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Abstract: This paper presents a spatially derived control solution for improving the per-
formance of a high-resolution additive manufacturing (AM) process towards the fabrication
of repeatable, thin-film functional devices. In particular, this work addresses challenges in
fabrication of high-quality films using AM technology by incorporating knowledge about the
interactions between printed layers of material within a control framework for improved repeata-
bility and reliability in the fabrication of multi-layered micro devices using AM technology. We
implement an SILC-MPC method that leverages the information from previous layers using
spatial iterative learning control (SILC) and projects forward the data from future layers
using model predictive control (MPC) to improve the tracking performance of iteration varying
AM processes. Simulation results of an AM process termed electrohydrodynamic jet (e-jet)
printing demonstrate that an SILC-MPC framework is effective and robust to repetitive and
nonrepetitive model uncertainties and outperforms traditional SILC by converging faster to the
nominal behavior with a lower tracking error.
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1. INTRODUCTION

Additive manufacturing (AM), also known as 3D printing,
is a class of processes that enable fabrication of 3D
structures through selective addition of material in a
layer-by-layer manner. AM processes are becoming more
popular, because they are fast, cost effective, and do not
need harsh chemical processes (Afkhami et al. (2020a);
Balta et al. (2019)). Most AM processes, and in particular
u-AM processes, run in open-loop with system parameters
that are tuned by human operators through trial and error.
In p-AM systems, such as electrohydrodynamic jet (e-jet)
printing, temporal events occur on the order of ms with
spatial resolutions as small as 1um or less. Despite the
many advantages of AM, the lack of real-time monitoring
methods that can capture, analyze, and react to in situ
measurements has been a challenge for most AM processes
and in particular pu-AM systems, such as e-jet printing
(Mohammadi et al. (2019); Rose et al. (2021); Spiegel et al.
(2019); Landers et al. (2020)), in which the key dynamics
occur at the micro-/nano- scales. Due to time- and length-
scale limitations of u-AM processes, online measurement
of system parameters is challenging; therefore, traditional
temporal feedback control is not a good candidate to direct
the material deposition of these processes.

* This material is based upon work supported by the National
Science Foundation under Grant No. CMMI-1727894. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the National Science Foundation.

In many AM structures, such as the optical sensor pre-
sented in Afkhami et al. (2020a), spatial factors such as
droplet coalescence or film flatness and consistency play
a larger role in device performance than temporal events.
Therefore, for these systems, the spatial tracking errors
e(x,y) are generally more important than temporal er-
rors e(t). To address this performance objective, spatial
control frameworks like spatial iterative learning control
(SILC) provide a suitable framework for regulating the
material deposition of these systems (Altin et al. (2018);
Hoelzle and Barton (2016, 2014); Afkhami et al. (2020b);
Aarnoudse et al. (2019); Wang et al. (2016b)). SILC is an
extension of temporal ILC (Bristow et al. (2006); Norrlof
and Gunnarsson (2002); Meng and Moore (2017)) refor-
matted for the spatial domain. SILC uses spatial data
(e.g. layer height) from previous iterations to derive a
feedforward control signal for the next printed iteration. In
addition to the layer to layer dynamics, it is important to
consider process constraints within the AM system, such as
the requirement of strictly positive control inputs, f(z,y).
Model predictive control (MPC) is a control framework
that works especially well for constrained systems and
incorporates a forward projection process that is useful for
AM systems in which the current layers directly impact
future layers. MPC leverages the system model and the
data from past iterations to predict optimized control
actions for multiple steps ahead in the future (Rawlings
et al. (2017); Li et al. (2019); Lee et al. (1999); Xie and Ren
(2018); Rosolia and Borrelli (2017); Gegel et al. (2019)).
MPC has been already applied to AM process to control
1D height increment with varying reference (Gegel et al.
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(2019)). Similarly, predictive iterative learning control in
and Yu and Hou (2016); Wang et al. (2016a) has a similar
idea that uses past information and a prediction of future
iterations to update its control input.

Through AM, a 3D structure is fabricated by repetitive
addition of material. The behavior of a printed layer
depends on interactions between the printed material and
the topography from previous layers. This results in an
iteration varying system in which the system parameters
and plant dynamics, H, change from layer to layer. The
ability to achieve robustness through control design highly
depends on the magnitude of the plant model variations,
AH. To tackle the iteration varying behavior of many AM
processes and enable robust control designs, the system
dynamics can be formulated to ensure robustness under
interval uncertainty assuming plant model variations are
bounded (Altin et al. (2018); Ahn et al. (2007)). In our
previous work (Afkhami et al. (2021)), we applied higher-
order SILC (HO-SILC) (similar to Fig 1la) to a model
of an AM process. This higher-order controller leveraged
data from previous devices and previous layers within
the same device to construct an optimized input for
the next layer of a 3D structure. We term this type of
learning controller as backward learning. A drawback of
this previously presented HO-SILC framework was that it
was overly conservative for systems with minimal model
uncertainty since the controller was designed to ensure
robustness for the maximum amount of uncertainty, thus
causing the system to lose performance advancements.

To achieve a less restrictive bound on the prediction hori-
zon, researchers have introduced a finite-tail MPC formu-
lation that solves a constrained optimal control problem
based on prediction and optimization. MPC exploits the
system model to predict performance error signals for mul-
tiple steps (layers) in the future and consequently make in-
formed control decisions that work to achieve performance
gains across all of the layers. This approach is known as
a receding horizon strategy in which a sequence of input
signals for multiple steps (layers) in the future is planned,
and yet only the next control action is applied. The se-
quence of control inputs will be recomputed once new
information is available. Although closed-loop stability is
not generally guaranteed with an MPC framework, adding
a final/terminal cost can improve the stability properties
through improvements in convergence speed and tracking
error. Stochastic and adaptive MPC provide alternative
techniques that have been used to achieve these desirable
properties (Sun et al. (2013); Bichi et al. (2010)).

The work presented in this paper investigates whether the
integration of SILC with MPC into a combined learning
control framework will result in a layer-to-layer process
that is more robust to model uncertainty compared to
traditional SILC, and yet maintains the high performance
advancements expected from these control architectures.
Note that in the multi-layer structures considered in this
work, the layers are built on top of each other, such that
the printing behavior for a current layer depends directly
on the topography of the previous layers. The goal of this
work is to derive an integrated control framework that
leverages the information from previous layers using HO-
SILC, plus a prediction from future layers using MPC (see
Fig. 1b), to minimize the total error and individual layer

errors within an AM process simultaneously, while achiev-
ing uniform thin-film fabrication with minimal surface
roughness. The novel contributions of this work include:

e Derivation of a higher-order SILC framework for min-
imizing layer and total errors simultaneously (Fig 1a)
to more effectively fabricate 3D structures in a layer-
by-layer fashion.

e Development of a combined spatial ILC and terminal
cost MPC framework that incorporates backward
learning through SILC with forward learning using
MPC to improve the performance of AM processes.

e Demonstration and analysis of the performance ad-
vancements achieved through the implementation of
the combined learning control framework on a simu-
lated model of a high-resolution printing process for
the fabrication of 3D constructs.

The remainder of this paper is organized as follows. The e-
jet system and the layer-to-layer material addition process
is detailed in Section 2. The mathematical derivations of
the SILC and SILC-MPC controllers for AM structures
are detailed in Section 3. In Section 4, the numerical
simulation results for a multi-layer e-jet printed structure
are presented and the performance of SILC and SILC-
MPC controllers are compared. Finally, the conclusions are
given in Section 5. Complementary material is presented
in Appendix.

2. AM PROBLEM FORMULATION

The proposed learning control framework is designed for
additive manufacturing processes. In particular, this work
considers a model of a u-AM process, known as Electrohy-
drodynamic jet (e-jet) printing. E-jet printing is a y-AM
technique that enables fabrication of 3D components with
micro-scale spatial and nano-scale thickness resolution.
Figure 2B shows a multi-material e-jet printer located at
the University of Michigan. The main elements of this e-
jet printer are a conductive nozzle, grounded substrate,
translational stage, ink chamber containing liquid ink,
and an integrated atomic force microscopy (AFM) for
measurement of layer topography. A high voltage pulse
with short pulsewidth, ¢,, is applied at the nozzle tip as
shown in Fig 2A, pulling the liquid ink from the nozzle to
the substrate. By synchronizing the stage motion with the
applied voltage at each spatial location, drop-on-demand
printing is achieved with the ability to deposit a droplet
at a desired location. By placing droplets adequately close
to each other with fixed droplet-to droplet distance known
as pitch, uniform thin-films such as the one in Fig 2C-
E are fabricated (Afkhami et al. (2020a)). The sequence
of material addition and heightmap evolution of multi-
layer structures in an additive process is described as the
following 2D convolution equation (Pannier et al. (2019):

>

meZLp ,nELN

where g;(z,y) € RM*N and fi(x,y) € RM*N are the
deposited topography (output) and cube root of droplet
volume (input) at each spatial location (x,y) at layer
[, respectively. Droplet volume is controlled through the
applied pulsewidth, ¢,. Topography increment at layer [ is

defined as, Ag;(z,y) £ gi(z,y) — gi—1(x,y). The response

Agi(,y) = M @ = myy =) x fulmen),
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Fig. 1. Block diagrams of SILC and SILC-MPC frameworks: Learning occurs in the vertical direction. A) SILC utilizes the knowledge
from previous layers to predict the optimized input of the next layer. The knowledge here refers to the input signal, fj, layer (or

incremental) error, Ae;, and total error, e; at layer I, which is sum of the incremental errors over all layers, e; = 22:1 Ae;. B) Learning
occurs from previous layers using SILC design, as well as a prediction of future layer depositions using MPC design, by incorporating

a prediction of future layer errors, e;,,, to predict the input signal of multiple layers ahead,

= (fi+1, ~~-,fl+NmpC). At each printing

pass, only the input signal of the first layer, f; |1, is considered. Here, each layer is one iteration and w~! is the trial-delay operator.
- _ (2T =T _ T T =2 — (ADT =T — T T
¢ = (Chi TN, g = (7l+1,...,7l+Nmpc), AT = (ATL,, . ATy ), and AY = (A?Hl,...,A?HNmpC). FB

operator takes a stacked vector, (for example ?), extracts its first block, ?Hl, and applies the shift-delay operator to extract €.
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Fig. 2. High-resolution fabrication using e-jet printing tech-
nology. A) schematic of an e-jet printer with dual nozzles. B)
e-jet Printer testbed located at the University of Michigan. C),
D) and E) AFM scans and optical microscopy of a 40 x 40 pm?
thin-film pattern deposited by the e-jet system in Fig 2B.

of the build material to an impulse applied at coordinate
(m,n) and layer [—1 is given as h;"}'(x,y), which describes
the spatial distribution and spreading of the droplet into
nearby pixels. To better represent the printing environ-
ment, a normally distributed iteration-varying white noise
signal, Ahy, is added to the plant model, with a mean and
variance of 0.00 and 0.2, respectively. Repetitive model
uncertainty is also added to represent unmodeled surface
variations or initial tilts within the system and is repre-
sented by Ahyep = 0.1 % hy. Combining these features
together, the iteration varying spatial impulse response
used for (1) will be hy = h(g;) + Ah; + Ahyp. Note that
the plant matrix, h(g;), is a function of previous layer
topography. We use the methods described in Pannier
et al. (2019); Afkhami et al. (2021, 2020b) to calculate
the impulse response for a given layer. In order to develop
the control framework, the 2D convolution in (1) needs to
be converted to the following input-output lifted- version,

A= H(qu)?z

1 l
= ZA7Z = ZH(Qifl)?i
i=1 i=1

(2a)

(2b)

where 71 2 v(q(,y)) € RYL and 11 2 u(fi(w,y)) €
RMNX1 represent the vectorized forms of the output and
input signals through the use of v(.) as a vectorization
operator that converts a matrix, P € R™*™ into a column
vector form, € R™*1 H(g,_,) € RMNXMN g the
iterative plant matrix associated with the iteration varying
impulse response hl(Tl’n), and H(g,) is the plant matrix
associated with the first layer deposited on the substrate,
which we assume to be a smooth pre-layer of cured ink.
In addition, the incremental layer-error (A€;) and total
build error (€;) are defined as,

AT 2AGI AT =A7] -~ qu?la
! !
T A2 -gi =) AT, Fi=> A7
=1 =1

where A?f and 7? are the desired incremental and total
build height maps at layer [.

3. CONTROLLER FORMULATION

(3)

In our previous work (Afkhami et al. (2021)), we used a
backward learning method through an SILC design similar
to Fig .1a that leveraged the data from previous iterations
to construct the optimized input. From a manufacturing
perspective, our goal was to develop a control framework
that regulates the deposition process to realize a vertically
stacked multi-layer/multi-material structure with consis-
tent layer thickness, which is a highly desirable character-
istic in many sensory applications, such as optical sensors
where uniformity and periodicity of the layers are of great
importance Afkhami et al. (2020a); Lequime et al. (2015).
In these examples, the norm optimal SILC (NO-SILC) cost
function was defined based on the layer errors, A€;. The
proposed SILC resulted in consistent layer deposition with
A€ converging from layer-to-layer, resulting in uniform
layers. However, SILC did not weight the total build error
e, resulting in the total error increasing over the layers.
In AM structures, the layer errors add up during the build
and may result in a large deviation from the desired height,
especially when the layer number is large. Therefore, if
the printing objective requires total device dimension con-
vergence as well as layer-by-layer convergence, minimizing
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the layer errors alone may not be sufficient. To address
this need, the work in this paper investigates a modified
backward learning controller that incorporates individual
layer as well as total device errors combined with a forward
learning approach that uses MPC to achieve a projection
in the printing process to enhance the control decisions.
The combined control architecture can be found in Fig .1.

3.1 SILC Framework

In this section, we use a norm-optimal SILC (NO-SILC)
framework to design robust learning filters. Assuming
a constant desired height for all layers, we modify our
previous cost function in Afkhami et al. (2022) to minimize
the total error and layer error simultaneously.

JIEC = A?£1QAEA?Z+1 + ?ZTHQl?zH + 7;‘11 S17l+1 @)
+ (7z+1 - 71)TR1(7L+1 - 71),

where Qa.,Q;,S1, Ry are weighting matrices used to
weight the layer errors, total errors, control inputs and
change in control inputs. These matrices are generally
defined as identity matrices scaled by non-negative scalars
such that QAe = QAeI, Ql = ql:[, Sl = 811, R1 = 7"11.
The optimal feedforward signal is achieved by solving the
following optimization problem,

o71LC
87 =-H/Q(@:+A%, + H1717z - Hl?l+1) + Sl7z+1
141

+ Rl(?H—l - ?l) ~HQa (A7 + Hl—l?l - Hl?H—l) =0.
(5)

Solving for the updated control signal, the SILC update
law and learning filters can be shown to simplify to:

7l+1 = Lf?l + Le?l + LAeA?l (6a

fir1(u,v) = (Lyo fi+ Leoer+ Lae o Aep)(u,v)  (6b)
where o is the Hadamard or entrywise product of two ma-
trices. Assuming H can be written as block circulant with
circulant blocks (BCCB) (Hoelzle and Barton (2016)),
(6b) is the equivalent frequency-domain representation of

(6a). BCCB matrices are defined in more detail in Hoelzle
and Barton (2016).

N

The control update, f;+1(u,v), is the 2D discrete Fourier
transform (DFT) representation of fi11(z,y). More details
can be found in Hoelzle and Barton (2016). Note that the
update law in (6) is higher order because the total error in
a multi-layer structure is a function of the incremental er-
rors from all previous layers, ¢; = Zézl Ae;. Importantly,
if one wanted to design an iteration invariant controller,
the learning filters must be based on the nominal plant Hj
from (5) as demonstrated below:

(g1 +qae)HG o Hy + 11

L ,U) = , 7
f(u U) (ql + qu)Hg o HO + (sl + rl) (u U) ( a’)
g1 Hj
LE b) = bl 7b
() (@1 + qae)HG o Ho + (51 4+ 11) (w,v)  (7b)
H*
La(u,v) = a1+ 220

(1 + gae)HE o Ho + (51 +71) (u,v)  (7c)

3.2 SILC-MPC Framework

In this section, we extend the higher-order SILC frame-
work in Section 3.1 to an SILC-MPC framework that
leverages the information from previous layers, as well as

a prediction of future layers to determine an optimized
feedforward input signal.

The quadratic cost function for the combined controller is
defined as,

= gILC 4 gMPC _ ?TQ?JF?TS?JFA?TRA? (8a)

Nmope
TMPC = 7, + Z Ti+j
j=2
iy = C,Q €0, + (7z+j - ?l+j—1)TRj(7}z+j - ?l+j—1)

+71T+jsj7z+j7 )
8b

where Q;,S;, R; are weighting matrices that are defined
as Q; = ¢;I, S; = s;I, and R; = rj1, and gj,s;,and r;
are positive scalars. Ny,,. denotes the MPC horizon. The
other components in (8) are defined as:

Qp. --- 0 A€
. ?H—l
0 Q, : 142
Q= . a? = . )
: . 0 :
0 ... Qu,,, TPnI @l Nompe
Tin s o
142
7 = : S = c :
? ’ 0o ... SNmpc
I+Nmpe
o7 .
142 — fig1
AT = . R= |
’ 0 . RNppe
?H»Nmpc - 7L+Nmpc—l ?

The MPC cost function in (8b) contains two elements.
The first element is the terminal cost, denoted by J,
that ensures closed-loop stability of the MPC algorithm
(Rawlings et al. (2017); Li et al. (2019)). The second term
is a projection forward in the layer direction that aims to
minimize the total error in future layers by predicting the
system behavior in future layers and using it to determine
the control input for the next layer. We define the terminal
cost as J; & ?ﬁNmPC(PNI)?HNmPC, where Py is a
positive scalar. The MPC cost function starts from j = 2,
since j = 1 is already taken into account in the HO-SILC
algorithm provided in (4). Let U 1o denote a vector that
contains the information from previous layers, such that

71LC = [??’ ;FvA?ﬂ

sequence ?*, the cost function in (8) is differentiated with

T. To find the optimal control

respect to 7 and equated to zero.
e ag"” g™
T T 0T e

with X € RMNNmpex MNNmpe 7 ¢ RMNNpmpex3MN g
c RMNN

]T:X7+Z 71LC+?, 9)

mpeX1 - Ap analytical expression for X, Z and

can be achieved by deriving the partial derivatives given
in (9) using the cost function given in (8). From these
derivations, we can determine that the structure of X, Z

and Y has the following relationship:
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(a) Normalized total error: higher vales of Py lead to decreases

in total error. We fix Py = 1, since convergence properties do not
change for higher values of Py > 1.
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(b) Normalized layer error: varying values of Py appear to have
no effect on the incremental error. Note that terminal cost is only
imposed on the total error in (8b).

Fig. 3. Effect of terminal cost on convergence properties of SILC-MPC: The results are shown for SILC-MPC with Np,pc = 2.
Adding a terminal cost in (8b) improves the SILC-MPC performance for total error with minimal impact on layer error.

Nmpc
X =Hy (Pn I+ QacAG, 1) + Z Q,)Ho+ (R; +S; +Rit1),
n=i
Nmpc
X, ;= -HI(PyI+ Z Q,)Ho—Ry, j=itlorj=i—1
n==k
Nonpe

Xi; = —Hj (PNI+ ZQn)Ho, j<i—lorj>i+1
n=k

. (10)
where k = max(7,7) and A(i,1) = 1 if ¢ = 1 and is zeros
otherwise. Similarly Z has the following format

Nmpe

~HI(PN T+ ) Q)

n=t

Zi1 =

Z12 = ~HJ(Q, + Qa.)Ho — R (11)
Zi3=—-Hj(Q; + Qa.)
Z¢12=Z¢73=0 i >1
Likewise ? has the following fermat:
V(1) = ~H NopePx T+ Y (nQ,) 7
n=2
Nompe (12)

7(’L) = 7Hg‘(NmpcPN I+ Z (nQn))7, 1> 1

Assuming X is invertible, the ogfilmal control i$3ut Z* is
then obtained by solving X f* + Z 71Lc + = 0 as
* = —X_l(Z Lo + ?) We only implement the first

block of 7*, which is related to the control input ?l 1
of the next layer. The derivation of (10-12) is shown in
the appendix. Note that although X is symmetric, and
each block matrix of X and Z is BCCB, the overall X
and Z matrices are not BCCB; thus, we have to invert
a high dimensional matrix, X, to calculate the optimal

solution f *. It is important to note that this calculation
for the SILC-MCP controller will be computationally more
expensive than the update law required for SILC in (6)
and (7). Care must be taken to determine when this
approach is necessary and the computation burden is
acceptable for the given system requirements. Future work

will investigate methods to reformulate the SILC-MPC
update law in a way that the DFT computations are
possible and will result in a reduced computational burden.
In addition, future work will focus on the relationship
between the invertibility condition of the X matrix and
stability and convergence of the SILC-MPC algorithm.

4. SIMULATION VALIDATION

In this section, simulation results for the system described
in Section 2 controlled by the SILC-MPC and SILC
frameworks are presented. As described in Fig .1b, the
SILC-MPC controller uses the information from previous
layer depositions (f}, e;, and Ae;) through an SILC design,
and leverages a prediction of what will happen in future
depositions (e;y2, ...,en,,,.) through an MPC design, to
estimate an optimized feedforward signal for future layer
depositions, fji1,..., fiyn,,,.. However, at each printing
pass, we only implement the current layer input signal
fi11, recalculating the feedforward signals each layer. A
multi-layer structure similar to Fig. 2 with 100pum x100pm
spatial resolution, 150 nm layer thickness resolution, and
25 layers is considered. For the first iteration, [ = 1, we use
a nonzero input signal such that the first layer thickness
was around 130 + 22 nm, which is computed based on
knowledge of conventional pre-prints.

To design the weighting parameters for the SILC-MPC
cost function in (8), we define the following vectors,
[qu,qla"'anmpJTv? [81,"'78Nmpc]T7?>
[F1, s TNpe] - The weighting coefficients for the two
frameworks are presented in test1l-test3 and test4-test6 of
Table 1, respectively. The weighting parameters are de-
signed to be equally weighted such that || ¢ || = 1,||5|| =
0.03,||7|| = 0.01, which are the same weighting parame-
ters that we used in our prior work Afkhami et al. (2022).

Figure 3 shows the effect of terminal cost in (8) on
the SILC-MPC performance. As demonstrated in MPC
literature (Lee et al. (1999); Pannek and Griine (2011);
Xie and Ren (2018)), adding a terminal cost improves
the convergence and stability properties of the SILC-MPC
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roughness values result in smaller deviations from the nominal plant
hi(z,y) — ho, which is confirmed in Fig 4d.
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(b) Normalized total error: similar to the results in Afkhami et al.
(2022), total error increases over the build if layer error is emphasized.
SILC-MPC with a terminal cost (test4) results in the lowest combined
layer and total errors.
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(d) Simulation model uncertainty: test 4 that includes a terminal
cost results in the smallest differences between the nominal and actual
plant matrices.

Fig. 4. SILC (tests 1-3) and SILC-MPC (tests 4-6) convergence comparison. Note that for both controllers the weighting
coefficients are chosen such that || || = 1, ||7|| = 0.01, || ¥]] = 0.03. a) normalized layer error versus layer number, b) normalized
total error versus layer index, c) standard deviation of total height versus layer index, d) model uncertainty calculated by the difference
between h(g;) and hO derived using the M3 method from Pannier et al. (2019) for NOA170 in Afkhami et al. (2022).

algorithm with respect to total error and can regulate
both layer and total errors at the same time. Next, we
set Py = 1 and investigate the effect of mpc horizon on
the controller performance.

The performance of the SILC and SILC-MPC controllers
is compared in Fig. 4 and Table 1. Tests 1-3 are related
to the SILC framework with ¢ = [gne, @1 = qe]T,E> =
[0.03], 7 = [0.01], while tests 4-6 are related to the SILC-
MPC framework. The simulation results imply that there
is a trade-off between performance and computation time
of the SILC-MPC controller. The SILC-MPC framework
generally has lower total error and surface roughness
compared to the SILC controller and can regulate both
layer and total error at the same time. However, the
SILC-MPC framework is computationally more expensive
than the SILC controller. Based on the information in the

last column of Table 1, the simulation time for updating
the feedforward signal per layer for the SILC controller
is 50% lower as compared to the SILC-MPC controller
with a terminal cost. Comparing tests 5 and 6, it is
observed that although higher values of the receding
horizon, Ny,pc, enhance the SILC-MPC performance, the
update-law takes more time to update the input signal.
The reasons for these differences are that 1) matrices X,
Z and 7 are high dimensional compared to the SILC
learning filters Ly, and L, 2) the structure of Hy allows
for the use of fast DFT computations in (7) that do not
require inverse matrix calculations, while in the SILC-
MPC update law, ?* = XYz Yo + 7), X is not
BCCB and cannot use DFT calculations.

Similar to the traditional MPC in Rawlings et al. (2017);
Pannek and Griine (2011); Vallon and Borrelli (2020);
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Table 1: SILC and SILC-MPC parameters and simulation time
=

7 s v Pn| Nimpe| time(s),
/layer
test 1 % F’J 0.03 0.01 - | - 1.22
A 1
5 test 2 % M 0.03 0.01 — | - 1.22
test 3 \/% m 0.03 0.01 — — 1.22
1 1 1
1 0.03 0.01
test 4 | —- i - H v M 1 2 2.59
E 1 1 1
1 0.03 0.01
(Izj test 5 7 i s [1] v |:1:| 0 2 2.59
T _—1
Q 1 1 1
1 1
test 6 % 1 "\/0; 1 "\-/031 11| 0 5 20.9
1 1
1 1 1

Rosolia and Borrelli (2017), simulation results in Fig. 4b
show that as the MPC horizon increases, the performance
of an SILC-MPC control law without the terminal cost
(tests 5 and 6, Py = 0) approaches an SILC-MPC with
terminal cost (test 4, Py = 1). Comparing the simulation
results in Figures 4a-4d, the SILC-MPC controller with a
terminal cost formulation in test 4 provides a more robust
and stable controller that results in decreases to the layer
and total errors simultaneously, leading to highly uniform
stacked thin-films with low surface roughness.

5. CONCLUSION

In this work, we present a novel spatial topography con-
troller to enable enhanced deposition at the micro-scale.
The framework combines spatial iterative learning con-
trol with model predictive control to achieve enhanced
performance and robustness. The proposed controller is
robust to stochastic and repetitive model uncertainty. Sim-
ulation results of an e-jet printed structure controlled by
the SILC-MPC framework indicate that high-quality thin-
films with uniform and repeatable thickness resolutions
are achievable by tuning the MPC terminal cost and ILC
parameters. The results imply that SILC-MPC framework
generally has better performance compared to a tradi-
tional SILC controller. However, the SILC update law is
much faster (50%) compared to the SILC-MPC algorithm.
Future work will consider non-negativity constraints in
the input along with experimental validations. In addition,
reformulation of the SILC-MPC update law in a way that
DFT computations are possible to reduce the computation
times will be explored. Future work will focus on robust-
ness analysis and experimental validation of the proposed
framework.
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APPENDIX

In this section, we describe step by step derivation of the
analytical solution of the SILC-MPC framework presented

in equations (10-12). Solving (8) and (9) requires knowl-
edge of future error signals, ?l+j- Although we do not
know these values, we can estimate them based on the
values that are known from previous layer depositions,

J J
H .
Ty = €+ E (Depyn) =€ +57 — E Hl+n717l+n~ (13)

n=1 n=1
For a single material deposition, we assume the de-
sired height is constant for all layers such that A?f =
A77+n — 7. In addition, the plant spatial dynamics are
noncausal in the spatial domain, meaning that the applied
input at a given location will affect the output in the
advanced layers and surrounding coordinates (Hoelzle and

Barton (2016); Pannier et al. (2018)). This means that

the error signals of future_1>ayers are functions of the input
Citj

signal from prior layers, 5 # 0,Vi < j. Note, the error
J 1+

signals o?f previous layers are not function of future layer

inputs, ?%JL =0,Vi > j. From (13) we have

¢4,
H—0, j<i (14a)
0 fiyi
€1,
S - Hypy, > (14b)
O fiti

To determine X, Z and Y from (9), we need to calculate
the partial derivative of the cost function in (8) with
respect to the future layer input signals, ~27—. For i = 1

p uture layer input signals, -=— i=1,

mpc ILC
og  _ ag™m? 9J We

ofii1 0 Y

already calculated ‘Z—%}E in (5), now we need to calculate
1+1

the situation is different,

mpc
97, as follows
I+1
p Nmpe Nmpe
§gmPe
? :*H;r E Q. (€1 +n7 — E Hz+1«—17z+k)*
0fin n=2 k=1
Nmpe
7‘2(7z+2 — 714—1) — H?PN (€1 + Nmpc7 - E Hl+k—17l+k)~
k=1

(15)

: oJ _ oJgmre _ T =4
For v > 1, T m = 7Hl+i71PN(el +Nmpc? -

Nonpe Nonpe OT14 .
Do Hipno1fi4n) + PP ﬁ% Depending on the

, . OTie; -
values of ¢ and j, 8‘71“ is as follows
I+

Nmpe

t=7: =— qulT«HL—l(?l +]7 - Z Hl+n717l+n) + 5j7l+j

n=1
+ Tj(?lJrj - ?l+j71)
(16a)
Nmpe
o T -
j=i+1l: =—qH;, (€ +57 — Z Hl+n717l+n) (16b)
n=1
- 7"]'(71“ ~ T i)
Nmpe
J ikl = g HE, (B4 5T~ Y Hipuo Fien). (160)
n=1

and zero for ¢ > j. Summing up (16) over j = 2,..., Nypc
and adding up the terminal cost components, and consid-

ering (5) and (15), X, Z and Y are calculated based on
the nominal plant as presented in (10-12).



