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ABSTRACT: Microbial pollution in rivers poses known ecological and
health risks, yet causal and mechanistic linkages to sources remain
difficult to establish. Host-associated microbial source tracking (MST)
markers help to assess the microbial risks by linking hosts to
contamination but do not identify the source locations. Land-use
regression (LUR) models have been used to screen the source locations
using spatial predictors but could be improved by characterizing
transport (i.e., hauling, decay overland, and downstream). We introduce
the microbial Find, Inform, and Test (FIT) framework, which expands
previous LUR approaches and develops novel spatial predictor models to
characterize the transported contributions. We applied FIT to character-
ize the sources of BoBac, a ruminant Bacteroides MST marker, quantified
in riverbed sediment samples from Kewaunee County, Wisconsin. A 1
standard deviation increase in contributions from land-applied manure
hauled from animal feeding operations (AFOs) was associated with a 77% (p-value <0.05) increase in the relative abundance of
ruminant Bacteroides (BoBac-copies-per-16S-rRNA-copies) in the sediment. This is the first work finding an association between the
upstream land-applied manure and the offsite bovine-associated fecal markers. These findings have implications for the sediment as a
reservoir for microbial pollution associated with AFOs (e.g., pathogens and antibiotic-resistant bacteria). This framework and
application advance statistical analysis in MST and water quality modeling more broadly.
KEYWORDS: land-use regression, molecular microbial source tracking, ground hauling manure, river networks

1. INTRODUCTION

Microbial pollution of rivers and streams is a major public
health concern. Mitigation of health risks demands microbial
pollution models that depict the influence of key pollution
sources. Advances in host-associated microbial source tracking
(MST) approaches help to directly identify the hosts
contributing to pollution.1−3 To more directly characterize
the health risks, pollution contributions from sources must be
modeled. Mechanistic approaches are the gold standard when
sources and flow processes (e.g., adsorption, advection, and
diffusion) are accurately identified. However, the sources of
emerging microbial pollutants4,5 and delivery parameters to
characterize the microbial fate and transport have not been
well characterized.6 Screening potential sources and identifying
those likely associated with microbial pollution can be
accomplished with regression-based approaches that leverage
land-use/land-cover databases with transport-oriented models
to construct source terms. Furthermore, regression approaches
are needed that distinguish between source terms and

modifying effects (i.e., amplification and attenuation) to
address the microbial fate and transport from sources, as
described by Pruden et al.7 in a conceptual mass-balance
model for antimicrobial resistance responses. While this type of
regression is frequently used for nutrient and chemical
pollutants,8−11 no such land-use regression (LUR) model has
been developed or implemented for microbial pollution or
antimicrobial resistance more widely.
To our knowledge, few studies have aimed to relate land use

and land cover with microbial pollution using LUR
models.7,12−21 Many of these studies do not distinguish
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between statistical exploration and physically meaningful
models.14−17,20,21 The physically meaningful statistical models
distinguish between sources and modifiers (i.e., attenuating or
amplifying effects).7 This distinction is made in two ways: (1)
by citing evidence that a set of spatial locations either produce
microbial contamination or are modifiers of that contami-
nation and (2) by ensuring that source terms can only
contribute to pollution or not, whereas modifying effects would
just scale those contributions. In regression, this implies a
positive coefficient for sources. When negative coefficients are
estimated for source terms,14−16,20 depictions of concen-
trations of contaminants would increase moving away from
sources [e.g., animal feeding operations (AFOs) reduce the
microbial contamination]. A model serves an exploratory
purpose when no preliminary evidence exists for a land cover/
land use to act as a source or a modifier of microbial
contamination. Exploratory spatial-statistical models often
cannot provide the evidence required for recommendations
to environmental and public health agencies.
Physically meaningful LUR models (i.e., distinguish sources

from modifiers) have been developed and implemented for
chemical pollutants in groundwater, such as nitrate, where
observed concentrations, yi, for sample i were expressed as the
following non-linear multivariate regression equation22
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where β0 is the intercept, βu’s are the positive linear regression
coefficients for the source terms, si

(u)(α(u)) (e.g., manure
application fields), that increase microbial contamination,
and βl’s are the non-linear regression coefficients for the
modif ier terms mi

(l)(α(l)) (e.g., wetlands, forested areas, and
buffers) that amplify or attenuate pollution. The modif ier terms
are exponential, so when βl’s are positive or negative, the sum
of contributions from sources is multiplied or fractionated,
respectively, corresponding to amplification or attenuation.
α(u)’s and α(l)’s are hyperparameters that express the spatial
scales at which a source or a modifier affects the microbial
contamination. Based on previous approaches, the first step to
applying this type of model to microbial contamination in river
networks is to select databases of spatially distributed sources
and then construct source terms with those databases.
There are opportunities for researchers to optimize selecting

candidate databases of spatially distributed sources and
standardize reporting of choice. For example, studies
examining manure application fields’ relationship to Escherichia
coli have utilized databases derived from remote sensing,19

national land-cover databases,16 and a database derived from
interviews with local agricultural farmers and managers.12 Each
of these databases differently characterizes the locations of
manure application fields. A tool that scores databases of
spatially distributed sources by measuring the reliability in
producing physically valid source terms (i.e., consistent
estimation of positive regression coefficients) could be used
as a technique to select between comparable databases.
After choosing the databases, spatial predictor models (SPMs)

are used to construct the source terms. Microbial LUR models
have captured the source density with studies that use lumped-
source terms (e.g., percent cropland-cover-per-watershed and
cattle density-per-county).13,15−18,20,23 The upstream capacities
of sources were first captured with an inverse-distance-

weighted interpolation method,7 which constructs source
terms at a higher resolution on the river network, but
contributions from sources can increase without a source’s
influence (see Supporting Information S1 for a detailed
explanation of this issue). The sum of exponentially decaying
contributions (SEDCs) from the upstream sources addresses
this issue.19,21 This class of SPM utilizes interpretable
hyperparameters,11,22,24 which helps to depict the gradual
effect of proximity and density of sources.9

Additionally, the SEDC models do not require mechanistic
understanding of transport or initial loadings at sources. Such
is the case for the current tools6,12,25−29 that predict bacterial
and nutrient pollution in rivers, such as the Soil and Water
Assessment Tool (SWAT) or the SPAtially Referenced
Regressions on Watershed attributes (SPARROW)
model.26−29 Additionally, the finest spatial resolution these
water quality models offer is at the sub-watershed level.
However, these models show that dilution and climatic
processes are critical in the variability of microbial contami-
nation,7,12,19,21,23,25,27,30−35 but these processes have not been
incorporated into a unique statistical approach that estimates
at a fine resolution (eq 1).
Another critical component in the fate and transport of

microbial pollution is ground hauling of waste in trucks from
its origin (e.g., AFOs) to release points into the environment
(e.g., manure application fields).36,37 To our knowledge, no
existing SPM (e.g., SEDC) accounts for hauling for estimating
microbial responses. Additionally, no published work has
compared the predictive power of different SEDC SPMs for
microbial contamination responses. See Table S1 for a
literature summary.
We introduce the novel Find, Inform, and Test (FIT)

framework, which advances previous microbial LUR ap-
proaches by distinguishing sources and modifiers. This is
done by tailoring the non-linear multivariate regression (eq 1)
for microbial responses in river networks. We develop new
SPMs for source terms that do not require prior knowledge of
physical processes by using hyperparameters to define the
spatial scale associated with ground hauling, overland, and river
distance decay and microbial pollution flow. We also formalize
the approaches that test the predictive ability of source terms.
The framework includes the following steps:

(1) Find databases of spatially distributed sources using a
reportable criterion

(2) Inform spatial predictors by identifying hyperparameters
that maximize physical meaningfulness

(3) Test the statistical significance of various potential
sources

With the novel FIT framework, we will quantify the effect
that bovine manure application has on sediment fecal
contamination for the first time. Previously, Pruden et al.7

have used regression models to quantify the strength of the
association between livestock source terms and the relative
abundance of antibiotic resistance genes in river sediments. To
our knowledge, no work has used regression models to
quantify the association of source terms and the relative
abundance of a ruminant-specif ic MST marker in river
sediments. Given sediments’ capacity to store chemical
pollutants38 and bacterial genes39,40 for a long term, the
magnitude of this association has implications to environ-
mental and human health.41−43 Additionally, water column
samples may not capture intermittent pollution from sources,

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c01602
Environ. Sci. Technol. 2021, 55, 10451−10461

10452

https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01602/suppl_file/es1c01602_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.1c01602/suppl_file/es1c01602_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c01602?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


while sediment samples provide time-integrated information.44

Here, we applied FIT to learn about bovine sources of fecal
contamination in river sediments from Kewaunee County,
Wisconsin. A novel SPM that accounts for the gradual effect of
proximity and density of upstream sources and dilution due to
flow was developed to identify sources and characterize
contributions. This is the first modeling approach incorporat-
ing all of these elements into a spatial predictor (see
Supporting Information S3 for details) of ruminant Bacteroides
abundance in river sediment.

2. MATERIALS AND METHODS
2.1. Materials and Methods for the Demonstration of

the Novel Microbial LUR Framework. 2.1.1. Study Area
and Sampling Data. Kewaunee County, Wisconsin, was
selected as the study area due to the local water quality
concerns45 and the high density of AFOs compared to the
nearby counties. Sediment samples (n = 90) were taken at 20
river locations on five dates between July 2016 and May 2017.
The river sampling methods and sites were further described in
Beattie et al.46

2.1.2. River Network and Climatic Data. The river network
was extracted in ArcMap 10.5 from a Digital Elevation Model
(10 m) raster file obtained from the Wisconsin Department of
Natural Resources (WIDNR). Spatial coordinates were
projected into “Wisconsin Central” State Plane.
Daily site-specific precipitation in centimeters and average

monthly temperature were obtained by inverse-distance-
weighted interpolation from weather station data from the
National Oceanic and Atmospheric Administration’s (NOAA)
climate data from April 1, 2016, to August 1, 2017, from the six
closest weather stations (Brussels, Denmark WWTP, Forest-
ville, Green Bay, Kewaunee, and New Franken). See
Supporting Information S4 for river network and climatic
data details.
2.1.3. Spatial Databases of Potential Microbial Contam-

ination Sources. There were two types of potential microbial
contamination sources for which spatial databases were
obtained. AFOs were the first type with three database
options: (1) a county database of manure storages weighted by
log-total-gallons of manure provided by the Kewaunee County
Department of Land and Water Conservation, (2) the same
county database of manure storages but unweighted, (3) a
Wisconsin Pollution Discharge Elimination System (WPDES)
database of CAFOs provided by the WIDNR, and (4) the
same WPDES database but weighted by animal units. Manure
application fields were the second type of source with two
database options: (1) land-cover database of crop rotation and
(2) land-cover database of dairy rotation. Both were obtained
from the Wiscland-2 land-cover database.47 See Supporting
Information S5 and Table S3 for details.
2.1.4. Microbial Analysis of Samples: Sample Processing,

DNA Extraction, and Quantitative PCR. Sediment grab
samples were collected (n = 90) as described in Beattie et
al.,46 immediately placed on ice following collection, and
stored at −20 °C until DNA extraction. The sediment samples
were homogenized and subsampled for two replicate DNA
extractions per sample. DNA was extracted from 0.5 g of
sediment as described in Beattie et al.46

FAM TaqMan probe chemistry was used for quantitative
polymerase chain reaction (qPCR) assays of bovine-specific
Bacteroides 16S rRNA genes,48 and SYBR Green chemistry was
used for qPCR assays of the V3 region of the 16S rRNA gene

as a proxy for total bacteria. Genes were quantified in duplicate
on a Real-Time PCR System (Bio Rad CFX Connect) from
two separate DNA extractions per sample and averaged for
total gene abundance (four reactions total per sample). The
TaqMan qPCR reaction mixtures contained 10 μL of TaqMan
Gene Expression Master Mix (Applied Biosystems, Foster City,
CA), 1 μL each of 10 nM F/R primers, 0.4 μL of 5 nM probe,
2.6 μL of H2O, and 5 μL of 4 ng/μL gDNA. Plasmid DNA
containing the cloned gene of interest was used to generate
seven-point standard curves for each gene, and standard curves
were run on every plate for BoBac and 16S rRNA genes. The
PCR amplification protocols consisted of 50 °C for 2 min,
followed by 95 °C for 10 min, and 40 cycles of 95 °C for 30 s,
and an annealing temperature of 57 °C for 45 s. SYBR qPCR
reaction mixtures and cycling parameters are as previously
described.46 Below detect values were set to one-half of the
detection limit.48 Primers, annealing temperatures, and
inhibition assay details are given in Supporting Information S6.
The absolute abundance of BoBac (gene copies/g) for

sample i was normalized to 16S rRNA (gene copies/g) to
obtain the relative abundance zi of BoBac (copies-per-16S-
rRNA-copies), and base10 log-transformed to obtain yi

z

y z

The absolute abundance of BoBac (gene copies)
16S rRNA abundance (gene copies)

log ( )

i

i i10

l
m
oooooo

n
oooooo

=

=
(2)

See Supporting Information S7 for details on absolute versus
relative abundance.

2.2. Developing the Novel, Microbial LUR Frame-
work. 2.2.1. Physically Meaningful Model for Contami-
nation of Spatially Distributed Sources. We introduce a
microbial LUR model that formalizes previous microbial
models and expands the non-linear LUR from eq 1 to include
climatic terms previously developed for a range of micro-
biological responses10,18,49−51

y P P
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The observed response value yi (eq 1) for sample i is now a
function of source terms and modif ier terms and β1, β2, and β3
are linear regression coefficients for the climatic variables P1i
(recent precipitation), P2i (antecedent precipitation), and
freezingi. In this work, we focus exclusively on the case where
there are just a few independently distributed source terms and
no modifiers, so eq 3 becomes linear. In subsequent papers, we
will add more sources and modifiers.
The source terms, si

(u)(α(u)), are standardized to a mean of 0
and a standard deviation of 1, so that a 1 standard deviation
increase in the uth source term leads to a βu increase in the
response, yi = log10(zi). Conceptually similar to a risk ratio, we
define the relative abundance ratio, RAR(u), as the ratio of
relative abundances for a 1 standard deviation increase in
source u, which is given by RAR(u) = z(s(u) + 1)/z(s(u)) = 10βu
(see Supporting Information S8). It follows that a 1 standard
deviation increase in the source term s(u) corresponds to a (10βu
− 1) × 100 percent increase in BoBac relative abundance z.
In eq 3, β1 represents the effect of recent precipitation on the

microbial response and β2 represents the diminished effect of
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antecedent precipitation, P2, on P1.50 P1 and P2 at time t are
calculated as SEDCs from the precipitations Pit′ at times t′ < t
and location i as

P P
t t

1 exp
3

i
t t P

it
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i
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jjjjj

y
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where αP1 < αP2. The exponential time decay parameters are
constrained such that αP1 is less than αP2 and are optimized so
that the diminishing effect of P2 on P1 is maximized to
characterize washout effects (see Supporting Information S9
for details).
2.2.2. Conventional and Novel SPMs Describing Spatially

Distributed Contamination Source Contributions. We
construct the source predictors si

(u)(α(u)) using three SPMs of
increasing sophistication: (1) a Euclidean model, (2) an
overland and river distance flow (ORF) model, and (3) a
ground hauling, overland, and river distance flow (GORF)
model. The first approach uses the Euclidean distance.22 The
value of si

(u)(α(u)) at location i is calculated as the standardized
SEDC22 from the surrounding sources j

s s z C( ) ( ) score ei
u u

i
u u

j

N

j
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3 /ij
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E
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jjjjjjj
y
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zzzzzzz∑α α= = − α
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where Dij
(E) is the Euclidean distance between the observation

point i and source j, C0j is the initial relative abundance at
source j, and αE

(u) is the Euclidean hyperparameter correspond-
ing to the distance away from a source where an initial source
abundance of C0j is reduced by 95%. An example of the source
term, for u = manure application fields, si

(u)(αE
(u)), is shown in

Figure 1a using this Euclidean approach when the range of
influence, αE

(u), is 2.0 km.
The sources in Figure 1a are manure application field

centroids representing areas of equal size. In this Euclidean
approach, contributions from sources to abundance appear
high when manure application fields are dense and close to the
river network. However, sources located next to the river
network contribute to the nearby river segments both
downstream and upstream, which oppose first-order principles
and studies indicating higher levels of microbial contamination
downstream of sources than upstream.52−60

Accordingly, in the second approach, we use the ORF
model. The mass M0j of microbial contaminants applied at a
source location j is transported to the river over an overland
distance Dij

(O) and then down the river over a river distance
Dij

(R) until it reaches the sampling location i where, as described
in Jat and Serre,61 it is diluted within the flow Qi. The Strahler
stream order is used as a proxy for flow in sediment.62 The
standardized ORF SPM is

s s

z
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(7)

where ijδ ⃖ is a hydrologic connectivity indicator equal to 1 if
sampling location i receives the flow coming from application
location j, 0 otherwise, and the two hyperparameters, αO and
αR, describe the overland and river exponential decay ranges,
respectively.19,61,63−66 An example of ORF-modeled contribu-
tions is shown in Figure 1b using αO

(u) = 1.0 km, αR
(u) = 50 m,

and M0j’s proportional to the size of manure application fields.
The ORF model captures the hydrologic processes involved in
transporting microbial contaminants from where they are
applied to downstream sampling locations. However, it does
not capture how the mass M0j applied at location j is hauled
(i.e., via trucking or irrigation) from AFOs.37,67,68

To address this latter point, we introduce the GORF model,
where the mass applied at application field j is calculated based
on the amounts that are ground-hauled from the nearby AFOs.
Here, M Mj k

K
kj k0 1 ω= ∑ = , where Mk is the mass produced at

AFO k (proportional to the size of that AFO) and ωkj is the
proportion of Mk ground-transported to the application field j.
We assume that ωkj is proportional to an exponential decrease
with the distance Dkj between the AFO k and the application

field j, that is, ( )expkj
D3 kj

G
ω ∝

γ

−
, where the distance hyper-

parameter γG is a transportation range reflecting how far the
manure is hauled. The ground hauling distances, Dkj, are
expressed with Euclidean distances, which are good proxies for
road network path distances (see Supporting Information
S10). The model assumes that the application of manure onto
the fields decreases exponentially at a Euclidean distance closer
to AFOs because of the exponentially decreasing hauling
capacity and increasing costs to AFOs over hauling distances
estimated by Hadrich et al.37 We also assume that there is no

Figure 1. Diagrams that demonstrate (a) Euclidean, (b) ORF, and (c) GORF SEDC in a downstream combining the river network with examples
of hyperparameter values.
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loss of manure during hauling, so that mass is conserved, that
is, 1j

J
kj1 ω∑ == . Hence, the full equation of the standardized

GORF SPM is
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An example of the GORF model is shown in Figure 1c using
γG
(u) = 12 km, αO

(u) = 9.0 m, αR
(u) = 50 m, and Mk’s proportional

to the size of AFOs. This approach yields a map with greater
concentrations downstream of manure application fields that
are near AFOs.
2.2.3. Optimizing Source Term Hyperparameters in the

FIT Framework. An approach is needed to obtain hyper-
parameters, α(u), of the source terms si

(u)(α(u)) in the microbial
regression eq 3. In the Find and Inform steps of the FIT
framework, we consider each source term individually and
construct the source term by obtaining the hyperparameters
that maximize the RAR (10βu) for some training set of
observed outcomes yi (see Supporting Information S11 for
details). In the test step of the FIT framework, we use a
variable selection of source and climatic terms to define a
model and test whether terms are statistically significant.
Previous works have selected hyperparameters that max-

imize the R2.22 However, this can lead to physically invalid
results (e.g., a source term may reduce pollution). Our FIT
framework addresses this issue by emphasizing the physical
meaningfulness and reliability over statistical prediction. The
FIT steps of the FIT framework are detailed in the next three
sections. See Supporting Information S12 for graphical
summary of FIT and visual representation of this application.
2.3. Stages of the Novel FIT Framework. 2.3.1. Find

Reliable Databases of Spatially Distributed Sources. We
develop a reliability score as a criterion for finding a database d
of a given source u that is selected based on which most
reliably produces a positive βu > 0 for the source term si

(u)(α(u))
defined in eq 3. We start with model a corresponding to the
microbial regression (eq 3) reduced to an intercept and the
source term si

(u)(α(u)). We create k-folds (k = 5) of training and
test sets from the data. We use model a with each training set
to obtain hyperparameter α training_k(u) , which maximizes βu (see
Supporting Information S11 for details). We adopt α training_k(u)

for the test set regressions to obtain βu
(test_k). We define the sign

stability score SSS as a number between 1 and k + 1 (k + 1 =
6), which quantifies how many of the βu

(test_k) values are
positive. We assess the components of reliability through
taking the sum of βu

(test_k) across the folds to represent an
average of test set coefficients, M. Last, we define σ βu

(test_k) as
the standard deviation of the βu

(test_k) values. We reward high
SSS, high M, and low σ βu

(test_k) values by setting the reliability
score RS equal to the ratio of SSS multiplied by M over σβu
(see Supporting Information S13 for details). Finally, we select
the database d of source type u with the highest reliability
score.
2.3.2. Inform Spatial Predictors with Hyperparameters.

We inform each uth source term individually by obtaining the

hyperparameter α (u) which maximizes βu using 100% of the
observations yi in model a. This ensures that for each SPM
(Euclidean, ORF, and GORF), we inform the source term with
all the data in hand. The maximization procedure is the same
as in the “Find” stage and described in detail in Supporting
Information S11. For the “Inform” stage, a penalty (eq S13)
was added to the objective function so as not to obtain a
combination of γG and αO yielding poor regression or mapping
qualities (i.e., non-normal residuals or y i > 0).

2.3.3. Test the Statistical Significance of Potential
Sources. After we individually inform each source term with
hyperparameters that maximize physical meaningfulness, we
test their statistical significance by considering standardized
climatic and source terms in the microbial regression (eq 3).
An Akaike information criterion exploits a stepwise algorithm
to select the informed source and climatic termsa standard
practice in microbial LUR studies.12,13,15,17,19,21 However,
when datasets have a high dimension of climatic and source
terms, LASSO may be preferred to limit collinearity, selection
bias, and overfitting. Overall, a possible outcome of the
selection procedure is that no source terms are selected. To
compare modeling options (i.e., Euclidean, ORF, and GORF),
a 6-fold cross-validation of the “Test” step of the FIT
framework was performed. See Supporting Information S14
for details.

3. RESULTS AND DISCUSSION

3.1. Finding Reliable Databases. A criterion was
successfully developed at the Find stage of the FIT framework
where a higher score corresponds to greater reliability of
databases representing source locations. The criterion is based
on the SSS, M, and σβu, respectively, capturing the consistency,
effect, and variability of contributing source locations across
the test sets. Across candidate databases, we report that the
WPDES database of CAFOs representing AFOs was more
reliable than the county database of manure storages (weighted
or unweighted) obtained through imagery, indicating that
imagery insufficiently captured sources and could not replace
permitting information. Last, compared to the crop rotation
land-cover database, the dairy rotation subclass more often
represented a source of bovine fecal contamination reliably.
We also report on the reliability of SPM approaches. GORF

terms more consistently represented sources (SSS ranging
from 3 to 5) than ORF (SSS ranging from 1 to 5) or Euclidean
(SSS ranging from 2 to 5). The higher SSS of GORF-modeled
predictors suggest that modeling ground hauling of manure
was essential to consistently capturing the contributing effects
of AFOs to sediment bovine markers. See Supporting
Information S15 for details.

3.2. Informing of Spatial Predictor Variables. At the
Inform stage of the FIT framework using the GORF SPM, we
find that hauling of manure from large AFOs occurs over
distances of kilometers (i.e., γG > 1 km). We found that fecal
contamination also reduced from manure fields over distances
of kilometers overland (αO > 1 km). Potential explanations
include possible long-range overland contamination due to
subsurface tile drainage69 and karst geography.70,71 Due to this
long-range hauling and overland contamination, we find that
all 15 Kewaunee County CAFOs are implicated with fecal
contamination in sediments. Finally, downstream contami-
nation of riverbed sediments from overland discharge points
occurs over sub-kilometer distances (i.e., αR < 1 km),
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suggesting localized sediment contamination. See Supporting
Information S16 for details.
3.3. Testing the Predictive Ability of Source Terms.

Results of the Test stage of the FIT framework are shown in
Table 1. The first column defines the SPM used to construct
source terms and summarizes model performance with R2. The
results of the inform stage of FIT are shown in the column-
labeled hyperparameters. All climatic terms were selected (see
Supporting Information S17). Each source term has hyper-
parameters even if they were not selected. The test stage results
appear in the last two columns, which show the standardized
regression coefficients and the corresponding RAR.
Among the models resulting from different spatial

predictors, only the GORF source term indicated that fecal
contamination in sediment was signif icantly associated with
AFOs via manure application. The selection of this GORF
predictor, AFO-ground hauling to manure fields, suggests that
flow and hauling are transport mechanisms for bovine fecal
contamination in sediment. The GORF approach performed
slightly better in a 6-fold cross-validation (see Supporting
Information S18). Some microbial LUR and geostatistical
studies have found that river distance measures are more
predictive and generalizable than Euclidean for modeling
contamination in a river network.19,66,72,73 However, this work
is the first to suggest hauling as a key transport process.
Hauling, which is a critical aspect of nutrient management
from CAFOs,37,68,74 determines where manure is applied and
subsequently determines locations on the river network that
are more impacted by AFOs.
We focus on the Test stage results resulting from the GORF

SPM due to its statistical significance. The finding is that a 1
standard deviation increase in the contributions of AFOs via
land application of manure hauled to fields is associated with a
77% (p-value < 0.05) increase in the relative abundance of

bovine fecal contamination (BoBac-copies-per-16S-rRNA-
copies) in riverbed sediments. No study of sediment exists
to which this value can be compared. However, in a surface
water study of absolute abundance of fecal contamination (log
10 gene copies not normalized by 16S rRNA), Dila et al. found
that a 1 standard deviation increase in cattle density per
watershed was associated with 20% (p-value < 0.05) increase in
the absolute abundance of bovine gene (BacR) copies.18 For
comparison, we also applied FIT to the absolute abundance of
bovine fecal contamination (log 10 BoBac-copies-per-gram-
sediment). A 1 standard deviation increase in manure
application from AFOs was associated with a 79% (p-value <
0.05) increase in bovine gene (BoBac) copies (see Supporting
Information S19 for details), suggesting a stronger signal from
sources in sediment than in water, though for different
markers.
Our work is the first to use a regression model to quantify

the strength of association between bovine sources and the
relative abundance of a bovine-specif ic fecal marker in the
downstream sediment. Though a positive association has been
observed between bovine sources and fecal contamination in
water by Dila,18 researchers should be careful in comparing the
strength of these associations. First, the two MST markers (i.e.,
BoBac in our study, BacR in Dila’s study)18 may degrade at
different rates.75,76 Additionally, inhibition or other factors may
affect true-positive rates in the sediment. While the BacR
marker has been reported to have a higher source specificity,
BoBac has offered a higher source sensitivity77one rationale
for a higher effect in our study. Overall, there is still a need for
medium-scale experiments to compare sensitivity, specificity,
and inhibition of these genetic markers from complex
environmental samples using PCR assays. Alternatively, if
both markers are comparable, transport processes may also
contribute to differences in effect.

Table 1. Regression Model Results of Bovine Fecal Contamination in Sediments (log 10 BoBac-Copies-per-16S-rRNA-Copies)
Shown for Each SPM Used for Source Terms (i.e., Euclidean, ORF, and GORF) and the Stepwise-Selected Model Performance
Expressed as R2 and Adjusted R2a

model performance standardized explanatory variables hyperparameters α
regression
coefficient β

relative abundance ratio 10β
(95% CI)

source terms SPM: Euclidean
P1 αP1 = 0.177 days 0.995b 9.90 (4.19, 23.4)
P1 × P2 αP2 = 2.04 days −0.221 0.602 (0.311, 1.16)

R2 = 0.415 freezing n/a −3.31b 4.94 × 10−4 (7.06 × 10−5,
0.00347)

adjusted R2 = 0.395 AFOs αE = 32.4 km not selected not selected
manure fields αE = 1.51 km not selected not selected

source terms SPM: overland and river distanceflow (ORF)
P1 αP1 = 0.177 days 1.00b 10.1 (4.28, 23.6)
P1 × P2 αP2 = 2.04 days −0.222 0.600 (0.312, 1.16)

R2 = 0.428 freezing n/a −3.29b 5.04 × 10−4 (7.27 × 10−5,
0.00349)

adjusted R2 = 0.401 AFOs αO = 2.58 km, αR = 308 m not selected not selected
manure fields αO = 935 m, αR = 54.0 m 0.168 1.47 (0.858, 2.53)

source terms SPM: ground hauling, overland and river distanceflow (GORF)
P1 αP1 = 0.177 days 0.988b 9.90 (4.18, 22.6)
P1 × P2 αP2 = 2.04 days −0.220 0.602 (0.360, 1.01)

R2 = 0.442 freezing n/a −3.25b 5.62 × 10−4 (8.30 × 10−5,
0.00380)

adjusted R2 = 0.417 AFOs (via ground hauling to manure
fields)

γG = 11.3 km, αO = 8.94 km,
αR = 50.5 m

0.248b 1.77 (1.04, 3.02)

aFor each SPM, standardized explanatory variables, their physically meaningful hyperparameters, α, their regression coefficients, βs, and resulting
relative abundance ratio, 10β, are provided row-wise. bp-value <0.05.
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Other factors contributing to variability in the estimate of
this association include sediment depth, size, composition, and
proximity to geological and other anthropogenic factors.78−82

For example, fine-course, silty sediments have been correlated
with higher microbial concentrations and bacterial
growth.79−81 In one study, while host-associated fecal markers
observed in sediments along a river gradient corresponded
with respective upstream animal and human hosts, notable
differences in the concentrations and upstream correlations
existed between the first centimeter of the sediment and
below.82 These factors indicate opportunities for well-
maintained spatial databases of sediment types and precise
sampling approaches that would not be possible for surface
water due to its more transient nature.
3.4. Implications, Limitations, and Future Work. To

our knowledge, this is the first LUR modeling of the
abundance of a bovine-associated MST marker in river
sediments. Our primary finding is that ground hauling of
bovine manure from AFOs and applying onto fields contribute
to riverbed sediment fecal microbial abundance. This study’s
fecal abundance response, specific to ruminants and highly
associated with bovine hosts,48 provides strong evidence of
offsite migration from AFOs into the environment. This effect
may have long-term consequences as microorganisms can
remain in sediment for long periods or be resuspended into the
surface water.42 Sediment as a reservoir of AFO-associated
fecal contamination is particularly concerning because AFOs
frequently use antibiotics to treat and prevent disease,
increasing the risk of elevated antimicrobial resistance in
these contaminated sediments.83 A wider application of FIT to
contaminants from AFOs (e.g., antimicrobials, antibiotic
resistant bacteria, and pathogens) may help untangle the
impacts of AFOs on antibiotic resistance in rivers.
Our novel LUR framework successfully found reliable

databases of spatially distributed sources, informed source

terms, and tested those source terms’ predictive ability,
resulting in the first-ever depiction of bovine fecal markers in
sediments in a river network (Figure 2). Figure 2a was created
by applying the model resulting from the Test stage to all flow-
connected points of the Kewaunee, Ahnapee, or East Twin
Rivers using the databases found to reliably represent spatially
distributed sources from the Find stage. Overall, this depiction
can help water quality by suggesting key locations for
monitoring sediment contamination in Kewaunee County
rivers.
Figure 2 depicts Inform stage results, which combined and

expanded previous SPMs, such that it was the first to account
for the gradual effect of proximity and density of upstream
sources, dilution due to flow, and ground hauling (i.e., GORF
SPM) of microbial contamination from sources. Each of the
GORF processes can be seen in greater detail in Figure 2b.
The proximity of the AFOs (viz., red diamonds) to manure
field centroids (viz., gray squares) increases the amount
applied on manure fields. Similarly, the proximity and density
of highly applied manure fields to the river network increase
the fecal contamination levels in sediments (viz., redder in
color). The dilution effect can be seen as sharp drops in fecal
contamination downstream of confluences of pristine, higher
order streams (viz., depicted as greater thickness), and highly
contaminated, lower-order streams.
Overall, the model resulting from the FIT framework

performed similarly to other microbial LUR models. This
model explained 44.2% of the variability, which is within the
range of previous LUR models of fecal contamina-
tion.7,13,15−18,20,21 Unstudied source types may cause some
unexplained variability. We observed that the measured values
at the river sampling site abbreviated BPKR46 were higher than
our predicted values. The site is named BPKR due to its
proximity to Bruemmer Park Zoo, home to other ruminants,
such as goats and a giraffe. Zoos and other neglected potential

Figure 2. Modeled relative abundance (log 10 BoBac-copies-per-16S-rRNA-copies) plotted on the river network for Kewaunee County given
average recent and antecedent precipitation and freezing temperature. (a) View for all of Kewaunee County rivers and streams associated with the
Kewaunee, Ahnapee, and East Twin Rivers. (b) Zoom into the portion of (a) highlighted by the red rectangle. The Find stage results for AFO and
manure application fields are depicted by the red diamonds (WPDES CAFOs that are unweighted) and the gray squares (land cover database of
dairy rotation).
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sources should be studied as sources of bovine markers to
determine their inclusion in future LUR studies of fecal
pollution.
Further variability may be explained by amplifying or

attenuating factors. For example, the BPKR site was located
500 m downstream of a dam. Dams and levees cause upstream
accumulation of fine-grained sediments, and the nutrients
required for bacterial survival adsorb to these fine-grained
sediments.38 Sediment reservoirs around dams, therefore, have
the potential to act as amplifiers of microbial contamination in
sediments. Values at other sampling sites were lower than
expected by the model, possibly due to the influence of
wetlands or forested areas. There is some evidence that
wetlands or forests can attenuate nutrient loads,22,84 and
constructed wetlands can attenuate microbial pollution.85,86

Future work will develop approaches for finding reliable
databases and informing modifying effects in a physically
meaningful way.
The results of this work emphasize the need for fine-scale

modeling approaches, increased sampling size to inform and
validate the models, and well-maintained spatial databases that
characterize geology, land use and management, and land
cover. In the future, the FIT framework could help identify key
sources of emerging microbial pollutants and be instructive to
assessing the microbial risk associated with river water use.
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