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ABSTRACT
Skeletal muscle mass, architecture and force-generating capacity are well known to
scale with body size in animals, both throughout ontogeny and across species.
Investigations of limb muscle scaling in terrestrial amniotes typically focus on
individual muscles within select clades, but here this question was examined at the
level of the whole limb across amniotes generally. In particular, the present study
explored how muscle mass, force-generating capacity (measured by physiological
cross-sectional area) and internal architecture (fascicle length) scales in the fore- and
hindlimbs of extant mammals, non-avian saurians (‘reptiles’) and bipeds (birds
and humans). Sixty species spanning almost five orders of magnitude in body mass
were investigated, comprising previously published architectural data and new data
obtained via dissections of the opossum Didelphis virginiana and the tegu lizard
Salvator merianae. Phylogenetic generalized least squares was used to determine
allometric scaling slopes (exponents) and intercepts, to assess whether patterns
previously reported for individual muscles or functional groups were retained at
the level of the whole limb, and to test whether mammals, reptiles and bipeds
followed different allometric trajectories. In general, patterns of scaling observed in
individual muscles were also observed in the whole limb. Reptiles generally have
proportionately lower muscle mass and force-generating capacity compared to
mammals, especially at larger body size, and bipeds exhibit strong to extreme positive
allometry in the distal hindlimb. Remarkably, when muscle mass was accounted
for in analyses of muscle force-generating capacity, reptiles, mammals and bipeds
almost ubiquitously followed a single common scaling pattern, implying that
differences in whole-limb force-generating capacity are principally driven by
differences in muscle mass, not internal architecture. In addition to providing a novel
perspective on skeletal muscle allometry in animals, the new dataset assembled was
used to generate pan-amniote statistical relationships that can be used to predict
muscle mass or force-generating capacity in extinct amniotes, helping to inform
future reconstructions of musculoskeletal function in the fossil record.

Subjects Evolutionary Studies, Zoology, Biomechanics
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INTRODUCTION
Countless aspects of organismal biology vary with the size of the organism as a whole
(Schmidt-Nielsen, 1985; Vogel, 2003). In a mechanical context, the differential scaling of
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lengths, areas, volumes, inertias and other metrics with increasing size (e.g., body mass)
influences an organism’s ability to generate and resist forces. An oft-cited example is the
comparison between the cross-sectional area of a tissue and the gravitational loads it
must bear. Under isometric (geometric) scaling, area scales proportional to length2, or
assuming a constant tissue density, mass2/3; in contrast, gravity-induced loads scale
proportional to mass1. Thus, larger species would have disproportionately less tissue area
to support their mass, incurring greater tissue stress (= force per unit area). Given that
tissue mechanical properties are largely constant across species (e.g., yield strength of
cortical bone; Currey, 2002), this scaling relationship is undesirable, and usually
necessitates changes to organismal structure, behaviour or performance to mitigate the
effects of increasing body size, such as larger species using a more extended limb posture
during stance and gait (Biewener, 1989; Dick & Clemente, 2017).

The macroscopic architecture of skeletal muscle is one such aspect of organismal
structure that is known to scale with body size in animals. A particularly relevant
architectural metric is its physiological cross-sectional area (PCSA), which relates a
muscle’s mass with the length and arrangement of its constituent fascicles (Calow &
Alexander, 1973; Gans & Bock, 1965; Sacks & Roy, 1982), and can be used to estimate the
muscle’s maximal force output in an isometric contraction (Powell et al., 1984; Medler,
2002). If animals were isometrically scaled, muscle mass would scale in direct proportion to
total body mass, fascicle length would scale proportional to mass1/3, and PCSA—and
therefore force-producing capacity—would scale proportional to mass2/3. Larger species
would therefore be relatively weaker. Over the past five decades, numerous studies have
examined the interspecific scaling of muscle mass and force-generating capacity (via
PCSA) across a wide variety of species, in mammals (Alexander, 1977; Alexander et al.,
1981; Bennett & Taylor, 1995; Cuff et al., 2016a, 2016b; Eng et al., 2008; McGowan,
Skinner & Biewener, 2008; Pollock & Shadwick, 1994), birds (Bennett, 1996; Maloiy et al.,
1979) and non-avian saurians (Allen et al., 2015; Cieri, Dick & Clemente, 2020; Dick &
Clemente, 2016). Although the caveat must be acknowledged that different studies have
used different line-fitting approaches to estimate scaling exponents, these studies have
shown that across most species the architecture of individual muscles scales in a
broadly similar fashion. Muscle mass typically exhibits weak negative to modest positive
allometry (range of exponents 0.9–1.15), PCSA typically exhibits weak to modest positive
allometry (range of exponents 0.69–0.91), and fascicle length typically exhibits modest
positive to modest negative allometry (range of exponents 0.14–0.5). Some notable
exceptions to this include the extreme positive allometry in the hindlimb extensors of
macropod marsupials (mass exponents 1.11–1.61, PCSA exponents 0.78–1.33; Bennett &
Taylor, 1995;McGowan, Skinner & Biewener, 2008) and many forelimb muscles in varanid
lizards (mass exponents 0.95–1.48, PCSA exponents 0.75–1.15; Cieri, Dick & Clemente,
2020), and near mass independence of fascicle length in the plantaris of mammals (Pollock
& Shadwick, 1994; although this may be affected by sampling in that particular study).
The common occurrence of positive allometry helps reduce the ‘strength deficit’
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experienced by larger animals, but this deficit is fully counteracted only in extreme cases of
positive allometry, where the PCSA exponent exceeds 1.

It remains unknown as to how the aforementioned scaling patterns for individual
muscles translate to scaling at the level of the whole limb. Likewise, it remains unknown as
to whether architectural disparities observed between muscles, functional groups of
muscles (e.g., ankle extensors) or even species remain at the level of the whole limb.
The limbs of an animal must exist and function as a single integrated entity, which imposes
at least two requirements on the constituent muscles:

1. The muscles collectively share a common volume, whereby changes in the size of one
muscle may affect the size of adjacent muscles (Fig. 1A). For example, in order for
the limb to avoid becoming too heavy (or having too high a rotational inertia), increase
in the size of one muscle may necessitate a decrease in the size of another.

2. Architectural specialization of muscles can limit their ability to effectively contribute to a
diverse range of tasks (Wilson & Lichtwark, 2011), and hence specialization in one
muscle may necessitate concomitant change in another so that limb functionality is not
compromised. For example, a muscle with short fascicles will have a high PCSA but a
reduced working range, which may require another muscle to compensate by having
longer fascicles, but with reduced PCSA (Fig. 1B).

Σvolume ≈ constant

ΣPCSA ≈ constant

A

B
1 2

Figure 1 The requirements on muscles as part of a single, functionally integrated whole may impose
constraints on their construction. (A) Changes in the size of one muscle may necessitate change in the
size of adjacent muscle, such that total muscle volume (illustrated here in cross-section) may remain
relatively constant. (B) Functional specialization of one muscle’s architecture may necessitate con-
comitant changes to the architecture of other muscles, in order for a limb to remain capable of effectively
executing a diverse range of tasks; total physiological cross-sectional area (PCSA) may therefore remain
relatively constant. In this example, moving from left to right muscle 1 decreases PCSA but muscle 2
increases PCSA, such that total PCSA remains unaltered. Full-size DOI: 10.7717/peerj.12574/fig-1
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These two requirements imply that animal limbs are subject to a ‘fascicle packing
problem’, and raise the question of how flexible (evolutionarily labile) animal limbs are in
terms of their muscular anatomy. Are there different strategies for packing PCSA into
a given volume of limb muscle, or do the differences observed between individual muscles
and between species ‘cancel out’ at the level of the whole limb? Depending on how
stringent the above requirements are, the total force-producing capacity (strength) of an
animal’s limb may therefore be strongly tied to total limb muscle mass, irrespective of a
given species’ size or functional requirements.

Understanding how whole-limb muscle mass and force-generating capacity relate to
one another, and how this relation scales with body size, is not just pertinent to the study of
extant species. Muscle force-generating capacity is a key unknown in studies of extinct
animal function and behaviour, and empirical data from extant species play a vital role in
informing inferences of extinct species (Bates & Falkingham, 2018; Bishop, Cuff &
Hutchinson, 2021a; Fahn-Lai, Biewener & Pierce, 2020; Lautenschlager et al., 2018; Sellers
et al., 2013). The use of empirical data from extant members of a specific clade may be
appropriate for extinct members of that clade (e.g., using data derived from extant
palaeognath birds to guide inferences of extinct palaeognath birds; Bishop, 2015), but it is
not immediately clear how this should be approached for extinct species that are
phylogenetically distant or morphologically disparate from extant species. In particular,
the more phylogenetically distant or morphologically disparate an extinct taxon is, the
lower the confidence that can generally be placed in inferences of muscle origin or
insertion (Carrano & Hutchinson, 2002; Witmer, 1995), relative size, internal architecture
and even whether a given muscle exists in the extinct taxon (e.g., differentiation from
adjacent muscles). Developing an understanding of howmuscle mass and force-generating
capacity scales with body size across a wide range of species, even at a broad anatomical
resolution such as the whole limb, could therefore provide a useful starting point for
better informed inferences of extinct taxa. Even if just overall bulk and strength of limb
musculature were able to be confidently constrained, this would represent a practical
advance upon which future refinements could be made.

The present study sought to address the above outstanding issues by conducting a
holistic assessment of whole-limb muscle mass and force-generating capacity in extant
terrestrial amniotes. It had three key aims: (1) to contribute new data from hitherto
unsampled clades (ameridelphian marsupials and lacertoid lizards), broadening the
diversity of the available comparative dataset; (2) to investigate how muscles scale with
body size at the level of the whole limb, in both the fore- and hindlimb, providing a first
assessment of the stringency of the ‘fascicle packing problem’; (3) to derive generic,
amniote-wide statistical predictive relationships that would have utility in deriving
inferences of musculature in extinct amniote species. This study is the first comparative
synthesis of muscle architecture scaling across extant mammals, birds and non-avian
saurians. In addition to providing a novel perspective on the topic of muscle scaling in
animals, the results from this study provides a platform for more rigorous inference of
muscle strength in extinct amniote clades.
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MATERIALS & METHODS
Dataset
The present study is founded upon muscle architecture data derived from dissections
(Table 1); all raw data used are provided in Table S1. The sources of the data are described
in the following two subsections. Although this study addresses ‘whole limb’ scaling, it is
restricted in scope to the musculature crossing the three primary joints of the limbs
(shoulder/hip, elbow/knee and wrist/ankle), ignoring the intrinsic musculature of the
manus and pes. This was necessitated by the practical difficulties of accurately dissecting
and measuring the latter muscles (particularly for small species), such that data are
very rarely reported in the comparative literature. Ignoring manual and pedal muscles is
also justified given that they comprise a small fraction of total limb musculature, and
presumably contribute only a small fraction towards limb support and propulsion during
locomotor activities. Although extrinsic shoulder muscles attaching to the scapula can be
important for locomotion in therian mammals (Hudson et al., 2011a; Jenkins & Weijs,
1979), these were excluded from consideration to facilitate a fair comparison across all
species; only muscles that explicitly attached to the humerus or more distal forelimb
skeleton were included. The forelimb dataset comprised architectural measurements for a
total of 912 muscles in 31 species (21 mammals and 10 non-avian saurians, the latter
hereafter referred to as ‘reptiles’ for simplicity) spanning more than four orders of
magnitude in body mass, and the hindlimb dataset comprised measurements for a total of
1,181 muscles in 36 species (19 mammals, 12 reptiles and five birds) spanning almost five
orders of magnitude in body mass. In the hindlimb dataset, birds and humans were
collectively treated as a single group, ‘bipeds’, such that ‘mammals’ herein refer to all
mammals except humans. Given the small sample size (and taxonomic skew) of birds in
the current dataset, and the broad aims of the study, it was not considered justifiable to
analyze birds and humans as separate entities here. Furthermore, as the present study
concerns terrestrial amniotes, the forelimb of bipeds was not investigated.

For each muscle, its physiological cross-sectional area (PCSA) was calculated as

PCSA ¼ mmuscle � cos ðaOÞ
q � ‘O ; (1)

where mmuscle is belly mass, ao is pennation angle, ℓo is fascicle (or ‘fibre’) length and ρ is
muscle tissue density, the latter taken to be constant for vertebrate skeletal muscle at 1,060
kg/m3 (Hutchinson et al., 2015; Mendez & Keys, 1960). It is important to note that
this equation assumes that all fascicles of a muscle act in parallel in generating force,
allowing their individual cross-sectional areas to be summed (see also Sacks & Roy,
1982). In reality, the constituent fibres of a given fascicle are often shorter than the fascicle
itself, wherein their ends overlap or interdigitate (Gaunt & Gans, 1992; Infantolino,
Neuberger & Challis, 2012), although they may still activate simultaneously with one
another, thus functioning as a single fibre (Bodine et al., 1982). Additionally, as per
common practice, it was assumed that measurements of fascicle length and pennation
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Table 1 Summary of data sources used in the study.

Species Group Body mass (kg) Data Study

Osteolaemus tetraspis Reptile 10.2 Fore, hind Allen et al. (2015)

Crocodylus johnstoni Reptile 20.19 Fore, hind Allen et al. (2015)

Crocodylus moreletii Reptile 27.7 Fore, hind Allen et al. (2015)

Alligator mississippiensis Reptile 57.7 Fore, hind Allen et al. (2015)

Melanosuchus niger Reptile 90 Fore, hind Allen et al. (2015)

Crocodylus niloticus Reptile 278 Fore, hind Allen et al. (2015)

Varanus tristis Reptile 0.173 Hind Dick & Clemente (2016)

Varanus varius Reptile 2.936 Hind Dick & Clemente (2016)

Varanus panoptes Reptile 4.15/1.6 Fore, hind Dick & Clemente (2016), Cieri, Dick & Clemente (2020)

Varanus komodoensis Reptile 40/37.3 Fore, hind Dick & Clemente (2016)

Varanus spenceri Reptile 2.098 Fore Cieri, Dick & Clemente (2020)

Salvator merianae Reptile 1.359 Fore, hind This study

Basiliscus vittatus Reptile 0.0511 Hind Bergmann & Hare-Drubka (2015)

Eudromia elegans Biped 0.545 Hind Bishop et al. (2021b)

Numida meleagris Biped 1.45 Hind Cox et al. (2019)

Gallus gallus (junglefowl) Biped 2.079 Hind Paxton et al. (2010)

Dromaius novaehollandiae Biped 42 Hind Lamas, Main & Hutchinson (2014)

Struthio camelus Biped 105 Hind Smith et al. (2006)

Martes martes Mammal 1.55 Fore Böhmer et al. (2018)

Taxidea taxus Mammal 7.6 Fore Moore et al. (2012)

Canis familiaris Mammal 31.4/27 Fore, hind Williams et al. (2008), Ellis, Rankin & Hutchinson (2018)

Felis nigripes Mammal 1.1 Fore, hind Cuff et al. (2016a, 2016b)

Felis silvestris Mammal 2.66 Fore, hind Cuff et al. (2016a, 2016b)

Leopardus pardalis Mammal 9.6 Hind Cuff et al. (2016b)

Caracal caracal Mammal 6.6 Fore, hind Cuff et al. (2016a, 2016b)

Panthera uncia Mammal 36 Fore, hind Cuff et al. (2016a, 2016b)

Panthera onca Mammal 44 Fore, hind Cuff et al. (2016a, 2016b)

Panthera tigris Mammal 86 Fore, hind Cuff et al. (2016a, 2016b)

Panthera leo Mammal 133 Fore, hind Cuff et al. (2016a, 2016b)

Mus musculus Mammal 0.02345 Hind Charles et al. (2016)

Rattus norvegicus Mammal 0.323 Hind Eng et al. (2008)

Marmota monax Mammal 4.7 Fore Rupert et al. (2015)

Equus caballus Mammal 510 Hind Payne et al. (2005)

Ceratotherium simum Mammal 2160 Fore, hind Etienne, Houssaye & Hutchinson (2021)

Rhinoceros unicornis Mammal 2065 Fore, hind Etienne, Houssaye & Hutchinson (2021)

Lepus europeus Mammal 3.454 Fore, hind Williams, Payne & Wilson (2007), Williams, Wilson & Payne (2007)

Scalopus aquaticus Mammal 0.1062 Fore Rose et al. (2013)

Rangifer tarandus Mammal 91 Fore, hind Wareing et al. (2011)

Homo sapiens Biped 75.337 Hind Rajagopal et al. (2016)

Pan troglodytes Mammal 54.7 Hind Carlson (2006)

Bradypus variegatus Mammal 3.97 Fore Olson et al. (2018)
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angle corresponded to the muscle’s optimal fibre length and optimal pennation angle,
respectively (Zajac, 1989).

Published data
The majority of data used in this study were sourced from previously published
comparative studies on muscle architecture, biomechanics or scaling (see Table 1 for
references; see also Martin et al., 2020 for a review of methods used to measure muscle
architecture). Unfortunately, many of the earlier studies on muscle architecture scaling
cited in the Introduction did not report their raw measurements and so their data were
unable to be incorporated into a taxonomically richer analysis. Literature data were
selected according to three requirements:

1. All or almost all of the muscles of the limb had been measured and reported (save the
manual and pedal muscles, as noted above), since the overarching aim of the present
study is considering the whole limb. Studies in which a few small muscles (e.g., deep
muscles such as the gemellus, quadratus femoris or popliteus) were not reported were
still included, since the omission of such small muscles is expected to have minimal
effect on the overall results. Studies that measured multiple muscles under a single
name (e.g., multiple heads of the flexor carpi radialis as a single muscle) were also
included, since this nevertheless accounts for all the muscle mass present. In contrast,
studies that did not report one or more major muscles were excluded from
consideration. All datasets ultimately selected for use in the present study included all
major extensor and adductor (antigravity) muscles of the limb. The specific muscles
included (and which, if any, were excluded) in a given source study are outlined in
Table S1.

2. Each of the architectural parameters listed in Eq. (1) were either explicitly reported,
or their values able to be back-calculated from reported values, the latter either as PCSA
(e.g., Cuff et al., 2016a, 2016b; back-calculated via Eq. (1)) or mass-scaled values
(e.g., Dick & Clemente, 2017; Cieri, Dick & Clemente, 2020; back-calculated by unscaling
according to reported body mass). A few previous studies had neglected to measure
(or at least report) pennation angle, but to maximize consistency across the present
dataset these studies were excluded. Studies that reported dry muscle mass only were
also excluded.

Table 1 (continued)

Species Group Body mass (kg) Data Study

Dasypus novemcinctus Mammal 3.6 Fore Olson et al. (2016)

Isoodon fusciventer Mammal 1.329 Fore Martin et al. (2019)

Didelphis virginiana Mammal 1.759 Fore, hind This study

Tachyglossus aculeatus Mammal 3.79 Fore Regnault et al. (2020)

Note:
List of species with architectural data for individual muscles, the major group they belong to (for the purposes of the statistical analyses conducted here), body mass,
whether a given species contributed to the forelimb (‘fore’) or hindlimb (‘hind’) datasets, and studies in which the data were originally published. Note that birds and
humans were analysed together in this study as ‘bipeds’. See Table S1 for additional species and studies that contributed data on muscle mass only.
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3. The data reported were for adult or large-sized individuals, to reduce potential
confounding effects of ontogenetic variation (Table S1). In approximately two-fifths of
species sampled, multiple similarly-sized individuals had been investigated, but the
data reported by the relevant studies were only presented as a species mean, wherein a
given architectural parameter for a given muscle had already been averaged across the
individuals studied; in these cases, the mean body mass of that sample was used.
For all other species, architectural and body mass data were reported for separate
individuals. When data for multiple individuals of a given species had been reported
separately (e.g., Lamas, Main & Hutchinson, 2014; Allen et al., 2015;Martin et al., 2019),
those for the largest individual were used, to reduce possible ontogenetic effects.
This approach was deemed more appropriate than computing a species average across
all individuals, because in several instances the sample of individuals investigated by
prior studies (especially those focused on ontogeny) exhibited high disparity in body
sizes, undermining the value of a species mean; moreover, such an arithmetic mean
would not account for ontogenetic allometry within the species, and hence could
introduce further error into the analyses. Ultimately, each species contributed only a
single datapoint to the analyses.

Data were also sourced for a further 15 species from six additional studies, which
had reported just muscle mass (Table S1). These studies either reported mass of each
individual muscle separately (Hudson et al., 2011a; Hudson et al., 2011b; Ogihara et al.,
2009; Payne et al., 2006; Zihlman, McFarland & Underwood, 2011), or reported total
muscle mass for the limb as a whole (Grand, 1977), and helped further increase taxonomic
coverage in the final dataset.

New data
To broaden the taxonomic diversity of the dataset, and contribute novel data that future
studies may draw upon, dissections were undertaken on a single adult individual each of
the Virginia opossum (Didelphis viginiana) and the Argentine black and white tegu
(Salvator merianae). The former is an ameridelphian marsupial, and apart from a single
species of bandicoot (australidelphian; Martin et al., 2019) is the only other marsupial in
the dataset; the latter is a lacertoid lizard, representing a hitherto unsampled part of
squamate phylogeny. Intact whole carcasses of wild individuals were obtained as part of a
prior study (Fahn-Lai, Biewener & Pierce, 2020), sourced from Worcester County,
Massachusetts (D. virginiana, Massachusetts Division of Fisheries and Wildlife) and
Everglades National Park, Florida (S. merianae, Daniel Beard Center, United States
Geological Survey). Upon acquisition, the specimens were immediately frozen at −20 �C,
and subsequently fully thawed prior to dissection and architectural measurement.
The right fore- and hindlimbs were dissected in both cases. Muscle architecture
measurement followed standard dissection procedures (Allen et al., 2015; Biewener & Full,
1992; Fahn-Lai, Biewener & Pierce, 2020), using a magnifying lamp where necessary.
To minimize desiccation of the fresh specimens, tissues were kept moistened with paper
towel soaked in saline solution throughout. Muscle belly mass was measured with an
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electronic balance (Precisa 320 XB; Precisa Gravimetrics AG, Dietikon; 0.0001 g precision),
fascicle length with digital calipers (0.01 mm precision) and pennation angle with a
transparent protractor (1� precision). Measurements of fascicle lengths and pennation
angles were made at random locations throughout a muscle belly, and depending on
muscle size up to ten measures each were made, after which the arithmetic mean was
derived.

Anatomical comparisons
Four main, and two subsidiary, comparisons were undertaken for both fore- and
hindlimbs, as described below. For each comparison, patterns were examined for the limb
as a whole, as well as just the proximal and distal limb muscles separately, given that
some previous studies have noted scaling differences between the proximal and distal limb
for individual muscles or functional groups (Alexander et al., 1981; Cuff et al., 2016a,
2016b; Dick & Clemente, 2016; Eng et al., 2008). ‘Proximal’muscles were classified as those
in which the majority of their bulk resides proximal to the elbow (forelimb) or knee
(hindlimb) joints, whereas ‘distal’muscles have the majority of their bulk residing distal to
those joints. This volume-based approach is more relevant to the ‘fascicle packing
problem’, and avoids the complications caused by flexor or extensor muscles crossing
the joints involved. Furthermore, given that a substantial component of hindlimb
locomotor muscle in reptiles is the caudofemoralis longus (CFL), which chiefly resides in
the proximal tail, whole hindlimb and proximal hindlimb analyses were also re-run with
this muscle excluded from the reptile sample. In addition to providing more nuanced
insight into questions of scaling and fascicle packing, these additional variations provide
greater sophistication to predictive relationships derived from the data. Ultimately, eight
different sub-analyses were performed for each anatomical comparison (48 in total).

#1—Total muscle mass (Σmmuscle) v. body mass (mbody)
This comparison examines how much of total biomass is invested in limb musculature;
under isometry, the scaling exponent would be 1. It ignores the potential for systematic
variation in relative body composition in terms of other tissue types (bone, integument,
etc.), but is nonetheless informative because it focuses on one of the tissues primarily
involved in body support and propulsion during terrestrial locomotion.

#2—Mean size-normalized isometric strength v. mbody

Following calculation of PCSA as per Eq. (1), the arithmetic mean across all muscles was
taken. Although PCSA is an estimator of maximal isometric force-generating capacity of a
muscle, as a measure of area it is not a particularly intuitive descriptor of force, in and of
itself. To present mean PCSA in a more tangible form, it was converted to maximal
isometric force in multiples of body weight (BW):

Fmax� ¼ PCSA � r
mbody � g ; (2)

where σ is maximal isometric stress, assumed here as 300,000 N/m2 (Bates & Falkingham,
2018; Hutchinson, 2004;Medler, 2002), and g is the acceleration due to gravity. Dividing by
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body mass means that under isometry the scaling exponent is that of PCSA minus 1.0
(i.e., −⅓), which in turn makes it more straightforward to interpret in the context of
scaling. That is, PCSA can scale with positive allometry and yet force-generating capacity
can decline with increasing size if ⅔ < PCSA exponent < 1, whereas the sign of the
exponent for Fmax

� is immediately indicative of whether a strength deficit exists at larger
body size: only if it is positive is relative force-generating capacity (i.e., relative
performance) maintained with increasing size. It should be noted that using a different
value for σ would not alter the resulting scaling exponent.

#2b—Median Fmax
� v. mbody

The relative masses and force-generating capacities of individual limb muscles typically do
not follow an even or symmetrical distribution (Table S1), such that the analysis of
means as above may be influenced by one or two exceedingly strong, or weak, muscles in
the limb. Thus, the median PCSA for all muscles was also computed, and converted to
Fmax

� as per Eq. (2). Under isometry, the scaling exponent would also be –⅓.

#2c—Total Fmax
� v. mbody

In the current dataset there is considerable variation in the number of individually
measured and reported muscles for a given species. These differences can reflect
investigator judgement in the splitting or grouping of muscle heads for measurement,
but can also be due to legitimate anatomical differences between species; for example,
crocodylians have a single long digital flexor in the hindlimb, whereas birds have up to six.
Variation in the number of muscles may influence the mean or median PCSA, and so
to account for this the total PCSA was also computed and converted to Fmax

� as per Eq. (2).
Again, under isometry the scaling exponent would be −⅓.

#3—Characteristic fascicle length v. mbody

Fascicle length is almost ubiquitously investigated in studies of muscle architecture
scaling, yet in a broad comparison across amniotes it is not sensible to investigate fascicle
length in and of itself, either for individual muscles, functional groups or for the whole
limb. This is due to the great variation that can exist in muscle size, origins, insertions
and lengths, as well as differences of subdivision (differentiation) between different
taxonomic groups, which can all lead to marked variation in fascicle length irrespective of
body size. An alternative approach is to compute a single ‘characteristic fascicle length’ for
the limb as a whole, as the weighted harmonic mean of the fascicle lengths of each
individual muscle (cf. Alexander et al., 1981):

L� ¼ �mmuscle

q � �PCSA : (3)

This effectively replaces the musculature of the whole limb (or proximal or distal
compartment thereof) with a single equivalent muscle. Note that in using PCSA, Eq. (3)
weights fascicle lengths by both muscle mass and cos(ao), and thus the equivalent
whole-limb muscle also factors in pennation. Furthermore, it can be seen that L� is
approximately inversely proportional to mean relative (mass-normalized) PCSA
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(Eng et al., 2008). As for ‘real’ fascicle length, the scaling exponent under isometry would
be ⅓.

#4—ΣPCSA v. Σmmuscle

By removing the context ofmbody, this provides a direct assessment of the ‘fascicle packing
problem’, by testing how whole-limb force-generating capacity compares against the
amount of available muscle mass. Under isometry, the scaling exponent would be ⅔;
note that isometry may reflect scale invariance of pennation angle (which would be
theoretically expected; see also Dick & Clemente, 2017; Cieri, Dick & Clemente, 2020),
fascicle length, or a more complex combination of both parameters. Comparison #3 also
addresses the fascicle packing problem, but indirectly.

Statistical analyses
All data processing and analyses were conducted in R v.4.1.0 (R Core Team, 2021),
using the ‘caper’ (v.1.0.1; Orme et al., 2018), ‘evomap’ (v 0.0.9; Smaers & Rohlf, 2016)
‘phytools’ (v.0.7; Revell, 2012), ‘geiger’ (v.2.0.7; Harmon et al., 2008) and ‘nlme’ (v. 3.1;
Pinheiro et al., 2021) packages; the full set of code and data used are provided in the
Supplemental Information. Data were logarithmically transformed (base 10) prior to
analysis, facilitating the use of linear statistical models. Phylogenetically informed
statistical analyses were conducted using a single, fully resolved, time-calibrated
phylogenetic tree of the study taxa (Fig. S1). The tree was generated using the TimeTree
database (www.timetree.org; Hedges, Dudley & Kumar, 2006), which included all taxa
except for Isoodon fusciventer; this was substituted with Isoodon obesulus (the only species
of Isoodon in the database), which has no effect on divergence times with respect to other
taxa in the present study.

For each of the above anatomical comparisons (for whole-limb and proximal and distal
compartments), allometric scaling equations of the form log10Y = log10A + Blog10X
were derived for mammals, reptiles and bipeds separately, using phylogenetic generalized
least squares (pGLS or ‘phylogenetic regression’; Smaers & Rohlf, 2016) to determine
slopes (exponents, B) and intercepts (log10A). This simultaneously estimated the λ
parameter of Pagel (1999) using maximum likelihood, offering greater flexibility than a
strict Brownian motion model of evolution in accounting for phylogenetic signal in the
data. Additionally, the 95% confidence interval (CI) of the slope was determined, using
the t-distribution, to facilitate comparison against the slope expected under isometry: if the
expected exponent fell outside of the CI, the scaling was deemed to significantly depart
from isometry at the P = 0.05 level. Subsequently, all groups were collated together and
a new pGLS fit was computed to generate a ‘pan-amniote’ regression for a given
anatomical comparison (again for whole-limb and proximal and distal compartments),
thus deriving a statistical predictive framework that can be applied to extinct species.
In addition to estimator coefficients, 95% CIs and prediction intervals were also derived
(Smaers & Rohlf, 2016), which can provide error margins for future estimations.

To ascertain whether mammals, reptiles or bipeds exhibited different allometric
trajectories for a given anatomical comparison, a phylogenetic analysis of covariance
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(pANCOVA) was performed, which tested for differences in slope and intercept between
groups (both separately and together; Smaers & Rohlf, 2016). Here the off-diagonal
elements of the variance–covariance matrix were scaled by the λ parameter estimated
during calculation of the pan-amniote regression, to minimize false negatives caused by an
overly conservative assumption of strict Brownian motion. The analyses were also run
without accounting for phylogeny (ANCOVA, λ = 0), to evaluate the effect of phylogenetic
relatedness on the results, given that the mammal, reptile and biped samples are nearly
mutually exclusive phylogenetically (Fig. S1). Statistical significance was set at P = 0.05.

RESULTS
Scaling results and exponents are presented graphically in Figs. 2–5; as the results for
mean Fmax

� (comparison #2) were highly similar to those for median and total Fmax
�

(comparisons #2b and #2c, respectively), the latter are presented in the Supplemental
Information (SI text, Figs. S2, S3). The results for hindlimb analyses excluding the
caudofemoralis longus (CFL) from the reptile (i.e., non-avian saurian) dataset are
presented in Figs. S4–S9. The results of inter-group comparisons of allometries are
presented in Tables 2–5, with those for median and total Fmax

� presented in the
Supplemental Information (Tables S2, S3); the results for hindlimb analyses excluding
the CFL from the reptile dataset are presented in Tables S4–S9. Coefficients for the
pan-amniote regressions are reported in Table 6, with coefficients for hindlimb analyses
excluding the CFL from the reptile dataset presented in Table S10.

Total muscle mass v. body mass
Reptiles almost ubiquitously show negative allometry, whereas mammals and bipeds do
not show significant departure from isometry (Fig. 2). The one exception to this
generalization is negative allometry in the distal hindlimb of mammals: larger mammals
tend to have relatively lighter (less muscled) distal hindlimbs. When the CFL is excluded,
the values of the slopes (and CIs) for reptiles change minimally, but this is sufficient to
render the revised scaling statistically indistinguishable from isometry (Fig. S4). Analyses
of covariance (without accounting for phylogeny) indicate that mammals, reptiles and
bipeds each exhibit significantly different allometric trajectories, in terms of both slope and
intercept (Tables 2, Table S4). Reptiles have a lower slope and intercept compared to
mammals, indicating that they have proportionately lower muscle mass, especially at large
body sizes. In contrast, bipeds have proportionately greater hindlimb muscle mass than
both mammals and reptiles, especially at larger body size and particularly in the distal
limb. Many of these differences disappear (i.e., become statistically non-significant) once
phylogeny is taken into consideration using the pANCOVA.

Mean size-normalized isometric strength ( Fmax
�) v. body mass

Both mammals and reptiles generally do not show significant departure from isometry,
although reptiles exhibit negative allometry in the distal hindlimb (Fig. 3). When the CFL
is excluded, the values of the slopes for reptiles change minimally, but narrower CIs render
the revised scaling significantly negatively allometric, for both the whole and proximal
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Figure 2 Total muscle mass v. body mass across extant terrestrial amniotes. This is shown for the
forelimb and hindlimb, in terms of the limb as a whole, and parsed by proximal and distal compartments.
Results are plotted on logarithmic coordinates, along with phylogenetic regression (pGLS) and 95%
confidence intervals (CIs). Red = mammals, blue = reptiles, green = bipeds. Note the difference in vertical
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hindlimb (Fig. S5). Notably, bipeds exhibit strong positive allometry throughout the
hindlimb, particularly in the distal limb (Fig. 3); notwithstanding the small sample size,
mean size-normalized force-generating capacity appears to be scale-invariant. Analyses of
covariance without accounting for phylogeny indicate that mammals, reptiles and bipeds
frequently exhibit significantly different allometric trajectories, especially in terms of
slope (Table 3, Table S5). Differences in intercept were mostly detected for the forelimb,
where reptiles exhibit a markedly lower intercept than mammals, indicating lower mean
force-generating capacity regardless of body size. Most of the differences between
mammals and reptiles disappear once phylogeny is taken into consideration using
pANCOVA; in contrast, most differences between mammals and bipeds, and reptiles and
bipeds, were retained following phylogenetic correction, attesting to strong allometric
deviation in the biped sample.

Characteristic fascicle length (L�) v. body mass
In the forelimb, both mammals and reptiles exhibit negative allometry, although in reptiles
this is not statistically significant in the distal limb, due to wide CIs in that instance (Fig. 4).
Mammals and bipeds also exhibit negative allometry in the hindlimb, although in
mammals this is driven by the distal limb only; mirroring patterns noted above, bipeds
show a stronger departure from isometric scaling in the distal limb. Reptiles do not show
any significant departure from isometry in the hindlimb, a result that remains unaltered
when the CFL is excluded from the dataset (Fig. S8). In stark contrast to the previous
comparisons, ANCOVA (without accounting for phylogeny) revealed almost no
significant difference among mammals, reptiles or bipeds (Table 4, Table S8). The only
difference detected (which disappeared following phylogenetic correction using
pANCOVA) was that mammals have a lower intercept in the distal hindlimb compared to
both reptiles and bipeds, indicating that, overall, the distal hindlimb of mammals possesses
proportionately shorter muscle fascicles.

Total PCSA v. total muscle mass
Mammals and bipeds almost ubiquitously exhibit positive allometry, whereas reptiles
generally do not exhibit statistically significant departures from isometry (Fig. 5).
Two exceptions to this are mammals not showing a significant departure from isometry in
the distal forelimb, and reptiles exhibiting positive allometry in the forelimb as a whole.
Excluding the CFL does not significantly alter the reptile hindlimb scaling patterns
(Fig. S9). As for L�, ANCOVA (without accounting for phylogeny) notably revealed almost
no significant difference among mammals, reptiles or bipeds (Tables 5, Table S9).
Mammals have a lower slope in the hindlimb overall compared to bipeds, although this

Figure 2 (continued)
and horizontal scales. The slope expected under isometry is indicated in each case by the solid grey line,
plotted clear of the data for ease of viewing. The slope and 95% CIs for each group are reported in each
case, as are the sample sizes (in parentheses); also indicated are instances where a particular group
exhibits statistically significant positive (⇧) or negative (⇩) allometry.

Full-size DOI: 10.7717/peerj.12574/fig-2
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Figure 3 Mean size-normalized isometric strength v. body mass across extant terrestrial amniotes.
Conventions as in Fig. 2. See Figs. S2 and S3 for the results of median and total size-normalized iso-
metric strength v. body mass. Full-size DOI: 10.7717/peerj.12574/fig-3
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Figure 4 Characteristic fascicle length v. body mass across extant terrestrial amniotes. Conventions
as in Fig. 2. Full-size DOI: 10.7717/peerj.12574/fig-4
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cannot be attributed to differences within the proximal or distal compartments.
Additionally, mammals have a higher intercept in the distal hindlimb compared to reptiles
(a result which disappeared following phylogenetic correction using pANCOVA),
indicating that the distal limb of mammals possesses relatively greater fascicle area.

Pan-amniote regression
Coefficients for the pan-amniote regressions (Table 6) provide an empirical basis for
estimating some important measures of muscle mass and force-generating capacity in
extinct terrestrial amniotes. Note that the coefficients reported here were computed to the
exclusion of bipeds, given that bipeds have been shown above to frequently differ
from quadrupeds, and that the majority of species throughout tetrapod history were
quadrupedal. The code provided in the Supplemental Information enables for predictive
relationships to be derived that includes bipeds in the dataset. In addition to the
coefficients, mean percent prediction error (%PE) is also reported, expressed in terms of
the original, non-log-transformed dimensions of the data (Smith, 1980); this provides an
alternative to prediction intervals (see SI code) as a way of deriving upper and lower
estimates for a given taxon. Coefficients computed when the CFL was excluded from the
reptile dataset (Table S10) are largely similar to those reported in Table 6, although notably
mean %PE is generally higher.

Table 2 Results of comparisons between each major group via pANCOVA, for the analysis of Σmmuscle v. mbody.

Anatomical region Test Mammals v. reptiles Mammals v. bipeds Reptiles v. bipeds

df F P F† P† df F P F† P† df F P F† P†

Forelimb Whole S 2.29 1.442 0.24 32.465 <0.001

I 2.29 1.639 0.211 33.14 <0.001

S + I 2.28 1.08 0.353 19.112 <0.001

Proximal S 2.30 1.008 0.324 25.295 <0.001

I 2.30 1.114 0.3 27.243 <0.001

S + I 2.29 0.73 0.491 14.967 <0.001

Distal S 2.31 0.481 0.493 24.355 <0.001

I 2.31 0.509 0.481 17.047 <0.001

S + I 2.30 0.377 0.689 11.945 <0.001

Hindlimb Whole S 2.42 1.673 0.203 14.715 <0.001 2.36 5.181 0.029 11.763 0.002 2.15 21.811 <0.001 41.475 <0.001

I 2.42 0.259 0.613 13.985 0.001 2.36 2.616 0.115 10.143 0.003 2.15 8.332 0.011 32.61 <0.001

S + I 2.41 0.855 0.433 9.291 0.001 2.35 2.519 0.095 6.554 0.004 2.14 13.11 0.001 36.147 <0.001

Proximal S 2.32 4.268 0.047 16.724 <0.001 2.26 3.688 0.066 6.595 0.016 2.15 7.192 0.017 10.129 0.006

I 2.32 0.787 0.382 9.695 0.004 2.26 2.362 0.136 5.666 0.025 2.15 3.064 0.101 8.641 0.01

S + I 2.31 2.112 0.138 8.643 0.001 2.25 1.831 0.181 3.564 0.044 2.14 3.521 0.058 5.825 0.014

Distal S 2.32 0.089 0.768 8.089 0.008 2.26 9.577 0.005 26.166 <0.001 2.15 10.088 0.006 15.239 0.001

I 2.32 0.199 0.659 15.57 <0.001 2.26 5.05 0.033 26.659 <0.001 2.15 6.737 0.02 31.079 <0.001

S + I 2.31 0.166 0.848 7.819 0.002 2.25 4.64 0.019 17.517 <0.001 2.14 6.955 0.008 17.242 <0.001

Note:
Each pairwise comparison was tested for differences in slope (S), intercept (I) and slope and intercept (S + I). Results for analyses without controlling for phylogeny are
also presented (ANCOVA, †); significant results are in boldface; df = degrees of freedom.
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Table 4 Results of comparisons between each major group via pANCOVA and ANCOVA, for the analysis of L* v. mbody.

Anatomical region Test Mammals v. reptiles Mammals v. bipeds Reptiles v. bipeds

df F P F† P† df F P F† P† df F P F† P†

Forelimb Whole S 2.25 1.537 0.227 1.537 0.227

I 2.25 0.271 0.607 0.271 0.607

S + I 2.24 1.151 0.333 1.151 0.333

Proximal S 2.26 1.251 0.274 1.251 0.274

I 2.26 0.58 0.453 0.58 0.453

S + I 2.25 0.642 0.535 0.642 0.535

Distal S 2.27 0.055 0.816 0.263 0.613

I 2.27 0.113 0.74 0.288 0.596

S + I 2.26 0.062 0.94 1.921 0.167

Hindlimb Whole S 2.27 0.395 0.535 0.025 0.875 2.21 0.379 0.545 0.073 0.789 2.15 0.603 0.45 0.013 0.91

I 2.27 0.181 0.674 0.157 0.695 2.21 0.651 0.429 1.437 0.244 2.15 0.114 0.741 0.243 0.629

S + I 2.26 0.211 0.811 0.223 0.802 2.20 1.658 0.216 2.24 0.133 2.14 0.84 0.452 0.313 0.736

Proximal S 2.27 0.002 0.964 0.794 0.381 2.21 0.269 0.609 0.175 0.68 2.15 0.041 0.842 0.094 0.764

I 2.27 0.008 0.929 0.367 0.55 2.21 0.273 0.607 0.372 0.548 2.15 0.346 0.565 0.636 0.438

S + I 2.26 0.008 0.992 0.383 0.685 2.20 0.84 0.446 0.966 0.398 2.14 0.44 0.653 0.354 0.708

Distal S 2.27 3.644 0.067 2.953 0.097 2.21 0.64 0.433 3.941 0.06 2.15 1.323 0.268 0.14 0.713

I 2.27 0.277 0.603 5.02 0.034 2.21 1.846 0.189 11.95 0.002 2.15 0.422 0.526 1.106 0.31

S + I 2.26 1.782 0.188 2.519 0.1 2.20 0.928 0.412 5.75 0.011 2.14 1.663 0.225 0.635 0.545

Note:
Conventions as per Table 2.

Table 3 Results of comparisons between each major group via pANCOVA and ANCOVA, for the analysis of mean Fmax* v. mbody.

Anatomical region Test Mammals v. reptiles Mammals v. bipeds Reptiles v. bipeds

df F P F† P† df F P F† P† df F P F† P†

Forelimb Whole S 2.25 1.212 0.282 9.013 0.006

I 2.25 2.436 0.131 11.512 0.002

S + I 2.24 1.187 0.322 5.725 0.009

Proximal S 2.26 0.673 0.419 6.247 0.019

I 2.26 1.831 0.188 8.6 0.007

S + I 2.25 0.881 0.427 4.183 0.027

Distal S 2.27 1.604 0.216 9.006 0.006

I 2.27 1.554 0.223 8.939 0.006

S + I 2.26 0.942 0.403 4.824 0.017

Hindlimb Whole S 2.27 6.699 0.015 6.699 0.015 2.21 14.358 0.001 14.358 0.001 2.15 35.374 <0.001 35.374 <0.001

I 2.27 0.886 0.355 0.886 0.355 2.21 6.785 0.017 6.785 0.017 2.15 6.387 0.023 6.387 0.023

S + I 2.26 3.674 0.039 3.674 0.039 2.20 6.919 0.005 6.919 0.005 2.14 16.722 <0.001 16.722 <0.001

Proximal S 2.27 4.379 0.046 4.379 0.046 2.21 10.455 0.004 10.455 0.004 2.15 19.785 0.001 19.785 0.001

I 2.27 0.238 0.629 0.238 0.629 2.21 5.882 0.024 5.882 0.024 2.15 4.273 0.056 4.273 0.056

S + I 2.26 2.818 0.078 2.818 0.078 2.20 5.117 0.016 5.117 0.016 2.14 9.453 0.003 9.453 0.003

Distal S 2.27 2.232 0.147 12.439 0.002 2.21 11.022 0.003 14.949 0.001 2.15 49.529 <0.001 92.834 <0.001

I 2.27 0.096 0.76 7.245 0.012 2.21 3.055 0.095 6.169 0.022 2.15 3.88 0.068 16.093 0.001

S + I 2.26 1.075 0.356 6.432 0.005 2.20 5.402 0.013 7.131 0.005 2.14 23.132 <0.001 47.383 <0.001

Note:
Conventions as per Table 2.
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Table 5 Results of comparisons between each major group via pANCOVA and ANCOVA, for the analysis of ΣPCSA v. Σmmuscle.

Anatomical region Test Mammals v. reptiles Mammals v. bipeds Reptiles v. bipeds

df F P F† P† df F P F† P† df F P F† P†

Forelimb Whole S 2.25 2.729 0.111 2.729 0.111

I 2.25 2.081 0.162 2.081 0.162

S + I 2.24 1.591 0.225 1.591 0.225

Proximal S 2.26 0.937 0.342 0.937 0.342

I 2.26 0.901 0.351 0.901 0.351

S + I 2.25 0.572 0.572 0.572 0.572

Distal S 2.27 0.01 0.92 3.383 0.077

I 2.27 0.689 0.414 3.327 0.079

S + I 2.26 0.434 0.653 1.726 0.198

Hindlimb Whole S 2.27 0.075 0.787 0.075 0.787 2.21 5.272 0.032 5.272 0.032 2.15 1.215 0.288 1.215 0.288

I 2.27 1.265 0.271 1.265 0.271 2.21 0.225 0.64 0.225 0.64 2.15 0.642 0.435 0.642 0.435

S + I 2.26 0.611 0.551 0.611 0.551 2.20 2.676 0.093 2.676 0.093 2.14 1.124 0.353 1.124 0.353

Proximal S 2.27 0.004 0.951 0.004 0.951 2.21 2.84 0.107 2.84 0.107 2.15 0.655 0.431 0.655 0.431

I 2.27 1 × 10−4 0.993 1 × 10−4 0.993 2.21 0.313 0.582 0.313 0.582 2.15 0.028 0.869 0.028 0.869

S + I 2.26 0.002 0.998 0.002 0.998 2.20 1.743 0.201 1.743 0.201 2.14 0.392 0.683 0.392 0.683

Distal S 2.27 1.466 0.237 3.118 0.089 2.21 1.027 0.323 2.911 0.103 2.15 4.137 0.06 0.146 0.708

I 2.27 0.505 0.483 9.851 0.004 2.21 0.195 0.663 3.387 0.08 2.15 0.233 0.636 0.738 0.404

S + I 2.26 1.628 0.216 4.994 0.015 2.20 0.551 0.585 2.141 0.144 2.14 3.242 0.07 1.062 0.372

Note:
Conventions as per Table 2.

Table 6 Pan-amniote regression (pGLS) coefficients for each comparison.

Comparison Slope under
isometry

Limb Whole limb Proximal Distal

Slope Intercept Mean %PE Slope Intercept Mean %PE Slope Intercept Mean %PE

Σmmuscle v. mbody 1.0 Fore 1.0009 −1.5459 64.8 1.0076 −1.6512 66.52 0.9786 −2.3141 83.01

Hind 0.9798 −1.2764 40.77 0.9975 −1.3619 32.84 0.9069 −2.0589 55.32

Mean Fmax* v. mbody −0.333 Fore −0.2798 0.1213 43.11 −0.2871 0.2092 46.12 −0.276 −0.0573 45.03

Hind −0.3177 0.2791 33.58 −0.3266 0.3149 35.28 −0.3046 0.1345 45.66

Median Fmax* v. mbody −0.333 Fore −0.3045 −0.0375 38.71 −0.3174 0.0782 44.67 −0.282 −0.1878 46.31

Hind −0.2916 0.0154 40.38 −0.2757 0.0449 44.48 −0.3027 −0.0581 42.02

ΣFmax* v. mbody −0.333 Fore −0.2896 1.5756 48.65 −0.2755 1.4068 48.2 −0.3146 1.0427 66.34

Hind −0.307 1.7461 40.79 −0.2988 1.6095 36.11 −0.3314 1.1473 67.41

L* v. mbody 0.333 Fore 0.2559 −1.6124 23.32 0.2603 −1.5407 21.54 0.2607 −1.8702 41.57

Hind 0.2943 −1.5699 21.46 0.3016 −1.5117 21.91 0.2296 −1.7568 35.41

ΣPCSA v. Σmmuscle 0.666 Fore 0.7344 −1.7894 18.82 0.735 −1.8876 18.46 0.7215 −1.7914 38.93

Hind 0.7141 −1.8341 26.48 0.7095 −1.9253 26.2 0.746 −1.795 36.97

Note:
These are reported for data on a log10 scale; also reported is the mean percent prediction error (%PE), expressed in original (antilog) terms. Results for hindlimb analyses
where the caudofemoralis longus was excluded from the reptile dataset are reported in Table S10.
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DISCUSSION
Through a synthesis of new dissection data with previously published results, the
present study aimed to holistically appraise limb muscle scaling in terrestrial amniotes.
In particular, it sought to investigate how muscle mass (size) and force-generating capacity
(strength) scales at the level of the whole limb, to explore whether this reflects previously
observed patterns noted for individual muscles or functional groups across disparate
clades, and to assess how tightly constrained amniote limbs are in terms of whole-limb
muscular composition. A subsidiary objective was to generate statistical relationships
that have predictive value in inferring function in extinct amniotes. In synthesizing data
from numerous studies, it must be acknowledged that the resulting dataset will likely
contain a certain level of ‘noise’ due to various sources. One pertinent source of error is
the measurement of fascicle length in fresh specimens: as was the case in the present
study, this is typically undertaken following removal of a given muscle from the limb,
whereupon the fascicles may non-systematically deviate from a ‘reasonable’ or functionally
relevant length. This problem may be partially mitigated by using formalin-fixed
specimens, where the limb joints can be locked in physiologically realistic poses prior to
fixation (thus limiting fascicle length change after the muscle is removed), although
this approach can involve its own set of challenges, such as muscle shrinkage (Kikuchi &
Kuraoka, 2014; Martin et al., 2020). Digital methods that permit architectural
measurement in situ, such as contrast-enhanced scanning and automated fascicle tracking
(e.g., Sullivan et al., 2019), may be able to avoid these issues, but thus far are limited in
spatial scale and hence anatomical and taxonomic scope. Additional sources of noise in the
present study will also include variation in the approaches of prior studies, in terms of
investigator, occasional exclusion of some small muscles, subjective subdivision of muscle
complexes and so on. Nonetheless, given the wide diversity and size range of species
covered here, this was considered acceptable for the present study’s broad scope.

Mass and force-generating capacity scaling across terrestrial
amniotes
In terms of total muscle mass (Fig. 2), the present study found that reptile (i.e., non-avian
saurian) limbs typically show negative allometry with respect to body mass (exponents
0.884 to 0.939), whereas mammals (exponents 0.989 to 1.019) and bipeds (exponents
1.104 to 1.109, but wide CIs) typically displayed isometry. This is in partial agreement with
prior studies, where weak negative to modest positive allometry has been recovered
(exponents 0.9 to 1.15 across all amniotes; see references in Introduction). The differences
in findings may be due to multiple factors, including variation in sample sizes affecting CI
calculation, the line-fitting approach used and even the species that contribute to the
underlying datasets. It may also reflect a genuine biological phenomenon, where
allometric patterns observed for a select few muscles (i.e., those which extend the range of
exponents recovered by previous studies) are ‘cancelled out’ by those of many other
muscles, when considered together at the level of the whole limb. Irrespective of the
proximate cause(s), it is evident that reptiles have proportionately less muscle mass than
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mammals or bipeds, and bipeds have proportionately greater hindlimb muscle mass,
especially in the distal limb. Neither result is hardly surprising, given that the reptiles
sampled have short limbs and a long, massive tail that contributes substantially toward
total body mass, and that bipeds (by virtue of being bipeds) ought to invest a greater
fraction of body mass into longer, more heavily muscled hindlimbs.

Muscle force-generating capacity in the present study was expressed in a more intuitive
fashion by normalizing to units of body weight. Thus, to compare exponents derived
here to those of prior studies that have examined PCSA directly, this requires adding or
subtracting 1.0 to the exponent. Three different measures of normalized force-generating
capacity (Fmax

�) were explored here—mean (Fig. 3), median (Fig. S2) and total (Fig. S3)—
which showed a consistent overarching set of patterns with respect to body mass.
Mammals and reptiles overall exhibit isometric scaling, although in some circumstances
mammals tended towards positive allometry (total range of exponents −0.30 to −0.245)
whereas reptiles tended towards negative allometry (total range of exponents −0.465 to
−0.302). This is partially consistent with the results of prior studies (corrected exponents
−0.31 to −0.09; see references in Introduction). Again, discrepancies in findings may belie
the different spatial scales concerned; for example, the high end of previously reported
exponents derive from the plantaris muscle of the mammalian hindlimb (Pollock &
Shadwick, 1994) and the proximal forelimb of felids (Cuff et al., 2016a). Of note, reptiles
often displayed a markedly lower intercept than mammals or bipeds, indicative of reduced
relative force-generating capacity and again consistent with possessing short limbs and
massive tails. It therefore follows that how ‘body mass’ is gauged (total body mass, body
mass excluding tail, etc.) will influence interpretations of interspecific differences in
force-generating capacity, although from a purely mechanical perspective total body mass
is appropriate in the context of terrestrial locomotion, since ultimately the limbs must
support and propel all of it.

Bipeds were found to almost ubiquitously display positive allometry in muscle
force-generating capacity, and were frequently found to significantly differ from mammals
and reptiles even after phylogeny was accounted for (in 13 of 15 comparisons with
mammals, all comparisons with reptiles); again, this can be related to the greater
investment of biomass in the hindlimbs of these species. Notably, positive allometry
was exceedingly strong in the distal hindlimb (total range of exponents −0.016 to 0.025), to
the point that relative force-generating ability may increase with increasing body size.
This is comparable to exponents reported for bipedal hopping macropods (corrected
exponents −0.22 to 0.33; Bennett & Taylor, 1995; McGowan, Skinner & Biewener, 2008),
although intriguingly is higher than the exponents recovered byMaloiy et al. (1979) for the
ankle extensors of a selection of ground-dwelling birds (corrected exponent −0.24 to
−0.19). These results should be viewed with some caution, given that only six species were
examined in the present study. Nonetheless, they raise the interesting question of whether
extreme positive allometry would persist at larger body sizes beyond the largest extant
biped, the ostrich (Struthio camelus). For example, how would muscle strength fare in
multi-tonne non-avian theropod dinosaurs, and what implications may this have for
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locomotor performance? These are questions that must await future investigation, but the
comparative dataset marshalled here can provide an empirical basis for such efforts.

In lieu of investigating fascicle length per se, this study examined an equivalent
region-level metric, characteristic fascicle length (L�), which tended to exhibit negative
allometry with respect to body mass in both mammals and bipeds, as well as the forelimb
of reptiles. The exponents obtained (0.171 to 0.324) fell within the range reported
previously for actual fascicle length in individual muscles or functional groups (0.14 to
0.5; see references in Introduction). Negative allometry indicates that muscle fascicles are
on the whole proportionately shorter in larger species. This is especially true in the
mammalian distal hindlimb, which also exhibits a lower intercept (Fig. 4); shorter muscle
fascicles in the distal hindlimb of mammals in turn translate to relatively greater PCSA per
unit mass in this compartment (Fig. 5). All else being equal, proportionately shorter
muscle fascicles in larger species will translate to reduced joint excursion, and at least for
mammals and birds this correlates with the habitual use of more extended limb postures in
larger species (Biewener, 1989; Biewener, 2005; Bishop et al., 2018; Gatesy & Biewener,
1991).

Fascicle packing
Analysis of covariance of muscle mass and force-generating capacity identified
numerous differences in scaling patterns between mammals, reptiles and bipeds, but when
phylogeny was taken into account the majority of these became statistically non-significant
(Tables 2, 3, Tables S2, S3). Hence there are genuine physical differences in mass or
force-generating capacity between each group (which is biomechanically relevant), and
these largely exist due to each group having evolved along different phylogenetic
trajectories. However, when total muscle mass was factored into consideration, either
directly (comparison #4: ΣPCSA v. Σmmuscle) or indirectly (comparison #3: L� v. mbody,
wherein Σmmuscle is used to compute L�), ANCOVA recovered almost no statistically
significant difference between any group; this was true regardless of whether phylogeny
was accounted for or not, and was observed for the limb as a whole as well as proximal
and distal compartments separately (Tables 4, 5). That is, the fore- and hindlimbs of
reptiles, mammals and bipeds almost ubiquitously follow a single common scaling
pattern1. This in turn implies that observed differences in whole-limb force-generating
capacity between groups are principally driven by differences in limb muscle mass, not
internal architecture: one group does not ‘pack their fascicles better’ for a given volume of
limb muscle, they just invest a greater fraction of total biomass into limb muscle in the
first instance. The only possible exception to this generality is the distal hindlimb of
mammals, which at larger body sizes at least do indeed appear to ‘pack their fascicles
better’, with a greater PCSA (and in turn, force-generating capacity) per unit muscle
mass, correlating with proportionately shorter fascicles for a given body size. All else
being equal, this result suggests that larger species may benefit from greater elastic energy
storage in the distal hindlimb tendons during locomotion (cf. Pollock & Shadwick, 1994),
although it should nevertheless be treated with caution, since a large proportion of the
currently sampled mammals are ‘cursorial’ taxa, which may bias the analysis.

1 This might at first seem at odds with the
finding that, for example, mammals
exhibit positive allometry whereas rep-
tiles do not show a significant departure
from isometry. The apparent contra-
diction can be reconciled by noting that
these comparisons are testing two dif-
ferent things in isolation of one another,
whereas in reality there is a gradation
across successively overlapping expo-
nents and CIs—the statistical analogue of
a ‘ring species’.
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The existence of a single overarching pattern, across a diverse array of terrestrial
amniotes that span more than four orders of magnitude in body mass, is remarkable.
It implies the tendency towards some adaptive optimum in organismal ‘design’ or, more
likely, the presence of one or more constraints that prevent significant and systematic
deviation from a common pattern. These constraints may be functional in nature, such as
trade-offs that could occur between conflicting requirements of individual muscles in the
execution of disparate tasks (see Introduction), or may have a developmental basis
(e.g., Evans et al., 2021). Given the multidimensional and nonlinear aspects of muscle
architecture and function, and terrestrial locomotor biomechanics in general, it would
be naïve to suggest that a bivariate statistical model such as those derived here can
sufficiently represent the mechanical phenomena involved (Taylor & Thomas, 2014).
Deciphering the proximate underlying cause(s) of this strong consistency must therefore
await future study. It is also important to recognize that there is still scope for (non-
systematic) variation; for example, the greyhound (Canis familiaris, 27 kg) and snow
leopard (Panthera uncia, 36 kg) have near-identical total hindlimbmuscle mass (~1.64 kg),
yet the greyhound—which is selectively bred for high-speed running—has approximately
double the PCSA of the snow leopard (0.028 v. 0.014 m2; Table S1). Important insight
into the fascicle packing problem can therefore be gained by better understanding the
reasons for variation about the common pan-amniote pattern, through exploring variables
that were not investigated in the current analyses, such as segment lengths, muscle
moment arms, joint mobility, posture and locomotor ecology.

Considerations for future studies
A number of other points are worth noting in the context of future comparative
investigations of muscle architecture. Firstly, despite a superficially broad taxonomic
coverage, the dataset of the present study is still biased, with few birds, marsupials or
non-varanid squamates, numerous ‘cursorial’ eutherians and not one testudine; future
studies should therefore target currently under- or unsampled parts of amniote
phylogeny. Increased diversity will be especially useful for elucidating the true extent, and
underlying cause(s) of, conservatism in whole-limb fascicle packing. Furthermore, it is
recommended that as much architectural data be collected and reported as possible, even if
it may not all be immediately used in a given study, since this will maximize its potential
utility for later studies. One reason why several prior datasets were excluded from the
present study was their omission of pennation angle from the set of reported (or even
collected) measurements. A second point worth considering is that, out of necessity,
the present study ignored the intrinsic musculature of the manus and pes; if further
datasets for these muscles become available in the future, they should be analysed, since
this may reveal important differences between plantigrade and digitigrade species.

One final consideration is that the present study found numerous differences between
mammals, reptiles and bipeds in the allometry of muscle mass and force-generating
capacity with respect to body mass. This is hardly surprising, but it has an important
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implication for how comparative studies should undertake their analyses. In order to
facilitate comparison within or across species, previous studies that have explored muscle
architecture and function typically normalize raw architectural measurements by body
mass, or the dimensionally appropriate exponent of body mass such as m⅓

body for
normalized fascicle length (Allen et al., 2010; Bates & Schachner, 2012; Dick & Clemente,
2016; Fahn-Lai, Biewener & Pierce, 2020; Martin et al., 2019; Regnault et al., 2020).
This may be acceptable for comparisons of closely related species, but becomes
questionable when divergent allometries with body mass are involved. A more sensible
approach for future studies would be to normalize against more directly relevant
parameters, such as limb or limb segment length, or alternatively by the appropriate
clade-specific scaling exponents. Exactly which is the most appropriate normalizing metric
to use may vary depending on a given study’s core questions, and deserves further scrutiny.

CONCLUSION
Whole-limb scaling of muscle mass and force-generating capacity generally follows the
same patterns reported previously for individual muscles or functional groups of muscles,
although some instances of tendency towards isometry (as opposed to previously
reported positive or negative allometry) were noted. This is the first time that muscle
scaling has been addressed at such a broad spatial scale, across a diverse array of terrestrial
amniotes. Additionally, some important differences were observed between proximal and
distal limb compartments, particularly in the hindlimb of mammals and bipeds, which
may reflect the ‘cursorial’ habits of many of the species investigated here. The mammalian
distal hindlimb has proportionately less muscle mass and shorter fascicles, but per unit
muscle mass has a higher PCSA; and the distal hindlimb of bipeds has proportionately
greater muscle mass and PCSA.

Almost all differences in force-generating capacity between groups appear to be due
principally to differences in muscle mass, rather than muscle architecture. Thus, one group
does not systematically ‘pack their fascicles better’ than another, instead they simply invest
more biomass into limb muscle. The underlying reason(s) for a single overarching
relationship across extant amniotes remains to be determined, although it echoes
conservatism in other aspects of musculoskeletal design, such as tissue mechanical
properties.

A comparative dataset of extant amniotes spanning almost five orders of magnitude in
body size has been assembled, which can be built upon and used by future studies in the
analysis of muscle architecture diversity. This dataset also forms the basis for a suite of
pan-amniote predictive equations that can be used to estimate bulk muscle mass and
force-generating capacity, along with error margins, for extinct species. These can be used
if estimates of body mass are available, or alternatively from estimates of total limb muscle
volume, as derived from digital volumetric reconstructions based on skeletal material.
Reliably inferring the force-generating capacity of individual muscles in extinct species
remains elusive (Bishop, Cuff & Hutchinson, 2021a), but inferences of total limb muscle
force-generating capacity provides a step closer toward achieving this goal.
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