

leverage the source knowledge even when the source reward

function is a biased estimate of the target reward function.

Fig. 1 shows the basic idea of this paper where an RL agent

has access to a Physics Guided Model (PGM) that acts as

the source task and provides an estimated reward function

RS . The actual reward function RT in the target task is

unknown apriori. The agent learns to behave optimally in

the PGM through sequential interactions and finds the source

optimal policy π∗
S . Next multiple temporal abstractions are

created from π∗
S where each of this abstraction consists of

multiple single timestep primitive actions suggested by the

PGM. We call this approach ‘Temporal abstraction in Physics

guided RL (TAPRL)’ and denote π∗
TAPRL as the optimal

policy obtained from this method that can overcome the bias

induced by π∗
S .

The contributions of this paper are the following: (1) The-

oretical performance bounds on SMDPs when the reward

function is different between two environments, (2) De-

velopment of two benchmark problems with HVC-envs,

(3) Demonstration of the performance of TAPRL in the

benchmark problems. This paper is organized as follows:

Section II provides important background on MDPs, SMDPs

and temporal abstraction, Section III provides the definitions

and theoretical bounds along with the proposed algorithm,

Section IV provides the benchmark examples, and Section

V discusses important results.

II. BACKGROUND

A. MDP and value function based RL

The standard RL framework is formalized as a Markov

Decision Process (MDP) [11] while temporal abstraction is

formalized by semi-Markov Decision Process (SMDP) in the

context of MDPs [10]. A finite discrete time Markov decision

process is usually defined as a tuple M = 〈X ,A,P,R, γ〉,
where X is the state-space, A is the action-space, P is

the transition probability (p(xt+1|xt, at)) that describes the

dynamics of the system, R : X × A → R defines a reward

function and γ ∈ [0, 1) is a scalar discount factor. At each

timestep, the learning agent at state xt interacts with the

environment using an action at, obtains a reward Rt =
R(xt, at) as the feedback and transitions to the next state

xt+1 according to the conditional probability p(xt+1|xt, at).
We use the following notations to describe the transition

dynamics in Eq. 1 and expected reward in Eq. 2 for this

single timestep learning mechanism in an MDP.

pa
xx

′ = p(xt+1|xt, at) (1)

ra
x
= E[Rt|xt, at] (2)

Formally, the goal of an agent is to learn the pol-

icy π : X → A that maximizes the expected dis-

counted future reward from state xt in the case of an

state-value function V π(xt) or from state-action tuple

(xt, at) in the case of an action-value function Q(xt, at).
The action-value function while following a policy π

is defined as Qπ(x, a) = E[Rt + γRt+1 + γ2Rt+2 +
. . . |x, a] = ra

x
+ γ

∑
x
′∈X

pa
xx

′

∑
a′∈A

π(x′, a′)Qπ(x′, a′).

In value-based RL, the optimal policy π∗ is extracted

from the optimal value functions Q∗(x, a) = ra
x

+
γ
∑

x
′∈X

pa
xx

′ maxa′∈A Q∗(x′, a′). In contrast, policy based

RL methods are also popular for directly optimizing the

policy to obtain the optimal policy [1], but are not leveraged

in this work.

B. SMDP and temporal abstraction

To extend the MDP framework for temporal abstraction,

we adopt the “option framework” [10], [12] where option

refers to temporally extended action, also known as ‘multi-

time actions’. Unlike single timestep actions, options can be

executed for multiple timesteps. If options are terminated

after one timestep then the framework is the same as the

traditional single-step action RL framework.

Definition 1. (Option) An option is a three element tuple

〈I, π, β〉 where the option starts from current state xt if and

only if xt ∈ I where I ⊆ X , follows intra-option policy π

and terminates according to the probability β : X → [0, 1].

In the presence of a set of options, the MDP is elevated to a

new decision making process known as semi-Markov Deci-

sion Process (SMDP) [10]. In the above formulation it is also

imperative to identify whether an option is markov or semi-

markov. Let τot
∆

= {xt, at,xt+1, at+1, . . . , at+∆−1,xt+∆}
be the trajectory created from the execution of option ot
starting at timestep t and continuing for ∆ timesteps before

termination. Then ot is Markov if for any τ = {τ : t ≤ τ ≤
∆}, policies and termination conditions depend entirely on

xτ . In contrast, ot is semi-Markov if policies and termination

conditions depend on the history of the trajectory up to

τ . Just as MDPs have a policy π that chooses actions

from action-space A, SMDPs also have policy-over-options

µ : X → O that chooses option from the option-space O. To

finalize the option framework for an SMDP, we can make

the following definitions of the transition dynamics, Eq. 3,

and expected reward, Eq. 4, which are analogous to Eq. 1

and Eq. 2 respectively for an MDP.

po
xx

′ =
∞∑

k=1

γkp(x′, k) (3)

ro
x
= E[

∆−1∑

k=0

γkRt+k|xt, at] (4)

where p(x′, k) is the probability of terminating the option

at state x
′ after k timesteps. Value functions, option-value

functions and their corresponding optimal counterparts for an

SMDP can be defined as we did for an MDP. For example,

the optimal option-value function can be defined in a way

similar to optimal action-value in an MDP, Q∗
O(x, o) = ro

x
+∑

x
′∈A

po
xx

′Q∗
O(x

′, o′). SMDPs have a key limitation in the

sense that each option is treated as one single unit and there

is hardly any way to investigate how each option is made.

A more efficient way might be to interrupt options before

completing the whole sequence or in case of markov options,

to use “intra-option learning” [10], [12]. Note that when the

options are semi-Markov, intra-option learning might not be

2893

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

feasible as in that case we need to wait until the semi-Markov

option terminates before we can evaluate it.

III. TEMPORAL ABSTRACTION FOR TRANSFER

LEARNING

A. Mechanism and performance bound

Using the formalization from the previous section, we

establish the framework for using temporal abstractions in

transfer learning in the context of RL. We argue that temporal

abstraction provides guided exploration in the target environ-

ment while also keeping the number of interactions feasible.

Intuitively our idea is to execute the optimal policy learned in

the source environment in small segments and observe the

feedback at the end of each execution to develop sample

efficient exploration strategies in the target environment.

Informally this idea can be visualized as in Fig. 2. Here we

elevate the source MDP to an SMDP and then create ‘useful’

temporal abstractions that are transferred to the target SMDP

which is elevated from the target MDP.

source: MDP

source: SMDP target: SMDP

target: MDP

{oi}

Fig. 2: Transferring temporal abstraction from a source

to target environment where {oi} is the set of temporal

abstractions

One key challenge in transferring temporal abstractions is

that their usefulness decrease substantially if the source

and target SMDP are not similar even in only one of the

MDP elements. In our problem setting the source MDP is

a possibly inaccurate estimation of the target MDP which

makes decision making challenging due to the changes in

the elements of the MDPs. To this end we restrict ourselves

to the case where the source reward function RS is an

inaccurate estimation of the target reward function RT .

Note that the transition probabilities may also vary between

these two environments but this consideration is out of the

scope of this paper. We provide two value-function based

performance bounds for this transfer learning strategy. We

draw motivations from “changing MDPs” [13] and transfer

RL [14] and extend their results to SMDPs in theorem 1

and corollary 1.1. Specifically, theorem 1 provides the worst-

case performance bound when each environment uses its own

optimal temporal abstractions, meaning each environment

uses its own optimal option-policy. Corollary 1.1 provides the

worst-case performance bound when the optimal temporal

abstractions from the source task is directly implemented on

the target task without any modification, meaning we execute

the optimal option-policy from the source environment in an

offline setting in the target environment. Note that in this

study we are interested in semi-Markov options only as we

focus more on creating useful options and executing them on

the target environment rather than interrupting them. Each of

our semi-Markov option consists of primitive actions from

the action space A.

Theorem 1. Let two MDPs, MS = 〈X ,A,P,RS , γ〉 and

MT = 〈X ,A,P,RT , γ〉 where RT 6= RS , O is the same

set of options defined on both MDPs, µ∗
S and µ∗

T are the

optimal policy over options in MS and MT respectively,

then the option value bound is

‖Q
µ∗

T

O,T (x, o)−Q
µ∗

S

O,S(x, o)‖∞ ≤
‖ro

x,T − ro
x,S‖∞

1− γ∆

where, option o is executed for at least ∆ timesteps and

ro
x,T , r

o
x.S are rewards obtained from execution of o starting

from x in MT and MS respectively.

Proof: Let’s define the supremum norm ||ro
x,T −

ro
x,S ||∞ = maxx,o |r

o
x,T − ro

x,S | and ||Q
µ∗

T

O,T (x, o) −

Q
µ∗

S

O,S(x, o)||∞ = maxx,o |Q
µ∗

T

O,T (x, o) − Q
µ∗

S

O,S(x, o)|. Also

let’s simplify the notations QT
T ≡ Q

µ∗

T

O,T (x, o), Q
S
S ≡

Q
µ∗

S

O,S(x, o), Q
T

′

T ≡ Q
µ∗

T

O
(x′, o′), roT ≡ ro

x,T , rS ≡ ro
x,S .

From the definition of optimal option-value function,

|QT
T −QS

S |

= |roT +
∑

x
′

po
xx

′ max
o∈O

x
′

QT
′

T − roS +
∑

x
′

po
xx

′ max
o∈O

x
′

QS
′

S |

≤ |roT − roS |+ |
∑

x
′

po
xx

′ max
o∈O

x
′

QT
′

T −
∑

x
′

po
xx

′ max
o∈O

x
′

QS
′

S |

≤ |roT − roS |+
∑

x
′

po
xx

′ | max
o∈O

x
′

QT
′

T − max
o∈O

x
′

QS
′

S |

≤ |roT − roS |+
∑

x
′

∞∑

k=1

γkp(x′, k) max
o∈O

x
′

|QT ′

T −QS
′

S |

≤ |roT − roS |+ γ∆

∞∑

k=∆

∑

x
′

p(x′, k) max
o∈O

x
′

|QT ′

T −QS
′

S |

≤ ||roT − roS ||∞ + γ∆||QT
T −QS

S ||∞

As the above inequality is true for all x ∈ X , o ∈ O the

following is true as well

||Q
µ∗

T

O,T −Q
µ∗

S

O,S ||∞ ≤ ||roT −roS ||∞+γ∆||Q
µ∗

T

O,T −Q
µ∗

S

O,S ||∞.

In the following, we provide a straight forward extension of

the above theorem which gives the option-value bound while

following the same option-policy in both environments. Here

we establish a useful performance bound in corollary 1.1 that

compares the optimal option-value function in MT while

following µ∗
S obtained from MS .

Corollary 1.1. If µ∗
T and µ∗

S are the optimal option-policy

in MT and MS respectively, then

‖Q
µ∗

T

O,T (x, o)−Q
µ∗

S

O,T (x, o)‖∞ ≤
2‖ro

x,T − ro
x,S‖∞

1− γ∆

2894

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

B. Autonomous manufacturing of metamaterials

As the second benchmark problem we consider the chal-

lenging task of autonomous manufacturing of metamaterials

[7], [16]. Here the goal of the agent is to autonomously

learn the process parameters of an additive manufacturing

system that can manufacture an acoustic metamaterial artifact

with desired spectral response without human intervention.

The cost of data collection in this system is extremely

high due to materials cost, prolonged manufacturing time

etc. As a result, vanilla RL approaches can not be imple-

mented for this application. In this problem setting, each

state can be represented by two process parameters, x1 and

x2 that control the the filament spacing, lxy and filament

diameter, d of an artifact respectively. By controlling these

two parameters, it is possible to manufacture an artifact

with desired spectral response gd. Conceptually, we start

with some random values of the parameters, manufacture an

artifact, observe the reward and take an action accordingly.

1) Dataset: For this case study we have developed a

dataset of 4624 Finite Element Method (FEM) simulations

where each simulation is performed for a distinct set of

values of x1 and x2. The output of each simulation provides

spectral response, ga, which is used in a custom similarity

metric to compare against a user defined desired spectral

response, gd. Next we use a baseline value to convert the

losses into non-negative rewards.

R = B − L(ga,gd) (7)

where L(·, ·) is a custom similarity metric similar to [16], B

is the baseline value. To perform computational experiments

we create two environments from this dataset. For the source

environment MS , we create a model of the rewards using

the non-parametric Gaussian process [17] regression method.

Here MS is the physics guided model, PGM. This reward

model acts as RS (Fig. 4a). For the target environment

MT , a circular shift of the source rewards is performed

such that the highest reward region of RS becomes the

lowest reward region of RT (Fig. 4b). A small amount

of stochastic noise is also added, ξ ∼ N (0, 0.5), to the

reward values to make the target reward values uncertain.

This makes the learning problem challenging because the

learned offline policy π∗
S will perform poorly in MT . Our

goal is to overcome this bias and accumulate high rewards

while converging to a good terminal state xT , which should

be in the high reward region, after T timesteps; meaning that

the corresponding final artifact produces a spectral response

that closely matches the desired, gd.

C. Implementation details

To obtain the optimal policy in MS , we train the agent in

MS for sufficiently long time (105 and 10 million timesteps

respectively). As traditional RL algorithms use sequential

updates, only certain action values get updated. To break

this correlation, we use random sample Q-learning as the

training algorithm in both source environments. This off-

policy algorithm uses the Q-learning update rule for learning,

but collects data according to a random policy. Next we

700 750 800 850 900 950 1000

x1

300

350

400

450

500

550

600

x
2

12

18

24

30

36

42

48

54

60

66

high reward region

G

G

(a) RS .

700 750 800 850 900 950 1000

x1

300

350

400

450

500

550

600

x
2

12

18

24

30

36

42

48

54

60

66

high reward region

G

G

(b) RT

Fig. 4: Reward distribution for autonomous manufacturing

problem, G = goal states with high rewards.

extract π∗
S from the trained Q-values. Using the method

described earlier, 5 options are created for both benchmark

problems. In each experiment the length of the options are

kept constant, ∆ = 7 and ∆ = 5 for the four room problem

and the autonomous manufacturing problem respectively. We

optimize the options according to Eq. 6 where U(·) is the

reward obtained only from the final state of the trajectory,

meaning U(o) = RT (xt+∆−1, at+∆−1). We allow the agent

to learn and update π∗
TAPRL for 25 and 100 timesteps in

the four room problem and the autonomous manufacturing

problem respectively. This allows the agent to utilize a

total of 125 and 500 samples collected from MT to learn

π∗
TAPRL respectively. In this way we can obtain the empirical

performance of π∗
TAPRL. For the modified four room problem

we demonstrate the theoretically derived option-value bound

in theorem 1 along with the empirical performance of the

learned policy π∗
TAPRL. Here, we use value iteration for

training in MS . To demonstrate the performance of TAPRL

for the autonomous manufacturing problem, three different

initial condition tests are applied: a poor initial condition

that is far from the high reward region and having the

lowest reward region in-between (x0,b = [725, 525]Tµm),

a good initial condition that is close to the high reward

region (x0,g = [925, 525]Tµm) and finally 100 randomly

chosen initial conditions. Each experiment is repeated 100
times to obtain the statistics of the collected rewards i.e.

mean and standard deviation. Finally the performance of the

learned policy π∗
TAPRL is evaluated by comparing the rewards

accumulated by π∗
TAPRL against π∗

S and π∗
T for 100 timesteps.

Note that π∗
T is the benchmark policy obtained by training

the agent for 10 million timesteps in the target environment.

The effect of exploration in creating temporal abstractions

and the number of total samples used to learn π∗
TAPRL are

also investigated.

V. RESULTS

For the four room problem, actions chosen by π∗
TAPRL is

shown in Fig. 5b. Although π∗
TAPRL explores more states

than π∗
S , the algorithm can still can reach the goal state

while an offline implementation of π∗
S obtained from MS

will converge to a poor final state as π∗
S does not take

into consideration any feedback obtained from MT . The

theoretical bounds obtained for this toy problem are shown

in Fig. 6. Interestingly, lowest option-value bound for this

2896

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

