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Abstract—The problem of detecting a change in the distribu-
tion of a statistically periodic process is investigated. The problem
is posed in the framework of independent and periodically iden-
tically distributed (i.p.i.d.) processes, a recently introduced class
of processes to model statistically periodic data. An algorithm
is proposed that is shown to be robust against an uncertainty
in the post-change law. The motivation for the problem comes
from event detection problems in traffic data, social network
data, electrocardiogram data, and neural data, where periodic
statistical behavior has been observed.

I. INTRODUCTION

In the problem of quickest change detection, the objective is
to detect a change in the distribution of a sequence of random
variables [1], [2], [3], [4]. Algorithms are available that can
detect the change with the minimum possible delay, subject
to a constraint on false alarms. When the observed sequence
is independent and identically distributed (i.i.d.), algorithms
are available that are exactly optimal for any fixed rate of
false alarms [5], [6]. In the i.i.d. setting, it is also possible to
compute the statistic for the algorithm in a recursive manner
that is amenable to implementation. When the observations are
not i.i.d., a general theory for exact optimality is not available
and optimality is investigated in the asymptotic regime of low
false alarm rates [7], [8].

Recently, a class of non-i.i.d. models has drawn interest
in which the statistical properties of the observed data are
periodic, i.e., repeat after a fixed length of time. Such sta-
tistically periodic behavior has been observed in neural data,
traffic data, social network data, and ECG data; see [9] for
a detailed discussion. A model of particular interest to us
is that of independent and periodically identically distributed
(i.p.i.d.) processes [9]. In this process, the sequence of random
variables are independent and the distribution of the variables
are periodic with a given period T (see Section II below for
more details). If the decisions are taken at the end of each
cycle or period of length T , then the problem of quickest
change detection for i.p.i.d. processes reduces to that of i.i.d.
processes. However, such a solution may not be acceptable in
many applications:
1) Event detection on traffic and social media data: Traffic

intensity on a street in a city or on a highway has a periodic
behavior (over a day or a week) and increases every day
during morning and evening rush hours [10], [11]. It is of
interest to detect a sudden change in the intensity to detect
possible congestion or unexpected event. We would like to
raise an alarm as soon as it occurs rather than waiting the

entire day or week for the period to end. This argument is
also valid for certain social media data [10], [11].

2) Detecting changes in neural firing patterns: In certain brain-
computer interface studies where single neural spike data
is collected, the spike firing pattern can exhibit statistically
periodic behavior in the absence of any external stimuli
[12]. This occurs because an identical experiment is per-
formed on an animal in each trial. After a certain trial the
experiment is changed (e.g., a shock treatment is given),
and the firing pattern can change. A change in firing pattern
here might indicate behavioral learning. Again, it is of
interest to detect the change in the middle of the trial rather
than wait until the end.

Statistically periodic processes can also be modeled us-
ing cyclostationary processes [13]. However, modeling using
i.p.i.d. processes allow for sample-level detection and the
development of strong optimality theory.

In [9], a Bayesian theory is developed for quickest change
detection in i.p.i.d. processes. It is shown that while the exactly
optimal algorithm uses the Shiryaev statistic [8], the optimal
stopping rule is based on a sequence of periodic thresholds,
one threshold for each time slot in a period. It is also shown
that a single-threshold test is asymptotically optimal, as the
constraint on the probability of false alarm goes to zero. The
proposed algorithm can also be implemented recursively and
using finite memory. Thus, the set-up of i.p.i.d. processes gives
an example of a non-i.i.d. setting in which exactly optimal
algorithm can be implemented efficiently. The results in [9]
are valid when both pre- and post-change distributions are
known. Some other results for i.p.i.d. processes can be found
in [14], [15], [16], and [17].

In this paper, we consider the problem of quickest change
detection in i.p.i.d. processes when the post-change law
is unknown. There are three different approaches taken in
the literature to design optimal tests when the post-change
distribution is unknown: generalized likelihood ratio (GLR)
approach [2], mixture approach [2], [3], and the robust ap-
proach [18]. It is well documented that GLR and mixture-
based tests are not amenable to implementation. Hence, we
take the robust approach in this paper. Specifically, we show
that if the post-change i.p.i.d. laws have a least favorable
law (LFL; a precise definition is provided below), then the
periodic-threshold algorithm from [9] designed using the LFL
is minimax robust for the Bayesian delay metric.
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II. MODEL AND PROBLEM FORMULATION

We first define the process that we will use to model
statistically periodic random processes.

Definition 1 ([9]): A random process {Xn} is called inde-
pendent and periodically identically distributed (i.p.i.d) if
1) The random variables {Xn} are independent.
2) If Xn has density fn, for n ≥ 1, then there is a positive

integer T such that the sequence of densities {fn} is
periodic with period T :

fn+T = fn, ∀n ≥ 1.

The law of an i.p.i.d. process is completely characterized by
the finite-dimensional product distribution of (X1, . . . , XT )
or the set of densities (f1, · · · , fT ), and we say that the
process is i.p.i.d. with the law (f1, · · · , fT ). The change point
problem of interest is the following. In the normal regime, the
data is modeled as an i.p.i.d. process with law (f1, · · · , fT ).
At some point in time, due to an event, the distribution of
the i.p.i.d. process deviates from (f1, · · · , fT ). Specifically,
consider another periodic sequence of densities {gn} such that

gn+T = gn, ∀n ≥ 1.

It is assumed that at the change point ν, the law of the i.p.i.d.
process switches from (f1, · · · , fT ) to (g1, · · · , gT ):

Xn ∼

{
fn, ∀n < ν,

gn ∀n ≥ ν.
(1)

The densities (g1, · · · , gT ) need not be all different from the
set of densities (f1, · · · , fT ), but we assume that there exists
at least an i such that they are different:

gi 6= fi, for some i = 1, 2, · · · , T. (2)

In this paper, we assume that the post-change law (g1, · · · , gT )
is unknown. Further, there are T families of distributions
{Pi}Ti=1 such that

gi ∈ Pi, i = 1, 2, . . . , T.

The families {Pi}Ti=1 are known to the decision maker. Below,
we use the notation

G = (g1, g2, . . . , gT )

to denote the post-change i.p.i.d. law.
Let τ be a stopping time for the process {Xn}, i.e., a

positive integer-valued random variable such that the event
{τ ≤ n} belongs to the σ-algebra generated by X1, · · · , Xn.
In other words, whether or not τ ≤ n is completely determined
by the first n observations. We declare that a change has
occurred at the stopping time τ . To find the best stopping rule
to detect the change in distribution, we need a performance
criterion. Towards this end, we model the change point ν as
a random variable with a prior distribution given by

πn = P(ν = n), for n = 1, 2, · · · .

For each n ∈ N, we use PGn to denote the law of the
observation process {Xn} when the change occurs at ν = n
and the post-change law is G. We use EGn to denote the
corresponding expectation. Using this notation, we define the
average probability measure

Pπ,G =

∞∑
n=1

πn PGn .

To capture a penalty on the false alarms, in the event that the
stopping time occurs before the change, we use the probability
of false alarm defined as

Pπ,G(τ < ν).

Note that the probability of false alarm Pπ,G(τ < ν) is not a
function of the post-change law G. Hence, in the following,
we suppress the mention of G and refer to the probability of
false alarm only by

Pπ(τ < ν).

To penalize the detection delay, we use the average detection
delay given by

Eπ,G
[
(τ − ν)+

]
,

where x+ = max{x, 0}.
The optimization problem we are interested in solving is

inf
τ∈Cα

sup
G:gi∈Pi,i≤T

Eπ,G
[
(τ − ν)+

]
, (3)

where

Cα = {τ : Pπ(τ < ν) ≤ α} ,

and α is a given constraint on the probability of false alarm.
In the case when the family of distributions {Pi}Ti=1 are

singleton sets, i.e. when the post-change law is known and
fixed G, a Lagrangian relaxation of this problem was inves-
tigated in [9]. Understanding the solution reported in [9] is
fundamental to solving the robust problem in (3). In the next
section, we discuss the solution provided in [9] and also its
implication for the constrained version in (3).

III. EXACTLY AND ASYMPTOTICALLY OPTIMAL
SOLUTIONS FOR KNOWN POST-CHANGE LAW

For known post-change law G = (g1, . . . , gT ) and geo-
metrically distributed change point, it is shown in [9] that
the exactly optimal solution to a relaxed version of (3) is a
stopping rule based on a periodic sequence of thresholds. It
is also shown that it is sufficient to use only one threshold in
the asymptotic regime of false alarm constraint α → 0. Fur-
thermore, the assumption of geometrically distributed change
point can be relaxed in the asymptotic regime. In the rest of
this section, we assume that G is known and fixed.
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A. Exactly Optimal Algorithm

Let the change point ν be a geometric random variable:

P(ν = n) = (1− ρ)n−1ρ, for n = 1, 2, · · · .

The relaxed version of (3) (for known G) is

inf
τ

Eπ,G
[
(τ − ν)+

]
+ λf Pπ(τ < ν), (4)

where λf > 0 is a penalty on the cost of false alarms. Now,
define p0 = 0 and

pn = Pπ,G(ν ≤ n|X1, · · · , Xn), for n ≥ 1. (5)

Then, (4) is equivalent to solving

inf
τ

Eπ,G

[
τ−1∑
n=0

pn + λf (1− pτ )

]
. (6)

The belief updated pn can be computed recursively using the
following equations: p0 = 0 and for n ≥ 1,

pn =
p̃n−1 gn(Xn)

p̃n−1 gn(Xn) + (1− p̃n−1)fn(Xn)
, (7)

where
p̃n−1 = pn−1 + (1− pn−1)ρ.

Since these updates are not stationary, the problem cannot be
solved using classical optimal stopping theory [5] or dynamic
programming [19]. However, the structure in (7) repeats after
every fixed time T . Motivated from this, in [9], a control theory
is developed for Markov decision processes with periodic
transition and cost structures. This new control theory is then
used to solve the problem in (6).

Theorem 3.1 ([9]): There exists thresholds A1, A2, . . . , AT ,
Ai ≥ 0,∀i, such that the stopping rule

τ∗ = inf{n ≥ 1 : pn ≥ A(n mod T )}, (8)

where (n mod T ) represents n modulo T , is optimal for
problem in (6). These thresholds depend on the choice of λf .

In fact, the solution given in [9] is valid for a more general
change point problem in which separate delay and false alarm
penalty is used for each time slot. We do not discuss it here.

B. Asymptotically Optimal Algorithm

Let there exist d ≥ 0 such that

lim
n→∞

logP(ν > n)

n
= −d. (9)

If π = Geom(ρ), then d = | log(1− ρ)|. Further, let

I =
1

T

T∑
i=1

D(gi ‖ fi), (10)

where D(gi ‖ fi) is the Kullback-Leibler divergence between
the densities gi and fi.

Theorem 3.2 ([9]): Let the information number I be as
defined in (10) and satisfy 0 < I < ∞. Also, let d be as
in (9). Then, with

A1 = A2 = · · · = AT = 1− α,

τ∗ ∈ Cα, and

Eπ,G
[
(τ∗ − ν)+

]
= inf
τ∈Cα

Eπ,G
[
(τ − ν)+

]
(1 + o(1))

=
| logα|
I + d

(1 + o(1)), as α→ 0.
(11)

Here o(1)→ 0 as α→ 0.

C. Solution to the Constraint Version of the Problem

We now argue that, just as in the classical case, the relaxed
version of the problem (6) can be used to provide a solution
to the constraint version of the problem (3). We provide the
proofs for completeness.

Lemma 3.1: If α is a value of probability of false alarm
achievable by the optimal stoping rule τ∗ in (6), then τ∗ is
also optimal for the constraint problem (3) for this α.

Proof: By Theorem 3.1, we have

Eπ,G
[
(τ∗ − ν)+

]
+ λf Pπ(τ∗ < ν)

≤ Eπ,G
[
(τ − ν)+

]
+ λf Pπ(τ < ν).

(12)

If Pπ(τ∗ < ν) = α and Pπ(τ < ν) ≤ α, then

Eπ,G
[
(τ∗ − ν)+

]
+ λf Pπ(τ∗ < ν)

= Eπ,G
[
(τ∗ − ν)+

]
+ λf α

≤ Eπ,G
[
(τ − ν)+

]
+ λf Pπ(τ < ν)

≤ Eπ,G
[
(τ − ν)+

]
+ λf α.

(13)

Canceling λf α from both sides we get

Eπ,G
[
(τ∗ − ν)+

]
≤ Eπ,G

[
(τ − ν)+

]
.

The following lemma guarantees that a wide range of
probability of false alarm α is achievable by the optimal
stopping rule τ∗.

Lemma 3.2: As we increase λf →∞ in (6), the probability
of false alarm achieved by the optimal stopping rule τ∗ goes
to zero.

Proof: As λf →∞, if the probability of false alarm for
τ∗ stays bounded away from zero, then the Bayesian risk

Eπ,G
[
(τ∗ − ν)+

]
+ λf Pπ(τ∗ < ν)

would diverge to infinity. This will contradict the fact that τ∗

is optimal because we can get a smaller risk at large enough
λf by stopping at a large enough deterministic time.
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IV. OPTIMAL ROBUST ALGORITHM FOR UNKNOWN
POST-CHANGE LAW

We now assume that the post-change law G is unknown and
provide the optimal solution to (3) under assumptions on the
families of post-change laws {Pi}Ti=1. Specifically, we extend
the results in [18] for i.i.d. processes to i.p.i.d. processes. We
assume in the rest of this section that all densities involved are
equivalent to each other (absolutely continuous with respect
to each other). Also, we assume that the change point ν is a
geometrically distributed random variable.

To state the assumptions on {Pi}Ti=1, we need some defin-
tions. We say that a random variable Z2 is stochastically larger
than another random variable Z1 if

P(Z2 ≥ t) ≥ P(Z1 ≥ t), for all t ∈ R.

We use the notation
Z2 � Z1.

If LZ2
and LZ1

are the probability laws of Z2 and Z1, then
we also use the notation

LZ2 � LZ1 .

We now introduce the notion of stochastic boundedness in
i.p.i.d. processes. In the following, we use

L(φ(X), g)

to denote the law of some function φ(X) of the random
variable X , when the variable X has density g.

Definition 2 (Stochastic Boundedness in i.p.i.d. Processes;
Least Favorable Law): We say that the family {Pi}Ti=1 is
stochastically bounded by the i.p.i.d. law

Ḡ = (ḡ1, ḡ2, . . . , ḡT ),

and call Ḡ the least favorable law (LFL), if

ḡi ∈ Pi, i = 1, 2, . . . , T,

and

L
(

log
ḡi(Xi)

fi(Xi)
, gi

)
� L

(
log

ḡi(Xi)

fi(Xi)
, ḡi

)
,

for all gi ∈ Pi, i = 1, 2, . . . , T.

(14)

Consider the stopping rule τ∗ designed using the LFL Ḡ =
(ḡ1, ḡ2, . . . , ḡT ):

τ̄∗ = inf{n ≥ 1 : p̄n ≥ A(n mod T )}, (15)

where p̄0 = 0, and

p̄n =
p̃n−1 ḡn(Xn)

p̃n−1 ḡn(Xn) + (1− p̃n−1)fn(Xn)
, (16)

where
p̃n−1 = p̄n−1 + (1− p̄n−1)ρ.

We now state the main result of this paper.

Theorem 4.1: Suppose the following conditions hold:
1) The family {Pi}Ti=1 be stochastically bounded by the

i.p.i.d. law
Ḡ = (ḡ1, ḡ2, . . . , ḡT ).

2) Let α ∈ [0, 1] be a constraint such that

Pπ(τ̄∗ < ν) = α,

where τ̄∗ is the optimal rule designed using the LFL (15).
3) All likelihood ratio functions involved are continuous.
4) The change point ν is geometrically distributed.

Then, the stopping rule τ̄∗ in (15) designed using the LFL is
optimal for the robust constraint problem in (3).

Proof: The key step in the proof is to show that for each
k ∈ N,

EḠk
[
(τ̄∗ − k)+|Fk−1

]
� EGk

[
(τ̄∗ − k)+|Fk−1

]
,

for all G = (g1, . . . gT ) : gi ∈ Pi, i ≤ T,
(17)

where Fk−1 is the sigma algebra generated by observations
X1, . . . , Xk−1. If (17) is true then we have for each k ∈ N,

EḠk
[
(τ̄∗ − k)+

]
≥ EGk

[
(τ̄∗ − k)+

]
for all G = (g1, . . . gT ) : gi ∈ Pi, i ≤ T.

(18)

Averaging over the prior on the change point, we get

Eπ,Ḡ
[
(τ̄∗ − ν)+

]
=
∑
k

πkE
Ḡ
k

[
(τ̄∗ − k)+

]
≥
∑
k

πkE
G
k

[
(τ̄∗ − k)+

]
= Eπ,G

[
(τ̄∗ − ν)+

]
,

for all G = (g1, . . . gT ) : gi ∈ Pi, i ≤ T.

(19)

The last equation is

Eπ,Ḡ
[
(τ̄∗ − ν)+

]
≥ Eπ,G

[
(τ̄∗ − ν)+

]
,

for all G = (g1, . . . gT ) : gi ∈ Pi, i ≤ T.
(20)

This implies that

Eπ,Ḡ
[
(τ̄∗ − ν)+

]
= sup
G:gi∈Pi,i≤T

Eπ,G
[
(τ̄∗ − ν)+

]
. (21)

Now, if τ is any stopping rule satisfying the probability of
false alarm constraint of α, then since τ̄∗ is the optimal test
for the LFL Ḡ (see Theorem 3.1), we have

sup
G:gi∈Pi,i≤T

Eπ,G
[
(τ − ν)+

]
≥ Eπ,Ḡ

[
(τ − ν)+

]
≥ Eπ,Ḡ

[
(τ̄∗ − ν)+

]
= sup
G:gi∈Pi,i≤T

Eπ,G
[
(τ̄∗ − ν)+

]
.

(22)

The last equation proves the robust optimality of the stopping
rule τ̄∗ for the problem in (3).

We now prove the key step (17). Towards this end, we prove
that for every integer N ≥ 0,

PḠk
[
(τ̄∗ − k)+ > N |Fk−1

]
≥ PGk

[
(τ̄∗ − k)+ > N |Fk−1

]
,

for all G = (g1, . . . gT ) : gi ∈ Pi, i ≤ T,
(23)
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This is trivially true for N = 0, so we only prove it for N ≥ 1.
For a fixed G = (g1, . . . gT ) : gi ∈ Pi, i ≤ T , we have

PḠk
[
(τ̄∗ − k)+ ≤ N |Fk−1

]
= PḠk [τ̄∗ ≤ k +N |Fk−1]

= PḠk [f(X1, X2, . . . , Xk+N ) ≥ 0 | Fk−1] ,

(24)

where the function f(z1, z2, . . . , zN ) is given by

f(z1, z2, . . . , zN )

= max
1≤n≤N

(
n∑
i=1

πk exp

(
n∑
i=k

hi(zi)

)
−Bn

)
.

(25)

Here {hi} are the log likelihood ratio functions (assumed
continuous) and {Bn} are appropriate transformation of the
periodic thresholds {An}. Since this function f is continuous
(being maximum of continuous functions) and nondecreasing,
Lemma III.1 in [18] implies that

PḠk [f(X1, X2, . . . , Xk+N ) ≥ 0 | Fk−1]

≤ PGk [f(X1, X2, . . . , Xk+N ) ≥ 0 | Fk−1] .
(26)

The above equation is a direct consequence of the stochastic
boundedness assumption. Equations (24) and (26) combined
gives

PḠk
[
(τ̄∗ − k)+ ≤ N | Fk−1

]
= PḠk [τ̄∗ ≤ k +N | Fk−1]

= PḠk [f(X1, X2, . . . , Xk+N ) ≥ 0 | Fk−1]

≤ PGk [f(X1, X2, . . . , Xk+N ) ≥ 0 | Fk−1]

= PGk
[
(τ̄∗ − k)+ ≤ N | Fk−1

]
.

(27)

This proves (23) and hence (17).

V. CONCLUSIONS

We investigated the problem of robust quickest change
detection in i.p.i.d. processes. We defined the concept of
stochastic boundedness and least favorable law (LFL) when
then post-change i.p.i.d. law is unknown. We reviewed the
results from [9] where it is shown that a stopping rule with
periodic thresholds is exactly optimal. We used this fact to
design a test using the LFL and showed that it is exactly robust
optimal. In our future work, we will apply the algorithms
for arrhythmia detection in electrocardiogram data and also
investigate robustness in the framework of Lorden [20] and
Pollak [21].
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