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Abstract— Automatic classification of cardiac abnormalities
is becoming increasingly popular with the prevalence of ECG
recordings. Many signal processing and machine learning
algorithms have shown the potential to identify cardiac ab-
normalities accurately. However, most of these methods heavily
rely on a large amount of relatively homogeneous datasets. In
real life, chances are that there is not enough data for a specific
category, and regular deep learning may fail in this scenario. A
straightforward intuition is to use the knowledge learned from
previous data to solve the problem. This idea leads to learning-
to-learn: extrapolating the knowledge accumulated from the old
dataset and using it in a different but somewhat related dataset.
In this way, we do not need to have considerable data to learn
the new task because the underlying features of the old and new
datasets resemble one another. In this paper, a novel machine
learning method is introduced to solve the ECG arrhythmia
detection problem with a limited amount of data. The proposed
method combines the popular techniques of meta-learning and
transfer learning. It is shown that our method achieves much
higher accuracy in ECG arrhythmia classification with a few
data and learns the new task faster than regular deep learning.

I. INTRODUCTION

The electrocardiogram (ECG) is a non-invasive repre-
sentation of the heart’s electrical activity from electrodes
placed on the skin. It is a fundamental tool in diagnosing a
wide range of arrhythmia abnormalities, with more than 300
million ECGs obtained annually worldwide [1]. Automatic
ECG interpretation has been used for over 50 years and has
helped to predict cardiovascular morbidity and mortality [2]
and reduce the laborious workflow of physicians. The early
and correct diagnosis of cardiac abnormalities may increase
the chances of successful treatments [3]. However, manual
interpretation of the electrocardiogram is time-consuming
and requires skilled personnel with a high degree of training
[4].

The combination of the increasing availability of ECG data
and the development of deep learning algorithms presents an
opportunity to analyze ECG signals accurately and facilitates
automated ECG interpretation [S]. The existing literature
contains many arrhythmia detection algorithms with substan-
tial preprocessing of the ECG signals [6].

Deep learning enables computational models composed of
multiple processing layers to learn data representations with
numerous levels of abstraction. In this way, deep learning
can reveal complex patterns in large datasets. It outperforms

The authors are with the Department of Electrical and Computer
Engineering at the University of Texas at San Antonio (UTSA). This
work was supported in part by the National Science Foundation under
Grant 2041327. The work of Wuxia Chen and Taposh Banerjee was
also supported in part by the Cloud Technology Endowed Professorship
IV at UTSA. Email: wuxia.chen@my.utsa.edu; taposh.banerjee @utsa.edu;
eugene.john@utsa.edu

other traditional machine learning techniques in that human
engineers do not design its feature extractors; instead, they
are learned from raw data using a general-purpose learning
procedure. Also, a deep learning algorithm can learn the
subtle details of high-dimensional data and has applications
in a broad spectrum of fields [7].

Deep neural networks are effective at learning from a large
amount of training data and can predict very accurately in test
datasets. One shortcoming of the typical deep neural network
is that it requires a massive amount of similar data points
for any given category. But in the real world experience,
we only see a small number of instances of each object
throughout our lifetime. Another disadvantage of the deep
neural network is that it begins with some random parameters
and takes a long time to converge every time it learns the
training data. Fast learning is the goal of computer-aided
classification because it resembles human cognition: to learn
new skills with a small training session or recognize new
items with a few prior instances.

It is intuitive to take advantage of the knowledge acquired
in previous learning sessions to achieve the goal of fast learn-
ing. The tricky part is how to combine the new task with the
prior learning experience. An important practical approach is
to give the neural network some good, meaningful starting
parameters to have maximal performance on a new task after
a bit of training, using a small amount of data from the new
task [9]. The idea of finding good starting points leads to
the notion of learning-to-learn. Two popular methods in this
domain are meta-learning and transfer learning. The goal of
meta-learning is to train a launch model using a family of
tasks, such that it can later solve a new learning task from the
same family using only a small number of training samples
[8]. The goal of transfer learning is to fine-tune a trained
model for a certain task so that it can perform better on a new
and similar task. While both methods hold promise, neither
of them is perfectly suitable for the problem of arrhythmia
detection in ECG data. In practice, we only have access to
a small collection of ECG datasets, certainly not enough to
train a meta-learning launch model in the traditional sense.
Also, we found in our studies that a traditional transfer
learning approach leads to quite a poor accuracy.

In this paper, we propose a combined meta-transfer learn-
ing approach [21] that can be implemented with significantly
lower computational overhead than traditional meta-learning.
Also, our method performs better than classical transfer
learning. The rest of this paper is organized as follows.
In Section II, we briefly describe the principles of meta-
learning and transfer learning. In Section III, we discuss
our proposed methodology and pre-processing of the ECG

978-1-7281-2782-8/22/$31.00 ©2022 IEEE 1300

Authorized licensed use limited to: University of Pittsburgh. Downloaded on November 05,2022 at 14:29:33 UTC from IEEE Xplore. Restrictions apply.



signals. In Section IV, we provide the experimental results
and discussion.

II. META-LEARNING AND TRANSFER LEARNING

In this section, we provide a brief overview of meta-
learning and transfer learning.

A. Meta-learning

Suppose we have a dataset with only a small amount of
samples, and we want our model to learn it quickly. The idea
behind meta-learning is to use prior knowledge to accomplish
this goal so that the learning does not start from scratch. We
first revisit some ideas from supervised machine learning.

Consider a model which maps observation z to label y.
The model parameters are denoted as ¢, and the training data
are denoted as D. One way to visualize the training in super-
vised learning is to view it as a maximum likelihood problem,
where we maximize the likelihood of the parameters given
the training data: argmax,logp(¢|D). We redefine the
problem as maximizing the probability of the data given
the parameters argmaxglogp(D|¢) and maximizing the
marginal probability of our parameters argmaxg log p(¢).
Then we get some optimization over the dataset given
>;logp(ys|zi, $) and we have the regularizer log p(¢)(e.g.,
weight decay):

p(¢, D)
p(D)
= argmax log (¢, D)

arg m(?x log p(¢| D) = arg mgx log

= arg m(zz)lx log p(D|¢) + log p(¢)

= argmax > _ log p(y;lwi, 6) + 10g p(9),

where D = {(x1,y1), - , (T, yx)}, where x;s are the input
observations observations (e.g. an image or a signal track),
and y;s are the input labels [9].

As mentioned previously, the art of meta-learning involves
integrating the learned experience with a few shots of new
data points. We would like to incorporate the prior knowl-
edge with the new data points; hence the problem becomes
argmaxe 10gp(¢|D? Dmeta—train)9 where Dmeta—train de-
notes the previous training data or meta-training data. But
keeping Dj,etqa—train forever is laborious and impractical
since the data occupies a substantial memory. The core
idea behind meta-learning is to represent the meta-training
dataset using a set of meta-parameters obtained via § =
arg maxg p(0|Dyeta—train)- The meta-parameters 6 are ex-
tracted from D, ,etq—train to denote the prior knowledge we
need to know to solve new tasks quickly [9].

The description of the new task is still a maximum
likelihood problem arg maxg logp(¢|D, Dmeta—train)- We
would like to maximize the likelihood of the parameters over
the new data given the past meta-training data. The likelihood
function can be viewed as an integration over the meta-
parameter . We approximate this integral with a point esti-
mate 0* for the meta-parameters. p(0*|Deta—train) COITE-
sponds to meta-training, where we learn the meta-parameters

based on the old meta-training data, and p(¢|D,6*) corre-
sponds to adaptation, where we learn the new parameters for
a new task given the new data and the meta-parameters:

p(gb, D, Dmetaftrain)
lo D, Dieta—train) = 10
gp(¢| ta—t ) & p(D, Dmeta—train)
D D —trai
_ log/ p(¢, )p(a, meta tnun) do,
p(D)p(Dmetaftrain)
here we assume ¢ is independent of D.etq—train|0s
— log / O B0 Dinctatrin)
p(D, 0)p(Dmeta—train)

= log/p(¢|D> e)p(eleetaftrain) d9
~ 10gp(¢‘D7 9*)]9(9* ‘Dmetaftrain)y

where 6* = arg maxy p(0|Deta—train)

In this way, the new task
arg Hl(th 10gp(¢|D7 Dmeta—t'r'ain)

can be approximated by

argmgxlogpwlD,@*),

where ¢ denotes the task-specific parameters and 6* acts as
preliminary information shared across all tasks.

In summary, there are two steps to learn a new task. First,
acquire previous experience with meta-learning parameter
0* = argmaxg p(0|Dmeta—train), and then adapt with a
few shots ¢* = argmax, p(4|D, 6%). Fig. 1 shows how the
meta-parameters 6™ participate in the new task, and the task-
specific parameters ¢ get updated from meta-parameters 6
with a few new input/output pairs. Finally, our new model
parameters ¢* are used for prediction.

rg*ﬁ yts «test label
*
N N

e —

(1,91) (T2,92) (23,93) s
L J
' test input
D
Fig. 1. Meta-parameter 0* participate in the training of parameters ¢* in

the new tasks [9].

B. Transfer Learning

The underlying logic of transfer learning is the model pre-
trained on big data generalizes better than randomly initial-
ized ones [21] [22]. Transfer learning also takes advantage
of the pre-trained model. It freezes most trained layers and
keeps the feature extractor unchanged for the new task. Then
it substitutes the classifier (the top fully connected layers)
according to the number of categories in the new task with
a new trainable one (see Fig. 2). In this situation, the pre-
trained parameters 6 and the task-specific parameters ¢ are
mostly the same except for their classifiers.
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stacks of convolutional layers
for feature extraction

They are frozen and
untrainable.

Replace the old classifier
HEEEEE

classifier for new task,
trainable

LT

classifier for pre-training

Fig. 2. The transfer learning methodology. Here the earlier part of the
network is frozen while transferring to the new task.

III. A META-TRANSFER LEARNING METHOD TO
CLASSIFY ARRHYTHMIA

In classical meta-learning [8], to learn the meta-parameter
f*, it is important that not only the meta-training dataset
D eta—train e large, but should also contain samples from
various tasks from a large family of tasks. But this is not
realistic in ECG arrhythmia detection because we often have
access to only a few or even a single dataset for learning
and prediction. A transfer learning approach is more suitable
for ECG data because we only need one dataset to learn
and then fine tune a small subset of the learned parameters.
However, our studies have shown that a transfer learning
approach leads to poor prediction and generalization error
performance. In this section, we propose a methodology
that combines the concepts of meta-learning and transfer
learning. Specifically, we train the model as done in transfer
learning using a single dataset. However, unlike transfer
learning, we do not freeze any part of the learned network
or coefficients and update all of them using data from the
new task. The latter approach is employed in meta-learning.
In the rest of the paper, we call this methodology a meta-
transfer learning approach. Below, we discuss our approach
in detail.

We use a neural network to automatically classify various
cardiac arrhythmias in our experiments. The datasets we
use in our experiments are: 2017 PhysioNet/Cinc Challenge
database [10][11], China Physiological Signal Challenge
(CPSC) 2018 dataset [12], Georgia 12-lead ECG Challenge
(G12EC) Database [11], and MIT-BIH Arrhythmia Database
[13][11]. All the ECG signals in these databases are carefully
examined and labeled by fully experienced cardiologists.

We build our base learner in one dataset and then apply
the trained launch model to learn the new data in another
dataset. The meta-parameter 6 is saved for later fine-tuning
to adapt to the new task. The new task is to recognize and
classify other arrhythmias from different databases with prior
knowledge 6. We manually replace the old classifier with a
new one according to the number of arrhythmia types in
the new task. The classifier is a stack of fully connected
dense layers followed by a softmax activation layer [14].
It gives the probability distribution of the class labels, and

the class with the highest probability will be considered the
correct one. Unlike typical transfer learning, during which
the feature extractors are frozen and untrainable, we allow
all the weights to be updated during the fine-tuning session,
as is shown in Fig. 3. Each time, a small number of signals
are fed into the neural network to fine-tune the task-specific
parameters ¢ so that our model may quickly learn the new
types of arrhythmia.

stacks of convolutional layers

. B weights get updated in
for feature extraction, trainable ghis get up

task specific training for
the new task

Replace the old classifier
LI T T T[]

classifier for new task, trainable

LT

classifier for meta-training

Fig. 3. Our proposed meta-transfer learning methodology. All the param-
eters are trainable in our fine-tuning session.

We now discuss the preprocessing of the data and the
design of our network. Usually, when designing a neural
network, it is required that the inputs are in the same format.
It is natural to think about data standardization, giving the
data a uniform format to better analyze and utilize it in
further research [15]. After standardization, we put different
variables onto the same scale, so comparing them becomes
meaningful [16]. A typical operation in standardization is to
subtract the mean and divide it by the standard deviation.
For each recording, we do
signal; — mean;

Stdi '

After this step, all the signals are standardized vertically.
But horizontally, they still have different lengths. Next, we
will pad the short signals with zeros to match the long
signal in size. In this way, all the signals fed into the neural
network are of the same length. The labels are also padded
according to the number of waveforms each ECG signal has.
For example, if one ECG signal has 23 waves, then there are
23 labels to be padded. Until this step, in the training data,
one recording (signal-labels pair) contains a standardized,
zero-padded ECG signal and a label vector indicating the
number of waves in that signal.

We build a 1D neural network that classifies different
arrhythmia types. During the meta-training, the network is
shown an ECG signal and a label vector. We expect the
desired category to have the highest score of all the types
after training. Cross entropy is used as an objective function
to measure the error between the output scores and the
desired pattern of scores. The network modifies its internal
parameters during the training to reduce the error. Our 1D
neural network is end-to-end, so in the output end, the model
will give a prediction vector telling the probability of each
arrhythmia type [17].

signal; <
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IV. EXPERIMENTAL RESULTS AND DISCUSSION

A good measure is necessary to evaluate the performance
of the model. In statistical analysis, the F-score is used to
measure the accuracy of a test. It is calculated with the
precision and recall of the test [18]. A true positive (TP)
is an outcome correctly labeled as positive. Similarly, a true
negative (TN) is an outcome correctly labeled as negative. A
false positive (FP) is an outcome that is mistakenly labeled as
positive, and a false negative (FN) is an outcome mistakenly
labeled as negative [19]. Accuracy denotes the ratio of
correctly recognized instances over all testing instances.
Specifically,

TP
TP+ FP’

TP

H=—
reca TP+FN7

precision =
2
precision=! + recall =1’

TN +TP
TP+TN+FP+FN’

We use the above metrics to report our numerical results.

Fy  score =

accuracy =

A. Learning AF and NSR signals in CPSC 2018 database
and GI2EC database based on the knowledge from 2017
PhysioNet Challenge database

In the 2017 PhysioNet Challenge database, there are four
categories of signals: normal sinus rhythm (NSR), atrial
fibrillation(AF), other arrhythmia signals, and noise. We
implement the meta-transfer learning idea with only AF and
NSR signals in this experiment. We randomly select 657
AF signals and 4433 NSR signals from the 2017 PhysioNet
Challenge database during the meta-training session and train
our model to recognize those two signals. Then we use this
trained model as a base to learn and classify the AF and
NSR signals from CPSC 2018 database and G12EC database.
We use a few new signals to train the model initially and
then gradually increase the training samples. We selected
1000 signals from the target database randomly to test the
performance of the model. The accuracy values are reported
in Fig. 4 and Fig. 5. The detailed performances concerning
each arrhythmia are shown in the appendix (see from Fig. 10
to Fig. 13). The experiment results show that our model
predicts the signal labels in the test more accurately than
regular deep learning.

B. Learning six arrhythmias in CPSC 2018 database and
GI12EC database with the knowledge from 2017 PhysioNet
Challenge database

We expand the experiment to recognize some other ar-
rhythmias the model has never seen in the previous meta-
training. In this experiment, our model is trained to learn
six types of signals: normal sinus rhythm (NSR), atrial
fibrillation (AF), first-degree atrioventricular block (I-AVB),
left bundle branch block (LBBB), right bundle branch block
(RBBB) and premature atrial contraction (PAC), with the
previous knowledge accumulated from the 2017 Physionet
Challenge. We randomly select 1000 signals of these six

Learning NSR and AF signals in CPSC 2018

database, test = 1000
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Fig. 4. The accuracy of our method vs. regular deep learning in CPSC
2018 database (NSR and AF signals only)

Learning NSR and AF signals in G12EC database,
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1 0899 0915 0925 0925 092 0933

—

0757 08
08 e S e
00522 Ty 0743 076 0776 0785 078 0789

0.449

>
9]
e
3
51
S

<

0 20 40 60 80 100 120

number of training signals

—®—our method  —@=regular deep learning

Fig. 5. The accuracy of our method vs. regular deep learning in G12EC
database (NSR and AF signals only)

arrhythmias from the target database CPSC 2018 to test our
model’s performance. During the new task training session,
the 1D neural network is only trained with a few examples of
the six arrhythmias. A comparison of our method and regular
deep learning is presented in Fig. 6.

Learning CPSC 2018 database (6 categories), test

=1000
B P 08 0.825 0.832
0.725 :

08 == 0858
> 0.556 0.995 ’ I
Sos 0.467
5
304
<

0 100 200 300 400 500

number of training singals

—e—our method regular deep learning

Fig. 6. The accuracy of our method vs.regular normal deep learning
task: learning CPSC 2018, meta-trained in 2017 PhysioNet Challenge

C. Learning six arrhythmias in GI2EC database with the
knowledge from 2017 PhysioNet Challenge database

We do the same experiment in the previous subsection
to GI12EC database. Similarly, we select 500 signals of
six arrhythmias in G12EC database randomly to test the
performance of our model. The experiment result is shown
in Fig. 7.
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Learning G12EC databse (6 categories), test = 500
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Fig. 7. The accuracy of our method vs. normal deep learning
task: learning G12EC, meta-trained in 2017 PhysioNet Challenge

D. Learning five arrhythmias in MIT-BIH Arrhythmia
database with the knowledge from 2017 PhysioNet Challenge
database

We want to learn five types signals in MIT-BIH database:
N, L, R, V, and A. The meta-training is completed in 2017
PhysioNet Challenge database. We select 7751 samples of
five arrhythmia types from MIT-BIH database randomly to
test our model performance. The experiment result is shown
in Fig. 8.

Learning MIT-BIH databse (5 categories), test =
7751

.

0.846 0.861
0.781
0.694 0.703

o
o

0.769 0.77

o

0.727
0.551

Accuracy
o o
=

0.474

o
N

o

0 50 100 150 200 250

number of training samples

—@—our method =@ regular deep learning

Fig. 8. The accuracy of our method vs. normal deep learning
task: learning MIT-BIH database, meta-trained in 2017 PhysioNet Challenge

E. Learning arrhythmias in GI2EC database with the
knowledge from CPSC 2018 database

In this experiment, we would like to learn nine types of
signals from G12EC database: normal sinus rhythm (NSR),
atrial fibrillation (AF), first-degree atrioventricular block (I-
AVB), right bundle branch block (RBBB), premature atrial
contraction (PAC), sinus tachycardia (STach), left ventric-
ular hypertrophy (LVH), sinus bradycardia (SB), and sinus
arrhythmia (SA). We select 367 signals of nine arrhythmias
from GI12EC database randomly as the test dataset. The
experiment result is shown in Fig. 9.

F. Transfer learning vs. meta-transfer learning

We also used the classical transfer learning for this
problem. We found that this leads to quite poor prediction
performance. Since we do not pre-train our model using a
variety of data, simply transferring the prior knowledge to
the new model does not help classify the new arrhythmia.

Learning G12EC database (9 categories) from
CPSC 2018 database, test =367

-

0.714 0.719 0.741

o
3

0.659 0.676

=3
=Y

odss 0.616 0.621 0.651 0.654

I
IS

Accuracy

o
N

o

0 100 200 300 400 500
number of training signals

—@—our method  —@=—regular deep learning

Fig. 9. The accuracy of our method vs. normal deep learning
task: learning G12EC, meta-trained in CPSC 2018

These experiments show that the meta-transfer learning
approach achieves higher general accuracy than regular deep
learning. In the appendix, there are more details about the
performance of the proposed method. We show how well our
model can predict each type of signal.

V. CONCLUSION AND FUTURE WORK

This paper proposes a meta-transfer learning approach to
utilize the previous learning experience in learning the new
data so that the training does not start from scratch. The
experimental results show that the proposed method achieves
better accuracy with limited data and classifies faster than
regular deep learning. We also prove that this method helps
recognize various types of previously unseen arrhythmias
based on prior knowledge with a bit of training. In the
future, the meta-transfer learning approach may also help to
detect arrhythmias in animals based on understanding human
arrhythmia [20]. Another future research direction we will
pursue is to collect ECG signals recorded in different ethnic
groups, then take a proportion of signals from each data
set. The conglomerated dataset can be used as the base for
classical meta-training, and the neural network will be robust
and not biased on any specific dataset.

APPENDIX

In this appendix, we provide detailed performances of
our method concerning each category of signal in the first
experiment of Section IV. We use the accuracy to measure
the general performance of our model in the test (how many
predictions are correct over all the test data). We use the F}
score to measure how good our model is in the prediction
of each category. The following pictures show that the meta-
transfer learning method predicts better than regular deep
learning in each class.
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