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Abstract 

Background: Classical Brownian motion (BM) has been commonly used in monitoring 

clinical trials including those with covariate adaptive randomization (CAR). 

Independent increment property is commonly assumed in the sequential monitoring 

process of the clinical trials with CAR designs. However, in reality, correlation may 

exist in the error terms of the underlying model, resulting in dependent increment in the 

sequential monitoring process. 

Methods: We conducted simulations for estimating the Hurst exponent to evaluate the 

stochastic property in the covariate adaptive randomized clinical trials under two 

scenarios: 1.  CAR designs with independent and identically distributed error terms. 2. 

CAR designs with correlated error terms. The theoretical properties of covariate 

adaptive randomized clinical trials with correlated error structure were investigated. A 

test statistic including the covariance pattern of the error terms was proposed.   

Conclusion: In our study, the sequential test statistics under CAR procedure is shown to 

be asymptotically Brownian motion when the error structure is correctly specified. 

Further, Brownian motion is a special case of fractional Brownian motion when Hurst 

exponent equals to 0.5. Our simulations are consistent with the theoretical asymptotic 

results. 
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1. Introduction 

After been discussed and promoted by the U.S. Food and Drug Administration 

(FDA), the usage of adaptive designs in clinical trials attracts more and more attention 

from medical professionals and pharmaceutical companies (Center for Drug Evaluation 

and Research, 2020). Adaptive design approaches reduce the costs, optimize the balance 

between bias and covariates assignments, and make the trials more efficient (Pallmann et 

al., 2018). It would be more appropriate to consider the covariate when designing the 

clinical trials since most trial studies include comprehensive demographic characteristics, 

medical history, physical assessment, and lab reports. Various biomarkers are being 

investigated as they may relate to underline diseases (Hu & Hu, 2012; Khan et al., 2010). 

This highlights the fact that, when treatment effects are evaluated in clinical trials, it is 

possible that the significance of these covariates may differ from one another.  Attention 

should be paid to balance those dominant covariates in clinical trials. Covariate adaptive 

randomization (CAR) procedures can minimize the imbalance across the subgroups in 

clinical trials by assigning participants to different groups based on previous treatment 

assignments, covariates, and current patient’s covariates (Hu & Rosenberger, 2006). 

Stratified permuted block randomization (SPB), Pocock and Simon minimization designs 

(PS) are the commonly used CAR designs (Zelen, 1974; Pocock & Simon,1975; Zhu & 

Hu, 2019; Yu & Lai, 2019).  

In 2010, a ground-breaking study investigated theoretical results for testing 

hypotheses after covariate-adaptive randomization (Shao et al., 2010). Then, the theory 

of hypothesis testing and the corresponding asymptotic distributions of the testing 

statistics for the covariate-adaptive randomized clinical trials were extensively studied in 
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2015 (Ma et al., 2015). The asymptotical properties of the sequential monitoring of CAR 

procedures were also derived (Zhu & Hu, 2019). There are some recent studies regarding 

the statistical inference under CAR designs (Bugni et al., 2018; Ma et al., 2019). For the 

impact of misclassification under CAR, see Fan et al., 2018 and Wang & Ma, 2020. These 

studies established the theoretical foundations of CAR applications in clinical trials.  

The sequential test statistics in CAR procedures can be adjusted to be an 

asymptotically Brownian motion (BM) under some regulatory conditions if the error 

terms are assumed to be independent and identically distributed (i.i.d.) (Zhu & Hu, 2019). 

However, the independent increment assumptions may not be completely met in some 

other occasions. For example, patients in clinical trials may come from the same clinical 

center or may accept the treatments from the same physician group. Hence, the error terms 

in the underlying model with CAR designs may be correlated. It is necessary to 

investigate the properties of sequential monitoring of CAR with correlated error 

structures. In this study, a new sequential test statistics was derived corresponding to the 

covariance pattern of the error terms and the sequential test statistics under CAR 

procedure was shown to be asymptotically Brownian motion when the error structure was 

correctly specified.  

In this article, Section 2.1 is the general structure for the linear model with 

covariate-adaptive randomization designs when error terms are independent and 

identically distributed. In Section 2.2, we describe design properties of CAR when error 

terms are correlated. In the Section 3, Hurst exponent estimations are studied for the 

sequential monitoring of the covariate-adaptive randomized clinical trials with correlated 

error structure. Numerical simulation studies were performed to verify the reliable 

method of estimating Hurst exponent and evaluate the theoretical results. All simulations 



in this study were conducted by R software (Foundation for Statistical Computing, 

Vienna, Austria). Some concluding remarks and discussions are provided in Section 4.  

2. Methods 

British hydrologist Harold Edwin Hurst studied the hydrological and geophysical time 

series. His studies exposed that the statistical behaviour was different from the classical 

Brownian motion process, based on his scientific insight and data analysis for the 

characterization of the long-term variability in Nile River flow records (Hurst, 1951). The 

results of Hurst motivated the formulation of fractional Brownian motion (FBM) by 

Mandelbrot and van Ness (1968). Fractional Brownian motion is a Gaussian process with 

the covariance function of 𝐶𝐶𝐶𝐶𝐶𝐶(𝐵𝐵𝐻𝐻(𝑠𝑠)𝐵𝐵𝐻𝐻(𝑡𝑡))  =  1
2

 ( 𝑡𝑡2𝐻𝐻 + 𝑠𝑠2𝐻𝐻 − |𝑡𝑡 − 𝑠𝑠|2𝐻𝐻 )  (Taqqu, 

2003; Zili, 2017). 𝐵𝐵𝐻𝐻(𝑡𝑡)  is denoted as fractional Brownian motion with the Hurst 

parameter 𝐻𝐻,  where  0 < H < 1. When H = 0.5, fractional Brownian motion 𝐵𝐵𝐻𝐻(𝑡𝑡) is 

reduced to the classical Brownian motion (Mandelbrot & van Ness, 1968).  

The application of MLE method for estimating the Hurst exponent of the FBM 

was proposed in Lai (2004). The log likelihood function of 𝐵𝐵𝐻𝐻 = (𝐵𝐵𝐻𝐻(𝑡𝑡1), …𝐵𝐵𝐻𝐻(𝑡𝑡𝑛𝑛))𝑡𝑡 is 

given as 𝐿𝐿𝑛𝑛(𝑥𝑥,  𝐻𝐻) = −nlog2π
2
−log|∑(𝐻𝐻) |/2 − 𝑥𝑥tΣ−1(𝐻𝐻)𝑥𝑥/2, where 𝑥𝑥 = (𝑥𝑥𝑡𝑡1,…,𝑥𝑥𝑡𝑡𝑛𝑛)𝑡𝑡 

is the observed value of 𝐵𝐵𝐻𝐻. ∑(𝐻𝐻) is the variance covariance matrix of 𝐵𝐵𝐻𝐻 (Lai, 2004).  

In this paper, we estimated Hurst exponent by the maximum likelihood estimation 

(MLE) method in simulation studies to assess whether the sequential process of CAR 

procedure still follow Brownian motion with the hypothesis test concerning the 

covariance structure. 

2.1 CAR designs with independent and identically distributed error terms 

Consider a two-arm trial with the treatment assignment indicator 𝐼𝐼𝑖𝑖, where 𝐼𝐼𝑖𝑖=1 

is for the treatment group 1 and 𝐼𝐼𝑖𝑖=0 is for the treatment group 2, 𝑖𝑖=1, 2, … N. Here, N 

is the total sample size.  Let 𝜇𝜇1 and 𝜇𝜇2 be the parameters to measure the treatment 



effects in each group respectively. Let  𝑋𝑋𝑖𝑖,1…𝑋𝑋𝑖𝑖,𝑝𝑝 be the covariates that are independent 

from each other. Assume the response  𝑌𝑌𝑖𝑖 follows the following model: 

𝑌𝑌𝑖𝑖 = 𝜇𝜇1𝐼𝐼𝑖𝑖 + 𝜇𝜇2(1 − 𝐼𝐼𝑖𝑖) + 𝛽𝛽1𝑋𝑋𝑖𝑖,1 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑖𝑖,𝑝𝑝 + 𝜀𝜀𝑖𝑖         (𝑖𝑖 = 1, … ,𝑁𝑁)                  (1)                     

Let 𝑌𝑌 = (𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑁𝑁)𝑇𝑇, 𝛽𝛽 = (𝜇𝜇1, 𝜇𝜇2,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝)𝑇𝑇, 𝜀𝜀 = (𝜀𝜀1, 𝜀𝜀2, … , 𝜀𝜀𝑁𝑁)𝑇𝑇 

𝑋𝑋 =

⎣
⎢
⎢
⎡𝐼𝐼1 1 − 𝐼𝐼1 𝑋𝑋1,1 ⋯ 𝑋𝑋1,𝑝𝑝

𝐼𝐼2
⋮
𝐼𝐼𝑁𝑁

1 − 𝐼𝐼2 𝑋𝑋2,1 ⋯ 𝑋𝑋2,𝑝𝑝
 ⋮       ⋮      ⋱   ⋮

1 − 𝐼𝐼𝑁𝑁 𝑋𝑋𝑁𝑁,1 ⋯ 𝑋𝑋𝑁𝑁,𝑝𝑝⎦
⎥
⎥
⎤
   

where 𝛽𝛽1…𝛽𝛽𝑝𝑝 are unknown parameters for the covariate effects and 𝜀𝜀𝑖𝑖  are the 

error terms. The matrix form of the expression (1) is:  𝑌𝑌 = 𝑋𝑋𝑋𝑋 +  𝜀𝜀 

Assume the 𝜀𝜀𝑖𝑖s in the model with CAR design are independent and identically   

distributed random errors. 𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎2). 

The hypothesis for testing the equality of treatment effect is: 

𝐻𝐻0: 𝜇𝜇1 −  𝜇𝜇2 = 0 vs 𝐻𝐻𝐴𝐴: 𝜇𝜇1 −  𝜇𝜇2 ≠ 0      

The test statistics of a general linear hypothesis at time point t in the sequential 

monitoring process can be denoted as 𝑍𝑍𝑡𝑡:  

𝑍𝑍𝑡𝑡 = 𝐿𝐿𝛽𝛽�(𝑡𝑡)
�𝜎𝜎�(𝑡𝑡)2𝐿𝐿(𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋))−1𝐿𝐿𝑇𝑇

                                                                                          (2) 

𝑡𝑡 = 𝑛𝑛
𝑁𝑁

 , 𝑡𝑡 ∈ [0,1] 

For the hypothesis of equal treatment effect, we have: 

𝐿𝐿 = (1,−1, 0, … , 0)  

At time 𝑡𝑡, 𝛽̂𝛽 is the ordinary least square estimator for unknown parameters 𝛽𝛽. 𝜎𝜎� 

is used to estimate the true error variance 𝜎𝜎2. 

𝛽̂𝛽(𝑡𝑡) = 𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋))−1𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇𝑌𝑌(⌊𝑁𝑁𝑁𝑁⌋))  

𝜎𝜎�2(𝑡𝑡) = (𝑌𝑌(⌊𝑁𝑁𝑁𝑁⌋) − 𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝛽̂𝛽(𝑡𝑡))T(𝑌𝑌(⌊𝑁𝑁𝑁𝑁⌋) − 𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝛽̂𝛽(𝑡𝑡))/(⌊𝑁𝑁𝑁𝑁⌋ − 𝑝𝑝 − 2)  

⌊∙⌋ is denoted as the floor function. 



It was proved that under 𝐻𝐻0, the sequential test statistics, 𝐵𝐵(𝑡𝑡) = 𝑍𝑍𝑡𝑡𝑡𝑡1/2 of the 

covariate adaptive randomized clinical trials converge to an asymptotic Brownian motion 

(Zhu & Hu, 2019).  

Using Maximum likelihood method, in our study, we numerically estimated the 

Hurst exponent via simulations of the 𝐵𝐵-value. Our simulation results are consistent with 

the theoretical results in Zhu and Hu (2019). 

2.2 CAR designs with correlated error terms  

The original assumption of the 𝜀𝜀𝑖𝑖𝑠𝑠 in the expression (1) was independent and 

identically normally distributed. However, the independent assumption may not be met 

in some situations. If 𝜀𝜀𝑖𝑖s in the model (1) are correlated and follow some special 

covariance patterns, we extended the test statistic (2) to a weighted version. We showed 

that the 𝐵𝐵-value still forms a Brownian motion if the variance-covariance matrix is 

correctly specified.  

Furthermore, we performed the simulation studies to demonstrate the proposed 

derivation. MLE techniques were used to estimate the Hurst exponent of test statistics in 

the interim analysis. We outlined our deviation of Brownian motion of test statistic when 

the variance-covariance matrix 𝑉𝑉  is given. The theoretical properties of the null 

hypothesis test and sequential monitoring processes were derived as follows. Assume the 

error terms in a two-arm linear model with CAR design (expression (1)) are correlated 

with some certain covariance pattern.  

For the hypothesis: 

𝐻𝐻0: 𝜇𝜇1 − 𝜇𝜇2 = 0   𝑣𝑣𝑣𝑣   𝜇𝜇1 − 𝜇𝜇2 ≠ 0     

At time point 𝑡𝑡, the sequential test statistics of the CAR models with correlated error 

terms was defined as following:  

𝑍𝑍𝑡𝑡 = 𝐿𝐿𝛽𝛽�(𝑡𝑡)
�𝜎𝜎�(𝑡𝑡)2𝐿𝐿(𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇(𝑉𝑉(𝑡𝑡))−1𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋))−1𝐿𝐿𝑇𝑇

                                                                       (3) 



At each time t,  𝜎𝜎2(𝑡𝑡)𝑉𝑉(𝑡𝑡) = 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀|𝑋𝑋). This covers both traditional analysis of 

covariance model and many repeated model models such as AR(1) error correlation 

structure. 𝑉𝑉 represents the correlated structure in the error terms.    

𝐵𝐵𝐻𝐻(𝑡𝑡) = √𝑡𝑡𝐿𝐿𝛽𝛽�(𝑡𝑡)
�𝜎𝜎�(𝑡𝑡)2𝐿𝐿(𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇(𝑉𝑉(𝑡𝑡))−1𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋))−1𝐿𝐿𝑇𝑇

                                                                  (4)                                                                                                                 

At time point 𝑡𝑡, the new estimator 𝛽̂𝛽 and 𝜎𝜎� are shown below: 

𝛽̂𝛽(𝑡𝑡) = (𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇(𝑉𝑉(𝑡𝑡))−1𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋))−1𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇(𝑉𝑉(𝑡𝑡))−1𝑌𝑌(⌊𝑁𝑁𝑁𝑁⌋))                 (5) 

𝜎𝜎�(𝑡𝑡)2 = [𝑌𝑌(⌊𝑁𝑁𝑁𝑁⌋) − 𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝛽̂𝛽(𝑡𝑡)]𝑇𝑇(𝑉𝑉(𝑡𝑡))−1(𝑌𝑌(⌊𝑁𝑁𝑁𝑁⌋) − 𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝛽̂𝛽(𝑡𝑡))/

(⌊𝑁𝑁𝑁𝑁⌋ − 𝑝𝑝 − 2)                                                                                                                               (6) 

Assume 𝑉𝑉 is a known square matrix with non-zero off-diagonal elements. At 

each time point t, 𝑉𝑉𝑉𝑉𝑉𝑉[𝜀𝜀] = 𝜎𝜎2𝑉𝑉. Let 𝐾𝐾 be the squared root of 𝑉𝑉, 𝑉𝑉 =  𝐾𝐾𝑇𝑇𝐾𝐾 = 𝐾𝐾𝐾𝐾. Let 

𝑔𝑔 = 𝐾𝐾−1𝜀𝜀 . Then the expectation of g is equal to 0 and variance of g is equal to 𝜎𝜎2𝐼𝐼. 

Two conditions were assumed: (1) 𝐷𝐷⌊𝑁𝑁𝑁𝑁⌋  = 𝑂𝑂𝑃𝑃(1); (2) 𝐷𝐷⌊𝑁𝑁𝑁𝑁⌋(k)  =  𝑂𝑂𝑃𝑃(1), k =

1, 2 (Ma et al., 2015). The numerator and the denominator of the equation (3) were 

evaluated separately. The numerator of the equation (3) was 𝐿𝐿𝛽̂𝛽(𝑡𝑡). 𝐿𝐿𝛽̂𝛽(𝑡𝑡)=𝜇̂𝜇1(𝑡𝑡)-𝜇̂𝜇2(𝑡𝑡) 

= 𝜇𝜇1(𝑡𝑡) - 𝜇𝜇2(𝑡𝑡)  + L( 𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇(𝑉𝑉(𝑡𝑡))−1𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)
⌊𝑁𝑁𝑁𝑁⌋

)−1 𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇(𝑉𝑉(𝑡𝑡))−1𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)
⌊𝑁𝑁𝑁𝑁⌋

. �⌊𝑁𝑁𝑁𝑁⌋(𝜇̂𝜇1(𝑡𝑡) -

𝜇̂𝜇2(𝑡𝑡)) =  �⌊𝑁𝑁𝑁𝑁⌋𝐿𝐿𝛽̂𝛽(𝑡𝑡)
𝐷𝐷
→  𝑁𝑁 (0, 4 𝜎𝜎𝜀𝜀2 ). The denominator part of the equation (3) is 

𝜎𝜎� (t )2𝐿𝐿(𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋)𝑇𝑇(𝑉𝑉(𝑡𝑡))−1𝑋𝑋(⌊𝑁𝑁𝑁𝑁⌋))−1𝐿𝐿𝑇𝑇 = 4
⌊𝑁𝑁𝑁𝑁⌋

𝜎𝜎2 +𝑂𝑂𝑝𝑝 ( 1
⌊𝑁𝑁𝑁𝑁⌋

) . Under null hypothesis 

𝐻𝐻0: 𝜇𝜇1 − 𝜇𝜇2 = 0, 𝑍𝑍𝑡𝑡
𝐷𝐷
→ 𝑁𝑁 (0, 1).  

Based on the theoretical deviation, the new test statistics formula converges to 

Gaussian process. In the sequential process, { 𝑍𝑍𝑡𝑡1 , 𝑍𝑍𝑡𝑡2 , …𝑍𝑍𝑡𝑡𝑖𝑖} is multivariate normal, 

𝐸𝐸(𝑍𝑍𝑡𝑡𝑖𝑖)=0, and  𝐶𝐶𝐶𝐶𝐶𝐶(𝐵𝐵𝐻𝐻(𝑠𝑠),𝐵𝐵𝐻𝐻(𝑡𝑡))  
𝑝𝑝
→ 𝑠𝑠, 0 ≤ 𝑠𝑠 ≤ 𝑡𝑡 ≤ 1. Under null hypothesis 𝐻𝐻0,  the 

new sequential statistics 𝐵𝐵𝐻𝐻(𝑡𝑡) for the covariate adaptive randomization procedures with 



correlated error terms are asymptotically a standard Brownian motion. The detailed 

theoretical derivations were shown in the Yang (2020). The derivation was challenging 

since the treatment assignments and covariates are correlated to each other. 

3. Simulation results 

The motivations of simulations are 1. to evaluate the MLE method for estimating 

the Hurst exponents; 2. to validate that the sequential test statistic of the covariate 

adaptive randomized clinical trial converges to an asymptotic Brownian motion, which 

means H value should be equal to 0.5; 3. to illustrate the increment properties for the 

sequential monitoring processes of CAR procedures with newly derived hypothesis 

testing formula (3) when error terms are correlated. Formula (3) in the above section is 

the newly derived hypothesis testing based on a linear model framework for CAR design 

under the assumption of correlated error terms.  

Simulation 1: Hurst estimation for fractional Brownian motion 

             There are many different approaches for generating fractional Brownian motion 

(FBM) series. One way to create realization of one-dimension fractional Brownian 

motion is to use the fbm() function in the R software (Huang, 2013). Another way is the 

exact direct simulation method proposed in 2004 (Lai, 2004). An independent and 

identically distributed Gaussian process was multiplied by ∑1/2 in the direct simulation 

method, where ∑ is the variance-covariance matrix of the FBM. Fractional Brownian 

motion series with Hurst exponent 𝐻𝐻 =0.5, 0.6, 0.7, 0.8, 0.9 were generated with sample 

sizes of 𝑁𝑁 =10, 20, 50, 80. 1000 replications were applied to the simulations. To estimate 

the Hurst exponents, maximum likelihood estimation method was performed under 

different scenarios.  

The accuracy of both fbm() function and exact direct simulation were evaluated 

in the simulations. Table 1 showed the estimated mean and standard deviation of the H 



values from 1000 replicated simulations. Based on the results from Table 1, both fbm() 

function and direct simulation methods reached close results compared to the original 

Hurst exponent of the FBM series, especially when the sample size is greater than 20. For 

example, we used fbm() to generated a fractional Brownian motion time series with 

H=0.6. The Hurst exponent estimating result are close to 0.6 by MLE method. As the 

sample size increased, the mean estimate of Hurst exponents became closer to the true 

generated H value. The estimated standard deviations of Hurst exponents decreased when 

the sample size increased. MLE method was validated to be a reliable technique to 

estimate the Hurst exponent.  

Table 1 Hurst exponent estimation by maximum likelihood method 

Sample 

size 
     Method  H=0.5 H=0.6 H=0.7 H=0.8 H=0.9 

N=10 Direct 
Simulation  

  

Mean 0.5197 0.6160 0.7122 0.8080 0.9031 

SD 0.0939 0.0846 0.0726 0.0567 0.0348 

N=20 fbm() 
function 

    

Mean 0.4999 0.5971 0.6964 0.7953 0.8953 

SD 0.0489 0.0484 0.0401 0.0331 0.0220 

N=20 Direct 
Simulation  

  

Mean 0.5064 0.6054 0.7044 0.8031 0.9014 

SD 0.0503 0.0463 0.0409 0.0333 0.0216 

N=50     Direct 
Simulation   

    Mean 0.5028 0.6026 0.7022 0.8018 0.9010 
SD 0.0247 0.0231 0.0209 0.0176 0.0121 

N=80       Direct  
   Simulation 

Mean 0.5016 0.6015 0.7013 0.8011 0.9007 
SD 0.0174 0.0163 0.0150 0.0128 0.0091 

 

 

Simulation 2: Hurst estimation for sequential monitoring covariate adaptive randomized 

clinical trials with error terms i.i.d. 



The increment properties for the sequential monitoring processes of models with 

CAR designs under different assumptions were evaluated. When the Hurst exponent is 

0.5, the sequential monitoring processes follows a Brownian motion.  

Normalized 𝐵𝐵  value in the sequential monitoring procedures were calculated 

when error terms in the model are independent and identically distributed. Different 

sample sizes, including the total sample size 𝑁𝑁 =1000 with 50 sliced observations of the 

time series generated after each of 20 patients , 𝑁𝑁 =2000 with 100 sliced observations of 

the time series, 𝑁𝑁 =3000 with 200 sliced observations of the time series, 𝑁𝑁 =5000 with 

250 sliced observations of the time series, and 𝑁𝑁 =7500 with 500 sliced observations of 

the time series, were performed to the CAR procedures by the expression (1). 

The first scenario, for example, totally 1000 patients were enrolled in the study 

with a uniformly distributed enter time. For each interim analysis, we may slice the 

information after every 20 new patients finished the study. 50 statistical test results were 

obtained from this simulation. The adaptive design parts were applied by 𝐼𝐼𝑖𝑖, that is the 

indicator variable for 𝑖𝑖th patient assigned to the different treatment groups. Patients were 

assumed sequentially randomized to two treatment groups by the complete randomization 

(CR), stratified permuted block randomization (SPB), and Pocock and Simon 

minimization (PS) method (Zelen, 1974; Pocock & Simon,1975). Despite multiple 

covariates can be analyzed in the covariate adaptive randomized clinical trials, we only 

considered no covariate, one single discrete covariate, one single continuous covariate, 

two continuous covariates, two discrete covariates and mix type (one continuous and one 

discrete) covariates in our simulation studies. We simulated discrete covariate as the 

Bernoulli distribution with the probability of “success” 0.5 and the continuous covariate 

as the normal distribution as 𝑁𝑁(0,1). 



In the equation (1), 𝜇𝜇1, 𝜇𝜇2, 𝛽𝛽1, 𝛽𝛽2 are unknown parameters. 𝑝𝑝1, 𝑝𝑝2 are the 

probability of “success” respectively in Bernoulli distribution when the covariates are 

binary variables. 𝜇𝜇1, 𝜇𝜇2, 𝛽𝛽1, 𝛽𝛽2,𝑝𝑝1, 𝑝𝑝2 were set up as 0.5, 0.5, 1, 1, 0.5, 0.5 

respectively. 𝜀𝜀𝑖𝑖’s were assumed to be independent and identity distribution following 

the normal distribution as 𝑁𝑁(0, 1). The sequential monitoring test statistic formula with 

multiple interim analyses were shown as the formula (2). Maximum likelihood method 

was used to estimate the Hurst exponent for 𝐵𝐵 value transformed by the interim 

normalized 𝑍𝑍 value.  

Table 2 indicated that the Hurst exponents estimated by maximum likelihood 

method are approximate to 0.5 for covariate adaptive randomized clinical trial when ε 

terms are independent and identically distributed (asymptotically, H=0.5). As the sample 

size increased, the standard deviation of the estimated 𝐻𝐻  value decreased. From the 

histograms, the distributions of the mean estimated 𝐻𝐻  value are close to normal 

distribution. The models with no covariate, one single covariate and two covariates 

reached similar Hurst exponent results. The theory that the sequential monitoring test 

statistics of standard CAR procedures asymptotically converge to Brownian motion was 

verified (Zhu & Hu, 2019). The conclusions were not affected by the types of the 

covariates.  

Table 2 Hurst exponent estimation for CAR with 𝜀𝜀 i.i.d. 

 

 Designs  
N=1000, 

n=50 

N=2000, 

n=100 

N=3000, 

n=200 

N=5000, 

n=250 

N=7500, 

n=500 

𝜇𝜇1, 𝜇𝜇2 No covariate       

(0.5, 0.5) CR 
    

Mean 0.4997 0.4999 0.4998 0.4999 0.5000 



  SD 0.0259 0.0153 0.0091 0.0079 0.0051 

    PS  
  

Mean 0.5001 0.5008 0.5000 0.5000 0.4999 

  SD 0.0249 0.0150 0.0096 0.0083 0.0048 

   SPB 
  

Mean 0.5004 0.5003 0.4995 0.5005 0.5000 

  SD 0.0245 0.0145 0.0089 0.0080 0.0051 

𝜇𝜇1, 𝜇𝜇2, 𝛽𝛽1, 𝑝𝑝1 One discrete 
covariate       

(0.5, 0.5, 1, 0.5) CR 
    

Mean 0.4995 0.4996 0.4992 0.4996 0.4999 

  SD 0.0254 0.0153 0.0092 0.0077 0.0060 

    PS  
  

Mean 0.5010 0.5003 0.5002 0.4997 0.5001 

  SD 0.0250 0.0152 0.0092 0.0080 0.0059 

   SPB 
  

Mean 0.5003 0.5002 0.4994 0.5004 0.4999 

  SD 0.0245 0.0145 0.0089 0.0080 0.0051 

𝜇𝜇1, 𝜇𝜇2, 𝛽𝛽1 One continuous 
covariate       

(0.5, 0.5, 1) CR 
    

Mean 0.5004 0.4990 0.4998 0.4994 0.4999 

  SD 0.0255 0.1480 0.0089 0.0080 0.0051 

    PS  
  

Mean 0.5010 0.5011 0.4997 0.4997 0.4999 

  SD 0.0261 0.0155 0.0097 0.0079 0.0051 

   SPB 
  

Mean 0.5002 0.5000 0.5002 0.4996 0.4998 

  SD 0.0252 0.0147 0.0094 0.0080 0.0051 

𝜇𝜇1, 𝜇𝜇2,𝛽𝛽1,𝛽𝛽2,𝑝𝑝1,𝑝𝑝2 
Two discrete 

covariates       

 CR 
    

Mean 0.4997 0.4988 0.4996 0.4993 0.4998 

  SD 0.0255 0.0147 0.0089 0.0080 0.0051 

(0.5, 0.5, 1, 1, 0.5, 
0.5)    PS  

  

Mean 0.4999 0.5007 0.4999 0.5000 0.5001 

  SD 0.0249 0.0150 0.0096 0.0083 0.0059 



   SPB 
  

Mean 0.5001 0.5002 0.4994 0.5004 0.5002 

  SD 0.0245 0.0145 0.0089 0.0080 0.0058 

𝜇𝜇1, 𝜇𝜇2,𝛽𝛽1,𝛽𝛽2 Two continuous 
covariates       

 CR 
    

Mean 0.4972 0.4993 0.4992 0.4997 0.4997 

  SD 0.0256 0.0152 0.0094 0.0077 0.0062 

(0.5, 0.5, 1, 1)    PS  
  

Mean 0.5004 0.5009 0.4995 0.4995 0.4998 

  SD 0.0262 0.0155 0.0096 0.0080 0.0052 

   SPB 
  

Mean 0.5000 0.4998 0.5001 0.4995 0.4998 

  SD 0.0252 0.0148 0.0094 0.0008 0.0051 

𝜇𝜇1, 𝜇𝜇2,𝛽𝛽1,𝛽𝛽2,𝑝𝑝1 
One continuous 
and one discrete        

 CR 
    

Mean 0.5004 0.4990 0.4998 0.4994 0.4999 

  SD 0.0255 0.1480 0.0089 0.008 0.0051 

(0.5, 0.5, 1, 1, 0.5)    PS  
  

Mean 0.5013 0.5002 0.4999 0.5002 0.5000 

  SD 0.0244 0.0153 0.0092 0.0080 0.0051 

   SPB 
  

Mean 0.5025 0.5009 0.5001 0.5001 0.5000 

  SD 0.0241 0.0157 0.0091 0.0080 0.0051 
 

Simulation 3: Hurst estimation for sequential monitoring CAR procedures with 

correlated error terms 

Furthermore, numerical simulations were created to illustrate the newly derived 

hypothesis testing formula (3) for the CAR procedures with correlated error terms. 

Different population numbers, covariate types and adaptive design methods were 

illustrated. The first simulation, for example, included totally 50 patients who were 

enrolled in the study with an equally distributed enter time. Suppose an interim analysis 



should be performed when we have 50 patients, we can form first observation of the 

monitoring time series when first 21 patients finished the follow up; the second 

observation with the first 22 patients; the third observation with the first 23 patients; in 

the same analogy, the thirty observation was done with the first 50 patients; totally 30 

normalized 𝐵𝐵 values were calculated under this scenario. Then we can estimate the H and 

make statistical inference on the H value for conducting the interim analysis.  

The error 𝜀𝜀𝑖𝑖 ’s in the formula (1) were assumed to follow fractional Gaussian 

process with 𝐻𝐻 = 0.8 for the covariance structure. Fractional Gaussian process is the 

increments of fractional Brownian motion defined as 𝑊𝑊𝑖𝑖 = 𝐵𝐵𝐻𝐻(𝑡𝑡𝑖𝑖) − 𝐵𝐵𝐻𝐻(𝑡𝑡𝑖𝑖−1) (Qian, 

2003). The sequential monitoring test statistic formula (3) and (4) with multiple interim 

analyses were performed with new derived parameters 𝛽̂𝛽 and 𝜎𝜎�2 as showed in formula 

(5) and (6). “𝑉𝑉” matrix represented the covariance matrix of the fractional Gaussian 

process, which is the R(u, v) = 𝐸𝐸(𝑊𝑊𝑢𝑢𝑊𝑊𝑣𝑣) = 1
2
{|𝑢𝑢 − (𝑣𝑣 + 1)|2𝐻𝐻 + |𝑣𝑣 − (𝑢𝑢 + 1)|2𝐻𝐻 −

2|𝑢𝑢 − 𝑣𝑣|2𝐻𝐻} (Delignières, 2015). Table 3 demonstrated the mean and standard deviation 

estimations for the Hurst exponents in the sequential monitoring process with no 

covariate, with two discrete covariates, and with two continuous covariates simulation 

results. The discrete covariates were simulated as the Bernoulli distribution with the 

probability of “success” 0.5. and the continuous covariates as the normal distribution 

𝑁𝑁(0, 1) . Figure 1-3 displayed the histograms for CAR designs when ε’s following 

increments of fractional Brownian motion structures considering the correlated pattern of 

error terms in the test statistics formula with complete randomization designs, SPB 

adaptive designs, and PS adaptive designs respectively. From Table 3 and Figure 1-3, all 

Hurst exponent mean estimated results are close to 0.5. The standard deviation decreased 

along with the trail sample size increased. When the sample size was only 50 and no 

covariates assumed in the model, 𝐻𝐻  values deviated more from 0.5. Based on the 



simulation results, it can be verified that the sequential monitoring processes of covariate 

adaptive randomized clinical trials followed Brownian motion properties if the covariate 

form was considered in the test statistics formula.   

 

Table 3 Hurst exponent estimation for CAR with 𝜀𝜀’s correlated 

 Designs  
N=50 

n=30  

N=100 

n=80 

N=200 

n=180   

N=250 

n=230   

N=500 

n=480   

𝜇𝜇1, 𝜇𝜇2 No covariates       

 CR 
    

Mean 0.5031 0.4982 0.4978 0.4978 0.4981 

  SD 0.0863 0.0368 0.0197 0.0163 0.0088 

(0.5, 0.5)    PS  
  

Mean 0.5050 0.4993 0.4975 0.4984 0.4986 

  SD 0.0832 0.0400 0.0199 0.0164 0.0086 

   SPB 
  

Mean 0.5092 0.4997 0.4984 0.4973 0.4986 

  SD 0.0789 0.036 0.0194 0.0172 0.0082 

𝜇𝜇1, 𝜇𝜇2,𝛽𝛽1,𝛽𝛽2,𝑝𝑝1,𝑝𝑝2 Two discrete 
covariates       

 CR 
    

Mean 0.5016 0.4928 0.4944 0.4949 0.4969 

  SD 0.0803 0.0378 0.0193 0.0163 0.0089 

(0.5, 0.5, 1, 1, 0.5, 
0.5)    PS  

  

Mean 0.5057 0.4980 0.4962 0.4972 0.4979 

  SD 0.0872 0.0415 0.0198 0.0166 0.0089 

   SPB 
  

Mean 0.5053 0.4977 0.4976 0.4965 0.4980 

  SD 0.0790 0.0366 0.0195 0.0172 0.0084 

𝜇𝜇1, 𝜇𝜇2,𝛽𝛽1,𝛽𝛽2 Two continuous 
covariates       

 CR 
    

Mean 0.4998 0.4959 0.4952 0.4954 0.4975 

  SD 0.0826 0.0359 0.0189 0.016 0.0087 



(0.5, 0.5, 1, 1)    PS  
  

Mean 0.5061 0.4971 0.4955 0.4969 0.4983 

  SD 0.0881 0.0409 0.0218 0.0179 0.0102 

   SPB 
  

Mean 0.5069 0.4930 0.4961 0.4966 0.4977 

  SD 0.0779 0.0369 0.0201 0.0163 0.0085 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 1 Histogram for complete randomization CAR designs ε correlated with no 

covariate: (a) Sample size 50, (b) Sample size 100, (c) Sample size 200, (d) Sample size 

250, (e) Sample size 500. 
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Figure 2 Histogram for SPB adaptive CAR designs ε correlated with two discrete 

covariates: (a) Sample size 50, (b) Sample size 100, (c) Sample size 200, (d) Sample size 

250, (e) Sample size 500. 
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Figure 3 Histogram for PS adaptive CAR designs ε correlated with two continuous 

covariates: (a) Sample size 50, (b) Sample size 100, (c) Sample size 200, (d) Sample size 

250, (e) Sample size 500. 

 

4. Discussion  

Classical Brownian motion has been recognized as the fundamental test for 

monitoring outcome effects in the clinical trials (Lan & Wittes, 1988). Covariate adaptive 

randomized designs are of great use for balancing the covariates in the clinical trial. One 

(b) 

(c) (d) 

(e) 

(a) 



of the challenges for studying the properties of covariate adaptive randomized clinical 

trial is that the treatment assignments and covariates are not independent. 

The Brownian motion properties are theoretically investigated for the sequential 

monitoring processes with CAR designs under i.i.d. error structure (Zhu & Hu, 2019). 

However, in some situations, the error terms of the model may not be independent and 

identically distributed. In our study, a new test statistic formula was proposed including 

the “𝑉𝑉 ” matrix being the covariance pattern of the error terms in the model. The 

theoretical derivation showed that the corresponding asymptotic distributions of the new 

test statistics were normal distribution under the null hypothesis. The asymptotic results 

of the theoretical derivation were demonstrated for the proposed new derived model. The 

distribution of sequential process based on the new test statistics form was derived to 

follow asymptotically Brownian motion. If ignoring the covariance in the error terms, the 

inferenced parameters in the model with CAR procedures will be misleading. The power 

calculation in both interim analyses and final analysis for the whole population would not 

be accurate. 

Comprehensive simulation studies were used to illustrate the theorical results with 

1000 replications for all the simulations. In the first simulation, the mean estimate of 

Hurst exponents can more closely represent the true generated H value, along with the 

increasing of the sample size. The mean estimated Hurst exponent values for normalized 

𝐵𝐵 values were all close to 0.5 by using maximum likelihood estimation method. Brownian 

motion theory is still suitable for the sequential monitoring processes with the test 

statistics when the error terms are not independent and identically distributed as long as 

the covariance matrix is correctly specified. 

However, the true variance-covariance matrix is generally unknown and likely to 

be misspecified. Then the resulting stochastic process of the test statistic would not follow 



Brownian motion. We have investigated these scenarios further separately (Yang et al., 

2021). 
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