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Abstract 
 
This paper describes an unsupervised exploratory data mining strategy for identifying significant chemistry-structure-
property relationships in complex crystal chemistries. Using the formalism of Topological Data Analysis, (TDA) we 
show how hierarchical patterns in families of crystal structures of the apatite family of the type A15A25B1B2O24X 
can be automatically detected via TDA. This ‘self-driving’ data exploration approach is shown not only to uncover 
links between structural building units and different stoichiometries but also to uncover new and yet unexplored 
associations between properties and coordination polyhedral geometry.  
 
Introduction 
 
“Is there some pattern to these complex crystal structures that eludes the casual observer, but which can explain 
essential features of their structures?” [1-2].  The pioneering crystallographer Alan Mackay has expounded on the idea 
of a framework for ‘Generalized Crystallography’ for over half a century [3-6], to exploit the role of crystallography 
from one of classifying structures to harness that knowledge to one that uncovers promising new structure-chemistry-
property relationships in chemically and structurally complex materials [6-7]. 
 
Mackay has proposed that ‘the crystal is a structure, the description of which is much smaller than the structure itself’ 
and that this description of structure serves as a ‘carrier of information’ about the structure on larger length scales.  
The many crystal chemistry design rules such as the classical Pauling rules and others manifest themselves on their 
influence on crystal structure in terms of the local coordination environment and the resulting packing arrangements 
of the symmetrical coordination polyhedra. As noted by Mackay, these rules are very successful in describing the 
immediate local environment but are not so easily extended to less symmetrical polyhedra and to complex crystal 
chemistries that are hierarchic in nature [8]. The importance of the concerns raised by Mackay lies in the fact that 
there may be some pattern in complex crystal structures that have eluded discovery but can explain essential 
characteristics or properties of such structures. Knowing this opens the door to a materials science exploration of 
looking beyond existing framework of knowledge and hence to the foundation for exploratory data mining in an 
unsupervised fashion. In this paper, we explore this issue in more detail by the application of the new advancements 
in harnessing the mathematical formalism of topological data analysis. We show in this prospective article  how  given 
the advances in materials informatics in the last two decades, Mackay’s vision of  crystallography  can be realized and 
serves as a blueprint for materials discovery and design.   
 
The fundamental challenge has been to integrate the 3-dimensional metrics defining geometric complexity with the 
n-dimensional sets of metrics that relate to chemical bonding. The latter includes but is not limited to attributes 
associated with individual elements, pair wise bond interactions, quantum level information at both the local atomic 
environment level and packing characteristics of fundamental structural units to form the unit cell, to mention just a 
few [9-11]. From this point cloud of information, the challenge is to seek and detect patterns and connections with the 
least amount of bias to guide that process. From examining all possible patterns, we can then explore via inference 
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potentially significant relationships that would otherwise go undetected. The mathematical discipline of topology 
provides a quantitative framework to address this challenge by acting as a “microscope” where one can observe and 
record high dimensional data sets from different perspectives, “magnifications” and “focus”, all of which can be 
manipulated independently [12].   As summarized by Carlsson [13], Toplogical Data Analysis (TDA) can be viewed 
as an intermediate methodology between modeling and cluster analysis. The former is governed by algebraic equations 
that are continuous but not very flexible, while cluster analysis is discrete and therefore misses continuous phenomena 
(shapes) captured in the output of TDA.  
 
In a  recent study we introduced the use of topological data analysis (TDA) as an unsupervised machine learning tool 
to uncover classification criteria in complex inorganic crystal chemistries [14]. Using the apatite family of structures  
as a template that contains all the complexities of low symmetry coordination polyhedra and hierarchical structure in 
crystal chemistries, we tracked through the use of persistent homology the topological connectivity of input crystal 
chemistry descriptors on defining similarity between different stoichiometries of apatites. It was shown that TDA 
automatically identifies a hierarchical classification scheme within apatites based on the commonality of the number 
of discrete coordination polyhedra that constitute the structural building units common among the compounds. We 
provide an alternate data driven approach of objectively classifying datasets using concepts from algebraic topology, 
namely, persistent homology. In this paper, we expand on how TDA identified key bond pairs that were common 
between compounds and when we outline those bond pairs, we find that the TDA was identifying the connections that 
outlined the basic structural building unit/polyhedra. We also demonstrate how this can serve as a platform to identify 
unexplored structure-chemistry-property associations.  
 
Methods 
 
Within the TDA framework [16-19], persistent homology (PH) is the most commonly used method and captures the 
topological features in the point cloud. Here, the point cloud is the high-dimensional chemical space of the apatite 
family, where each data point (component) represents an apatite compound [14,20]. In practice, PH does not directly 
study the point cloud but maps a set X points in the high-dimensional space associated with a distance function, in our 
case the Euclidean distance function. The mapping operates by placing a ε (filtration) -radius disc centered at each 
component in X to form an overlapped space τε(X), which defines the set of all points within the disc. A connection 
between two components is established when the topological space occupied by their discs overlap. The number of 
connected components in τε(X) increases with larger ε, while for sufficiently large ε, all components are connected. 
Naturally, the topological features evolve with increasing ε; hence, the fundamental idea behind PH is the study of the 
evolution of the topological features in τε(X) as ε increases.  
 
The evolution of connectivity of the topological features in τε(X) along the filtration value is modeled using a sequence 
of nested geometrical constructs as defined by the Vietoris-Rips simplicial complex. These are tracked and visualized 
through a series of connectivity diagrams and compressed in a static figure called a persistence barcode. In this work, 
the barcode only represents the zero-order homology group (H0, path-connected components) containing information 
about the evolution of data connectivity. Higher-order homology groups are discarded as they do not contain useful 
information for this analysis. The persistence barcode provides a quantitative description of the chemical space by 
recording the birth (initial connection between new data points) and death (combining the two data points) of a 
topological feature. For connectivity analysis, the birth of barcodes for all components occur at ε=0 and the death 
(termination) of a barcode signifies formation of a connection between two components. Figure 1 summarizes the 
algorithmic workflow from the point cloud representation to the coordination driven interpretation extracted from the 
barcodes. In essence, the PH transforms the chemical space into a set of barcodes that captures nuanced chemical 
information through topological constructs.   
 
 



3 
 

 
 
Fig. 1 The algorithmic workflow from point cloud representation to coordination drives interpretation of the 
persistence barcode. (a) The point cloud is a high-dimensional chemical space defined by the descriptor set [14,20] 
that encodes the crystal structure information. (b) Performing Vietoris-Rips complex calculation over the point cloud 
results in connection between data points driven by the overlapped space of τε(X) for a given ε (filtration). (c) The 
evolution of the barcodes coincides with coordination driven building units (recreated from our previous work [14]). 
PH transforms the chemical space into a set of barcodes that capture nuanced chemical information through 
topological constructs.   
 
  
Results and Discussion 
 
In our recent work on classifying apatites [14], we linked chemistry of the compounds and the persistence of their 
features with their coordination polyhedra. The similarity between chemistries is greatest when they are grouped at 
lower filtration values.  Specifically, the barcode tells us which aspects of stereochemistry dominate in the building 
of apatite structures, from which we discovered a hierarchy of dominance of coordination numbers for families of 
apatites.  This tool allows us to explore alternate chemistries and crystallographic parameters, which can be linked to 
material properties.  TDA provides a representation of data in the form of a barcode.  To aid in interpretation, we 
converted the barcode to a dendrogram [21] and here we now expand that to property, and specifically in this paper 
we focus on bandgap.  The bandgap values were extracted from Materials Project [22] and AFLOW [23].  As 
highlighted in Figure 2, as the filtration value is increased and the bars are growing, more compounds are classified 
together.  This classification is done based on the connectivity of the data.   

From the collection of barcodes, we extract the filtration value which corresponds with each joining of compounds.  
For example, Ca5(PO4)3F and Sr5(PO4)3F are originally on their own bars, but then join bars at filtration value ε of 0.2.  
We can then convert that to a dendrogram by having the vertical line connecting the compound lines at ε = 0.2.  As ε 
continues to increase, more compounds join the bar. At ε = 0.6, Ba5(PO4)3F joins Ca5(PO4)3F and Sr5(PO4)3F in the 
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barcode, and then accordingly we have a vertical line at ε = 0.6 in the dendrogram connecting these components of 
the dendrogram.  This approach continues until we have the entire barcode represented as a dendrogram.   

 

 

Fig. 2 Relationship between barcode and dendrogram representation, as well as property, which is this case is the 
bandgap of the compounds at each level.  As ε increases, more compounds start to merge onto the same bars.  These 
are compounds with higher similarity, but this merging can also be represented as a dendrogram with the 
corresponding filtration values.  Interestingly, as the similarity with the starting compounds decreases, the bandgap 
also decreases. This allows us to understand the relationship between crystal geometry, atomic coordination and 
properties through the application of TDA. 

 

The barcode provides a framework to create a classification of compounds, when the classifiers do not have any 
obvious relationships. By looking at the apatite chemistries, we are able to find groupings of the materials in terms of 
the polyhedral make-up.  Our technique captures the dominancy of certain coordination number and site occupancies.  
Through this, we are able to guide where we change our design features by defining specific site chemistries with 
given coordination numbers to adjust material properties.  The static similarity metric can be extracted from the 
barcode by taking snapshots at various filtration values. In a traditional 2D structure map, the closer two compounds 
are than the more similar they are. Generalizing this idea to the snapshots of the barcode, the sooner (ie lower filtration 
value) two compounds merge (to appear on the same bar), the higher similarity they have. In the extreme, we can 
think of it as two compounds with identical descriptors appear at the same point in a 2D structure map or share the 
same bar in a barcode no matter the filtration parameter. This then provides a framework for chemical substitution 
with minimal impact on properties, i.e., shorter bars indicate that the compounds on it have more similarity in their 
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properties. Following this logic, we could apply this information to suggest when it is possible to replace toxic or 
undesirable elements.  

Property can also be overlaid with this information.  For example, the average bandgap of Ca5(PO4)3F and Sr5(PO4)3F 
is 5.4 eV.  When we add Ba5(PO4)3F to the bar, the average bandgap drops to 5.3 eV.  As more compounds are added 
to the bar with the increasing filtration value, we find that the average bandgap continues to drop, to the final average 
value 3.6 eV.  This result introduces an interesting added aspect to the use of TDA, showing for the first time the 
correlation between a property which was not input in any manner into the analysis and the resulting material barcode.  
Thus, the connectivity of data represents the change in apatite bandgaps.  The variation in bandgap with the TDA 
result is highlighted in Figure 3.   

 

 

Fig. 3 Dendrogram showing the relationship between bandgap (BG) and the TDA classifications.  The compounds in 
black do not have bandgap values available. With each additional merging of the barcodes as filtration value increases, 
the collective bandgap decreases.  This shows that TDA captures the bandgap without explicit definition. Further, this 
relationship has been done in an unsupervised manner.  

 

The dendrogram shows a clear trend with bandgap, as the merging of compounds with increasing filtration value 
results in a decrease in bandgap.  The dendrogram was formed following the approach laid out in Figure 2.  We see 
the initial vertical line corresponding with Ca5(PO4)3F and Sr5(PO4)3F having the darkest red line indicating the highest 
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bandgap.  As more compounds merge, the ensuing vertical lines continue to change color to represent lowering 
bandgap.  That is, first a lighter shade of red occurs, and then a blue color.  The trends shown here between the barcode 
evolution and the bandgaps of the corresponding chemistries are anticipated to hold across other computational 
approaches or even experiments.  The estimated behavior of bandgaps is qualitative and therefore subtle differences 
between calculation methods are all anticipated to be applicable.  Additionally, a benefit of this unsupervised learning 
approach is that any properties can be overlaid to explore a chemistry-property relationship.  The relationships will 
only occur if the correlations are supported by the input data, but in the case of bandgap, the relationship shows up 
and is strong enough to support the suggested regime of bandgaps for chemistries where data is not available. The 
analysis was not biased towards bandgap, but rather the analysis was unsupervised. Bandgap was not input into the 
analysis or explicitly defined, but rather bandgap was compared with the final TDA result.  In this way, other properties 
could be compared to understand what is controlling properties.   

As with any data based analysis, the assessment of the impact of input data selection is critical.  For this reason, we 
have repeated the analysis with a difference in descriptor set.  In the prior work, we used descriptors spanning both 
size related descriptors and crystallographic / geometric descriptors.  That data required the normalization of the data 
as the descriptors spanned various units.  However, to avoid normalization of data, the analysis was also performed 
using only size related descriptors (ie. those descriptors with unit of length).  In general, the conclusions drawn from 
the analysis are consistent with the findings from the larger dataset.  However, the differences that are present are due 
to the differences in distortion angles (as the distortion corresponding with building units are not represented in the 
length only input set).  The most noticeable difference is the result of (Ca,Cd)-(Cr,V)-Cl-O.  These compounds show 
up as the last to merge with other compounds when including crystallographic data, but have normal behavior when 
considering only size related descriptors.  Therefore, we can conclude that these four compounds have the largest 
impact due to distortion between polyhedra of any compounds.  Interestingly, Ca5(VO4)3Cl is the most obvious outlier 
in Figure 3 as it has a bandgap of 3.8 eV which is higher than the other closely merged compounds (for example, 
Ca5(CrO4)3Cl has bandgap of 0.986 eV).  The other compound which does not follow the trends seen is Sr5(VO4)3F.  
Through the application of TDA we are able to identify the compounds which have properties not following the trend 
with other crystallographic distortions.   

To fully understand what is captured in the barcode, we can combine this result linking crystallography and chemistry 
with property with our prior work which showed the relationship between chemistry and the coordination polyhedra 
which make up the crystal [14].  As a summary of that work, if we start with an A5(BO4)3X chemistry, the barcode 
tracks the impact of the bonds on the material behavior.  The first change (ie. at the the lowest filtration value) in the 
groupings captured by the bars is for the A-X bond, which forms the polyhedra of CN = 7.  In the provided barcode, 
the first grouping captures compounds with A = Pb or Sr and X = Br or Cl.  Therefore, the barcode is capturing changes 
in these bonds by representing similarity in four different A-X bond chemistries. We have focused on a subset of 
initial data for clarity sake, but the grouping at lower filtration values based on A-X bonding is consistent in all 
different permutations.  Initially, no other changes in the material are impacting the classification, beyond the CN = 7 
polyhedra. As the barcode grows, the changes in the material are due to the A-O bond.  This is where we are classifying 
additional compounds which modify the A site while other site occupancies remain constant.  The consideration of 
solely A-O bonds is confined to CN = 9 site occupancies.  This therefore defines the next building unit required to 
design an apatite crystal structure, while also serving as the most persistent feature in the crystal. The final change is 
due to B-O bonding (seen through multiple site occupancies of the B site, including P, Cr, and V).  The B-O bond is 
prevalent in the CN = 4 polyhedra.  Therefore, when the crystal structure is developed, the site occupancy of the B-
site impacts the CN = 4 polyhedra, which are next in constructing the final crystal.   

Based on combining these various pieces of information, we can define which coordination polyhedra appear to be 
most critical for modifying the bandgap (Figure 4).  The CN = 7 polyhedra is the primary factor in compounds with 
high bandgap.  That is, to increase bandgap, modifying the A-X bond is the key to that property engineering.  The CN 
= 4 polyhedra corresponds with the lowest bandgap apatites, and therefore at small bandgap the distortions associated 
with the B-site dominate the material has lower bandgap.   

 

 



7 
 

 

 

 

 

Fig. 4 Estimated range of bandgaps for the compounds without known bandgap values.  The range in the violin plot 
shows the probability of the bandgap occurring, with a broader range representing higher probability. The red points 
represent the closest connections in the dendrogram of Figure 3, the green points represent next closest connection, 
and the black points are third closest connection.  In our prior work we linked the evolution of TDA with different 
coordination polyhedra / building units (BUs) governing the connections.  Combining that prior work with the bandgap 
assessment, we are able to define which polyhedra are the primary factor in each bandgap range, with the coordination 
7 polyhedra the most critical to have a high bandgap apatite.   

 

In our selection of compounds, there are seven compounds for which we do not have bandgap available.  These are 
shown as black text in Figure 3.  By studying the trends in bandgap across the dendrogram, we are able to propose the 
potential bandgap of these compounds.  For comparison, compounds which were not available in Materials Project 
but were available in AFLOW were used to test this logic, and the result showed good agreement between the bandgap 
expected based on the merging of compounds with their filtration values.  Figure 4 shows the anticipated bandgaps 
for these compounds.  The data has been presented through a violin plot, which acknowledges the uncertainty in this 
classification.  That is, we are not defining explicit models or following a proper regression analysis, and this is done 
through a qualitative comparison.  The red dots are the compounds which are most closely connected with the 
compounds, the green dots are the next connections and the black dots are third level connections.  For example, in 
the case of Ca5(PO4)3Br, the compounds it first merges with are Ba5(PO4)3Br, Ba5(PO4)3Cl, Sr5(PO4)3Br, and 
Sr5(PO4)3Cl.  The bandgaps for those compounds are shown as the red dots for Ca5(PO4)3Br.  In defining the likely 
bandgap, the red dots have a higher weighting in defining the probability.  The violin plot having the widest region 
near those points, while the range is narrow near the black dots.  The two Hg compounds are on the same bar, and 
therefore we are unable to differentiate them in terms of expected bandgap.  For this reason, the seven compounds are 
represented by four figures.   

This result provides an estimate of likely bandgap, with uncertainty accounted for.  The compounds are shown in the 
order of anticipated bandgaps, going from highest to lowest.  This demonstrates the use of TDA for not only 
representing the data, and in particular the connectivity of data, but also for design implications.  The data input into 
the analysis is largely based on size effects and therefore a large number of compounds could be added to this as the 
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descriptor requirements are minimal.  This work is the first time of using TDA as a stand-alone design tool.  That is, 
TDA has been used to develop additional parameters to improve regression models [24-26] but has not been used 
alone as a design tool.  The reason why this is important is because the analysis is done in an unsupervised manner 
and therefore this approach can be applied even with relatively small data as we are not biasing the analysis.  

While we have shown the broad applicability of this TDA approach and the benefits coming from it, there are some 
restrictions.  As with all data driven approaches, the results and conclusions are dependent on the input data.  This 
raises an additional challenge in TDA as we do not have an exact ranking of the impact of the descriptors on the 
model, beyond running the analysis with many different permutations of the input data.  This supports the integration 
of TDA with other approaches that provide more descriptor assessment, such as principal component analysis.  This 
can also be used to select the input to minimize the redundancy of the descriptors.   An additional important 
consideration for addressing this limitation is to assess the results in terms of physical significance.  In this paper, we 
have done that through the analysis of bandgap, finding that the analysis is capturing physically meaningful trends.  
An additional limitation in the TDA approach is that the trends are largely qualitative; however, our interest here is in 
guiding future material design and experiments, and therefore a categorical prediction provides sufficient screening 
of the design space. 

As noted by Thompson and Down [27], crystal chemistry has traditionally considered the analysis of anion-cation 
interactions as critical to the understanding of stability and a crystal structure’s response to temperature, pressure, and 
composition. A pure hard-sphere model of crystal geometry is not sufficient in addressing the link between the 
chemical identity of an atom and the geometry (coordination) of its environment, as described by bond lengths and 
bond. Recently there have been reports that have reinforced the strong link between coordination polyhedra and bond 
distortions and band gap in complex inorganic structures as suggested by our TDA findings. For example, ten Kate 
et. al. [28] through a detailed empirical study of experimental data, found that variations in Si/N ratio influenced the 
coordination number of N by changing its effective charge; which in turn influenced the bandgap.  

 
Conclusions 
 
In this paper, we have introduced the value of using topological data analysis as an inference tool to identify local 
chemical environments that can serve as “digital landmarks” to uncover new and unexplored chemistry-property 
associations. By linking stoichiometry to bond specific characteristics in a chemically complex unit cell coupled to a 
framework that permits one to track the dynamics of influence of descriptors on properties, we can now rapidly and 
autonomously survey connectivity in data. The harnessing of the geometry/ topology of high dimensional data with 
the statistical characteristics of data provides a powerful foundation for a ‘data’ guided discovery platform. 
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