2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

Sample efficient transfer in reinforcement learning for high variable
cost environments with an inaccurate source reward model

Md Ferdous Alam!, Max Shtein?, Kira Barton®, David J. Hoelzle!

Abstract— Here we propose an algorithm that combines two
classic ideas, transfer learning and temporal abstraction, to
accelerate learning in high variable cost environments (HVC-
envs). In an HVC-env, each sampling of the environment
incurs a high cost, thus methods to accelerate learning are
sought to reduce the incurred cost. Transfer learning can be
useful for such environments by using prior knowledge from
a source environment. As only a small number of samples
can be collected from an HVC-env due to high sampling cost,
learning becomes challenging when the source environment
provides inaccurate rewards. To overcome this challenge we
propose a simple but effective way of creating useful temporally
extended actions from an inaccurate physics guided model
(PGM) that acts as the source task. At first we address this
issue theoretically by providing performance bounds between
two semi-Markov Decision Processes (SMDPs) with different
reward functions. Later we develop two benchmark HVC-envs
where learning must happen using a small number of real
samples (often on the order of ~ 102 or 103). Finally we show
that it is possible to obtain sequential high rewards in both
of these environments using ~ 10° real samples by leveraging
knowledge from PGMs with inaccurate reward models.

I. INTRODUCTION

Online learning through sequential decision making is
usually achieved by reinforcement learning (RL). Typically
RL is formalized as a Markov Decision Process (MDP)
[1], where an agent learns to find an optimal policy in an
environment by observing the feedback, often known as the
‘reward’. This trial and error based learning approach has
shown exceptional capabilities in mastering complex games
like ‘go’ [2], surpassing human level performance in Atari
games [3] and robotic manipulation [4], to name a few.
Although RL is promising for numerous real-world applica-
tions, most RL algorithms usually require a large number of
samples, on the order of thousands or hundreds of thousands,
from the environment to learn a task [5]. This approach is not
feasible in many real-world applications where each sample
incurs a high variable cost, thus making extensive sampling
not economical. For example, an additive manufacturing
system where manufacturing a sample incurs a variable cost
in the form of machine time, materials consumption, and
labor [6]. In these environments the learning must happen
with a small number of samples, often on the order of 102

This work was supported in part by NSF Award CMMI-1727894

IDepartment of Mechanical and Aerospace Engineering,
The Ohio State University, Columbus, OH, USA, 43210.
{alam.92, hoelzle.1l}Gosu.edu

2Department of Materials Science and Engineering, University of Michi-
gan, Ann Arbor, Michigan, USA, 48109. {mshtein}@umich.edu

3Department of Mechanical Engineering, University of Michigan, Ann
Arbor, Michigan, USA, 48109.{bartonkl}Q@umich.edu

978-1-6654-5196-3/$31.00 ©2022 AACC

or 103. We coin such environments as “High Variable Cost
Environments (HVC-env)”. Recently, a learning algorithm
has been proposed for autonomous manufacturing systems
[7] that builds upon two popular ideas, transfer learning
[8], [9] and temporal abstraction [10]. The basic idea of
transfer learning is to learn in a source task and then
transfer the knowledge in a similar target task so that the
number of samples needed to learn in the target task can
be reduced. Another way of accelerating the learning is the
use of temporal abstraction that extends an MDP to a semi-
Markov Decision Process (SMDP) and makes it possible
to implement temporally extended actions, often known as
‘options’. The intuition behind combining these ideas in [7]
is to extract temporally extended actions or options from
learning in a first-principles based cheap source task and then
use those options to interact with the real system which is
the target task. Transfer learning directs our actions to avoid
low-reward region of the state space. Temporal abstraction
permits us to jump large swaths of the low reward state
space to high reward regions. Here, we extend their work
so that it can be applicable to a wide variety of HVC-
envs. We provide necessary theoretical performance bounds
for creating temporal abstractions. Later we provide simple
yet effective ways to create temporal abstractions that can

Source (PGM), Mg

/
X', Rr(x,a) v

[®
g Target M

Fig. 1: TAPRL algorithm demonstrating how a PGM source
environment can be used to create useful temporal abstrac-
tions: source optimal policy 73, extracted from learning in
a PGM Mg, is used to create temporal abstraction o, with
primitives. The last primitive is the only primitive action that
interacts with the real system, obtains reward R;, and then
updates a modified policy miapgy -

soanmuLid

2892

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

leverage the source knowledge even when the source reward
function is a biased estimate of the target reward function.
Fig. 1 shows the basic idea of this paper where an RL agent
has access to a Physics Guided Model (PGM) that acts as
the source task and provides an estimated reward function
Rs. The actual reward function R in the target task is
unknown apriori. The agent learns to behave optimally in
the PGM through sequential interactions and finds the source
optimal policy 7. Next multiple temporal abstractions are
created from 7% where each of this abstraction consists of
multiple single timestep primitive actions suggested by the
PGM. We call this approach ‘Temporal abstraction in Physics
guided RL (TAPRL)’ and denote myzpg; as the optimal
policy obtained from this method that can overcome the bias
induced by 7%5.

The contributions of this paper are the following: (1) The-
oretical performance bounds on SMDPs when the reward
function is different between two environments, (2) De-
velopment of two benchmark problems with HVC-envs,
(3) Demonstration of the performance of TAPRL in the
benchmark problems. This paper is organized as follows:
Section II provides important background on MDPs, SMDPs
and temporal abstraction, Section III provides the definitions
and theoretical bounds along with the proposed algorithm,
Section IV provides the benchmark examples, and Section
V discusses important results.

II. BACKGROUND
A. MDP and value function based RL

The standard RL framework is formalized as a Markov
Decision Process (MDP) [11] while temporal abstraction is
formalized by semi-Markov Decision Process (SMDP) in the
context of MDPs [10]. A finite discrete time Markov decision
process is usually defined as a tuple M = (X, A, P, R,7),
where X is the state-space, A is the action-space, P is
the transition probability (p(x¢+1|X¢,a:)) that describes the
dynamics of the system, R : X x A — R defines a reward
function and v € [0,1) is a scalar discount factor. At each
timestep, the learning agent at state x; interacts with the
environment using an action a;, obtains a reward R; =
R(x¢,a:) as the feedback and transitions to the next state
X¢4+1 according to the conditional probability p(xy1|X¢, at).
We use the following notations to describe the transition
dynamics in Eq. 1 and expected reward in Eq. 2 for this
single timestep learning mechanism in an MDP.

Pher = P(Xey1[xe, a) (D
Ti = IE[Rt|xt, at] (2)
Formally, the goal of an agent is to learn the pol-
icy w X — A that maximizes the expected dis-
counted future reward from state x; in the case of an
state-value function V7(x;) or from state-action tuple
(x¢,a¢) in the case of an action-value function Q(xi,at).
The action-value function while following a policy =
is defined as Q™(x,a) = E[R; + YRi11 + 72 Riyo +
cexea] =g+ VZX'GX Pyx Zu/eAﬂ-(X/v a)Q(x',a’).

In value-based RL, the optimal policy 7* is extracted
from the optimal value functions Q*(x,a) = r% +
YD owrex P MaXare 4 Q@*(x',a’). In contrast, policy based
RL methods are also popular for directly optimizing the
policy to obtain the optimal policy [1], but are not leveraged
in this work.

B. SMDP and temporal abstraction

To extend the MDP framework for temporal abstraction,
we adopt the “option framework™ [10], [12] where option
refers to temporally extended action, also known as ‘multi-
time actions’. Unlike single timestep actions, options can be
executed for multiple timesteps. If options are terminated
after one timestep then the framework is the same as the
traditional single-step action RL framework.

Definition 1. (Option) An option is a three element tuple
(Z, 7, 8) where the option starts from current state x; if and
only if x; € Z where Z C X, follows intra-option policy
and terminates according to the probability 5 : X — [0,1].

In the presence of a set of options, the MDP is elevated to a
new decision making process known as semi-Markov Deci-
sion Process (SMDP) [10]. In the above formulation it is also
imperative to identify whether an option is markov or semi-
markov. Let Tgt = {Xt7 Aty X4 1y Qg 1y e v o s A4 A—1, Xt+A}
be the trajectory created from the execution of option oy
starting at timestep ¢ and continuing for A timesteps before
termination. Then o, is Markov if for any 7 = {7 :¢t <7 <
A}, policies and termination conditions depend entirely on
x.. In contrast, o; is semi-Markov if policies and termination
conditions depend on the history of the trajectory up to
7. Just as MDPs have a policy 7 that chooses actions
from action-space A, SMDPs also have policy-over-options
= X — O that chooses option from the option-space O. To
finalize the option framework for an SMDP, we can make
the following definitions of the transition dynamics, Eq. 3,
and expected reward, Eq. 4, which are analogous to Eq. 1
and Eq. 2 respectively for an MDP.

P = D7 DX’ k) 3)
k=1
A-1
ro = E[Z V¥ Ryvk|xe, i) “4)
k=0

where p(x’, k) is the probability of terminating the option
at state x’ after k timesteps. Value functions, option-value
functions and their corresponding optimal counterparts for an
SMDP can be defined as we did for an MDP. For example,
the optimal option-value function can be defined in a way
similar to optimal action-value in an MDP, Q%) (x,0) = r2+
Y e PaxrQp (X', 0"). SMDPs have a key limitation in the
sense that each option is treated as one single unit and there
is hardly any way to investigate how each option is made.
A more efficient way might be to interrupt options before
completing the whole sequence or in case of markov options,
to use “intra-option learning” [10], [12]. Note that when the
options are semi-Markov, intra-option learning might not be

2893

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

feasible as in that case we need to wait until the semi-Markov
option terminates before we can evaluate it.

III. TEMPORAL ABSTRACTION FOR TRANSFER
LEARNING

A. Mechanism and performance bound

Using the formalization from the previous section, we
establish the framework for using temporal abstractions in
transfer learning in the context of RL. We argue that temporal
abstraction provides guided exploration in the target environ-
ment while also keeping the number of interactions feasible.
Intuitively our idea is to execute the optimal policy learned in
the source environment in small segments and observe the
feedback at the end of each execution to develop sample
efficient exploration strategies in the target environment.
Informally this idea can be visualized as in Fig. 2. Here we
elevate the source MDP to an SMDP and then create ‘useful’
temporal abstractions that are transferred to the target SMDP
which is elevated from the target MDP.

{oi}
source: SMDP target: SMDP
target: MDP

Fig. 2: Transferring temporal abstraction from a source
to target environment where {o;} is the set of temporal
abstractions

source: MDP

One key challenge in transferring temporal abstractions is
that their usefulness decrease substantially if the source
and target SMDP are not similar even in only one of the
MDP elements. In our problem setting the source MDP is
a possibly inaccurate estimation of the target MDP which
makes decision making challenging due to the changes in
the elements of the MDPs. To this end we restrict ourselves
to the case where the source reward function Rs is an
inaccurate estimation of the target reward function Ry.
Note that the transition probabilities may also vary between
these two environments but this consideration is out of the
scope of this paper. We provide two value-function based
performance bounds for this transfer learning strategy. We
draw motivations from “changing MDPs” [13] and transfer
RL [14] and extend their results to SMDPs in theorem 1
and corollary 1.1. Specifically, theorem 1 provides the worst-
case performance bound when each environment uses its own
optimal temporal abstractions, meaning each environment
uses its own optimal option-policy. Corollary 1.1 provides the
worst-case performance bound when the optimal temporal
abstractions from the source task is directly implemented on
the target task without any modification, meaning we execute
the optimal option-policy from the source environment in an
offline setting in the target environment. Note that in this
study we are interested in semi-Markov options only as we
focus more on creating useful options and executing them on

the target environment rather than interrupting them. Each of
our semi-Markov option consists of primitive actions from
the action space \A.

Theorem 1. Let two MDPs, Ms = (X, A, P,Rs,v) and
My = (X, A, P,Ry,v) where Ry # Rs, O is the same
set of options defined on both MDPs, us and (% are the
optimal policy over options in Mg and M respectively,
then the option value bound is

HT;T - r;)c,S”OO

1QE7 (%, 0) = Qs (%, 0)llo < —7— oy

where, option o is executed for at least A timesteps and
e 7+ Tx.s are rewards obtained from execution of o starting
from x in My and Mg respectively.

Proof: Let’s define the supremum norm ||r§’(_’7- —
reslle = maxeolryr — 55| and [|Qgr(x,0) —
é‘fs(x,o)ﬂw = maxXx o |Q’(L9TT(X, 0) — :é‘fs(x, 0)|. Also
Qulr(x,0),Q3 =
X . .
l(ng(X’O)vQYT = éT(leol)’T’?' = T;,TarS =
From the definition of optimal option-value function,

|QF - Q3

’ ’
|0) T _ .0 o S
- |’f’7— + Ex/ Pxx’ orggi(/ QT Ts + Ex/ Pxx’ orggf/ QS |

let’s simplify the notations Q; =

o
TX,S'

! /
<rO—T°+Z° max T—ZO max Q%
—| T S‘ | , Pxx’ prero QT / Pxx’ 0cO., QS ‘
X X

<|r%—rd Z ° | max QF — max Q%
<|ry—r3l+ pxx’|oeox/ Qr e Qs |

x/

o0
< Jrf =gl DD A (k) max Q7 — QF

x' k=1
oo
<Ir§ —r8l+9% Y Y (X k) max |QF —QF |
k=A x' *

< |Irg = r&lloe + 72 1QF — QSllo

As the above inequality is true for all x € X, 0 € O the
following is true as well

||QéTT_Qés,s||w < ||7"%_Tg‘|oo+7A||Ql<L9TT_QéS,S||oo-D

In the following, we provide a straight forward extension of
the above theorem which gives the option-value bound while
following the same option-policy in both environments. Here
we establish a useful performance bound in corollary 1.1 that
compares the optimal option-value function in M while
following ;5 obtained from M.

Corollary 1.1. If u* and ps are the optimal option-policy
in My and Mg respectively, then

2”7":0(,7 - 7”i,s”oc

1Q0Tr(x,0) = Q7 (%, 0) |00 < g

2894

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

Proof: using the simplified notations Q%
QL(LQ‘?T(xv 0)7 g = é‘%s (X7 0)7 Q; = Q?DTT(Xv 0)’
QT — QF1 = 10T — Q3 + Q8 - QF

<1QF — Q31 +1Q8 - QF|

<11QT — Q8llee + 11Q3 — QFll

Using results from theorem 1 we get that ||QF — Q%] =

S S Ir7—r&lle
HQS_QTHOOS 17,},5 .4
B. Generating useful temporal abstractions

Initially, we train the agent in M and extract optimal
policy m§. As we have already assumed that M s is a physics
guided model (PGM) that provides cheap data, any RL algo-
rithm may be used to learn in M s. Next we are interested in
transferring 7% from M to M and create useful temporal
abstractions or options. To achieve this we execute 73 for
a fixed horizon length A from current state x = x; to
create a trajectory Tx® = {X¢, ¢, Ti41 ..., QrpA_1,Xi1A}
and reach state x’ = x;, . Following this procedure we have
created an option, o,, from the source optimal policy 75.
Directly executing o5 in M will result in poor performance
if Rg # Ry. To account for the changes between R and
Rs, we propose to create multiple options instead of a single
one and perform an option optimization procedure to choose
the best option. We perform this procedure in two steps.
First, we perform probabilistic policy reuse [15] to create a
set of options {o;} from o,s. This means that, each option o;
follows o probabilistically with occasional exploration. In
this context each option can be defined as follows:

0; = (x, e-greedy(ms), x’) (5)

We summarize the approach for creating a set of options
{0;} from oy in algorithm 1.

Second, we execute the set of options in M, observe the
feedback and optimize the set of options based on some
utility function 2/(-) to choose the best option, op. The utility
function may be defined in a wide variety of ways. It can
directly be the final reward obtained after reaching state x’
from the previous state, or it can be the cumulative sum of
all the rewards obtained from the execution of the option

Algorithm 1 Creating temporal abstractions

1: function CREATE OPTION(Xg, 7§, €, A)

2: T (X0, 00,X1, ..., XA_1,0A_1,XA)
3: for t =0to A—1do

4 if random_number < ¢ then

5: a; ~ Uniform({1,2,...,|A|})

6: else

7 ay = ’ﬂ'gv(Xt)

8: Xt41, R, + l?«l’lV(Xt7 at)

9: save a;

10: Xt < Xt41

—_
—

option, 0; = {ag, a1, ..

! S AA— 1}
return option, o;

in M. Alternatively the utility function may also describe
whether we have reached a certain preferred state.

op = argmax U(o) (6)
oc{o;}
Each time we observe a reward from M+ we also fine tune
7§ by updating the optimal Q-functions from the source, Q.
Finally, we choose the state x’ obtained using o} to repeat
this whole procedure. We keep repeating this procedure as
long as we are allowed to interact with M.

IV. SIMULATION EXPERIMENTS

Here we implement the method proposed in the previous
section in two different tasks. The first one is a modified
version of the classic four-room problem in RL that acts
as a toy problem for demonstrating the effectiveness of
temporal abstraction. The second one is motivated by real-
world autonomous applications that can be benefited by
the proposed method. In the second one, we implement
our method in a case study of ‘autonomous manufacturing
systems’. In both tasks we consider learning in the target
environment where source reward function Rs(x,a) is a
biased deterministic representation of unknown stochastic
target reward function Ry (x, a).

A. Modified four room problem

There are four rooms separated by walls, four hallways
between these rooms and a goal state in one of the rooms.
This benchmark problem is different from the classic four
room problem in the sense that rewards are not sparse in
our case, rather each state provides a positive reward that
comes from a reward distribution. We also assume that the
walls are penetrable and they provide negative rewards (-
50 in this case) except the hallway state. Each hallway has
a high positive reward, 4200, compared to the adjacent
states and the goal state, (G, has the highest positive reward,
+250. The goal of the agent is to reach G starting from the
initial state, S, while also accumulating high rewards. For the
source reward function Rs we use certain positions of the
hallways and goal state, while for the target reward function,
R+, we shift these hallways and goal state with added
stochastic noise, & ~ A(0,5). This stochasticity makes the
reward uncertain and thus makes learning in the target task
challenging.

RN L N N R) 250
! 200
z u
3 150
5 . 100
‘ 50
; 0
" —50

(a) Rs

®) Rr

Fig. 3: Reward distribution for modified four room problem,
S = starting state, G = goal state.

2895

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

B. Autonomous manufacturing of metamaterials

As the second benchmark problem we consider the chal-
lenging task of autonomous manufacturing of metamaterials
[7], [16]. Here the goal of the agent is to autonomously
learn the process parameters of an additive manufacturing
system that can manufacture an acoustic metamaterial artifact
with desired spectral response without human intervention.
The cost of data collection in this system is extremely
high due to materials cost, prolonged manufacturing time
etc. As a result, vanilla RL approaches can not be imple-
mented for this application. In this problem setting, each
state can be represented by two process parameters, x; and
2o that control the the filament spacing, l,, and filament
diameter, d of an artifact respectively. By controlling these
two parameters, it is possible to manufacture an artifact
with desired spectral response g,. Conceptually, we start
with some random values of the parameters, manufacture an
artifact, observe the reward and take an action accordingly.

1) Dataset: For this case study we have developed a
dataset of 4624 Finite Element Method (FEM) simulations
where each simulation is performed for a distinct set of
values of z; and xs. The output of each simulation provides
spectral response, g,, which is used in a custom similarity
metric to compare against a user defined desired spectral
response, gq. Next we use a baseline value to convert the
losses into non-negative rewards.

R =B - L(g4,84))

where L(-,-) is a custom similarity metric similar to [16], B
is the baseline value. To perform computational experiments
we create two environments from this dataset. For the source
environment Mg, we create a model of the rewards using
the non-parametric Gaussian process [17] regression method.
Here M is the physics guided model, PGM. This reward
model acts as Rs (Fig. 4a). For the target environment
M, a circular shift of the source rewards is performed
such that the highest reward region of Rs becomes the
lowest reward region of Rt (Fig. 4b). A small amount
of stochastic noise is also added, & ~ N(0,0.5), to the
reward values to make the target reward values uncertain.
This makes the learning problem challenging because the
learned offline policy 7% will perform poorly in M. Our
goal is to overcome this bias and accumulate high rewards
while converging to a good terminal state x7, which should
be in the high reward region, after T' timesteps; meaning that
the corresponding final artifact produces a spectral response
that closely matches the desired, g4.

C. Implementation details

To obtain the optimal policy in Mg, we train the agent in
M s for sufficiently long time (10° and 10 million timesteps
respectively). As traditional RL algorithms use sequential
updates, only certain action values get updated. To break
this correlation, we use random sample Q-learning as the
training algorithm in both source environments. This off-
policy algorithm uses the Q-learning update rule for learning,
but collects data according to a random policy. Next we

reward region

high reward region 8

950 1000 - ’ 750 800 850 900

TR0 700 S0 s30 900

x1 X1

930 1000

(@) Rs (®) Rt

Fig. 4: Reward distribution for autonomous manufacturing
problem, G = goal states with high rewards.

extract mg from the trained Q-values. Using the method
described earlier, 5 options are created for both benchmark
problems. In each experiment the length of the options are
kept constant, A = 7 and A = 5 for the four room problem
and the autonomous manufacturing problem respectively. We
optimize the options according to Eq. 6 where U(-) is the
reward obtained only from the final state of the trajectory,
meaning U (0) = Ry (Xt+a—1,at+a—1). We allow the agent
to learn and update my,pg; for 25 and 100 timesteps in
the four room problem and the autonomous manufacturing
problem respectively. This allows the agent to utilize a
total of 125 and 500 samples collected from M to learn
Traprr, Tespectively. In this way we can obtain the empirical
performance of 7, pg; - For the modified four room problem
we demonstrate the theoretically derived option-value bound
in theorem 1 along with the empirical performance of the
learned policy 7apgr- Here, we use value iteration for
training in M. To demonstrate the performance of TAPRL
for the autonomous manufacturing problem, three different
initial condition tests are applied: a poor initial condition
that is far from the high reward region and having the
lowest reward region in-between (xg; = [725,525]7 um),
a good initial condition that is close to the high reward
region (xo,, = [925,525]7 ym) and finally 100 randomly
chosen initial conditions. Each experiment is repeated 100
times to obtain the statistics of the collected rewards i.e.
mean and standard deviation. Finally the performance of the
learned policy 7y, pg;. 1S evaluated by comparing the rewards
accumulated by 7, pr; against 75 and 77 for 100 timesteps.
Note that 7% is the benchmark policy obtained by training
the agent for 10 million timesteps in the target environment.
The effect of exploration in creating temporal abstractions
and the number of total samples used to learn m{,pg are
also investigated.

V. RESULTS

For the four room problem, actions chosen by 7lpgy 1S
shown in Fig. 5b. Although 7, pr; explores more states
than 7%, the algorithm can still can reach the goal state
while an offline implementation of 7% obtained from Mg
will converge to a poor final state as w5 does not take
into consideration any feedback obtained from M. The
theoretical bounds obtained for this toy problem are shown
in Fig. 6. Interestingly, lowest option-value bound for this

2896

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

(a) 75 in Ms (b) TaprL in M7

Fig. 5: myuprr obtained in the target task by leveraging
knowledge from 75 and creating temporal abstractions to
overcome bias from source rewards

specific problem is obtained when the length of the temporal
abstraction is A = 6 timesteps, see Fig. 6a. As expected,
the option-value bound increases with the increase in the
discount factor value, see Fig. 6b.

-+~ LHS
| —=— RES

L s NP g

1 2 3 1 5 6 7 5 08 08 09 0% 094 09% 08

A bl

(a) temporal abstraction length (b) discount factor

Fig. 6: Option-value bound derived from theorem 1 in
the four-room problem against various values of A and ~
respectively

The effectiveness of TAPRL for the autonomous manufac-
turing problem is shown in Figs. 7 and 8. Figs. 8b and 8a
demonstrates how 71,pg;. €xplores the state space from two
different initial positions Xg 5 and Xg 4 described in Section
IV-C. Eventually m,pg; Overcomes the bias of the source
rewards and finds the ‘high reward region’ in My while
mg fails to do so. We also show the accumulated rewards
using 7miaprr, in M and corresponding final states for 100
experiments in Fig. 7. First, we show the final states and
accumulated rewards obtained using 7fspg;, from the initial
position xqp in Fig. 7(a). Despite this poor initialization
Tiaprr, 18 capable of finding the ‘high reward region’ almost
80% of the times. Second, we show similar results for the
initial position Xg 4 in Fig. 7(b) and observe that 71, pg;, finds
the ‘high reward region’ in almost all of the experiments.
Finally we show similar results for 100 experiments with
random initial positions in Fig. 10a and it is easy to see that
Tiapr. achieves high rewards almost 90% of the times. The
corresponding reward plot in Fig. 10b shows that rewards
accumulated using 7iapg; i very close to the rewards
accumulated using benchmark optimal policy 77 while the
offline source optimal policy m§ performs worst in every
case.

Fig. 11a shows the effects of exploration in creating temporal

700 00 S0 900 950 1000

Kol

750 500 850 9500 950 1000

el

— E[R|(TAPRL)
—— E[R| {benchmark)
— E[R) {offine)

reward

— B[R] (TAPRL)
— E[R| (benchmark)
— B[R (offine)

0 20 40 60 80 100 0 20 40 60 80 100
timestep timestep
(a) (b)

Fig. 7: Top: Final states of 100 experiments obtained by
running TAPRL for 100 timesteps, bottom: rewards collected

by TiaprL: T5, T from (a) xgp, (b) x4

(@) TTaprL from xo,p (b) mraprL from x4

Fig. 8: mrsprr. Obtained from two different initial conditions,
the color intensity of the small circles represent the number
of times a state has been visited

(b)

Fig. 9: Two examples of 5 temporal abstractions created in
M from two different states

abstractions and a clear pattern shows that reward from the
final state gets higher as we increase the exploration value.
This makes sense because high exploration leads to options
that are not necessarily very close to the optimal option
suggested by 75 and thus encouraging exploration. Fig. 11b
shows the effect of number of samples used to obtain m{spgy;

2897

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

— E[R| (TAPRL)
— E[R| (benchmark)
— B[R (offine)

B0 800 0 00 %0 1000] B o)

T timestep

80 100

(a) Final states, xp (b) rewards

Fig. 10: Final states and rewards obtained from 100 randomly
chosen initial conditions, for (b) each experiment is repeated
100 times and rewards are shown within one standard devi-
ation limit

final state reward
final state reward

€005 e01 e02 e05 075 099

4 sampls: 25 # samples 125 # sampless 250 # samples: 375 % samples: 500

(@) (b)

Fig. 11: Rewards obtained from the final state using
TIapRL) W5, T3~ for 100 experiments with random initial
conditions (a) value of exploration in creating options (b)
total number of used samples from M, rewards are shown
within one standard deviation limit

final state with higher reward can be obtained by using a
larger number of samples from M although in all of the
cases, the number of samples are reasonable.

VI. CONCLUSION

Implementing RL algorithms in physical system is
challenging due to lack of sample efficiency and we believe
that our algorithm can provide interesting perspectives for
systems where data collection is expensive. This study
presents a simple, but effective transfer approach in RL that
creates temporal abstractions from a learned physics guided
source model. We empirically show that this method can
achieve and maintain high rewards in a target environment
even if the source provides different rewards and with a
small number of samples of the environment, in comparison
to vanilla RL. The demonstration has been provided by
developing two benchmark problems with two distinct
applications. We provided an extreme scenario in one of the
benchmark problems where the highest reward region in the
source is shifted by the lowest reward region in the target
and still the agent is capable of getting high rewards. We
believe there are two important limitations of the proposed
algorithm. First, creating too many temporally extended
actions will increase the number of samples. Second,
scalability might be a challenge in high dimensional
problems. Additional sampling techniques may be used for

creating temporal abstractions to improve the performance
by incorporating application specific noise models in the
source reward function.

REFERENCES

[1] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement

learning. MIT press Cambridge, 1998, vol. 135.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,

A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering

the game of go without human knowledge,” nature, vol. 550, no. 7676,

pp. 354-359, 2017.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[5] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11). Citeseer,
2011, pp. 465-472.

[6] D. J. Corbin, A. R. Nassar, E. W. Reutzel, A. M. Beese, and N. A.
Kistler, “Effect of directed energy deposition processing parameters
on laser deposited inconel® 718: External morphology,” Journal of
Laser Applications, vol. 29, no. 2, p. 022001, 2017.

[71 M. F. A. Max Shtein, Kira Barton and D. J. Hoelzle, “A physics guided
reinforcement learning framework for an autonomous manufacturing
system with expensive data,” in 2021 American Control Conference
(ACC), 2021.

[8] M. E. Taylor and P. Stone, “Transfer learning for reinforcement
learning domains: A survey.” Journal of Machine Learning Research,
vol. 10, no. 7, 2009.

[9]1 A. Lazaric, “Transfer in reinforcement learning: a framework and a
survey,” in Reinforcement Learning. Springer, 2012, pp. 143-173.

[10] R.S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181-211, 1999.

[11] M. L. Puterman, “Markov decision processes,” Handbooks in opera-
tions research and management science, vol. 2, pp. 331-434, 1990.

[12] D. Precup, “Temporal abstraction in reinforcement learning.” 2001.

[13] B. C. Csdji and L. Monostori, “Value function based reinforcement
learning in changing markovian environments.” Journal of Machine
Learning Research, vol. 9, no. 8, 2008.

[14] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. Van Has-
selt, and D. Silver, “Successor features for transfer in reinforcement
learning,” arXiv preprint arXiv:1606.05312, 2016.

[15] F. Ferndndez and M. Veloso, “Probabilistic policy reuse in a rein-
forcement learning agent,” in Proceedings of the fifth international
Jjoint conference on Autonomous agents and multiagent systems, 2006,
pp. 720-727.

[16] M. F. Alam, M. Shtein, K. Barton, and D. J. Hoelzle, “Autonomous
manufacturing using machine learning: A computational case study
with a limited manufacturing budget,” in ASME 2020 15th Interna-
tional Manufacturing Science and Engineering Conference. American
Society of Mechanical Engineers Digital Collection, 2020.

[17] C. E. Rasmussen, “Gaussian processes in machine learning,” in
Summer School on Machine Learning. Springer, 2003, pp. 63-71.

[2

—

2898

Authorized licensed use limited to: The Ohio State University. Downloaded on November 10,2022 at 20:39:12 UTC from IEEE Xplore. Restrictions apply.

