 + q∆e)H∗
0 ◦H0 + (s1 + r1)

(u, v) (7c)

3.2 SILC-MPC Framework

In this section, we extend the higher-order SILC frame-
work in Section 3.1 to an SILC-MPC framework that
leverages the information from previous layers, as well as

a prediction of future layers to determine an optimized
feedforward input signal.

The quadratic cost function for the combined controller is
defined as,

J = J ILC + JMPC = −→e TQ−→e +
−→
f TS

−→
f +∆

−→
f TR∆

−→
f (8a)

JMPC = Jt +

Nmpc
∑

j=2

Jl+j

Jl+j = −→e T
l+jQj

−→e l+j + (
−→
f l+j −

−→
f l+j−1)

TRj(
−→
f l+j −

−→
f l+j−1)

+
−→
f T

l+jSj
−→
f l+j ,

(8b)

where Qj ,Sj ,Rj are weighting matrices that are defined
as Qj = qjI, Sj = sjI, and Ri = rjI, and qj , sj , and ri
are positive scalars. Nmpc denotes the MPC horizon. The
other components in (8) are defined as:

Q =











Q∆e . . . 0

0 Q1

.

.

.

.

.

.
. . . 0

0 . . . QNmpc
+ PN I











,−→e =











∆−→e l+1
−→e l+1
−→e l+2

.

.

.
−→e l+Nmpc











,

−→
f =









−→
f l+1
−→
f l+2

.

.

.
−→
f l+Nmpc









, S =





S1 . . . 0

.

.

.
. . .

.

.

.

0 . . . SNmpc





∆−→
f =









−→
f l+1 −

−→
f l

−→
f l+2 −

−→
f l+1

.

.

.
−→
f l+Nmpc −

−→
f l+Nmpc−1









,R =





R1 . . . 0

.

.

.
. . .

.

.

.

0 . . . RNmpc



 .

The MPC cost function in (8b) contains two elements.
The first element is the terminal cost, denoted by Jt,
that ensures closed-loop stability of the MPC algorithm
(Rawlings et al. (2017); Li et al. (2019)). The second term
is a projection forward in the layer direction that aims to
minimize the total error in future layers by predicting the
system behavior in future layers and using it to determine
the control input for the next layer. We define the terminal
cost as Jt �

−→e T
l+Nmpc

(PNI)
−→e l+Nmpc

, where PN is a

positive scalar. The MPC cost function starts from j = 2,
since j = 1 is already taken into account in the HO-SILC
algorithm provided in (4). Let −→u ILC denote a vector that
contains the information from previous layers, such that
−→u ILC = [−→e T

l ,
−→
f T

l ,∆
−→e T

l ]
T. To find the optimal control

sequence
−→
f ∗, the cost function in (8) is differentiated with

respect to
−→
f and equated to zero.

�−→

f
J = [

∂JT

∂
−→
f l+1

, ...,
∂JT

∂
−→
f l+Nmpc

]T = X
−→
f + Z −→u ILC +

−→
Y , (9)

with X ∈ R
MNNmpc×MNNmpc , Z ∈ R

MNNmpc×3MN , and
−→
Y ∈ R

MNNmpc×1. An analytical expression for X, Z and
−→
Y can be achieved by deriving the partial derivatives given
in (9) using the cost function given in (8). From these
derivations, we can determine that the structure of X, Z

and
−→
Y has the following relationship:

4
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(a) Normalized total error: higher vales of PN lead to decreases
in total error. We fix PN = 1, since convergence properties do not
change for higher values of PN > 1.

(b) Normalized layer error: varying values of PN appear to have
no effect on the incremental error. Note that terminal cost is only
imposed on the total error in (8b).

Fig. 3. Effect of terminal cost on convergence properties of SILC-MPC: The results are shown for SILC-MPC with Nmpc = 2.
Adding a terminal cost in (8b) improves the SILC-MPC performance for total error with minimal impact on layer error.

Xi,i = HT
0 (PN I+Q∆e∆(i, 1) +

Nmpc∑

n=i

Qn)H0 + (Ri + Si +Ri+1),

Xi,j = −HT
0 (PN I+

Nmpc∑

n=k

Qn)H0 −Rk, j = i+ 1 or j = i− 1

Xi,j = −HT
0 (PNI+

Nmpc∑

n=k

Qn)H0, j < i− 1 or j > i+ 1

(10)

where k = max(i, j) and ∆(i, 1) = 1 if i = 1 and is zeros
otherwise. Similarly Z has the following format

Zi,1 = −HT
0 (PN I+

Nmpc∑

n=i

Qj)

Z1,2 = −HT
0 (Q1 +Q∆e)H0 −R1

Z1,3 = −HT
0 (Q1 +Q∆e)

Zi,2 = Zi,3 = 0 i > 1

(11)

Likewise
−→
Y has the following format:

−→

Y (1) = −HT
0 (NmpcPN I+

Nmpc∑

n=2

(nQn))
−→r

−→

Y (i) = −HT
0 (NmpcPN I+

Nmpc∑

n=i

(nQn))
−→r , i > 1

(12)

Assuming X is invertible, the optimal control input
−→
f ∗ is

then obtained by solving X
−→
f ∗ + Z

−→u ILC +
−→
Y =

−→
0 as

−→
f ∗ = −X

−1(Z −→u ILC +
−→
Y). We only implement the first

block of
−→
f ∗, which is related to the control input

−→
f ∗

l+1

of the next layer. The derivation of (10-12) is shown in
the appendix. Note that although X is symmetric, and
each block matrix of X and Z is BCCB, the overall X
and Z matrices are not BCCB; thus, we have to invert
a high dimensional matrix, X, to calculate the optimal

solution
−→
f ∗. It is important to note that this calculation

for the SILC-MCP controller will be computationally more
expensive than the update law required for SILC in (6)
and (7). Care must be taken to determine when this
approach is necessary and the computation burden is
acceptable for the given system requirements. Future work

will investigate methods to reformulate the SILC-MPC
update law in a way that the DFT computations are
possible and will result in a reduced computational burden.
In addition, future work will focus on the relationship
between the invertibility condition of the X matrix and
stability and convergence of the SILC-MPC algorithm.

4. SIMULATION VALIDATION

In this section, simulation results for the system described
in Section 2 controlled by the SILC-MPC and SILC
frameworks are presented. As described in Fig .1b, the
SILC-MPC controller uses the information from previous
layer depositions (fl, el, and ∆el) through an SILC design,
and leverages a prediction of what will happen in future
depositions (el+2, ..., eNmpc

) through an MPC design, to
estimate an optimized feedforward signal for future layer
depositions, fl+1, ..., fl+Nmpc

. However, at each printing
pass, we only implement the current layer input signal
fl+1, recalculating the feedforward signals each layer. A
multi-layer structure similar to Fig. 2 with 100µm×100µm
spatial resolution, 150 nm layer thickness resolution, and
25 layers is considered. For the first iteration, l = 1, we use
a nonzero input signal such that the first layer thickness
was around 130 ± 22 nm, which is computed based on
knowledge of conventional pre-prints.

To design the weighting parameters for the SILC-MPC
cost function in (8), we define the following vectors,
−→q = [q∆e, q1, ..., qNmpc

]T ,−→s = [s1, ..., sNmpc
]T ,−→r =

[r1, ..., rNmpc
]T . The weighting coefficients for the two

frameworks are presented in test1-test3 and test4-test6 of
Table 1, respectively. The weighting parameters are de-
signed to be equally weighted such that ||−→q || = 1, ||−→s || =
0.03, ||−→r || = 0.01, which are the same weighting parame-
ters that we used in our prior work Afkhami et al. (2022).

Figure 3 shows the effect of terminal cost in (8) on
the SILC-MPC performance. As demonstrated in MPC
literature (Lee et al. (1999); Pannek and Grüne (2011);
Xie and Ren (2018)), adding a terminal cost improves
the convergence and stability properties of the SILC-MPC

5
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(a) Normalized layer error: Test 3 with the largest q∆e gain
(smallest qe) (see Table 1) converges faster to a lower final value
for layer error. If repeatable layer deposition is desirable, the SILC
controller in test 3 is a good choice.

(b) Normalized total error: similar to the results in Afkhami et al.
(2022), total error increases over the build if layer error is emphasized.
SILC-MPC with a terminal cost (test4) results in the lowest combined
layer and total errors.

(c) Surface roughness: roughness, which is an indication of layer
flatness, decreases over the layers for all tests. Importantly, lower
roughness values result in smaller deviations from the nominal plant
hl(x, y) −→ h0, which is confirmed in Fig 4d.

(d) Simulation model uncertainty: test 4 that includes a terminal
cost results in the smallest differences between the nominal and actual
plant matrices.

Fig. 4. SILC (tests 1-3) and SILC-MPC (tests 4-6) convergence comparison. Note that for both controllers the weighting
coefficients are chosen such that ||−→q || = 1, ||−→r || = 0.01, ||−→s || = 0.03. a) normalized layer error versus layer number, b) normalized
total error versus layer index, c) standard deviation of total height versus layer index, d) model uncertainty calculated by the difference
between h(gl) and h0 derived using the M3 method from Pannier et al. (2019) for NOA170 in Afkhami et al. (2022).

algorithm with respect to total error and can regulate
both layer and total errors at the same time. Next, we
set PN = 1 and investigate the effect of mpc horizon on
the controller performance.

The performance of the SILC and SILC-MPC controllers
is compared in Fig. 4 and Table 1. Tests 1-3 are related
to the SILC framework with −→q = [q∆e, q1 = qe]

T ,−→s =
[0.03],−→r = [0.01], while tests 4-6 are related to the SILC-
MPC framework. The simulation results imply that there
is a trade-off between performance and computation time
of the SILC-MPC controller. The SILC-MPC framework
generally has lower total error and surface roughness
compared to the SILC controller and can regulate both
layer and total error at the same time. However, the
SILC-MPC framework is computationally more expensive
than the SILC controller. Based on the information in the

last column of Table 1, the simulation time for updating
the feedforward signal per layer for the SILC controller
is 50% lower as compared to the SILC-MPC controller
with a terminal cost. Comparing tests 5 and 6, it is
observed that although higher values of the receding
horizon, Nmpc, enhance the SILC-MPC performance, the
update-law takes more time to update the input signal.
The reasons for these differences are that 1) matrices X,

Z and
−→

Y are high dimensional compared to the SILC
learning filters Lf , and Le, 2) the structure of H0 allows
for the use of fast DFT computations in (7) that do not
require inverse matrix calculations, while in the SILC-

MPC update law,
−→

f ∗ = −X
−1(Z −→u ILC +

−→

Y), X is not
BCCB and cannot use DFT calculations.

Similar to the traditional MPC in Rawlings et al. (2017);
Pannek and Grüne (2011); Vallon and Borrelli (2020);

6
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Table 1: SILC and SILC-MPC parameters and simulation time
−→
q

−→
s

−→
r PN Nmpc time(s)

/layer

S
IL

C











test 1 1
√

26

[

1

5

]

0.03 0.01 − − 1.22

test 2 1
√

2

[

1

1

]

0.03 0.01 − − 1.22

test 3 1
√

26

[

5

1

]

0.03 0.01 − − 1.22

S
IL

C
-M

P
C



































test 4 1
√

3

[

1

1

1

]

0.03
√

2

[

1

1

]

0.01
√

2

[

1

1

]

1 2 2.59

test 5 1
√

3

[

1

1

1

]

0.03
√

2

[

1

1

]

0.01
√

2

[

1

1

]

0 2 2.59

test 6 1
√

6









1

1

1

1

1

1









0.03
√

5







1

1

1

1

1







0.01
√

5







1

1

1

1

1







0 5 20.9

Rosolia and Borrelli (2017), simulation results in Fig. 4b
show that as the MPC horizon increases, the performance
of an SILC-MPC control law without the terminal cost
(tests 5 and 6, PN = 0) approaches an SILC-MPC with
terminal cost (test 4, PN = 1). Comparing the simulation
results in Figures 4a-4d, the SILC-MPC controller with a
terminal cost formulation in test 4 provides a more robust
and stable controller that results in decreases to the layer
and total errors simultaneously, leading to highly uniform
stacked thin-films with low surface roughness.

5. CONCLUSION
In this work, we present a novel spatial topography con-
troller to enable enhanced deposition at the micro-scale.
The framework combines spatial iterative learning con-
trol with model predictive control to achieve enhanced
performance and robustness. The proposed controller is
robust to stochastic and repetitive model uncertainty. Sim-
ulation results of an e-jet printed structure controlled by
the SILC-MPC framework indicate that high-quality thin-
films with uniform and repeatable thickness resolutions
are achievable by tuning the MPC terminal cost and ILC
parameters. The results imply that SILC-MPC framework
generally has better performance compared to a tradi-
tional SILC controller. However, the SILC update law is
much faster (50%) compared to the SILC-MPC algorithm.
Future work will consider non-negativity constraints in
the input along with experimental validations. In addition,
reformulation of the SILC-MPC update law in a way that
DFT computations are possible to reduce the computation
times will be explored. Future work will focus on robust-
ness analysis and experimental validation of the proposed
framework.
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APPENDIX

In this section, we describe step by step derivation of the
analytical solution of the SILC-MPC framework presented

in equations (10-12). Solving (8) and (9) requires knowl-
edge of future error signals, −→e l+j . Although we do not
know these values, we can estimate them based on the
values that are known from previous layer depositions,

−→e l+j = −→e l +

j∑

n=1

(
−→
∆el+n) =

−→e l + j−→r −

j∑

n=1

Hl+n−1

−→
f l+n. (13)

For a single material deposition, we assume the de-
sired height is constant for all layers such that ∆−→g d

l =
∆−→g d

l+n = −→r . In addition, the plant spatial dynamics are
noncausal in the spatial domain, meaning that the applied
input at a given location will affect the output in the
advanced layers and surrounding coordinates (Hoelzle and
Barton (2016); Pannier et al. (2018)). This means that
the error signals of future layers are functions of the input

signal from prior layers,
−→e l+j
−→
f l+i

�= 0, ∀i ≤ j. Note, the error

signals of previous layers are not function of future layer

inputs,
−→e l+j
−→
f l+i

= 0, ∀i > j. From (13) we have

∂−→e l+j

∂
−→
f l+i

= 0, j < i (14a)

∂−→e l+j

∂
−→
f l+i

= −Hl+i−1, j ≥ i (14b)

To determine X, Z and
−→
Y from (9), we need to calculate

the partial derivative of the cost function in (8) with
respect to the future layer input signals, ∂J

∂
−→
f l+i

. For i = 1,

the situation is different, ∂J

∂
−→
f l+1

= ∂Jmpc

∂
−→
f l+1

+ ∂J ILC

∂
−→
f l+1

. We

already calculated ∂J ILC

∂
−→
f l+1

in (5), now we need to calculate

∂Jmpc

∂
−→
f l+1

as follows

∂Jmpc

∂
−→
f l+1

= −H
T

l

Nmpc∑

n=2

Qn(
−→e l + n−→r −

Nmpc∑

k=1

Hl+k−1

−→
f l+k)−

r2(
−→
f l+2 −

−→
f l+1) − H

T

l PN (−→e l + Nmpc
−→r −

Nmpc∑

k=1

Hl+k−1

−→
f l+k).

(15)

For i > 1, ∂J

∂
−→

f l+i
= ∂Jmpc

∂
−→

f l+i
= −H

T
l+i−1PN(−→e l + Nmpc

−→r −
∑Nmpc

n=1 Hl+n−1
−→
f l+n) +

∑Nmpc

j=2
∂Jl+j

∂
−→

f l+i
. Depending on the

values of i and j,
∂Jl+j

∂
−→
f l+i

is as follows

i = j : =− qjH
T
l+i−1(

−→e l + j−→r −

Nmpc∑

n=1

Hl+n−1

−→
f l+n) + sj

−→
f l+j

+ rj(
−→
f l+j −

−→
f l+j−1)

(16a)

j = i+ 1 : =− qjH
T
l+i−1(

−→e l + j−→r −

Nmpc∑

n=1

Hl+n−1

−→
f l+n)

− rj(
−→
f l+j −

−→
f l+i)

(16b)

j > i+ 1 : = −qjH
T
l+i−1(

−→e l + j−→r −

Nmpc∑

n=1

Hl+n−1

−→
f l+n). (16c)

and zero for i > j. Summing up (16) over j = 2, ...,Nmpc

and adding up the terminal cost components, and consid-

ering (5) and (15), X, Z and
−→
Y are calculated based on

the nominal plant as presented in (10-12).
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