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Abstract

Background: Classical Brownian motion (BM) has been commonly used in monitoring
clinical trials including those with covariate adaptive randomization (CAR).
Independent increment property is commonly assumed in the sequential monitoring
process of the clinical trials with CAR designs. However, in reality, correlation may
exist in the error terms of the underlying model, resulting in dependent increment in the
sequential monitoring process.

Methods: We conducted simulations for estimating the Hurst exponent to evaluate the
stochastic property in the covariate adaptive randomized clinical trials under two
scenarios: 1. CAR designs with independent and identically distributed error terms. 2.
CAR designs with correlated error terms. The theoretical properties of covariate
adaptive randomized clinical trials with correlated error structure were investigated. A
test statistic including the covariance pattern of the error terms was proposed.
Conclusion: In our study, the sequential test statistics under CAR procedure is shown to
be asymptotically Brownian motion when the error structure is correctly specified.
Further, Brownian motion is a special case of fractional Brownian motion when Hurst
exponent equals to 0.5. Our simulations are consistent with the theoretical asymptotic

results.
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1. Introduction

After been discussed and promoted by the U.S. Food and Drug Administration
(FDA), the usage of adaptive designs in clinical trials attracts more and more attention
from medical professionals and pharmaceutical companies (Center for Drug Evaluation
and Research, 2020). Adaptive design approaches reduce the costs, optimize the balance
between bias and covariates assignments, and make the trials more efficient (Pallmann et
al., 2018). It would be more appropriate to consider the covariate when designing the
clinical trials since most trial studies include comprehensive demographic characteristics,
medical history, physical assessment, and lab reports. Various biomarkers are being
investigated as they may relate to underline diseases (Hu & Hu, 2012; Khan et al., 2010).
This highlights the fact that, when treatment effects are evaluated in clinical trials, it is
possible that the significance of these covariates may differ from one another. Attention
should be paid to balance those dominant covariates in clinical trials. Covariate adaptive
randomization (CAR) procedures can minimize the imbalance across the subgroups in
clinical trials by assigning participants to different groups based on previous treatment
assignments, covariates, and current patient’s covariates (Hu & Rosenberger, 2000).
Stratified permuted block randomization (SPB), Pocock and Simon minimization designs
(PS) are the commonly used CAR designs (Zelen, 1974; Pocock & Simon,1975; Zhu &
Hu, 2019; Yu & Lai, 2019).

In 2010, a ground-breaking study investigated theoretical results for testing
hypotheses after covariate-adaptive randomization (Shao et al., 2010). Then, the theory
of hypothesis testing and the corresponding asymptotic distributions of the testing

statistics for the covariate-adaptive randomized clinical trials were extensively studied in
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2015 (Ma et al., 2015). The asymptotical properties of the sequential monitoring of CAR
procedures were also derived (Zhu & Hu, 2019). There are some recent studies regarding
the statistical inference under CAR designs (Bugni et al., 2018; Ma et al., 2019). For the
impact of misclassification under CAR, see Fan et al., 2018 and Wang & Ma, 2020. These
studies established the theoretical foundations of CAR applications in clinical trials.

The sequential test statistics in CAR procedures can be adjusted to be an
asymptotically Brownian motion (BM) under some regulatory conditions if the error
terms are assumed to be independent and identically distributed (i.i.d.) (Zhu & Hu, 2019).
However, the independent increment assumptions may not be completely met in some
other occasions. For example, patients in clinical trials may come from the same clinical
center or may accept the treatments from the same physician group. Hence, the error terms
in the underlying model with CAR designs may be correlated. It is necessary to
investigate the properties of sequential monitoring of CAR with correlated error
structures. In this study, a new sequential test statistics was derived corresponding to the
covariance pattern of the error terms and the sequential test statistics under CAR
procedure was shown to be asymptotically Brownian motion when the error structure was
correctly specified.

In this article, Section 2.1 is the general structure for the linear model with
covariate-adaptive randomization designs when error terms are independent and
identically distributed. In Section 2.2, we describe design properties of CAR when error
terms are correlated. In the Section 3, Hurst exponent estimations are studied for the
sequential monitoring of the covariate-adaptive randomized clinical trials with correlated
error structure. Numerical simulation studies were performed to verify the reliable

method of estimating Hurst exponent and evaluate the theoretical results. All simulations



in this study were conducted by R software (Foundation for Statistical Computing,
Vienna, Austria). Some concluding remarks and discussions are provided in Section 4.
2. Methods

British hydrologist Harold Edwin Hurst studied the hydrological and geophysical time
series. His studies exposed that the statistical behaviour was different from the classical
Brownian motion process, based on his scientific insight and data analysis for the
characterization of the long-term variability in Nile River flow records (Hurst, 1951). The
results of Hurst motivated the formulation of fractional Brownian motion (FBM) by

Mandelbrot and van Ness (1968). Fractional Brownian motion is a Gaussian process with
the covariance function of Cov(By(s)By(t)) = % (t2 + s2H — |t — 5|2 (Taqqu,

2003; Zili, 2017). By (t) is denoted as fractional Brownian motion with the Hurst
parameter H, where 0 < H < 1. When H = 0.5, fractional Brownian motion By (t) is
reduced to the classical Brownian motion (Mandelbrot & van Ness, 1968).

The application of MLE method for estimating the Hurst exponent of the FBM
was proposed in Lai (2004). The log likelihood function of By = (By(ty), ... By (t,))" is
given as L,(x, H) = —nlogz?n —log| X(H) |/2 — x*X~1(H)x/2, where x = (x¢, _x¢ )°
is the observed value of By. Y;(H) is the variance covariance matrix of By (Lai, 2004).

In this paper, we estimated Hurst exponent by the maximum likelihood estimation
(MLE) method in simulation studies to assess whether the sequential process of CAR
procedure still follow Brownian motion with the hypothesis test concerning the
covariance structure.

2.1 CAR designs with independent and identically distributed error terms

Consider a two-arm trial with the treatment assignment indicator I;, where ;=1

is for the treatment group 1 and I;=0 is for the treatment group 2, i=1, 2, ... N. Here, N

is the total sample size. Let pu; and u, be the parameters to measure the treatment



effects in each group respectively. Let X;,...X;, be the covariates that are independent
from each other. Assume the response Y; follows the following model:
Yi=wmli+pu,(A—1) +BiXin + -+ BpXip+e (=1,..,N) (1)

LetY = (Y, Ys, .., YN)Ta B = (41, Uz, b1, '"lﬁp)Ta &= (&, & -, EN)T

[ 1-L Xin = Xip)
X = L 1-L X;; - Xop
IN 1-— IN XN,l XN,p

where f; ..., are unknown parameters for the covariate effects and ¢; are the

error terms. The matrix form of the expression (1)is: ¥ = Xf + ¢

Assume the ¢;s in the model with CAR design are independent and identically
distributed random errors. £;~N (0, 52).

The hypothesis for testing the equality of treatment effect is:

Ho:py — pp = 0vs Hytppy — pp #0

The test statistics of a general linear hypothesis at time point t in the sequential
monitoring process can be denoted as Z;:

_ LB(®) 2)
VEe®2ZLX(INEDTX(INE) LT

Ze
n

t = N’ t €[0,1]

For the hypothesis of equal treatment effect, we have:

L=(1,-10,..,0)

At time ¢, f is the ordinary least square estimator for unknown parameters /3. &

is used to estimate the true error variance o2.
B() = X(INEDTX(INED) X (INEDTY (INt]))
6%(t) = (Y(INt]) = X(INeDBE) T (Y (INt]) — X(INtDB () /(INt] — p — 2)

[-] is denoted as the floor function.



It was proved that under Hy,, the sequential test statistics, B(t) = Z.tY/? of the
covariate adaptive randomized clinical trials converge to an asymptotic Brownian motion
(Zhu & Hu, 2019).

Using Maximum likelihood method, in our study, we numerically estimated the
Hurst exponent via simulations of the B-value. Our simulation results are consistent with
the theoretical results in Zhu and Hu (2019).

2.2 CAR designs with correlated error terms

The original assumption of the ¢;s in the expression (1) was independent and
identically normally distributed. However, the independent assumption may not be met
in some situations. If ;s in the model (1) are correlated and follow some special
covariance patterns, we extended the test statistic (2) to a weighted version. We showed
that the B-value still forms a Brownian motion if the variance-covariance matrix is
correctly specified.

Furthermore, we performed the simulation studies to demonstrate the proposed
derivation. MLE techniques were used to estimate the Hurst exponent of test statistics in
the interim analysis. We outlined our deviation of Brownian motion of test statistic when
the variance-covariance matrix V is given. The theoretical properties of the null
hypothesis test and sequential monitoring processes were derived as follows. Assume the
error terms in a two-arm linear model with CAR design (expression (1)) are correlated
with some certain covariance pattern.

For the hypothesis:

Horpy —p =0 vs py —pp #0
At time point t, the sequential test statistics of the CAR models with correlated error
terms was defined as following:

Ve®)2LX(INEDT (v ()~ 1x(INt])~1LT

Zy



At each time t, o2(¢)V(t) = Cov(g|X). This covers both traditional analysis of
covariance model and many repeated model models such as AR(1) error correlation

structure. V represents the correlated structure in the error terms.

Bu(t) = \/3(02L(X(thJ;/f(L‘i(t;;_1X(thD)_1LT ®
At time point t, the new estimator 8 and & are shown below:
B®) = XUANEDT V()T XANED) X ANEDT (V ()Y (INED) )
a(t)* = [Y(INtD) = X(ANEDBOI" V() (Y (INt]) = X(INEDA 1))/
(INt] =p—=2) (6)

Assume V is a known square matrix with non-zero off-diagonal elements. At
each time point t, Var[e] = 02V. Let K be the squared root of V, V = KTK = KK. Let

g = K~ '& . Then the expectation of g is equal to 0 and variance of g is equal to o1.

Two conditions were assumed: (1) Dy = Op(1); (2) Diye(K) = 0p(1), k=
1,2 (Ma et al., 2015). The numerator and the denominator of the equation (3) were

evaluated separately. The numerator of the equation (3) was LA (t). LB (t)=f; (t)-fi,(t)

X(NeDT W (@)X (ANt])\ —1 XANEDT (v (£)"1x (INt]) N
= w(t) - ua(t) + I( Nl )7t Nt . VNt (A () -

)
dz(t))= INt]LB(t) > N (0, 462). The denominator part of the equation (3) is

2
INt]

02 +0, (ﬁ) . Under null hypothesis

& ()2LX(INEDT (V)X (INe])) 'L =
D
Hy:py —pu; =0,Z, - N (0,1).

Based on the theoretical deviation, the new test statistics formula converges to

Gaussian process. In the sequential process, { Z; , Z,, ... Z;,} 1s multivariate normal,

E(Z,)=0, and Cov(By(s), By(t)) is, 0 < s <t < 1. Under null hypothesis H,, the

new sequential statistics By (t) for the covariate adaptive randomization procedures with



correlated error terms are asymptotically a standard Brownian motion. The detailed
theoretical derivations were shown in the Yang (2020). The derivation was challenging

since the treatment assignments and covariates are correlated to each other.
3. Simulation results

The motivations of simulations are 1. to evaluate the MLE method for estimating
the Hurst exponents; 2. to validate that the sequential test statistic of the covariate
adaptive randomized clinical trial converges to an asymptotic Brownian motion, which
means H value should be equal to 0.5; 3. to illustrate the increment properties for the
sequential monitoring processes of CAR procedures with newly derived hypothesis
testing formula (3) when error terms are correlated. Formula (3) in the above section is
the newly derived hypothesis testing based on a linear model framework for CAR design
under the assumption of correlated error terms.

Simulation 1: Hurst estimation for fractional Brownian motion

There are many different approaches for generating fractional Brownian motion
(FBM) series. One way to create realization of one-dimension fractional Brownian
motion is to use the fbm() function in the R software (Huang, 2013). Another way is the
exact direct simulation method proposed in 2004 (Lai, 2004). An independent and
identically distributed Gaussian process was multiplied by ¥'*/2 in the direct simulation
method, where )’ is the variance-covariance matrix of the FBM. Fractional Brownian
motion series with Hurst exponent H =0.5, 0.6, 0.7, 0.8, 0.9 were generated with sample
sizes of N =10, 20, 50, 80. 1000 replications were applied to the simulations. To estimate
the Hurst exponents, maximum likelihood estimation method was performed under
different scenarios.

The accuracy of both fbm() function and exact direct simulation were evaluated

in the simulations. Table 1 showed the estimated mean and standard deviation of the H



values from 1000 replicated simulations. Based on the results from Table 1, both fbm()
function and direct simulation methods reached close results compared to the original
Hurst exponent of the FBM series, especially when the sample size is greater than 20. For
example, we used fbm() to generated a fractional Brownian motion time series with
H=0.6. The Hurst exponent estimating result are close to 0.6 by MLE method. As the
sample size increased, the mean estimate of Hurst exponents became closer to the true
generated H value. The estimated standard deviations of Hurst exponents decreased when
the sample size increased. MLE method was validated to be a reliable technique to
estimate the Hurst exponent.

Table 1 Hurst exponent estimation by maximum likelihood method

Sample

Method H=0.5 H=0.6 H=0.7 H=0.8 H=0.9
S1Z€

Ne10 Direct Mean 0.5197 0.6160 0.7122 0.8080 0.9031
Simulation SD 0.0939 0.0846 0.0726 0.0567 0.0348
N fom() Mean 0.4999 0.5971 0.6964 0.7953 0.8953
function SD 0.0489 0.0484 0.0401 0.0331 0.0220
N Direct Mean 0.5064 0.6054 0.7044 0.8031 0.9014
Simulation SD 0.0503 0.0463 0.0409 0.0333 0.0216
N Direct Mean 0.5028 0.6026 0.7022 0.8018 0.9010
Simulation SD 0.0247 0.0231 0.0209 0.0176 0.0121
N80 Direct Mean 0.5016 0.6015 0.7013 0.8011 0.9007
Simulation SD 0.0174 0.0163 0.0150 0.0128 0.0091

Simulation 2: Hurst estimation for sequential monitoring covariate adaptive randomized

clinical trials with error terms i.i.d.



The increment properties for the sequential monitoring processes of models with
CAR designs under different assumptions were evaluated. When the Hurst exponent is
0.5, the sequential monitoring processes follows a Brownian motion.

Normalized B value in the sequential monitoring procedures were calculated
when error terms in the model are independent and identically distributed. Different
sample sizes, including the total sample size N =1000 with 50 sliced observations of the
time series generated after each of 20 patients , N =2000 with 100 sliced observations of
the time series, N =3000 with 200 sliced observations of the time series, N =5000 with
250 sliced observations of the time series, and N =7500 with 500 sliced observations of
the time series, were performed to the CAR procedures by the expression (1).

The first scenario, for example, totally 1000 patients were enrolled in the study
with a uniformly distributed enter time. For each interim analysis, we may slice the
information after every 20 new patients finished the study. 50 statistical test results were
obtained from this simulation. The adaptive design parts were applied by [;, that is the
indicator variable for ith patient assigned to the different treatment groups. Patients were
assumed sequentially randomized to two treatment groups by the complete randomization
(CR), stratified permuted block randomization (SPB), and Pocock and Simon
minimization (PS) method (Zelen, 1974; Pocock & Simon,1975). Despite multiple
covariates can be analyzed in the covariate adaptive randomized clinical trials, we only
considered no covariate, one single discrete covariate, one single continuous covariate,
two continuous covariates, two discrete covariates and mix type (one continuous and one
discrete) covariates in our simulation studies. We simulated discrete covariate as the
Bernoulli distribution with the probability of “success” 0.5 and the continuous covariate

as the normal distribution as N(0,1).



In the equation (1), pq, Uz, B1, B, are unknown parameters. p;, p, are the
probability of “success” respectively in Bernoulli distribution when the covariates are
binary variables. py, Uy, f1, B2, p1, P2 Were setup as 0.5,0.5, 1,1, 0.5, 0.5
respectively. €;’s were assumed to be independent and identity distribution following
the normal distribution as N (0, 1). The sequential monitoring test statistic formula with
multiple interim analyses were shown as the formula (2). Maximum likelihood method
was used to estimate the Hurst exponent for B value transformed by the interim

normalized Z value.

Table 2 indicated that the Hurst exponents estimated by maximum likelihood
method are approximate to 0.5 for covariate adaptive randomized clinical trial when ¢
terms are independent and identically distributed (asymptotically, H=0.5). As the sample
size increased, the standard deviation of the estimated H value decreased. From the
histograms, the distributions of the mean estimated H value are close to normal
distribution. The models with no covariate, one single covariate and two covariates
reached similar Hurst exponent results. The theory that the sequential monitoring test
statistics of standard CAR procedures asymptotically converge to Brownian motion was

verified (Zhu & Hu, 2019). The conclusions were not affected by the types of the

covariates.
Table 2 Hurst exponent estimation for CAR with ¢ i.i.d.
N=1000, N=2000, N=3000, N=5000, N=7500,
Designs
n=50 n=100 n=200 n=250 n=500
Uy, Mo No covariate

(0.5,0.5) CR Mean 0.4997  0.4999  0.4998  0.4999  0.5000



SD  0.0259 0.0153  0.0091  0.0079  0.0051
PS Mean 0.5001  0.5008  0.5000  0.5000  0.4999
SD  0.0249  0.0150 0.0096  0.0083  0.0048
SPB Mean 0.5004  0.5003  0.4995  0.5005  0.5000
SD  0.0245 0.0145  0.0089  0.0080  0.0051
b, OB
(0.5,0.5,1,0.5) CR Mean 0.4995  0.4996  0.4992  0.4996  0.4999
SD  0.0254  0.0153  0.0092  0.0077  0.0060
PS Mean 0.5010  0.5003  0.5002  0.4997  0.5001
SD  0.0250  0.0152  0.0092  0.0080  0.0059
SPB Mean 0.5003  0.5002  0.4994  0.5004  0.4999
SD  0.0245 0.0145 0.0089  0.0080  0.0051
U o By One cont'inuous

covariate
(0.5,0.5,1) CR Mean 0.5004  0.4990  0.4998  0.4994  0.4999
SD  0.0255 0.1480  0.0089  0.0080  0.0051
PS Mean 0.5010  0.5011  0.4997  0.4997  0.4999
SD  0.0261  0.0155  0.0097  0.0079  0.0051
SPB Mean 0.5002  0.5000  0.5002  0.4996  0.4998
SD  0.0252  0.0147  0.0094  0.0080  0.0051

Two discrete

t1, 12, B1, Bz, D1, P2 covariates
CR Mean 0.4997  0.4988  0.4996  0.4993  0.4998
SD  0.0255 0.0147  0.0089  0.0080  0.0051
©5, 0'3’.51)’ 1,05, PS Mean 0.4999  0.5007  0.4999  0.5000  0.5001
SD  0.0249  0.0150 0.0096  0.0083  0.0059



SPB Mean 0.5001  0.5002  0.4994  0.5004  0.5002
SD  0.0245 0.0145  0.0089  0.0080  0.0058

Two continuous

Hu b, Br B covariates

CR Mean 0.4972  0.4993  0.4992  0.4997  0.4997
SD  0.0256  0.0152  0.0094  0.0077  0.0062
(0.5,0.5, 1, 1) PS Mean 0.5004  0.5009  0.4995  0.4995  0.4998
SD  0.0262  0.0155  0.0096  0.0080  0.0052
SPB Mean 0.5000 0.4998  0.5001  0.4995  0.4998
SD  0.0252  0.0148  0.0094  0.0008  0.0051

One continuous

Hu b, B B, Py and one discrete
CR Mean 0.5004  0.4990  0.4998  0.4994  0.4999
SD  0.0255  0.1480  0.0089 0.008 0.0051
(0.5,0.5,1,1,0.5) PS Mean 0.5013  0.5002  0.4999  0.5002  0.5000
SD  0.0244  0.0153  0.0092  0.0080  0.0051
SPB Mean 0.5025  0.5009  0.5001  0.5001  0.5000
SD  0.0241  0.0157  0.0091  0.0080  0.0051

Simulation 3: Hurst estimation for sequential monitoring CAR procedures with

correlated error terms

Furthermore, numerical simulations were created to illustrate the newly derived

hypothesis testing formula (3) for the CAR procedures with correlated error terms.

Different population numbers, covariate types and adaptive design methods were

illustrated. The first simulation, for example, included totally 50 patients who were

enrolled in the study with an equally distributed enter time. Suppose an interim analysis



should be performed when we have 50 patients, we can form first observation of the
monitoring time series when first 21 patients finished the follow up; the second
observation with the first 22 patients; the third observation with the first 23 patients; in
the same analogy, the thirty observation was done with the first 50 patients; totally 30
normalized B values were calculated under this scenario. Then we can estimate the H and
make statistical inference on the H value for conducting the interim analysis.

The error ¢;’s in the formula (1) were assumed to follow fractional Gaussian
process with H = 0.8 for the covariance structure. Fractional Gaussian process is the
increments of fractional Brownian motion defined as W; = By(t;) — By(t;—1) (Qian,
2003). The sequential monitoring test statistic formula (3) and (4) with multiple interim
analyses were performed with new derived parameters 8 and 62 as showed in formula

(5) and (6). “V” matrix represented the covariance matrix of the fractional Gaussian
process, which is the R(u, v) = E(W,W,) = %{Iu — W+ D+ lv—(u+1)* -

2|u — v|?"} (Deligniéres, 2015). Table 3 demonstrated the mean and standard deviation
estimations for the Hurst exponents in the sequential monitoring process with no
covariate, with two discrete covariates, and with two continuous covariates simulation
results. The discrete covariates were simulated as the Bernoulli distribution with the
probability of “success” 0.5. and the continuous covariates as the normal distribution
N(0,1). Figure 1-3 displayed the histograms for CAR designs when &’s following
increments of fractional Brownian motion structures considering the correlated pattern of
error terms in the test statistics formula with complete randomization designs, SPB
adaptive designs, and PS adaptive designs respectively. From Table 3 and Figure 1-3, all
Hurst exponent mean estimated results are close to 0.5. The standard deviation decreased
along with the trail sample size increased. When the sample size was only 50 and no

covariates assumed in the model, H values deviated more from 0.5. Based on the



simulation results, it can be verified that the sequential monitoring processes of covariate

adaptive randomized clinical trials followed Brownian motion properties if the covariate

form was considered in the test statistics formula.

Table 3 Hurst exponent estimation for CAR with &’s correlated

N=50 N=100 N=200 N=250 N=500

Designs
n=30 n=80 n=180 n=230 n=480

Uy, Ho No covariates
CR Mean 0.5031 0.4982  0.4978 0.4978  0.4981
SD 0.0863  0.0368  0.0197  0.0163  0.0088
(0.5,0.5) PS Mean 0.5050 0.4993 04975  0.4984  0.4986
SD 0.0832  0.0400 0.0199 0.0164  0.0086
SPB Mean 0.5092  0.4997 0.4984  0.4973  0.4986
SD 0.0789 0.036 0.0194  0.0172  0.0082
H1, H2, B1, B2, P1, P2 Tzz)(i/sriisactreeste
CR Mean 0.5016  0.4928  0.4944  0.4949  0.4969
SD 0.0803  0.0378  0.0193  0.0163  0.0089
05, 0'3’.51)’ LO5, PS Mean 0.5057  0.4980 0.4962  0.4972  0.4979
SD 0.0872  0.0415 0.0198  0.0166  0.0089
SPB Mean 0.5053  0.4977 0.4976  0.4965  0.4980
SD 0.0790  0.0366  0.0195 0.0172  0.0084
By T

CR Mean 0.4998  0.4959  0.4952  0.4954  0.4975
SD 0.0826  0.0359  0.0189 0.016 0.0087
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Figure 1 Histogram for complete randomization CAR designs € correlated with no
covariate: (a) Sample size 50, (b) Sample size 100, (¢) Sample size 200, (d) Sample size

250, (e) Sample size 500.
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Figure 2 Histogram for SPB adaptive CAR designs ¢ correlated with two discrete
covariates: (a) Sample size 50, (b) Sample size 100, (c) Sample size 200, (d) Sample size

250, (e) Sample size 500.

(a) (b)

200 -
150
150 M
g g
@ @ -
3 100 4 g 100
© >
w w
50 50
0 - 0-
I T T T T T 1 I T T T T 1
01 02 03 04 05 06 07 035 040 045 050 055 060
H H
(c) (d)
u 200 e
150 N ]
150
= =y
§ 100 <
3
g 2 100 4
w Iy
50 0 4
0 - 0 J
f T T T T T ! T T T T T T T 1
042 044 046 048 050 052 054 040 042 044 046 048 050 052 054
H H
(e)
200 —
150
z
c
S 100
H
i
50
o

[ T T T T T T 1
045 046 047 048 049 050 051 052

H



Figure 3 Histogram for PS adaptive CAR designs ¢ correlated with two continuous

covariates: (a) Sample size 50, (b) Sample size 100, (c) Sample size 200, (d) Sample size

250, (e) Sample size 500.
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4. Discussion
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Classical Brownian motion has been recognized as the fundamental test for
monitoring outcome effects in the clinical trials (Lan & Wittes, 1988). Covariate adaptive

randomized designs are of great use for balancing the covariates in the clinical trial. One



of the challenges for studying the properties of covariate adaptive randomized clinical
trial is that the treatment assignments and covariates are not independent.

The Brownian motion properties are theoretically investigated for the sequential
monitoring processes with CAR designs under i.i.d. error structure (Zhu & Hu, 2019).
However, in some situations, the error terms of the model may not be independent and
identically distributed. In our study, a new test statistic formula was proposed including
the “V” matrix being the covariance pattern of the error terms in the model. The
theoretical derivation showed that the corresponding asymptotic distributions of the new
test statistics were normal distribution under the null hypothesis. The asymptotic results
of the theoretical derivation were demonstrated for the proposed new derived model. The
distribution of sequential process based on the new test statistics form was derived to
follow asymptotically Brownian motion. If ignoring the covariance in the error terms, the
inferenced parameters in the model with CAR procedures will be misleading. The power
calculation in both interim analyses and final analysis for the whole population would not
be accurate.

Comprehensive simulation studies were used to illustrate the theorical results with
1000 replications for all the simulations. In the first simulation, the mean estimate of
Hurst exponents can more closely represent the true generated H value, along with the
increasing of the sample size. The mean estimated Hurst exponent values for normalized
B values were all close to 0.5 by using maximum likelihood estimation method. Brownian
motion theory is still suitable for the sequential monitoring processes with the test
statistics when the error terms are not independent and identically distributed as long as
the covariance matrix is correctly specified.

However, the true variance-covariance matrix is generally unknown and likely to

be misspecified. Then the resulting stochastic process of the test statistic would not follow



Brownian motion. We have investigated these scenarios further separately (Yang et al.,

2021).
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