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A B S T R A C T

Global climate models (GCMs) and Earth system models (ESMs) provide many climate services with environmental relevance. The High Resolution Model Inter
comparison Project (HighResMIP) of the Coupled Model Intercomparison Project Phase 6 (CMIP6) provides model runs of GCMs and ESMs to address regional 
phenomena. Developing a parsimonious ensemble of CMIP6 requires multiple ensemble methods such as independent-model subset selection, prescreening-based 
subset selection, and model weighting. The work presented here focuses on application-specific optimal model weighting, with prescreening-based subset selec
tion. As such, independent ensemble members are categorized, selected, and weighted based on their ability to reproduce physically-interpretable features of interest 
that are problem-specific. We discuss the strengths and caveats of optimal model weighting using a case study of red tide prediction in the Gulf of Mexico along the 
West Florida Shelf. Red tide is a common name of specific harmful algal blooms that occur worldwide, causing adverse socioeconomic and environmental impacts. 
Our results indicate the importance of prescreening-based subset selection as optimal model weighting can underplay robust ensemble members by optimizing error 
cancellation. Prescreening-based subset selection also provides insights about the validity of the model weights. By illustrating the caveats of using non- 
representative models when optimal model weighting is used, the findings and discussion of this study are pertinent to many other climate services.   

Practical Implications  

Coastal areas are frequently threatened by natural and human 
hazards such as massive harmful algae blooms (HABs). Red tides 
are a natural phenomenon caused by blooms (dense aggregations) 
of harmful microscopic algae in coastal areas worldwide. These 
events are influenced by a multitude of factors including oceanic, 
atmospheric, and land/river-based events. Here we use the term 
red tides for occurrences of large amounts of the toxic dinofla
gellate Karenia brevis. Red tide events contribute generally to 
water quality degradation, and in the Gulf of Mexico these events 
have severe environmental and socioeconomic impacts on the 
State of Florida, USA. Earth system models (ESMs) present a 
unique opportunity for the regional environmental management 
of red tides as ESMs couple land, river, ocean, and atmospheric 

processes. 

Projection of future trends of red tides is important to environ
mental management for planning and evaluating the short-term 
and long-term impacts and risks of red tides on the ecosystem 
health, social justice, and regional economy. The overarching goal 
of this research is to predict future trends of red tides under 
different Shared Socioeconomic Pathways (SSPs) of the Coupled 
Model Intercomparison Project Phase Six (CMIP6), which are 
scenarios of projected socioeconomic global changes up to year 
2100 (with emission scenarios). These future projections of ESMs 
under SSPs scenarios can be used as data input for machine 
learning to predict long term trends in the occurrence of red tides 
(Elshall et al., 2021). This requires not only validating ESMs 
simulations with observational and reanalysis data to account for 
errors, but also using ensemble methods such as optimal model 
weighting to improve the predictive performance. The manuscript 
addresses an important topic in climate services that is regional 
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and decision-relevant metrics in optimal model weighting. Our 
research method can be used to identify non-representative 
models, understand their impacts on ensemble prediction, and 
improve ensemble prediction. This is important for more accurate 
projection of red tides and corresponding socioeconomic impacts 
and mitigation efforts under different climate scenarios. 

Data availability 

The data and codes used are publically available as cited in the 
manuscript.   

1. Introduction 

The High-Resolution Model Intercomparison Project (HighResMIP, 
Haarsma et al., 2016) of the Coupled Model Intercomparison Project 
Phase 6 (CMIP6, Eyring et al., 2016) presents a new generation of high- 
resolution Earth system models (ESMs) with fine resolution and 
improved process representation focusing on regional phenomena. 
While global climate models (GCMs) mainly represent the physical at
mospheric and oceanic processes, ESMs advance beyond GCMs by 
explicitly accounting for the interactions of the biogeochemical pro
cesses with the physical climate, and by simulating the interactions 
between the atmosphere, biosphere, cryosphere, geosphere, and hy
drosphere. As ESMs account for atmospheric chemistry, ocean ecology 
and biogeochemistry, plant ecology, and land use, these models can 
provide many services at regional and seasonal scales that are important 
for a wide range of stakeholders. Hereafter, the term ESMs refer to both 
ESMs and GCMs for the convenience of discussion. Predictions of ESMs 
at the regional scale are useful for resource management and decision 
making in many sectors such as agriculture (Ceglar et al., 2018; Vajda 
and Hyvärinen, 2020), water resources (Mishra et al., 2019; Zhao et al., 
2020), energy (Bett et al., 2017; De Felice et al., 2019; Lledo et al., 
2019), health (Lowe et al., 2017), ecological and environmental man
agement (Payne et al., 2019; Jacox et al., 2020; Dixon et al., 2021), 
coastal management (Ward et al., 2020), financial services (Fiedler 
et al., 2021), among many other applications as reviewed by White et al. 
(2017). While ESMs are key ingredients of many of these climate ser
vices, tailoring model results to real-world applications is a major 
challenge (van den Hurk et al., 2018). Focusing on improving predictive 
performance of ESMs using ensemble methods, we present a case study 
of red tides using the medium- and high-resolution ESMs of CMIP6. 

Red tide is a common name of harmful algae blooms that occur 
worldwide, and is caused by toxic dinoflagellates such as Karenia brevis. 
Red tides contribute to water quality degradation worldwide, resulting 
in many undesirable effects. For example, the occurrence of red tides in 
the Gulf of Mexico has severe environmental and socioeconomic impacts 
on the State of Florida, USA. These impacts affect fishery (e.g., massive 
fish kills and shellfish poisoning), ecosystem health and services (e.g., 
harming birds, marine mammals, and sea turtles), local community and 
tourism industry (e.g., unpleasant odor and scenery), public health (e.g., 
skin, eye, and respiratory irritation), and other sectors as reviewed by 
Zohdi and Abbaspour (2019). The initiation, growth, maintenance, and 
termination stages of red tides in the Gulf of Mexico have many driving 
factors including regional warm ocean currents, local and deep-ocean 
upwelling, river flow, sediment transport, submarine groundwater 
discharge, nutrients from multiple sources (e.g., river, groundwater, 
ocean, atmospheric deposition and biology), African Sahara dust, trop
ical cyclones, and wind-direction (Brand and Compton, 2007; Heil et al., 
2014; Weisberg et al., 2014; Maze et al., 2015). An example an impor
tant physical driver that controls the occurrence of red tides is the the 
Loop Current, which is a warm ocean current that penetrates through 
the Gulf of Mexico (Weisberg et al., 2014; Maze et al., 2015; Perkins, 
2019). Maze et al. (2015) show that the Loop Current sets necessary 

condition for a large red tide blooms to occur, and point out that the 
Loop Current can be “the first definitive predictor of bloom possibility”. 
The development of management models such as machine learning 
models for regional environmental management of red tides using global 
climate models (Elshall et al., 2021) requires the validation of ESMs 
simulations with observational and reanalysis data to account for errors. 
The development also requires the use of ensemble methods to improve 
model predictive performance. These are important for more accurate 
projections of red tides and corresponding socioeconomic impacts and 
mitigation efforts under different climate scenarios. Using the Loop 
Current for red tide bloom prediction as a case study, we present an 
application-specific optimal model weighting method to improve the 
predictive performance of ESMs. 

To improve and extract relevant information from ESMs, multiple 
techniques such as bias correction, downscaling, and ensemble methods 
are often employed. A commonly used ensemble method is model 
weighting, through assigning unequal weights to ensemble members 
(Sanderson et al., 2017; Lorenz et al., 2018; Herger et al., 2018; Merri
field et al., 2020; Brunner et al., 2020). Advanced methods for model 
weighting are needed to refine the most credible information on regional 
climate changes, impacts, and risks for stakeholders (Eyring et al., 
2016). As there is no single best ESM, there is no universally best method 
of model weighting, but a method may be useful given the criteria 
relevant for the application in question (Herger et al., 2018). Model 
democracy, which is the equal-weighting method, is the simplest model 
weighting method. Yet more tailored model weighting methods are 
needed depending on a set of model evaluation criteria. 

Model weighting can be based on a single or combination of model 
evaluation criteria. Pioneering work on model weighting (Doblas-Reyes 
et al., 2005; Raftery et al., 2005; Tebaldi et al., 2005; Tebaldi and Knutti, 
2007) gave impetus for subsequent work on model evaluation criteria. 
One criterion is to assign model weights based on model performance. 
Performance-based model weighting methods include Bayesian model 
averaging, evaluation of probability density function, climate prediction 
index, upgraded reliability ensemble averaging, skill score of repre
senting annual cycle, and others as compared by several studies (Oh and 
Suh, 2017; Zhang and Yan, 2018; Wang et al., 2019). Performance-based 
model weighting methods consider the differences of model simulations 
to historical observations, and they differ in the metrics and algorithms 
used to determine model weights (Wang et al., 2019). For example, Oh 
and Suh (2017) compare three model weighting methods, which are 
weighted ensemble averaging based on root-mean-square error (RMSE) 
and correlation, the skill score of the representation of the annual cycle 
based on Taylor score (i.e., accounting for correlation coefficients, 
standard deviations, and centered RMSE), and multivariate linear 
regression that minimizes the RMSE of the ensemble prediction using 
least squares regression methods. Multi-criteria-based model weighting 
methods extend beyond the model performance criterion to assign 
model weights. In addition to model performance, model independence 
and convergence are two additional criteria. The performance and 
interdependence skill method uses model bias to historical observation 
(performance criterion) and model distance to other ensemble members 
(interdependence criterion) to assign model weights (Knutti et al., 2017; 
Wang et al., 2019). Wang et al. (2019) assign model weights by using a 
reliability ensemble averaging method that considers both model bias to 
historical observation (performance criterion) and model similarity to 
other models in future projections (convergence criterion). A fourth 
criterion for assigning model weights is inter-model comparison for 
observable climate and future climate (Räisänen and Ylhäisi, 2012). For 
this, the closeness of two models in simulating observable climate and 
future climate is checked. For example, the Bayesian weighted averaging 
method of Xu et al. (2019) considers the model skills in reproducing 
historical observations and inter-model agreement in simulating future 
period to assign model weights. 

This study complements an important aspect of model weighting by 
explicitly considering application-specific metrics rather than generic 
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model assessment of ESMs that may be irrespective of the application. 
Given this additional criterion for model evaluation, the model perfor
mance is explicitly evaluated for its suitability for specific applications, 
apart from the regional and global predictive performance of the model. 
The evaluation includes process-based metrics and other relevant fea
tures, given a specific problem definition. Considering process-based 
emergent constraints is a promising way to focus evaluation on the 
observations most relevant to climate projections (Eyring et al., 2016). 
By using an optimal model weighting method, application-specific 
model weighting is accounted for in the objective function such that 
the ensemble is optimized given problem-specific and process-based 
features of the problem of interest. We use a multi-objective optimal 
ensemble method based on an objective function that defines the desired 
targets. For example, if the objective is to reduce regional bias, the RMSE 
can be the objective function, and the output will be the lowest possible 
RMSE of the ensemble prediction and the observational product, giving 
possible combinations of the model weights of the ensemble members. 

The proposed method for application-specific optimal model 
weighting has several practical advantages. First, the flexibility in 
ensemble calibration by defining an adjustable objective function allows 
this method to be applicable to a wide range of problems, with the 
meaning of “optimal” varying depending on the aim of the study (Herger 
et al., 2018). Second, an optimization method can simultaneously ac
count for multiple objectives such as multiple variables of precipitation, 
sea surface temperature, and wind (Herger et al., 2019), and for multiple 
metrics such as RMSE and spatial correlation in climate change infor
mation (Bhowmik and Sankarasubramanian, 2021). Third, multi- 
objectives can account for metrics related to the application of inter
est. For example, Wang et al. (2019) note that the process from climate 
variables to hydrological responses is nonlinear, and thus the assigned 
model weights based on performances of the climate simulations may 

not be correctly translated to hydrological responses. In other words, 
assigning model weights to the outputs of ESMs based on their ability to 
represent the climate variable of interest (e.g., Loop Current) is more 
straightforward than accounting for other decision relevant metrics (e. 
g., occurrence or non-occurrence of large red tide blooms), yet ac
counting for both can be desirable. In the remainder of the manuscript, 
Section 2 presents the application-specific optimal model weighting 
method for the red tide case study. This is followed by the presentation 
of the model weights and predictive performance results (Section 3). We 
discuss in Section 4 the advantages and disadvantages of model 
weighting, and conclude by summarizing our main findings and 
providing a research outlook. 

2. Method 

2.1. Data 

We select all the model runs of the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) for both the historical experiment (Eyring et al., 
2016) and the hist-1950 experiment (Haarsma et al., 2016) of the 
HighResMIP with gridded monthly sea surface height above geoid and 
nominal resolution less than or equal 25 km. This resulted in a total of 33 
model runs (Table 1). The sea surface height above geoid is called zos 
according to the climate and forecast metadata conventions. The his
torical experiment and the hist-1950 experiment are from years Jan- 
1850 and Jan-1950, respectively, to Dec-2014. For analysis purposes, 
we also consider model runs with the standard resolution. These are 
E3SM-1–0 with variable ocean resolution of 30–60 km, and EC-Earth3P 
with nominal ocean resolution of about 100 km (Table 1). 

Model independence was accounted for by using institutional de
mocracy (Leduc et al., 2016) and ocean grid resolution as a secondary 

Table 1 
Independent model subsets based on institutional democracy with the ocean grid as a secondary criterion. An independent model subset (IMS) receives a score based on 
prescreening criteria (Section 2.3). The number of members (i.e., model runs) of each model can vary from one such as r1i1p1f1 of CESM1-CAM5-SE-HR to six such as r 
(1–6)i1p1f1 of ECMWF-IFS-HR.  

IMS Score Institution Country Model (Reference) Experiment 
ID 

Members (Model 
Runs) 

Ocean model resolution Ocean grid 

IMS01 1 NCAR USA CESM1-CAM5-SE-HR (Chang 
et al. 2020) 

hist-1950 r1i1p1f1 0.1◦ (11 km) nominal resolution POP2-HR 

IMS02 2 CMCC Italy CMCC-CM2-HR4 (Cherchi 
et al. 2019) 

hist-1950 r1i1p1f1 0.25◦ from the Equator degrading at 
the poles 

ORCA025     

CMCC-CM2-VHR4 (Cherchi 
et al. 2019) 

hist-1950 r1i1p1f1 0.25◦ from the Equator degrading at 
the poles 

ORCA025 

IMS03 1 CNRM-CERFACS France CNRM-CM6-1-HR (Voldoire 
et al. 2019) 

hist-1950 r(1–3)i1p1f2 0.25◦ (27–28 km) nominal resolution eORCA025     

CNRM-CM6-1-HR (Voldoire 
et al. 2019) 

historical r1i1p1f2 0.25◦ (27–28 km) nominal resolution eORCA025 

IMS04 0 DOE-E3SM- 
Project 

USA E3SM-1–0 (Golaz et al. 2019) historical r(1–5)i1p1f1 60 km in mid-latitudes and 30 km at 
the equator and poles 

EC60to30 

IMS05 0 EC-Earth- 
Consortium 

Europe EC-Earth3P (Haarsma et al. 
2016) 

hist-1950 r(1–3)i1p2f1 about 1◦ (110 km) ORCA1 

IMS06 2 EC-Earth- 
Consortium 

Europe EC-Earth3P-HR (Haarsma 
et al. 2016) 

hist-1950 r(1–3)i1p2f1 about 0.25◦ (27–28 km) ORCA025 

IMS07 3 ECMWF Europe ECMWF-IFS-HR (Roberts 
et al. 2018) 

hist-1950 r(1–6)i1p1f1 25 km nominal resolution ORCA025 

IMS08 3   ECMWF-IFS-MR (Roberts 
et al. 2018) 

hist-1950 r(1–3)i1p1f1 25 km nominal resolution ORCA025 

IMS09 2 NOAA-GFDL USA GFDL-CM4 (Held et al. 2019) historical r1i1p1f1 0.25◦ (27–28 km) nominal resolution tri-polar 
grid     

GFDL-ESM4 (Held et al. 
2019) 

historical r(2–3)i1p1f1 0.25◦ (27–28 km) nominal resolution tri-polar 
grid 

IMS10 3 NERC UK HadGEM3-GC31-HH 
(Roberts et al. 2019) 

hist-1950 r1i1p1f1 8 km nominal resolution ORCA12   

MOHC-NERC UK HadGEM3-GC31-HM 
(Roberts et al. 2019) 

hist-1950 r1i(1–3)p1f1 25 km nominal resolution ORCA12 

IMS11 3 MOHC UK HadGEM3-GC31-MM 
(Roberts et al. 2019) 

hist-1950 r1i(1–3)p1f1 25 km nominal resolution ORCA025     

HadGEM3-GC31-MM 
(Roberts et al. 2019) 

historical r(1–4)i1p1f3 25 km nominal resolution ORCA025  
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criterion. Institutional democracy is only the first step for defining 
model independence, and additional practical and theoretical consid
erations can be employed as needed (Leduc et al., 2016; Annan and 
Hargreaves, 2017; Boé, 2018). While it is reasonable to assume that 
members of the same model that differ in resolution are dependent (Boé, 
2018; Lorenz et al., 2018; Merrifield et al., 2020; Brunner et al., 2020), 
determining where to draw the line between independent and depen
dent models is difficult (Merrifield et al., 2020). For example, when 
considering a temperature variable, Leduc et al. (2016) showed that 
higher model resolution can result in independent models at certain 
geographical regions. In our case-study about red tides, ocean grid res
olution can be critical for the processes of interest. It has been shown 
that the Loop Current cannot be simulated appropriately by E3SM with 
the standard resolution (Golaz et al., 2019) that has ocean and sea ice 
grid resolution of 60 km in the mid-latitudes and 30 km at the equator 
and poles (Caldwell et al., 2019). However, when considering a higher 
ocean grid resolution that can better resolve mesoscale eddies (Caldwell 
et al., 2019; Hoch et al., 2020) the Loop Current is better represented. 
Thus, institutional democracy alone is insufficient, and we need to ac
count for ocean grid resolution as a secondary criterion for defining 
model independence as ocean resolution affects the regional phenomena 
of interest (Elshall, 2020). 

Accordingly, for the same institution, we create further subsets given 
different grid resolutions, resulting in 11 ensemble members (Table 1). 
Each independent model subset (IMS) constitutes an ensemble member. 
Each IMS contains one model run or several model runs with different 
indices of realizations (r), initializations (i), physics (p), and forcings (f). 
We assume each ensemble member to be an IMS. For example, IMS01 
has only one model run “r1i1p1f1”, and IMS11 has seven model runs, 
three with initialization r1i(1–3)p1f1 and four with realizations r(1–4) 
i1p1f3 as listed in Table 1. Generally, the choices with respect to model 
independence criteria are partly subjective and likely not perfect, such 
that with an in-depth knowledge of the differences between codes, 
different choices would be possible (Boé, 2018). The Supplementary 
Material contains additional information about the model independence 
assumptions used in this study. However, comparing different methods 
to account for model independence is beyond the scope of this work. For 
the reanalysis data of zos, we use the phy-001–030 global ocean eddy- 
resolving reanalysis product of the Copernicus Marine Environment 
Monitoring Service (CMEMS). This reanalysis product covers the 
altimetry from 1993 onward with approximatively 8 km horizontal 
resolution (Drévillon et al., 2018; Fernandez and Lellouche, 2018). 

We use the Karenia brevis cell count of the harmful algal bloom 
database of the Fish and Wildlife Research Institute at the Florida Fish 

Fig. 1. Snapshots of sea surface height above geoid (zos) showing (a) the Loop Current (LC) in the south position (LS-C) in 2010–03 for reanalysis data, and the LC in 
the north position (LC-N) in 2010–06 for (b) reanalysis data, (c) a high-resolution ESM, and (d) a standard-resolution ESM. Two red segments along the 300 m isobath 
in (a) are used to determine Loop Current position (i.e., LC-N and LC-S) for red tide analysis. The red box in (b) shows the study area, where red tide blooms are 
considered by this study and Maze et al. (2015). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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and the Wildlife Conservation Commission (FWRI, 2020). We define the 
bloom severity of Karenia brevis according to the definition implemented 
by Maze et al. (2015). A large red tide bloom is defined as an event with 
the cell count exceeding 1 × 105 cells/L for ten or more successive days 
without a gap of more than five consecutive days, or 20 % of the bloom 
length. Give the study period for years Jan-1993 to Dec-2014 with a six- 
month interval (i.e., a total of 44 intervals), we identify 15 intervals of 
large blooms and 29 intervals with no bloom in the study area (Fig. 1). 

2.2. The Loop Current position and presence of red tide blooms 

The Loop Current (LC) is a warm ocean current that travels through 
the Gulf of Mexico. The LC is an important factor that controls the 
occurrence of red tides (Perkins, 2019) by altering the upwelling in
tensity and position of deep ocean water along the West Florida Shelf 
(Weisberg et al., 2014) and the retention time of the waters within the 
Guld of Mexico(Maze et al., 2015). In this study we focus on the 
retention time. Other relations (Weisberg et al., 2014; 2019; Liu et al., 
2016) are warranted in future studies. Karenia brevis is a slow growing 
dinoflagellate. To form large blooms, it is required that its retention 
within a certain region is high. Specifically, the growth rate of this 
species needs to be higher than the rate of advection out of the region 
(Magaña and Villareal, 2006). When the LC is in the southern position 
(LC-S), as shown in Fig. 1a, the retention time does not allow large 
blooms to occur. Whereas, when the LC is in the northern position (LC- 
N), as shown in Fig. 1b, the retention time is enhanced, allowing large 
red tide blooms to form when other conditions are ideal. LC-N is a 
necessary condition for large red tide blooms to occur (Maze et al., 
2015). 

The LC position is computed from sea surface height variability. 
Following the method of Maze et al. (2015) the sea surface height above 
geoid (zos) anomaly between the north and south segments along the 
300 m isobath (Fig. 1a) can be used as a proxy for LC position such that 

positive and negative differences represent LC-N and LC-S, respectively. 
The zos anomaly per interval t can be estimated as: 

ht = max
hn

(

Δm

[

El

[
∑K

k=1
wkEj(hj,k,l,m,n,t |Mk)

] ] )

(1) 

In this equation, we first take the expectation Ej(.) for all model runs 
with index j in each ensemble memberMk, and then the Ej(.) data are 
averaged for all ensemble members with index k ∈ [1, K] where wk is the 
weight of each ensemble memberMk. Subsequently, the expectation El(.)

is taken for all data points with index l along each of the north and south 
segments, respectively. Afterward, we take the difference Δm(.) between 
the data of the two segments. Finally, for each of the 6-month interval 
the maximum zos anomaly max

hn
(.) is selected resulting in zos anomaly 

per intervalt ∈ [1, T], with T = 44, for the study period for years 
1993–2014 and a 6-month interval length. Since we are not interested in 
the value of ht per se but the sign difference between the north and south 
segments, we express Equation (1) as an indicator function for the south 
segment (LC-S): 

HLC−S(ht) =

{
1, ht < 0
0, ht⩾0 (2) 

such that HLC−S(ht) = 1 indicates a LC-S interval. We use Equations 
(1) and (2) to process CMIP6 and reanalysis data, which are hereafter 
represented by ht andht,obs, respectively. We further define the oscillating 
event frequency: 

x0 =

∑T
t=1HLC−S(ht)

T
(3) 

as the ratio of the LC-S intervals to the total number of intervalsT. 
The reanalysis data products of Maze et al. (2015) and this study, result 
in x0,obs = 0.267 and 0.273 (Fig. 2a), respectively. The slight difference is 
not surprising, because the study period and the reanalysis data products 

Fig. 2. Surface height above geoid (zos) anomaly according to Equation (1): (a) reanalysis data; (b-e) enesmble members. The title of the reanalysis data shows the 
data provider name, and product ID. The title of ensemble member shows ensemble member number that is the number of each independent model subset (IMS): 
modeling group name, model name(s), and ensemble member score. 
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used in this study are different from those of Maze et al. (2015). We 
compare x0,obs = 0.273 of the reanalysis data with the model simulations 
in the results section. 

2.3. Ensemble methods 

The number of model weights of each ensemble differs depending on 
the number of included ensemble members. Each independent model 
subset (IMS) listed in Table 1 is an ensemble member, as we account for 
model independence prior to model weighting as shown by Equation 
(1). We consider the following two ensemble methods namely a 
prescreening-based subset selection and model weighting. Prior to 
model weighting, we include and exclude members from the ensemble 
based on prescreening-based subset selection criteria (Elshall et al., 
2022). These criteria are evolving such that each ensemble member 
receives a score from zero to three. Ensemble members that cannot 
simulate LC-N, as that shown in Fig. 1d for example, receive a score zero 
(e.g., Fig. 2b). Ensemble members that can simulate LC-N, but without 
sign fluctuations to indicate both the LC-N and LC-S according to 
Equation (1), receive score one (e.g., Fig. 2c). The ensemble member 
receives a score of two if it can reproduce both LC-N and LC-S according 
to Equation (1) with the frequency of LC-N being smaller than that of 
LC-S (e.g., Fig. 2d). The ensemble member receives a score of three, if it 
can reproduce both LC-N and LC-S according to Equation (1) with the 
frequency of LC-N being greater than that of LC-S (e.g., Fig. 2e). Higher 
LC-N frequency is a more realistic condition, considering that x0,obs =

0.273 for reanalysis data (Fig. 2a). The score is calculated for each 
ensemble. For example, IMS4 and IMS5 have a score of zero because 
they cannot simulate LC-N (their simulation results are similar to 
Fig. 2b), while IMS7, IMS8, IMS10 and IMS11 have a score of three 
because they can simulate both LC-N and LC-S with higher LC-N fre
quency (their simulation results are similar to Fig. 2e). 

Given the defined prescreening-based subset selection criteria, we 
consider four ensemble compositions for the case of weighted-average 
multi-model ensemble (WME). For example, WME3210 with K = 11 
(K being the number of model weights of each ensemble such that each 
IMS has one weight) includes all ensemble members with a score from 
three to zero; WME321X with K = 9 includes all ensemble members 
with a score from three to one; WME32XX with K = 7 includes all 
ensemble members with a score from three to two; and WME3XXX with 
K = 4 includes only the top performing ensemble members with only a 
score of three. For example, WME3XXX has four ensemble members 
with a total of 20 members such that IMS07, IMS08, IMS10, and IMS11 
have 6,3, 4, and 7 members, respectively. We know from previous 
studies (Caldwell et al., 2019; Hoch et al., 2020) that, unlike the high 
resolution eddy-permitting grids (e.g., Fig. 1c), standard-resolution 
ESMs are generally incapable of simulating LC; see for example, 
Fig. 1d. This is mainly because the standard resolution grids (e.g., 
Fig. 1d) cannot resolve the mesoscale eddies and boundary currents, and 
require global parametrization. Thus, we consider WME3210 and 
WME321X to evaluate the combined impacts of prior information and 
model weighting. We consider WME32XX and WME3XXX with different 
ensemble size of K = 7 andK = 4, respectively, to study the combined 
impacts of subset selection and model weighting. To study the impacts of 
model weighting, we consider the case of simple-average multi-model 
ensemble (SME) using equal model weights. This leads to ensemble 
SME3210, SME321X, SME32XX and SME3XXX for the same ensemble 
composition criteria. SME321X with K = 9 is the reference ensemble 
that only considers prior information without any prescreening-based 
subset selection and model weighting. 

2.4. Optimal model weighting 

Each ensemble member has a model weight. The model weights wk in 
Equation (1) satisfy: 

∑K

k=1
wk = 1 (4) 

and 

wk = 1/K (5) 

for equal model weighting. For unequal model weighting, wk can be 
estimated using an optimization algorithm through minimizing an 
objective function with multiple objectives. In this study, the objective 
of the optimization problem is to estimate the model weights wk in 
Equation (1) that minimizes the objective function f such that: 

min
wk

f = min
wk

[
∏5

i=1
(xi + 1)

ci

]

(6) 

with five minimization objectives xi each having an objective- 
weighting constantci. We constrain the objective function as (xi +1) so 
that the product term 

∏5
i=1(xi + 1)

ci will not be zero if any objective xi is 
fully achieved resulting in xi = 0. Accounting for multiple objectives can 
be achieved through Pareto-optimal solutions (Herger et al., 2019) or 
objective-weighting constantsci. Each objective is assigned an objective- 
weighting constant ci representing the importance of the objective 
relative to other objectives. The first minimization objective x1 is the 
oscillating event count error: 

x1 =

⃒
⃒
⃒
⃒
⃒

∑T

t=1
HLC−S(ht) −

∑T

t=1
HLC−S(ht,obs)

⃒
⃒
⃒
⃒
⃒

(7) 

between model simulation HLC−S(ht) and reanalysis dataHLC−S(ht,obs). 
The second minimization objective x2 is the LC position temporal match 
error: 

x2 =
T −

∑T
T=1(ht,obs < 0 ∧ ht < 0) −

∑T
t=1(ht,obs⩾0 ∧ ht⩾0)

T
(8)  

where 
∑T

t=1
(
ht,obs⩾ 0 ˆ ht⩾0

)
and 

∑T
t=1

(
ht,obs < 0 ˆ ht < 0

)
are the tem

poral match counts of model simulations and reanalysis data for LC-N 
and LC-S, respectively. The logical conjunction ∧ gives a value of one 
when the statement 

(
ht,obs < 0 ˆ ht < 0

)
is true if both ht,obs < 0 and ht <

0 are true, otherwise, a value of zero is given. The simulations of 
HighResMIP are generally free-running, and thus no temporal match is 
expected between simulations of ESMs and re-analysis data. The term 
temporal match used in this manuscript refers to a pseudo-temporal 
correspondence that captures the general pattern of a dynamic process 
of the LC position given the heuristic relation (Equation (1)) with a 
coarse-temporal-resolution of six months. The third objective x3 is the 
LC-S temporal match error: 

x3 =

∑T
t=1HLC−S(ht,obs) −

∑T
t=1(ht,obs < 0 ∧ ht < 0)

∑T
t=1HLC−S(ht,obs)

(9) 

The fourth objective x4 is the red tide bloom error occurrence: 

x4 =

∑T
t=1(ht < 0 ∧ H(zt) = 1)

Tbloom
(10) 

which represents the false negative prediction of red tide blooms. 
This is the ratio of the number of LC-S coinciding with large bloom to the 
number Tbloom of large blooms, such that H(zt) is an indicator function, 
with one and zero for large bloom and no bloom, respectively. The fifth 
objective x5 is the RMSE between model simulation and reanalysis data: 

x5 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

n=1
(ht − ht,obs)

2

T

√
√
√
√
√

(11) 

With respect to objective-weighting constantsci, we set ci = 1, 
assuming that all objectives are of equal importance. 
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A common practice to solve Equation (6) subject to Equations 7–11 is 
to use an optimization algorithm such as a genetic algorithm (Bhowmik 
and Sankarasubramanian, 2021), mathematical programming solver 
(Herger et al., 2018), and Simple Cull algorithm (Herger et al., 2019). 
We minimize the objective function (Equation (6)) using the covariance 
matrix adaptation evolution strategy (CMA-ES, Hansen and Ostermeier, 
2001; Hansen et al., 2003) that has robust performance in terms of 
search capacity. CMA-ES randomly generates an initial population. A 
population is composed of a number,λ, of solutions, and a solution in this 
context is a set of model weights with sizeK. Each solution in the pop
ulation is evaluated in terms of its fitness f that is the objective function 
value in Equation (6). The population keeps evolving to reach the 
optimal solution, which is the smallest f value, with a user-specified 

maximum iterations (i.e., 200 in this study). Increasing the population 
size improves the search capacity (Elshall et al., 2015), and we use a 
population size ofλ = 100K, where K is the number of model weights. 
For each ensemble, we conduct 10 repeat optimization runs with 
random initial solutions. For all the repeated optimization runs we 
obtain well-posed solutions such that no multimodality is observed, and 
the model weights are generally consistent. For each ensemble, we select 
the solution with the smallest f value. 

2.5. Evaluation metrics 

We use several metrics to evaluate the ensemble performance. To 
evaluate the performance of each individual ensemble, we use metrics 

Fig. 3. Method overview. More details of the method are referred to the Jupyter notebooks of Elshall (2021).  
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x0-x5. Metric x0 is defined by Equation (3), and x1-x5 by Equations 7–11. 
We use Akaike Information criterion (AIC) and Bayesian Information 
Criterion (BIC) to compare different ensembles by accounting for both 
ensemble performance and ensemble size. The ensemble size is the 
number of model weights of each ensemble that are 11, 9, 7 and 4 for 
WME3210, WME321X, WME32XX, and WME3XXX, respectively. In this 
context, the number of model weights for each ensemble is equivalent to 
the number of model parameters in an inverse modeling context and to 
the number of decision variables in simulation optimization context. The 
AIC and BIC scores are calculated as (Akaike, 1974): 

x6,AIC = 2K − 2ln(L̂) (12) 

and (Bhat and Kumar, 2010): 

x7,BIC = Kln(N) − 2ln(L̂) (13) 

respectively, where N = 44 is the data size, K is the number of model 
weightswk, and ln(L̂) is the natural logarithm of the likelihood function. 
ln(L̂) can be equivalent to the mean-square error (MSE): 

MSE =

∑T
t=1(ht − ht,obs)

2

T
(14) 

such that minimizing ln(MSE) is equivalent to maximizing ln(L̂) of 
the data (Akaike, 1974). AIC and BIC combine the complexity of the 
ensemble (i.e., the number of model weights) and the performance of the 
ensemble into a single score. Smaller AIC and BIC scores indicate a better 
ensemble. The defined metrics x0- x7 are specifically designed to judge 
the predictive performance of these ESMs with respect to the targets of a 
specific application, and are not meant to evaluate the predictive per
formance of these ESMs regionally and globally for general purposes. 
Assessing the predictive performance of these ESMs with respect to 
regional and global simulations of zos or any other variable, is beyond 
the scope of this work. Fig. 3 provides a summary of the methods pre
sented in this section. 

3. Results 

3.1. Model weights 

We investigated the impacts of model weighting given four cases of 
high- and standard-resolution model runs (WME3210), high-resolution 
model runs (WME321X), and high-resolution model runs with pre
screening information (WME32XX and WME3XXX). Fig. 4 shows the 
optimal model weights of each ensemble member. Three remarks can be 
drawn from Fig. 4. 1) For ensemble WME3210, IMS03 has a score of one 
due to overestimating LC-N, and IMS05 has a score of zero due to 

underestimating LC-N, respectively. However, they did not receive zero 
model weights despite their low scores. This might imply that model 
weighting optimizes the error cancellation of the two members. 2) One 
of the best four ensemble members with a score of three (i.e., IMS10 of 
WME3210) receives less than 1 % weight. This is also the case for IMS07 
of WME321X. This may imply that including unsuitable members in the 
ensemble (i.e., the standard-resolution members IMS04 and IMS05, or 
members IMS01 and IMS03 not presenting LC oscillation) can result in 
flawed model weights. This also might be attributed to model weighting 
that optimizes the error cancellation of these members, resulting in 
underplaying robust models. These first two remarks suggest the 
importance of the prescreening when optimal model weighting is used. 
Even when subset selection is not employed (i.e., WME321X), pre
screening helps evaluate the model weighting method and results. 3) 
With respect to WME32XX, its members with a prescreening score of 
three generally receive higher model weights than members with a 
prescreening score of two. This is generally desirable since these mem
bers have a better performance with respect to the application of in
terest. Thus, this implies that these members maintain important 
ensemble characteristics. 

3.2. Predictive performance 

We evaluated the ensemble predictive performance using metrics 
x0-x5. Table 2 presents the raw data that are used to calculate x0-x5. 
Table 2 shows that the four weighted ensembles have relatively similar 
predictive performance. The ensembles have a LC-S frequency x0 of 
0.227 (versus 0.273 and 0.227 for the reanalysis data and the reference 
ensemble SME321X, respectively), which corresponds to an oscillating 
event count errorx2, of two. With respect to the temporal match, it is 
generally not expected between the simulations of ESMs and reanalysis 
data, yet with the absence of large drift, pseudotemporal relation might 
be possible. This secondary evaluation criterion can provide additional 
insights on the frequency and trend of red tide. The ensembles have 
temporal match error x2 of 18 % except for WME3XXX that has an error 
of 23 %, versus 36 % for the reference ensemble. Model weighting also 
reduces the temporal match error LC-S x3 for all the ensembles to 42 % 
(except for WME3XXX to 50 %), versus 75 % for the reference ensemble. 
The ensembles have red tide bloom error x4 of 7 %, versus 25 % for the 
reference ensemble. The ensemble RMSE x5 is generally inversely pro
portional to the ensemble size with the exception of WME32XX. 

From a model weighting perspective, both predictive performance 
and ensemble size are evaluated. WME32XX has the same predictive 
performance as WME321X and WME3210, in terms of x0-x4. The three 
ensembles have very similar predictive performance in terms ofx5. 
WME32XX (K = 7) has smaller ensemble size than WME321X (K = 9) 

Fig. 4. Model weights of ensemble members: Data present independent model subsets for each weighted multi-model ensemble (WME). The legend indicates the 
number of each ensemble member, model name(s), size of the ensemble member, and score of the ensemble member. The size of the ensemble member refers to the 
total number of model runs per ensemble member. The size of multi-model ensemble refers to the number of ensemble members per multi-model ensemble. Ensemble 
members with model weights less than 1% are not shown. 
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and WME3210 (K = 11). Accordingly, WME32XX is a better ensemble 
than WME321X and WME3210 from a model weighting perspective. For 
WME32XX and WME3XXX, while WME32XX has slightly better pre
dictive performance, WME3XXX has smaller ensemble size with only 
four model weights (K = 4). To evaluate these two ensembles, we use the 
AIC and BIC scores of the ensembles using Equations (11) and (12), 
respectively. The AIC /BIC scores are 16.92 / 36.5, 12.89 / 28.9, 8.78 
/21.3, and 2.8 /9.9 for WME3210, WME321X, WME32XX and 

WME3XXX, respectively. The estimated AIC and BIC scores are as ex
pected, in that WME3XXX and WME3210 are respectively the best and 
worst performing ensembles from a model selection perspective. In 
summary, the prescreening-based subset-selection step improves the 
model weighting, resulting in the reduction of the number of decision 
variables, while maintaining similar (i.e., WME32XX) or relatively 
similar (i.e., WME3XXX) predictive performance. Although the most 
parsimonious ensemble (i.e., WME3XXX) might not necessarily produce 

Table 2 
Raw data of Loop Current at North (LC-N) and South (LC-S) positions and their relation to the occurrence of no bloom and large blooms shown for the reanalysis data, 
reference ensemble SME3210X with simple-average multi-model ensemble (SME), and four ensembles with weighted-average multi-model ensemble (WME). The 
corresponding performance metrics (x0-x5) and fitness f value (Equation6) for each ensemble.   

Model runs Count Count LC-N  
No-Bloom 

Count LC-S  
No-Bloom 

Temporal Match Performance Metrics f 

LC-N LC-S No- 
Bloom 

Large- 
Bloom 

No- 
Bloom 

Large- 
Bloom 

LC-N LC-S Total x0 x1 x2 x3 x4 x5 (RMSE) 

Reanalysis 1 32 12 17 15 12 0 32 12 44  0.273 0  0.00  0.00  0.00 0 1 
SME321X 33 34 10 22 12 7 3 25 3 28  0.227 2  0.36  0.75  0.25 3.71 42.1 
WME3210 41 34 10 20 14 9 1 29 7 36  0.227 2  0.18  0.42  0.07 3.56 24.5 
WME321X 33 34 10 20 14 9 1 29 7 36  0.227 2  0.18  0.42  0.07 3.59 24.7 
WME32XX 28 34 10 20 14 9 1 29 7 36  0.227 2  0.18  0.42  0.07 3.69 25.2 
WME3XXX 20 34 10 20 14 9 1 28 6 34  0.227 2  0.23  0.50  0.07 3.67 27.6  

Fig. 5. Temporal match of large bloom and no bloom with Loop Current positions given by (a) reanalysis data, and simulations of four multi-model ensembles with 
(b-e) simple-average multi-model ensemble (SME), and (f-i) weighted-average multi-model ensemble (WME). Positive and negative bars indicate Loop Current North 
(LC-N) and Loop Current South (LC-S), respectively. 
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the best predictive performance, it is still favorable from a model se
lection perspective by balancing the ensemble performance and 
complexity. Yet from a practical perspective the smallest ensemble is not 
necessarily the best choice (particularly if the ensemble is too small) 
because this can lead to potential loss in projection accuracy (Weigel 
et al., 2010). 

The predictive performance of the simple-average and weighted- 
average multi-model ensembles are shown in Fig. 5. The ensembles 
based on prior information (e.g., SME321X) correspond better to rean
alysis data than SME3210 without prior information. Similarly, the 
ensembles based on prescreening information (i.e., SME32XX and 
SME3XXX) are better than the reference ensemble SME321X. In addi
tion, the ensembles with model weighting have generally good corre
spondence with respect to the reanalysis data, irrespective of prior and 
prescreening information. However, ensembles with prescreening in
formation and model weighting (i.e., WME32XX and WME3XXX) have 
the best correspondence with reanalysis data. 

4. Discussion 

With respect to key metrics, the effects of different ensemble 
composition criteria are summarized in Fig. 6. Prior information appears 
to be an important criterion that should be considered, as SME3210 has 
the worst predictive performance than the other ensembles do. Subset 
selection seems to relatively improve the predictive performance, sug
gesting that it can be used either in place of model weighting or prior to 
model weighting. When subset selection is used, prior to model 
weighting (WME3XX) or without model weighting (SME3XX), this re
sults in the most robust ensemble, from a model selection perspective. 
These results suggest four key points. First, while Yun et al. (2017) 
propose a process-based subset selection as an alternative approach to 
model weighting, we show that considering such process-based infor
mation can yield parsimonious ensemble with good predictive 

performance. Parsimonious ensemble is favorable especially with model 
weighting, as several studies indicate that predictive performance im
proves from model diversity rather than from larger ensemble (DelSole 
et al., 2014; Manzanas, 2020). 

Second, our study reveals a caveat of optimal model weighting. 
Models with poor performance showing both overestimation and un
derestimation can receive higher model weights due to error cancella
tion. This is undesirable. Li et al. (2021) present a similar study in which 
good model simulations are obtained due to neutralizing large positive 
bias by large negative bias. The large biases indicate inaccurate repre
sentations of physical processes. In addition, we show that optimal 
model weighting can further underplay robust climate models, high
lighting the importance of ensemble process-based prescreening and 
subset selection prior to model weighting. We use binary model weights 
in the way similar to that of Herger et al. (2018) in which models are 
either included or excluded. It has been argued that model uncertainty 
can be reduced by giving more weight to models that are more skillful 
and realistic for a specific process or application (Lorenz et al., 2018). 

Third, we show that subset selection alone can be an effective way to 
improve the predictive performance in case that model weighting is 
undesirable. Since giving equal weight to each available model projec
tion can be suboptimal, advanced methods for model weighting are 
needed (Eyring et al., 2019). This suggests the importance of accounting 
for model independence such that each model run is not given an equal 
weight. However, it is still an open question whether unequal model 
weighting methods improve upon equal model weighting methods. For 
example, even if the skills of the competing methods are equal, one 
method will, by chance, prove superior in a given sample (DelSole et al., 
2013). In addition, model weighting can underplay the critical model if 
the goodness-of-fit of the critical model is less than other models (Elshall 
et al., 2020b). The critical model is the model that has the largest effect 
on the solution reliability but might not necessarily have the largest 
weight (Kourakos and Mantoglou, 2008; Elshall et al., 2020a; b). Even 

Fig. 6. Predictive performance, and AIC score accounting for performance and complexity, given different ensemble composition criteria of prior information, 
prescreening-based subset section, optimal model weighting, and parsimony. To scale the data to the graph we calculate the relative RMSE(x5r); that is the RMSE of 
each of ensemble divided by the maximum RMSE of the four ensembles, and the normalized AIC score (x6,AICn) through dividing the AIC score of each ensemble 
(x6,AIC) by the number of data pointsN = 44.. 

A. Elshall et al.                                                                                                                                                                                                                                  



Climate Services 28 (2022) 100334

11

more detrimental is that a model could have a larger weight because the 
observational errors better coincide with the model errors (Haughton 
et al., 2015). In addition, while non-equal model weighting can improve 
the uncertainty quantifications, it does not necessarily result in an 
improved description of mean system states, yet will add another level of 
uncertainty (Christensen et al., 2010). Furthermore, the efficacy of using 
model weights derived on a historical reference period for future pro
jection, can be questionable. In other words, it is hard to justify that the 
construction of model weights using observed data of the twentieth 
century will persist throughout the twenty-first century (Haughton 
et al., 2015). Given these and similar remarks, Weigel et al. (2010) 
suggest that for many applications using equal model weighting may be 
the safer and more transparent way to combine models. Here we do not 
argue for equal or unequal model weighting of the multi-model 
ensemble, but rather show that in case unequal model weighting is 
undesirable, prescreening-based subset selection can be used to improve 
the predictive performance. This remark is also indicated by other 
methods for improving predictive performance. For example, Wang 
et al. (2019) show that when bias correction is applied, unequal model 
weighting does not bring significant differences in the multi-model 
ensemble mean and uncertainty of hydrological impacts. As bias- 
corrected climate simulations become rather close to observations, 
Wang et al. (2019) suggest that using bias correction and equal model 
weighting is viable and sufficient for their study purpose. In addition, 
DelSole et al. (2013) show that, for the forecast of temperature and 
precipitation, methods of unequal model weighting may be of value only 
over a relatively small fraction of the globe, suggesting that strategies for 
screening models prior to combining them would seem to be an 
important step. The same argument applies for subset selection in this 
case study, especially when model weighting does not result in signifi
cant improvement (e.g., SME3XXX and WME3XXX). 

Finally, the application-specific nature of model selection and/or 
averaging should not be overlooked, as there are no universally-best 
methods. For example, Ross and Najjar (2019) evaluate six model se
lection methods with respect to performance and the sensitivity of the 
results to the number of chosen model. Their study shows that methods 
and models used should be carefully chosen, and that obtained results 
should be interpreted with caution. Similarly, with respect to model 
weighting, Herger et al. (2018) note that, as in any calibration exercise, 
the final ensemble is sensitive to the metric, observational product, and 
pre-processing steps used. Likewise, with respect to accounting for 
model independence, Abramowitz et al. (2019) state that the sensitivity 
of model weighting and subset selection to a number of factors (e.g., 
metric, variable, observational estimate, location, time, spatial scale, 
and calibration time period) emphasizes that model dependence is 
application-specific, and not a general property of an ensemble. With 
respect to bias correction, the results of Hemri et al. (2020) underpin the 
importance of processing raw ensemble forecasts differently, depending 
on the final forecast product needed. These remarks suggest that the 
application-specific nature of the problem should not be overlooked, 
and the application-specific ensemble methods, such as the two pre
sented in this study (i.e., prescreening-base subset selection and 
application-specific optimal weighting) can be useful. Lastly, 
prescreening-based subset-selection entails an extreme form of weight
ing such that models that are not suitable for this application or variable, 
are discarded. Yet this does not mean that the discarded models do not 
have robust performance with respect to other variables related to red 
tides (e.g., wind speed and direction, and sea-surface temperature) and 
other aspects of global or regional climates. In contrast to the generic 
evaluation of ESMs irrespective of the applications, subset selection can 
include region-, application-, and sector-specific metrics depending on 
the modeling proposes. 

5. Conclusions 

This study discusses the application-specific optimal model 

weighting of ESMs using a red tide example. Three key points can be 
concluded as follows:  

1. While optimal model weighting can potentially improve predictive 
performance, at least one caveat needs to be considered. Including 
non-representative models with both overestimation and underesti
mation can result in error cancellation. Whether to include or 
exclude these non-representative models from the ensemble is a 
point that requires further investigation through studying model 
projections. However, this study clearly shows that, when the 
optimal ensemble weight approach is used, including these non- 
representative models can underplay the model weights of robust 
models. 

2. Excluding all non-representative models results in the most parsi
monious ensemble accounting for both ensemble size and 
performance.  

3. Prescreening-based subset selection, which screens and selects 
ensemble members based on their ability to reproduce certain key 
features, is a viable option that can either substitute model weight
ing, or be used prior to model weighting. Prescreening-based subset 
selection does not only help to develop a parsimonious ensemble, but 
also provides insights about the validity of the model weights. 

The insights provided by this study add to the literature of 
application-specific optimal model weighting of ESMs. The analysis in 
this study is limited to the historical period. Model weighting can be 
based not only on historical performance, but also on the spread and 
convergence of future projections. Exploring optimal model weighting 
with respect to the trade-off between historical and future performance, 
is warranted in a future study. 
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DuVivier, A.K., Li, D., Li, Y., Neale, R., Stössel, A., Wang, L.i., Zhuang, Y., Baker, A., 
Bates, S., Dennis, J., Diao, X., Gan, B., Gopal, A., Jia, D., Jing, Z., Ma, X., 
Saravanan, R., Strand, W.G., Tao, J., Yang, H., Wang, X., Wei, Z., Wu, L., 2020. An 
unprecedented set of high-resolution earth system simulations for understanding 
multiscale interactions in climate variability and change. J. Adv. Model. Earth Syst. 
12 (12) https://doi.org/10.1029/2020MS002298. 

Cherchi, A., Fogli, P.G., Lovato, T., et al., 2019. Global mean climate and main patterns 
of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst. 11, 
185–209. https://doi.org/10.1029/2018MS001369. 

Christensen, J.H., Kjellström, E., Giorgi, F., Lenderink, G., Rummukainen, M., 2010. 
Weight assignment in regional climate models. Clim. Res. 44 (2-3), 179–194. 

De Felice, M., Soares, M.B., Alessandri, A., Troccoli, A., 2019. Scoping the potential 
usefulness of seasonal climate forecasts for solar power management. Renew Energy 
142, 215–223. https://doi.org/10.1016/j.renene.2019.03.134. 

DelSole, T., Yang, X., Tippett, M.K., 2013. Is unequal weighting significantly better than 
equal weighting for multi-model forecasting? Q. J. R. Meteorolog. Soc. 139, 
176–183. https://doi.org/10.1002/qj.1961. 

DelSole, T., Nattala, J., Tippett, M.K., 2014. Skill improvement from increased ensemble 
size and model diversity. Geophys. Res. Lett. 41, 7331–7342. https://doi.org/ 
10.1002/2014GL060133. 

Dixon, A.M., Forster, P.M., Beger, M., 2021. Coral conservation requires ecological 
climate-change vulnerability assessments. Front. Ecol. Environ. 19 (4), 243–250. 

Doblas-Reyes, F.J., Hagedorn, R., Palmer, T.N., 2005. The rationale behind the success of 
multi-model ensembles in seasonal forecasting - II. Calibration and combination. 
Tellus Ser A-Dyn Meteorol Oceanol 57, 234–252. https://doi.org/10.1111/j.1600- 
0870.2005.00104.x. 
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