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ABSTRACT

Global climate models (GCMs) and Earth system models (ESMs) provide many climate services with environmental relevance. The High Resolution Model Inter-
comparison Project (HighResMIP) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) provides model runs of GCMs and ESMs to address regional
phenomena. Developing a parsimonious ensemble of CMIP6 requires multiple ensemble methods such as independent-model subset selection, prescreening-based
subset selection, and model weighting. The work presented here focuses on application-specific optimal model weighting, with prescreening-based subset selec-
tion. As such, independent ensemble members are categorized, selected, and weighted based on their ability to reproduce physically-interpretable features of interest
that are problem-specific. We discuss the strengths and caveats of optimal model weighting using a case study of red tide prediction in the Gulf of Mexico along the
West Florida Shelf. Red tide is a common name of specific harmful algal blooms that occur worldwide, causing adverse socioeconomic and environmental impacts.
Our results indicate the importance of prescreening-based subset selection as optimal model weighting can underplay robust ensemble members by optimizing error
cancellation. Prescreening-based subset selection also provides insights about the validity of the model weights. By illustrating the caveats of using non-
representative models when optimal model weighting is used, the findings and discussion of this study are pertinent to many other climate services.

processes.

Practical Implications Projection of future trends of red tides is important to environ-

mental management for planning and evaluating the short-term
and long-term impacts and risks of red tides on the ecosystem

Coastal areas are frequently threatened by natural and human
hazards such as massive harmful algae blooms (HABs). Red tides
are a natural phenomenon caused by blooms (dense aggregations)
of harmful microscopic algae in coastal areas worldwide. These
events are influenced by a multitude of factors including oceanic,
atmospheric, and land/river-based events. Here we use the term
red tides for occurrences of large amounts of the toxic dinofla-
gellate Karenia brevis. Red tide events contribute generally to
water quality degradation, and in the Gulf of Mexico these events
have severe environmental and socioeconomic impacts on the
State of Florida, USA. Earth system models (ESMs) present a
unique opportunity for the regional environmental management
of red tides as ESMs couple land, river, ocean, and atmospheric

health, social justice, and regional economy. The overarching goal
of this research is to predict future trends of red tides under
different Shared Socioeconomic Pathways (SSPs) of the Coupled
Model Intercomparison Project Phase Six (CMIP6), which are
scenarios of projected socioeconomic global changes up to year
2100 (with emission scenarios). These future projections of ESMs
under SSPs scenarios can be used as data input for machine
learning to predict long term trends in the occurrence of red tides
(Elshall et al., 2021). This requires not only validating ESMs
simulations with observational and reanalysis data to account for
errors, but also using ensemble methods such as optimal model
weighting to improve the predictive performance. The manuscript
addresses an important topic in climate services that is regional
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and decision-relevant metrics in optimal model weighting. Our
research method can be used to identify non-representative
models, understand their impacts on ensemble prediction, and
improve ensemble prediction. This is important for more accurate
projection of red tides and corresponding socioeconomic impacts
and mitigation efforts under different climate scenarios.

Data availability

The data and codes used are publically available as cited in the
manuscript.

1. Introduction

The High-Resolution Model Intercomparison Project (HighResMIP,
Haarsma et al., 2016) of the Coupled Model Intercomparison Project
Phase 6 (CMIP6, Eyring et al., 2016) presents a new generation of high-
resolution Earth system models (ESMs) with fine resolution and
improved process representation focusing on regional phenomena.
While global climate models (GCMs) mainly represent the physical at-
mospheric and oceanic processes, ESMs advance beyond GCMs by
explicitly accounting for the interactions of the biogeochemical pro-
cesses with the physical climate, and by simulating the interactions
between the atmosphere, biosphere, cryosphere, geosphere, and hy-
drosphere. As ESMs account for atmospheric chemistry, ocean ecology
and biogeochemistry, plant ecology, and land use, these models can
provide many services at regional and seasonal scales that are important
for a wide range of stakeholders. Hereafter, the term ESMs refer to both
ESMs and GCMs for the convenience of discussion. Predictions of ESMs
at the regional scale are useful for resource management and decision
making in many sectors such as agriculture (Ceglar et al., 2018; Vajda
and Hyvarinen, 2020), water resources (Mishra et al., 2019; Zhao et al.,
2020), energy (Bett et al., 2017; De Felice et al., 2019; Lledo et al.,
2019), health (Lowe et al., 2017), ecological and environmental man-
agement (Payne et al., 2019; Jacox et al., 2020; Dixon et al., 2021),
coastal management (Ward et al., 2020), financial services (Fiedler
etal., 2021), among many other applications as reviewed by White et al.
(2017). While ESMs are key ingredients of many of these climate ser-
vices, tailoring model results to real-world applications is a major
challenge (van den Hurk et al., 2018). Focusing on improving predictive
performance of ESMs using ensemble methods, we present a case study
of red tides using the medium- and high-resolution ESMs of CMIP6.

Red tide is a common name of harmful algae blooms that occur
worldwide, and is caused by toxic dinoflagellates such as Karenia brevis.
Red tides contribute to water quality degradation worldwide, resulting
in many undesirable effects. For example, the occurrence of red tides in
the Gulf of Mexico has severe environmental and socioeconomic impacts
on the State of Florida, USA. These impacts affect fishery (e.g., massive
fish kills and shellfish poisoning), ecosystem health and services (e.g.,
harming birds, marine mammals, and sea turtles), local community and
tourism industry (e.g., unpleasant odor and scenery), public health (e.g.,
skin, eye, and respiratory irritation), and other sectors as reviewed by
Zohdi and Abbaspour (2019). The initiation, growth, maintenance, and
termination stages of red tides in the Gulf of Mexico have many driving
factors including regional warm ocean currents, local and deep-ocean
upwelling, river flow, sediment transport, submarine groundwater
discharge, nutrients from multiple sources (e.g., river, groundwater,
ocean, atmospheric deposition and biology), African Sahara dust, trop-
ical cyclones, and wind-direction (Brand and Compton, 2007; Heil et al.,
2014; Weisberg et al., 2014; Maze et al., 2015). An example an impor-
tant physical driver that controls the occurrence of red tides is the the
Loop Current, which is a warm ocean current that penetrates through
the Gulf of Mexico (Weisberg et al., 2014; Maze et al., 2015; Perkins,
2019). Maze et al. (2015) show that the Loop Current sets necessary
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condition for a large red tide blooms to occur, and point out that the
Loop Current can be “the first definitive predictor of bloom possibility”.
The development of management models such as machine learning
models for regional environmental management of red tides using global
climate models (Elshall et al., 2021) requires the validation of ESMs
simulations with observational and reanalysis data to account for errors.
The development also requires the use of ensemble methods to improve
model predictive performance. These are important for more accurate
projections of red tides and corresponding socioeconomic impacts and
mitigation efforts under different climate scenarios. Using the Loop
Current for red tide bloom prediction as a case study, we present an
application-specific optimal model weighting method to improve the
predictive performance of ESMs.

To improve and extract relevant information from ESMs, multiple
techniques such as bias correction, downscaling, and ensemble methods
are often employed. A commonly used ensemble method is model
weighting, through assigning unequal weights to ensemble members
(Sanderson et al., 2017; Lorenz et al., 2018; Herger et al., 2018; Merri-
field et al., 2020; Brunner et al., 2020). Advanced methods for model
weighting are needed to refine the most credible information on regional
climate changes, impacts, and risks for stakeholders (Eyring et al.,
2016). As there is no single best ESM, there is no universally best method
of model weighting, but a method may be useful given the criteria
relevant for the application in question (Herger et al., 2018). Model
democracy, which is the equal-weighting method, is the simplest model
weighting method. Yet more tailored model weighting methods are
needed depending on a set of model evaluation criteria.

Model weighting can be based on a single or combination of model
evaluation criteria. Pioneering work on model weighting (Doblas-Reyes
et al., 2005; Raftery et al., 2005; Tebaldi et al., 2005; Tebaldi and Knutti,
2007) gave impetus for subsequent work on model evaluation criteria.
One criterion is to assign model weights based on model performance.
Performance-based model weighting methods include Bayesian model
averaging, evaluation of probability density function, climate prediction
index, upgraded reliability ensemble averaging, skill score of repre-
senting annual cycle, and others as compared by several studies (Oh and
Suh, 2017; Zhang and Yan, 2018; Wang et al., 2019). Performance-based
model weighting methods consider the differences of model simulations
to historical observations, and they differ in the metrics and algorithms
used to determine model weights (Wang et al., 2019). For example, Oh
and Suh (2017) compare three model weighting methods, which are
weighted ensemble averaging based on root-mean-square error (RMSE)
and correlation, the skill score of the representation of the annual cycle
based on Taylor score (i.e., accounting for correlation coefficients,
standard deviations, and centered RMSE), and multivariate linear
regression that minimizes the RMSE of the ensemble prediction using
least squares regression methods. Multi-criteria-based model weighting
methods extend beyond the model performance criterion to assign
model weights. In addition to model performance, model independence
and convergence are two additional criteria. The performance and
interdependence skill method uses model bias to historical observation
(performance criterion) and model distance to other ensemble members
(interdependence criterion) to assign model weights (Knutti et al., 2017;
Wang et al., 2019). Wang et al. (2019) assign model weights by using a
reliability ensemble averaging method that considers both model bias to
historical observation (performance criterion) and model similarity to
other models in future projections (convergence criterion). A fourth
criterion for assigning model weights is inter-model comparison for
observable climate and future climate (Raisanen and Ylhaisi, 2012). For
this, the closeness of two models in simulating observable climate and
future climate is checked. For example, the Bayesian weighted averaging
method of Xu et al. (2019) considers the model skills in reproducing
historical observations and inter-model agreement in simulating future
period to assign model weights.

This study complements an important aspect of model weighting by
explicitly considering application-specific metrics rather than generic
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model assessment of ESMs that may be irrespective of the application.
Given this additional criterion for model evaluation, the model perfor-
mance is explicitly evaluated for its suitability for specific applications,
apart from the regional and global predictive performance of the model.
The evaluation includes process-based metrics and other relevant fea-
tures, given a specific problem definition. Considering process-based
emergent constraints is a promising way to focus evaluation on the
observations most relevant to climate projections (Eyring et al., 2016).
By using an optimal model weighting method, application-specific
model weighting is accounted for in the objective function such that
the ensemble is optimized given problem-specific and process-based
features of the problem of interest. We use a multi-objective optimal
ensemble method based on an objective function that defines the desired
targets. For example, if the objective is to reduce regional bias, the RMSE
can be the objective function, and the output will be the lowest possible
RMSE of the ensemble prediction and the observational product, giving
possible combinations of the model weights of the ensemble members.

The proposed method for application-specific optimal model
weighting has several practical advantages. First, the flexibility in
ensemble calibration by defining an adjustable objective function allows
this method to be applicable to a wide range of problems, with the
meaning of “optimal” varying depending on the aim of the study (Herger
et al., 2018). Second, an optimization method can simultaneously ac-
count for multiple objectives such as multiple variables of precipitation,
sea surface temperature, and wind (Herger et al., 2019), and for multiple
metrics such as RMSE and spatial correlation in climate change infor-
mation (Bhowmik and Sankarasubramanian, 2021). Third, multi-
objectives can account for metrics related to the application of inter-
est. For example, Wang et al. (2019) note that the process from climate
variables to hydrological responses is nonlinear, and thus the assigned
model weights based on performances of the climate simulations may

Table 1
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not be correctly translated to hydrological responses. In other words,
assigning model weights to the outputs of ESMs based on their ability to
represent the climate variable of interest (e.g., Loop Current) is more
straightforward than accounting for other decision relevant metrics (e.
g., occurrence or non-occurrence of large red tide blooms), yet ac-
counting for both can be desirable. In the remainder of the manuscript,
Section 2 presents the application-specific optimal model weighting
method for the red tide case study. This is followed by the presentation
of the model weights and predictive performance results (Section 3). We
discuss in Section 4 the advantages and disadvantages of model
weighting, and conclude by summarizing our main findings and
providing a research outlook.

2. Method
2.1. Data

We select all the model runs of the Coupled Model Intercomparison
Project Phase 6 (CMIP6) for both the historical experiment (Eyring et al.,
2016) and the hist-1950 experiment (Haarsma et al., 2016) of the
HighResMIP with gridded monthly sea surface height above geoid and
nominal resolution less than or equal 25 km. This resulted in a total of 33
model runs (Table 1). The sea surface height above geoid is called zos
according to the climate and forecast metadata conventions. The his-
torical experiment and the hist-1950 experiment are from years Jan-
1850 and Jan-1950, respectively, to Dec-2014. For analysis purposes,
we also consider model runs with the standard resolution. These are
E3SM-1-0 with variable ocean resolution of 30-60 km, and EC-Earth3P
with nominal ocean resolution of about 100 km (Table 1).

Model independence was accounted for by using institutional de-
mocracy (Leduc et al., 2016) and ocean grid resolution as a secondary

Independent model subsets based on institutional democracy with the ocean grid as a secondary criterion. An independent model subset (IMS) receives a score based on
prescreening criteria (Section 2.3). The number of members (i.e., model runs) of each model can vary from one such as r1i1p1fl of CESM1-CAM5-SE-HR to six such as r

(1-6)i1p1fl of ECMWEF-IFS-HR.

IMS Score  Institution Country ~ Model (Reference) Experiment Members (Model Ocean model resolution Ocean grid
D Runs)
IMS01 1 NCAR USA CESM1-CAM5-SE-HR (Chang hist-1950 rlilpifl 0.10 (11 km) nominal resolution POP2-HR
et al. 2020)
IMS02 2 CMCC Italy CMCC-CM2-HR4 (Cherchi hist-1950 rlilplfl 0.250 from the Equator degrading at ORCA025
et al. 2019) the poles
CMCC-CM2-VHR4 (Cherchi hist-1950 rlilplfl 0.250 from the Equator degrading at ORCA025
et al. 2019) the poles
IMS03 1 CNRM-CERFACS France CNRM-CM6-1-HR (Voldoire hist-1950 r(1-3)ilplf2 0.250 (27-28 km) nominal resolution eORCA025
et al. 2019)
CNRM-CM6-1-HR (Voldoire historical rlilplf2 0.250 (27-28 km) nominal resolution eORCA025
et al. 2019)
IMS04 0 DOE-E3SM- USA E3SM-1-0 (Golaz et al. 2019) historical r(1-5)ilp1fl 60 km in mid-latitudes and 30 km at EC60to30
Project the equator and poles
IMS05 0 EC-Earth- Europe EC-Earth3P (Haarsma et al. hist-1950 r(1-3)ilp2f1 about 1o (110 km) ORCA1
Consortium 2016)
IMS06 2 EC-Earth- Europe EC-Earth3P-HR (Haarsma hist-1950 r(1-3)ilp2f1l about 0.250 (27-28 km) ORCA025
Consortium et al. 2016)
IMS07 3 ECMWF Europe ECMWF-IFS-HR (Roberts hist-1950 r(1-6)ilplfl 25 km nominal resolution ORCA025
et al. 2018)
IMS08 3 ECMWF-IFS-MR (Roberts hist-1950 r(1-3)ilp1fl 25 km nominal resolution ORCA025
et al. 2018)
IMS09 2 NOAA-GFDL USA GFDL-CM4 (Held et al. 2019) historical rlilpifl 0.250 (27-28 km) nominal resolution tri-polar
grid
GFDL-ESM4 (Held et al. historical r(2-3)ilplfl 0.250 (27-28 km) nominal resolution tri-polar
2019) grid
IMS10 3 NERC UK HadGEM3-GC31-HH hist-1950 rlilplfl 8 km nominal resolution ORCA12
(Roberts et al. 2019)
MOHC-NERC UK HadGEM3-GC31-HM hist-1950 rli(1-3)plfl 25 km nominal resolution ORCA12
(Roberts et al. 2019)
IMS11 3 MOHC UK HadGEM3-GC31-MM hist-1950 rli(1-3)p1fl 25 km nominal resolution ORCA025
(Roberts et al. 2019)
HadGEM3-GC31-MM historical r(1-4)ilp1f3 25 km nominal resolution ORCA025

(Roberts et al. 2019)
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criterion. Institutional democracy is only the first step for defining
model independence, and additional practical and theoretical consid-
erations can be employed as needed (Leduc et al., 2016; Annan and
Hargreaves, 2017; Boé, 2018). While it is reasonable to assume that
members of the same model that differ in resolution are dependent (Boé,
2018; Lorenz et al., 2018; Merrifield et al., 2020; Brunner et al., 2020),
determining where to draw the line between independent and depen-
dent models is difficult (Merrifield et al., 2020). For example, when
considering a temperature variable, Leduc et al. (2016) showed that
higher model resolution can result in independent models at certain
geographical regions. In our case-study about red tides, ocean grid res-
olution can be critical for the processes of interest. It has been shown
that the Loop Current cannot be simulated appropriately by E3SM with
the standard resolution (Golaz et al., 2019) that has ocean and sea ice
grid resolution of 60 km in the mid-latitudes and 30 km at the equator
and poles (Caldwell et al., 2019). However, when considering a higher
ocean grid resolution that can better resolve mesoscale eddies (Caldwell
et al., 2019; Hoch et al., 2020) the Loop Current is better represented.
Thus, institutional democracy alone is insufficient, and we need to ac-
count for ocean grid resolution as a secondary criterion for defining
model independence as ocean resolution affects the regional phenomena
of interest (Elshall, 2020).

(a) Reanalysis Data: Loop Current South Position
N T
o

(c) MOHC-NERC HadGEM3-GC31-MM (25 km)
b S TN PEE
Ty

100°W
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Accordingly, for the same institution, we create further subsets given
different grid resolutions, resulting in 11 ensemble members (Table 1).
Each independent model subset (IMS) constitutes an ensemble member.
Each IMS contains one model run or several model runs with different
indices of realizations (1), initializations (i), physics (p), and forcings (f).
We assume each ensemble member to be an IMS. For example, IMS01
has only one model run “rlilp1fl”, and IMS11 has seven model runs,
three with initialization r1i(1-3)p1fl and four with realizations r(1-4)
i1p1f3 as listed in Table 1. Generally, the choices with respect to model
independence criteria are partly subjective and likely not perfect, such
that with an in-depth knowledge of the differences between codes,
different choices would be possible (Boé, 2018). The Supplementary
Material contains additional information about the model independence
assumptions used in this study. However, comparing different methods
to account for model independence is beyond the scope of this work. For
the reanalysis data of zos, we use the phy-001-030 global ocean eddy-
resolving reanalysis product of the Copernicus Marine Environment
Monitoring Service (CMEMS). This reanalysis product covers the
altimetry from 1993 onward with approximatively 8 km horizontal
resolution (Drévillon et al., 2018; Fernandez and Lellouche, 2018).

We use the Karenia brevis cell count of the harmful algal bloom
database of the Fish and Wildlife Research Institute at the Florida Fish

(b) Reanalysis Data: Loop Current North Position
- ap— . TN PR
T

Sea surface height above geoid (zos) [m]

-0.6 -0.4 -0.2

T
0.0 0.2 0.4

Fig. 1. Snapshots of sea surface height above geoid (zos) showing (a) the Loop Current (LC) in the south position (LS-C) in 2010-03 for reanalysis data, and the LC in
the north position (LC-N) in 2010-06 for (b) reanalysis data, (c) a high-resolution ESM, and (d) a standard-resolution ESM. Two red segments along the 300 m isobath
in (a) are used to determine Loop Current position (i.e., LC-N and LC-S) for red tide analysis. The red box in (b) shows the study area, where red tide blooms are
considered by this study and Maze et al. (2015). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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and the Wildlife Conservation Commission (FWRI, 2020). We define the
bloom severity of Karenia brevis according to the definition implemented
by Maze et al. (2015). A large red tide bloom is defined as an event with
the cell count exceeding 1 x 10° cells/L for ten or more successive days
without a gap of more than five consecutive days, or 20 % of the bloom
length. Give the study period for years Jan-1993 to Dec-2014 with a six-
month interval (i.e., a total of 44 intervals), we identify 15 intervals of
large blooms and 29 intervals with no bloom in the study area (Fig. 1).

2.2. The Loop Current position and presence of red tide blooms

The Loop Current (LC) is a warm ocean current that travels through
the Gulf of Mexico. The LC is an important factor that controls the
occurrence of red tides (Perkins, 2019) by altering the upwelling in-
tensity and position of deep ocean water along the West Florida Shelf
(Weisberg et al., 2014) and the retention time of the waters within the
Guld of Mexico(Maze et al., 2015). In this study we focus on the
retention time. Other relations (Weisberg et al., 2014; 2019; Liu et al.,
2016) are warranted in future studies. Karenia brevis is a slow growing
dinoflagellate. To form large blooms, it is required that its retention
within a certain region is high. Specifically, the growth rate of this
species needs to be higher than the rate of advection out of the region
(Magana and Villareal, 2006). When the LC is in the southern position
(LC-S), as shown in Fig. 1a, the retention time does not allow large
blooms to occur. Whereas, when the LC is in the northern position (LC-
N), as shown in Fig. 1b, the retention time is enhanced, allowing large
red tide blooms to form when other conditions are ideal. LC-N is a
necessary condition for large red tide blooms to occur (Maze et al.,
2015).

The LC position is computed from sea surface height variability.
Following the method of Maze et al. (2015) the sea surface height above
geoid (zos) anomaly between the north and south segments along the
300 m isobath (Fig. 1a) can be used as a proxy for LC position such that

(a) Reanalysis data: CMEMS phy-001-030

10

TV WV

-10

zos anomaly (cm)
o

10 (b) IMS04: E3SM-Project E3SM-1-0 (Score 0)
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positive and negative differences represent LC-N and LC-S, respectively.
The zos anomaly per interval t can be estimated as:

K
E, [Z WkEj(hj,k,t,m.n,t|Mk):| :| ) 1)
=1

In this equation, we first take the expectation E(.) for all model runs
with index j in each ensemble memberM;, and then the E;(.) data are
averaged for all ensemble members with index k € [1, K] where w is the
weight of each ensemble memberM. Subsequently, the expectation E;(.)
is taken for all data points with index l along each of the north and south
segments, respectively. Afterward, we take the difference A,,(.) between
the data of the two segments. Finally, for each of the 6-month interval
the maximum zos anomaly n}lax(.) is selected resulting in zos anomaly

h, = max (Am
I

per intervalt € [1, T], with T = 44, for the study period for years
1993-2014 and a 6-month interval length. Since we are not interested in
the value of h, per se but the sign difference between the north and south
segments, we express Equation (1) as an indicator function for the south
segment (LC-S):

I, h<0
Hic_s(h) = { 0 ;1,20 2

such that Hic_s(h;) = 1 indicates a LC-S interval. We use Equations
(1) and (2) to process CMIP6 and reanalysis data, which are hereafter
represented by h, andh, ., respectively. We further define the oscillating
event frequency:

_ Y Hies(h)

7 3

Xo

as the ratio of the LC-S intervals to the total number of intervalsT.
The reanalysis data products of Maze et al. (2015) and this study, result
in xg 0ps = 0.267 and 0.273 (Fig. 2a), respectively. The slight difference is
not surprising, because the study period and the reanalysis data products

s LC-N
B LC-S

(c) IMS03: CNRM-CERFACS CNRM-CM6-1-HR (Score 1)

zos anomaly (cm)
o

-10

10 (d) IMS08: NOAA-GFDL GFDL-CM4 (Score 2)

(e) IMS11: MOHC-NERC HadGEM3-GC31-MM (Score 3)

54
01 A . Py Y|

—51

zos anomaly (cm)

-10

I Y Y
' v ' A\ v v vv

1995 2000 2005 2010

2015

1995 2000 2005 2010 2015

Fig. 2. Surface height above geoid (zos) anomaly according to Equation (1): (a) reanalysis data; (b-e) enesmble members. The title of the reanalysis data shows the
data provider name, and product ID. The title of ensemble member shows ensemble member number that is the number of each independent model subset (IMS):

modeling group name, model name(s), and ensemble member score.
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used in this study are different from those of Maze et al. (2015). We
compare X 0, = 0.273 of the reanalysis data with the model simulations
in the results section.

2.3. Ensemble methods

The number of model weights of each ensemble differs depending on
the number of included ensemble members. Each independent model
subset (IMS) listed in Table 1 is an ensemble member, as we account for
model independence prior to model weighting as shown by Equation
(1). We consider the following two ensemble methods namely a
prescreening-based subset selection and model weighting. Prior to
model weighting, we include and exclude members from the ensemble
based on prescreening-based subset selection criteria (Elshall et al.,
2022). These criteria are evolving such that each ensemble member
receives a score from zero to three. Ensemble members that cannot
simulate LC-N, as that shown in Fig. 1d for example, receive a score zero
(e.g., Fig. 2b). Ensemble members that can simulate LC-N, but without
sign fluctuations to indicate both the LC-N and LC-S according to
Equation (1), receive score one (e.g., Fig. 2c). The ensemble member
receives a score of two if it can reproduce both LC-N and LC-S according
to Equation (1) with the frequency of LC-N being smaller than that of
LC-S (e.g., Fig. 2d). The ensemble member receives a score of three, if it
can reproduce both LC-N and LC-S according to Equation (1) with the
frequency of LC-N being greater than that of LC-S (e.g., Fig. 2e). Higher
LC-N frequency is a more realistic condition, considering that xg ,ps =
0.273 for reanalysis data (Fig. 2a). The score is calculated for each
ensemble. For example, IMS4 and IMS5 have a score of zero because
they cannot simulate LC-N (their simulation results are similar to
Fig. 2b), while IMS7, IMS8, IMS10 and IMS11 have a score of three
because they can simulate both LC-N and LC-S with higher LC-N fre-
quency (their simulation results are similar to Fig. 2e).

Given the defined prescreening-based subset selection criteria, we
consider four ensemble compositions for the case of weighted-average
multi-model ensemble (WME). For example, WME3210 with K = 11
(K being the number of model weights of each ensemble such that each
IMS has one weight) includes all ensemble members with a score from
three to zero; WME321X with K = 9 includes all ensemble members
with a score from three to one; WME32XX with K = 7 includes all
ensemble members with a score from three to two; and WME3XXX with
K = 4 includes only the top performing ensemble members with only a
score of three. For example, WME3XXX has four ensemble members
with a total of 20 members such that IMS07, IMS08, IMS10, and IMS11
have 6,3, 4, and 7 members, respectively. We know from previous
studies (Caldwell et al., 2019; Hoch et al., 2020) that, unlike the high
resolution eddy-permitting grids (e.g., Fig. 1c), standard-resolution
ESMs are generally incapable of simulating LC; see for example,
Fig. 1d. This is mainly because the standard resolution grids (e.g.,
Fig. 1d) cannot resolve the mesoscale eddies and boundary currents, and
require global parametrization. Thus, we consider WME3210 and
WME321X to evaluate the combined impacts of prior information and
model weighting. We consider WME32XX and WME3XXX with different
ensemble size of K = 7 andK = 4, respectively, to study the combined
impacts of subset selection and model weighting. To study the impacts of
model weighting, we consider the case of simple-average multi-model
ensemble (SME) using equal model weights. This leads to ensemble
SME3210, SME321X, SME32XX and SME3XXX for the same ensemble
composition criteria. SME321X with K = 9 is the reference ensemble
that only considers prior information without any prescreening-based
subset selection and model weighting.

2.4. Optimal model weighting

Each ensemble member has a model weight. The model weights wy in
Equation (1) satisfy:
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K
Z we =1 C)]

wi = 1/K (5)

for equal model weighting. For unequal model weighting, wi can be
estimated using an optimization algorithm through minimizing an
objective function with multiple objectives. In this study, the objective
of the optimization problem is to estimate the model weights wy in
Equation (1) that minimizes the objective function f such that:

5

PR, Y
H‘llknj rrl}lkn{H(x+)

i=1

©

with five minimization objectives x; each having an objective-
weighting constantc;. We constrain the objective function as (x; +1) so
that the product term [[2, (x; + 1)% will not be zero if any objective x; is
fully achieved resulting in x; = 0. Accounting for multiple objectives can
be achieved through Pareto-optimal solutions (Herger et al., 2019) or
objective-weighting constantsc;. Each objective is assigned an objective-
weighting constant c¢; representing the importance of the objective
relative to other objectives. The first minimization objective x; is the
oscillating event count error:

T T
X1 = ZHchs(hr) - ZHchS(hr,nbs') (7)
=1 t=1

between model simulation H;¢_s(h;) and reanalysis dataHyc_s(he.obs)-
The second minimization objective x, is the LC position temporal match
error:

T =30 (b <ONR < 0) = 33 (hiops 20 A 1 20)

T (®

X2

where S0 ; (Reobs> 0~ he20) and 3 ; (Reops < O " he < 0) are the tem-
poral match counts of model simulations and reanalysis data for LC-N
and LC-S, respectively. The logical conjunction A gives a value of one
when the statement (Fps < 0~ he < 0) is true if both h; g5 < 0 and b, <
0 are true, otherwise, a value of zero is given. The simulations of
HighResMIP are generally free-running, and thus no temporal match is
expected between simulations of ESMs and re-analysis data. The term
temporal match used in this manuscript refers to a pseudo-temporal
correspondence that captures the general pattern of a dynamic process
of the LC position given the heuristic relation (Equation (1)) with a
coarse-temporal-resolution of six months. The third objective x3 is the
LC-S temporal match error:

_ ZL]HLC—S(hz,ob.&) - Z,’:] (hl,ob.x <OA hl < 0)

“ ©)
erzl Hyc_s(iobs)
The fourth objective x4 is the red tide bloom error occurrence:
T
h OANH =1
R T (10)

Thioom

which represents the false negative prediction of red tide blooms.
This is the ratio of the number of LC-S coinciding with large bloom to the
number Ty,om Of large blooms, such that H(z,) is an indicator function,
with one and zero for large bloom and no bloom, respectively. The fifth
objective x5 is the RMSE between model simulation and reanalysis data:

an

With respect to objective-weighting constantsc;, we set ¢; = 1,
assuming that all objectives are of equal importance.
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A common practice to solve Equation (6) subject to Equations 7-11 is
to use an optimization algorithm such as a genetic algorithm (Bhowmik
and Sankarasubramanian, 2021), mathematical programming solver
(Herger et al., 2018), and Simple Cull algorithm (Herger et al., 2019).
We minimize the objective function (Equation (6)) using the covariance
matrix adaptation evolution strategy (CMA-ES, Hansen and Ostermeier,
2001; Hansen et al., 2003) that has robust performance in terms of
search capacity. CMA-ES randomly generates an initial population. A
population is composed of a number,, of solutions, and a solution in this
context is a set of model weights with sizeK. Each solution in the pop-
ulation is evaluated in terms of its fitness f that is the objective function
value in Equation (6). The population keeps evolving to reach the
optimal solution, which is the smallest f value, with a user-specified
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maximum iterations (i.e., 200 in this study). Increasing the population
size improves the search capacity (Elshall et al., 2015), and we use a
population size ofA = 100K, where K is the number of model weights.
For each ensemble, we conduct 10 repeat optimization runs with
random initial solutions. For all the repeated optimization runs we
obtain well-posed solutions such that no multimodality is observed, and
the model weights are generally consistent. For each ensemble, we select
the solution with the smallest f value.

2.5. Evaluation metrics

We use several metrics to evaluate the ensemble performance. To
evaluate the performance of each individual ensemble, we use metrics

Prescreening-based Subset Selection

a. Select input data b. Model independence
Raw gridded CMIP6 and Create independent
reanalysis data of sea model subsets using
surface height above __, institution democracy
geoid (zos) with and ocean grid as a
resolution < 25km secondary criterion
(Section 2.1) (Section 2.1)

Raw Karenia brevis cell
count data

(Section 2.1)

c. Process input data d. Subset selection
Determine Loop Current Score ensemble
position using CMIP6 and members, and
~, reanalysis data following | select ensemble
the method of Maze et members of each
al. (2015) ensemble accordingly
(Section 2.2) (Section 2.3)

Determine red tide no
bloom or large bloom,
following the method of
Maze et al. (2015)

(Section 2.1)

¥

Optimal Model Weighting

e. Estimate model weights

Optimization algorithm Processing

Generate and find optimal weights for , Determine

ensemble members data given
T (Section 2.4)

Objective Function (OF)

Evaluate the OF that minimizes

* Oscillating event frequency error (x,)
» Temporal match error (x,)

input data

the Loop Current position using CMIP6 and reanalysis

model weights following the method of Maze et al. (2015)
(Section 2.2)

* Temporal match error LC-S (xs)
* Red tide bloom error (x,)
* Root-mean-square error (xs)
(Section 2.4)

¥

Predictive Performance Evaluation

f. Define metrics

* Ensemble performance metrics (X,~Xs)
* Ensemble performance and size metrics: AIC (x¢) and BI

g. Evaluate prediction

Evaluate model weights and prediction of
C (x;) scores —* multi-model ensembles
(Section 2.5) (Section 3)

Fig. 3. Method overview. More details of the method are referred to the Jupyter notebooks of Elshall (2021).



A. Elshall et al.

Xo-Xs. Metric x is defined by Equation (3), and x; -x5 by Equations 7-11.
We use Akaike Information criterion (AIC) and Bayesian Information
Criterion (BIC) to compare different ensembles by accounting for both
ensemble performance and ensemble size. The ensemble size is the
number of model weights of each ensemble that are 11, 9, 7 and 4 for
WME3210, WME321X, WME32XX, and WME3XXX, respectively. In this
context, the number of model weights for each ensemble is equivalent to
the number of model parameters in an inverse modeling context and to
the number of decision variables in simulation optimization context. The
AIC and BIC scores are calculated as (Akaike, 1974):

xoarc = 2K —2In(L) 12)
and (Bhat and Kumar, 2010):
x7.mc = KIn(N) —2In(L) 13)

respectively, where N = 44 is the data size, K is the number of model
weightswy, and In(L) is the natural logarithm of the likelihood function.

In(L) can be equivalent to the mean-square error (MSE):

_ Z,Tzl (hr - hz‘oh.\)z

MSE = 14
T a4

such that minimizing In(MSE) is equivalent to maximizing ln(f) of
the data (Akaike, 1974). AIC and BIC combine the complexity of the
ensemble (i.e., the number of model weights) and the performance of the
ensemble into a single score. Smaller AIC and BIC scores indicate a better
ensemble. The defined metrics x,- x; are specifically designed to judge
the predictive performance of these ESMs with respect to the targets of a
specific application, and are not meant to evaluate the predictive per-
formance of these ESMs regionally and globally for general purposes.
Assessing the predictive performance of these ESMs with respect to
regional and global simulations of zos or any other variable, is beyond
the scope of this work. Fig. 3 provides a summary of the methods pre-
sented in this section.

3. Results
3.1. Model weights

We investigated the impacts of model weighting given four cases of
high- and standard-resolution model runs (WME3210), high-resolution
model runs (WME321X), and high-resolution model runs with pre-
screening information (WME32XX and WME3XXX). Fig. 4 shows the
optimal model weights of each ensemble member. Three remarks can be
drawn from Fig. 4. 1) For ensemble WME3210, IMSO03 has a score of one
due to overestimating LC-N, and IMSO5 has a score of zero due to
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underestimating LC-N, respectively. However, they did not receive zero
model weights despite their low scores. This might imply that model
weighting optimizes the error cancellation of the two members. 2) One
of the best four ensemble members with a score of three (i.e., IMS10 of
WME3210) receives less than 1 % weight. This is also the case for IMS07
of WME321X. This may imply that including unsuitable members in the
ensemble (i.e., the standard-resolution members IMS04 and IMS05, or
members IMSO1 and IMSO03 not presenting LC oscillation) can result in
flawed model weights. This also might be attributed to model weighting
that optimizes the error cancellation of these members, resulting in
underplaying robust models. These first two remarks suggest the
importance of the prescreening when optimal model weighting is used.
Even when subset selection is not employed (i.e., WME321X), pre-
screening helps evaluate the model weighting method and results. 3)
With respect to WME32XX, its members with a prescreening score of
three generally receive higher model weights than members with a
prescreening score of two. This is generally desirable since these mem-
bers have a better performance with respect to the application of in-
terest. Thus, this implies that these members maintain important
ensemble characteristics.

3.2. Predictive performance

We evaluated the ensemble predictive performance using metrics
Xo-Xxs. Table 2 presents the raw data that are used to calculate x-xs.
Table 2 shows that the four weighted ensembles have relatively similar
predictive performance. The ensembles have a LC-S frequency xo of
0.227 (versus 0.273 and 0.227 for the reanalysis data and the reference
ensemble SME321X, respectively), which corresponds to an oscillating
event count errorxy, of two. With respect to the temporal match, it is
generally not expected between the simulations of ESMs and reanalysis
data, yet with the absence of large drift, pseudotemporal relation might
be possible. This secondary evaluation criterion can provide additional
insights on the frequency and trend of red tide. The ensembles have
temporal match error x, of 18 % except for WME3XXX that has an error
of 23 %, versus 36 % for the reference ensemble. Model weighting also
reduces the temporal match error LC-S x3 for all the ensembles to 42 %
(except for WME3XXX to 50 %), versus 75 % for the reference ensemble.
The ensembles have red tide bloom error x4 of 7 %, versus 25 % for the
reference ensemble. The ensemble RMSE x5 is generally inversely pro-
portional to the ensemble size with the exception of WME32XX.

From a model weighting perspective, both predictive performance
and ensemble size are evaluated. WME32XX has the same predictive
performance as WME321X and WME3210, in terms of xp-x4. The three
ensembles have very similar predictive performance in terms ofxs.
WME32XX (K = 7) has smaller ensemble size than WME321X (K = 9)

104 IMS110.01 MS11 0.04
IMS09 0.08 o
(lMsos 0.12’

0.8
o
£
2 0.6 ‘ . IMS09 0.08
=
o IMS07 0.02.
B 04
s

0.2 1

IMS07 0.08
0.0 - ' L

Independent Model Subset (IMS)
IMS01: CESM1-CAMS5-SE-HR (Size 1, Score 1)
IMS02: CMCC-CM2-(V)HR4 (Size 2, Score 2)
IMS03: CNRM-CM6-1-HR (Size 4, Score 1)
IMS04: E3SM-1-0 (Size 5, Score 0)

IMS05: EC-Earth3P (Size 3, Score 0)

IMS06: EC-Earth3P-HR (Size 3, Score 2)

IMS07: ECMWF-IFS-HR (Size 6, Score 3)

IMS08: ECMWF-IFS-MR (Size 3, Score 3)

IMS09: GFDL-CM4/ESM4 (Size 3, Score 2)
IMS10: HadGEM3-GC31-HH/HM (Size 4, Score 3)
IMS11: HadGEM3-GC31-MM (Size 7, Score 3)

IRRRRNnnnii

IMS07 0.27

WME3210 (Size 11) WME321X (Size 9) WME32XX (Size 7)

Multi-model Ensemble

WME3XXX (Size 4)

Fig. 4. Model weights of ensemble members: Data present independent model subsets for each weighted multi-model ensemble (WME). The legend indicates the
number of each ensemble member, model name(s), size of the ensemble member, and score of the ensemble member. The size of the ensemble member refers to the
total number of model runs per ensemble member. The size of multi-model ensemble refers to the number of ensemble members per multi-model ensemble. Ensemble

members with model weights less than 1% are not shown.
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Table 2

Climate Services 28 (2022) 100334

Raw data of Loop Current at North (LC-N) and South (LC-S) positions and their relation to the occurrence of no bloom and large blooms shown for the reanalysis data,
reference ensemble SME3210X with simple-average multi-model ensemble (SME), and four ensembles with weighted-average multi-model ensemble (WME). The
corresponding performance metrics (xp-xs) and fitness f value (Equation6) for each ensemble.

Model runs  Count Count LC-N Count LC-S Temporal Match Performance Metrics f
No-Bloom No-Bloom
LC-N LC-S No- Large- No- Large- LC-N LC-S Total Xo X1 X X3 X4 x5 (RMSE)

Bloom  Bloom Bloom  Bloom
Reanalysis 1 32 12 17 15 12 0 32 12 44 0273 0 0.00 000 000 O 1
SME321X 33 34 10 22 12 7 3 25 3 28 0.227 2 036 075 025 371 42.1
WME3210 41 34 10 20 14 9 1 29 7 36 0.227 2 0.18 042 0.07 3.56 24.5
WME321X 33 34 10 20 14 9 1 29 7 36 0.227 2 0.18 042 007 3.59 24.7
WME32XX 28 34 10 20 14 9 1 29 7 36 0.227 2 0.18 042 0.07 3.69 25.2
WME3XXX 20 34 10 20 14 9 1 28 6 34 0.227 2 0.23 050 0.07 3.67 27.6

and WME3210 (K = 11). Accordingly, WME32XX is a better ensemble
than WME321X and WME3210 from a model weighting perspective. For
WME32XX and WME3XXX, while WME32XX has slightly better pre-
dictive performance, WME3XXX has smaller ensemble size with only
four model weights (K = 4). To evaluate these two ensembles, we use the
AIC and BIC scores of the ensembles using Equations (11) and (12),
respectively. The AIC /BIC scores are 16.92 / 36.5, 12.89 / 28.9, 8.78
/21.3, and 2.8 /9.9 for WME3210, WME321X, WME32XX and

(a) Reanalysis data
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(b) SME3210

WME3XXX, respectively. The estimated AIC and BIC scores are as ex-
pected, in that WME3XXX and WME3210 are respectively the best and
worst performing ensembles from a model selection perspective. In
summary, the prescreening-based subset-selection step improves the
model weighting, resulting in the reduction of the number of decision
variables, while maintaining similar (i.e., WME32XX) or relatively
similar (i.e., WME3XXX) predictive performance. Although the most
parsimonious ensemble (i.e., WME3XXX) might not necessarily produce
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Fig. 5. Temporal match of large bloom and no bloom with Loop Current positions given by (a) reanalysis data, and simulations of four multi-model ensembles with
(b-e) simple-average multi-model ensemble (SME), and (f-i) weighted-average multi-model ensemble (WME). Positive and negative bars indicate Loop Current North

(LC-N) and Loop Current South (LC-S), respectively.
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the best predictive performance, it is still favorable from a model se-
lection perspective by balancing the ensemble performance and
complexity. Yet from a practical perspective the smallest ensemble is not
necessarily the best choice (particularly if the ensemble is too small)
because this can lead to potential loss in projection accuracy (Weigel
et al., 2010).

The predictive performance of the simple-average and weighted-
average multi-model ensembles are shown in Fig. 5. The ensembles
based on prior information (e.g., SME321X) correspond better to rean-
alysis data than SME3210 without prior information. Similarly, the
ensembles based on prescreening information (i.e., SME32XX and
SME3XXX) are better than the reference ensemble SME321X. In addi-
tion, the ensembles with model weighting have generally good corre-
spondence with respect to the reanalysis data, irrespective of prior and
prescreening information. However, ensembles with prescreening in-
formation and model weighting (i.e., WME32XX and WME3XXX) have
the best correspondence with reanalysis data.

4. Discussion

With respect to key metrics, the effects of different ensemble
composition criteria are summarized in Fig. 6. Prior information appears
to be an important criterion that should be considered, as SME3210 has
the worst predictive performance than the other ensembles do. Subset
selection seems to relatively improve the predictive performance, sug-
gesting that it can be used either in place of model weighting or prior to
model weighting. When subset selection is used, prior to model
weighting (WME3XX) or without model weighting (SME3XX), this re-
sults in the most robust ensemble, from a model selection perspective.
These results suggest four key points. First, while Yun et al. (2017)
propose a process-based subset selection as an alternative approach to
model weighting, we show that considering such process-based infor-
mation can yield parsimonious ensemble with good predictive
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performance. Parsimonious ensemble is favorable especially with model
weighting, as several studies indicate that predictive performance im-
proves from model diversity rather than from larger ensemble (DelSole
et al., 2014; Manzanas, 2020).

Second, our study reveals a caveat of optimal model weighting.
Models with poor performance showing both overestimation and un-
derestimation can receive higher model weights due to error cancella-
tion. This is undesirable. Li et al. (2021) present a similar study in which
good model simulations are obtained due to neutralizing large positive
bias by large negative bias. The large biases indicate inaccurate repre-
sentations of physical processes. In addition, we show that optimal
model weighting can further underplay robust climate models, high-
lighting the importance of ensemble process-based prescreening and
subset selection prior to model weighting. We use binary model weights
in the way similar to that of Herger et al. (2018) in which models are
either included or excluded. It has been argued that model uncertainty
can be reduced by giving more weight to models that are more skillful
and realistic for a specific process or application (Lorenz et al., 2018).

Third, we show that subset selection alone can be an effective way to
improve the predictive performance in case that model weighting is
undesirable. Since giving equal weight to each available model projec-
tion can be suboptimal, advanced methods for model weighting are
needed (Eyring et al., 2019). This suggests the importance of accounting
for model independence such that each model run is not given an equal
weight. However, it is still an open question whether unequal model
weighting methods improve upon equal model weighting methods. For
example, even if the skills of the competing methods are equal, one
method will, by chance, prove superior in a given sample (DelSole et al.,
2013). In addition, model weighting can underplay the critical model if
the goodness-of-fit of the critical model is less than other models (Elshall
et al., 2020b). The critical model is the model that has the largest effect
on the solution reliability but might not necessarily have the largest
weight (Kourakos and Mantoglou, 2008; Elshall et al., 2020a; b). Even
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more detrimental is that a model could have a larger weight because the
observational errors better coincide with the model errors (Haughton
et al., 2015). In addition, while non-equal model weighting can improve
the uncertainty quantifications, it does not necessarily result in an
improved description of mean system states, yet will add another level of
uncertainty (Christensen et al., 2010). Furthermore, the efficacy of using
model weights derived on a historical reference period for future pro-
jection, can be questionable. In other words, it is hard to justify that the
construction of model weights using observed data of the twentieth
century will persist throughout the twenty-first century (Haughton
et al., 2015). Given these and similar remarks, Weigel et al. (2010)
suggest that for many applications using equal model weighting may be
the safer and more transparent way to combine models. Here we do not
argue for equal or unequal model weighting of the multi-model
ensemble, but rather show that in case unequal model weighting is
undesirable, prescreening-based subset selection can be used to improve
the predictive performance. This remark is also indicated by other
methods for improving predictive performance. For example, Wang
et al. (2019) show that when bias correction is applied, unequal model
weighting does not bring significant differences in the multi-model
ensemble mean and uncertainty of hydrological impacts. As bias-
corrected climate simulations become rather close to observations,
Wang et al. (2019) suggest that using bias correction and equal model
weighting is viable and sufficient for their study purpose. In addition,
DelSole et al. (2013) show that, for the forecast of temperature and
precipitation, methods of unequal model weighting may be of value only
over a relatively small fraction of the globe, suggesting that strategies for
screening models prior to combining them would seem to be an
important step. The same argument applies for subset selection in this
case study, especially when model weighting does not result in signifi-
cant improvement (e.g., SME3XXX and WME3XXX).

Finally, the application-specific nature of model selection and/or
averaging should not be overlooked, as there are no universally-best
methods. For example, Ross and Najjar (2019) evaluate six model se-
lection methods with respect to performance and the sensitivity of the
results to the number of chosen model. Their study shows that methods
and models used should be carefully chosen, and that obtained results
should be interpreted with caution. Similarly, with respect to model
weighting, Herger et al. (2018) note that, as in any calibration exercise,
the final ensemble is sensitive to the metric, observational product, and
pre-processing steps used. Likewise, with respect to accounting for
model independence, Abramowitz et al. (2019) state that the sensitivity
of model weighting and subset selection to a number of factors (e.g.,
metric, variable, observational estimate, location, time, spatial scale,
and calibration time period) emphasizes that model dependence is
application-specific, and not a general property of an ensemble. With
respect to bias correction, the results of Hemri et al. (2020) underpin the
importance of processing raw ensemble forecasts differently, depending
on the final forecast product needed. These remarks suggest that the
application-specific nature of the problem should not be overlooked,
and the application-specific ensemble methods, such as the two pre-
sented in this study (i.e., prescreening-base subset selection and
application-specific optimal weighting) can be wuseful. Lastly,
prescreening-based subset-selection entails an extreme form of weight-
ing such that models that are not suitable for this application or variable,
are discarded. Yet this does not mean that the discarded models do not
have robust performance with respect to other variables related to red
tides (e.g., wind speed and direction, and sea-surface temperature) and
other aspects of global or regional climates. In contrast to the generic
evaluation of ESMs irrespective of the applications, subset selection can
include region-, application-, and sector-specific metrics depending on
the modeling proposes.

5. Conclusions

This study discusses the application-specific optimal model
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weighting of ESMs using a red tide example. Three key points can be
concluded as follows:

1. While optimal model weighting can potentially improve predictive
performance, at least one caveat needs to be considered. Including
non-representative models with both overestimation and underesti-
mation can result in error cancellation. Whether to include or
exclude these non-representative models from the ensemble is a
point that requires further investigation through studying model
projections. However, this study clearly shows that, when the
optimal ensemble weight approach is used, including these non-
representative models can underplay the model weights of robust
models.

2. Excluding all non-representative models results in the most parsi-
monious ensemble accounting for both ensemble size and
performance.

3. Prescreening-based subset selection, which screens and selects
ensemble members based on their ability to reproduce certain key
features, is a viable option that can either substitute model weight-
ing, or be used prior to model weighting. Prescreening-based subset
selection does not only help to develop a parsimonious ensemble, but
also provides insights about the validity of the model weights.

The insights provided by this study add to the literature of
application-specific optimal model weighting of ESMs. The analysis in
this study is limited to the historical period. Model weighting can be
based not only on historical performance, but also on the spread and
convergence of future projections. Exploring optimal model weighting
with respect to the trade-off between historical and future performance,
is warranted in a future study.
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