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ABSTRACT: Surface water monitoring and microbial source tracking (MST)
are used to identify host sources of fecal pollution and protect public health.
However, knowledge of the locations of spatial sources and their relative
impacts on the environment is needed to effectively mitigate health risks.
Additionally, sediment samples may offer time-integrated information
compared to transient surface water. Thus, we implemented the newly
developed microbial find, inform, and test framework to identify spatial
sources and their impacts on human (HuBac) and bovine (BoBac) MST
markers, quantified from both riverbed sediment and surface water in a bovine-
dense region. Dairy feeding operations and low-intensity developed land-cover
were associated with 99% (p-value < 0.05) and 108% (p-value < 0.05)
increases, respectively, in the relative abundance of BoBac in sediment, and
with 79% (p-value < 0.05) and 39% increases in surface water. Septic systems
were associated with a 48% increase in the relative abundance of HuBac in
sediment and a 56% increase in surface water. Stronger source signals were observed for sediment responses compared to water. By
defining source locations, predicting river impacts, and estimating source influence ranges in a Great Lakes region, this work informs
pollution mitigation strategies of local and global significance.

KEYWORDS: land-use regression, molecular microbial source tracking, surface water, sediment, river networks, animal feeding operations,
septic systems

1. INTRODUCTION

Fecal pollution in waterways is a public health hazard, especially
in regions that economically depend on clean water for
agriculture, recreation, and other direct uses. Effective
remediation strategies and accurate risk analyses depend on
identifying the human and animal hosts contributing to fecal
pollution.1−3 Microbial source tracking (MST) methods are
under development to identify animal hosts of fecal contami-
nation, usually by quantifying host-associated genetic markers.
However, quantifying the concentration of host-associated
markers does not characterize their spatial sources (hereafter
referred to as sources) upstream. To fully characterize and
provide valuable information for mitigating public health risks,
knowledge of concentration, source locations, and transport of
host-associated markers are needed. Spatial modeling studies on
example watersheds can fulfill this need by revealing source
associations at a fine scale and generalizing knowledge of their
impacts on fecal contamination.
Researchers have begun to use land-use regression (LUR)

frameworks to find associations between spatial predictors
describing sources andMSTmarkers.4,5 In particular, the spatial

predictor model (SPM) known as the sum of exponentially
decaying contributions (SEDCs) constructs source terms by
utilizing interpretable hyperparameters that characterize trans-
port with models of distance decay ranges around sources.6 Our
recent work developed SEDC spatial predictors to characterize
overland and downstream distance decay from sources and
account for dilution due to flow.7

Animal feeding operations (AFOs),5,8−10 septic systems,11−16

sewer lines to wastewater treatment plants, and combined sewer
overflow events frequently contribute to fecal contamination in
rivers.4,17−19 Previous research has emphasized these sources
more than other potential sources and land-cover. Fewer studies
have examined the capacity for fate and transport of fecal
contaminants from land-applied biosolids and wastewater from
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nonhuman waste.20 Several studies have found significant
correlations between fecal contamination, impervious surfaces,
and developed land-cover.4,21−25

Most of these studies have sampled either surface water or
sediment. To our knowledge, no study has modeled associations
with sources and fecal pollution in both sediment and surface
water (see Supporting Information, S1 for details). Further-
more, no studies have quantified associations between multiple
sources and fecal contamination in riverbed sediment using
LUR or other approaches. However, recent studies suggest that
long-term storage of pollutants in sediments adds to microbial
risks.26,27 Additionally, this long-term storage may offer time-
integrated information about how sources contribute to
microbial contamination. Thus, we expect to see stronger
associations between fecal responses and modeled sources in
sediment versus surface water.
Our work aimed to understand how quantifying microbial

responses from sediment in addition to surface water
contributes to the knowledge of how sources impact fecal
pollution in rivers. With bovine and human-associated fecal
markers quantified from surface water and riverbed sediment
samples, we modeled impacts from upstream sources by
estimating relative abundance ratios (RARs) for these responses
with the newly developed microbial Find, Inform, and Test
(FIT) framework.7

The samples were previously obtained for a 2018 study of a
dense-agriculture Great Lakes region where microbial con-
tamination could be attributed to many types of putative sources
(e.g., animal agriculture, septic systems, wastewater treatment
plants, and different densities of imperviousness).28 Previous
research in this region has modeled spatial associations at a
coarse spatial resolution for bovine and human-associated
markers in surface water.5 Here, we aim to bring attention to
sediment by modeling differences in fecal pollution source
impacts for time-integrated sediment versus transient surface
water samples. We can inform risk mitigation strategies by
estimating overland influence ranges around polluters and
downstream decay with the Overland and River distance with
Flow (ORF) SPM,7 which allows us to predict downstream
source impacts at unsampled sediment and surface water
locations with a fine spatial resolution. Lastly, we better define
databases representing spatially distributed fecal pollution
sources in this region.
Knowledge of how sources impact sediment differently than

surface water can inform fecal pollution mitigation strategies
that reduce environmental health risks and improve river
ecosystem functioning. Estimating influence ranges around
sources in a watershed with many putative sources can inform
these strategies locally and globally. Protecting the Great Lakes
water quality is environmentally, economically, and healthfully
beneficial due to water use for drinking, recreation, and
fisheries.5

2. METHODS

2.1. Microbial Contamination Responses Sample
Collection, Processing, DNA Extraction, and Quantita-
tive PCR. Sediment (n = 90) and river water (n=98) samples
were collected from 20 river locations on five dates between July
2016 and May 2017 in Kewaunee County. 1 L of grab samples
was collected using sterile 1 L bottles for surface water. In-depth
details on sampling site selection and riverbed sediment
sampling methods are described in Beattie et al.28

Here, we describe unpublished sampling and processing
methods (i.e., surface water analysis for BoBac, sediment and
surface water analysis for HuBac). Sediment and surface water
grab samples were processed as described in Beattie et al.28 For
additional sampling details, see Supporting Information, S2.
DNA was quantified using QuBit (Thermo Fisher Scientific,
Waltham, MA) fluorometric quantitation for each sample.
Quality control details can be found in Supporting Information,
S3.1.
FAMTaqMan probe chemistry was used to quantitate bovine

(BoBac) and human-specific (HuBac) 16S rRNA genes. The V3
region of the 16S rRNA gene was quantified using SYBR Green
chemistry as a proxy for total bacteria. All quantifications were
performed in duplicate on a real-time PCR system (Bio Rad
CFX Connect) from two replicate DNA extractions per sample
and averaged for total gene abundance (four reactions total per
sample). Primers and annealing temperatures used in this study
originally published in Layton et al.29 are listed in Table S3.
Extraction details in Supporting Information, 3.2. For each
qPCR assay, plasmid DNA containing the cloned gene of
interest was used to generate a six-point standard curve for each
gene analyzed. Standard curves quantified in duplicate were
included with each 96-well assay plate. Standard curves and
resulting gene quantifications for samples were only accepted if
the standard curve r2 value was >0.980 and the amplification
efficiency was between 90 and 110%. For accepted standard
curves across all genes, slopes ranged from −3.22 to −3.41 and
intercepts ranged from 39.524 to 42.637. The entire sample
plate and standard curve were re-assayed when standard curves
deviated from these ranges. TaqMan qPCR reaction mixtures
contained 10 μL of TaqMan Gene Expression Master Mix
(Applied Biosystems, Foster City, CA), 1 μL each of 10 nM F/R
primers, 0.4 μL of 5 nM probe, 2.6 μL of H2O, and 5 μL of 4 ng/
μL gDNA. PCR amplification protocols consisted of 50 °C for 2
min, followed by 95 °C for 10min and 40 cycles of 95 °C for 30 s
and annealing temp for 45 s with a fluorescence plate read. SYBR
qPCR reaction mixtures and cycling parameters are as
previously described.28

In total, there were r = 4 types of responses representing two
gene markers measured in the sediment and surface water. The
absolute abundance of the bovine and human genes, zi

(r), per
gram of sediment or 100 mL of water were normalized to 16S
rRNA gene abundance per gram of sediment or 100mL of water,
respectively, to obtain the relative abundance of the bovine and
human genes. Before statistical analysis, these values were log10
transformed to obtain the response, yi

(r), representing the log10
transform of a value greater than 0, but less than 1 (yi

(r) < 0).
2.2. River Network and Climatic Data. River network and

climatic data were processed identically to Wiesner-Friedman et
al.,7 where a digital elevation model obtained through the
Wisconsin Department of Natural Resources (WIDNR) created
flow lines to form a directed tree network, and daily precipitation
and monthly average temperature data were obtained from the
National Oceanic and Atmospheric Administration.30 Climatic
values at sampling sites were inverse-distance-weighted
interpolated from station data.7

2.3. Databases Representing Sources of Microbial
Contamination.The study area has many potential bovine and
human fecal contamination sources and is further vulnerable by
its Karst geology.31,32 For the implementation of FIT, we
considered a total of seven types of potential bovine sources with
different database options available: AFOs (four options),
manure application fields (two options), land-applied sludge
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(two options), land-applied sludge with industrial waste (three
options), wastewater treatment plants treating industrial wastes
(one option), low-intensity developed land-cover (two options),
and ground hauling of manure from AFO to application fields
(eight options).
We considered a total of six types of human sources with

different database options available: septic systems (one
option), wastewater treatment plants (two options), land-
applied sludge (two options), land-applied sludge from
municipal wastewater or septage (three options), high-intensity
developed land-cover (two options), and the ground hauling of
treated wastewater or septage from septic systems locations to
land-applied sludge sites (three options). These databases were
obtained from personal communication with the Kewaunee
County Land and Water Conservation Department, open
records requests with the WIDNR, and the WIDNR open
data portal. The source types, candidate databases, database
descriptions, and rationale for the source type being a concern
for bovine versus human fecal pollution are described in detail in
Table S4.
2.4. Physically Meaningful Model for Contamination

from Spatially Distributed Sources. For associations
between responses and source terms, a physically meaningful
LUR model6,7 was considered to characterize source contribu-
tions without modifying effects on those contributions.6 This
model was recently expanded to incorporate contributions from
climatic terms, which are essential to environmental micro-
biological response variability.7 Climatic factors, including
precipitation and temperature, have been related to increases
in fecal contamination.4,5,15,24,33,34
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The observed response value yi for sample i is a function of
climatic terms and source terms. β1, β2, and β3 are linear
regression coefficients associated with the climatic variables P1i
(recent precipitation), P2i (antecedent precipitation), and
Freezingi. β1 represents the effect of recent precipitation on
the microbial response, and β2 represents the diminished effect
of antecedent precipitation, P2, on P1.35 The source terms, si

(u)

(α(u)), are standardized to a mean of 0 and standard deviation of
1, so that a one-standard-deviation increase in the uth source
term leads to a βu increase in the relative abundance response, yi.
We constructed each source term with the ORF SEDC SPM
described further in Wiesner-Friedman et al.7
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SEDC value that is the sum of the mass of contaminants from
each jth source,M0j, after decaying overland distances,Dij

(O), and
river distances, Dij

(R), and accounting for flow, Qi. Hyper-
parameters, αO and αR, statistically characterize overland and
downstream distance decay, respectively. ijδ ⃖ indicates the flow
connectivity between each jth source location and each ith
observation location (i.e., an adjacency matrix denoting the

downstream connectivity of any point on the directed river
network).
Due to our previous work suggesting that hauling of manure is

a crucial process in fecal contamination,7 we modeled some
source terms with the Ground hauling, Overland and River
distance with Flow (GORF) SEDC SPM.
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A GORF source term represents the z-scored SEDC value
from land application sources (i.e., manure application fields,
land-applied waste) where each ith value is ORF source term
from land application sources that are weighted by their
proximity to the origin of what is applied to the land (i.e., AFOs,
septic systems via treatment plants). The mass of contaminants
from each kth origin location, Mk, is distributed across each jth
land application source location. This mass depends on the
spatial relationships between each kth source location and each
jth land application location described by ωkj, and the
hyperparameter, γG, acts as a toggle that determines how far
the application occurs from the mass’s origin. If γG is infinite,
then the distribution of the mass from the origin becomes
homogeneous across application locations.
ORF SPMs were used to construct source terms [see Table S4

for detailed descriptions of source types (u) and representative
databases] for bovine-associated responses representing AFOs
(u = 1), manure application (u = 2), low-intensity developed
land-cover (u = 9), land-applied sludge (u = 5), and land-applied
sludge with industrial waste (u = 7). Additionally, the GORF
SPM was used to construct source terms characterizing the
contributions that AFOs make to the river network via the
ground hauling and manure application onto fields. For human-
associated responses, ORF source terms were used to represent
septic systems (u = 3), wastewater treatment plants (u = 4),
high-intensity developed land-cover (u = 8), land-applied sludge
(u = 7), and land-applied sludge with nonindustrial waste (u =
6). Additionally, the GORF SPM was used to construct source
terms characterizing the contributions that septic systems make
to the river network via the ground hauling and application of
treated septage at land applied waste sites.

2.5. Implementation of the Microbial FIT Framework.
We implemented the FIT framework using the physically
meaningful model7 for contamination from spatially distributed
sources (eq 1) to identify and characterize the sources of
microbial contamination for each of the four microbial relative
abundances (log10 gene-copies-per-16S-rRNA-copies) re-
sponses (r = 1, 2, 3, 4): (1) the log10 relative abundance of
bovine-associated markers (log10 copies-BoBac-per-16S-rRNA-
copies) in sediment, (2) the log10 relative abundance of bovine-
associated markers (log10 copies-BoBac-per-16S-rRNA-copies)
in surface water, (3) the log10 relative abundance of human-
associatedmarkers (log10 copies-HuBac-per-16S-rRNA-copies)
in sediment, and (4) the log10 relative abundance of human-
associatedmarkers (log10 copies-HuBac-per-16S-rRNA-copies)
in surface water. FIT was implemented for each of the four

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.2c00224
Environ. Sci. Technol. 2022, 56, 4231−4240

4233

https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c00224/suppl_file/es2c00224_si_001.docx
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c00224/suppl_file/es2c00224_si_001.docx
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c00224?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


microbial contamination responses. The microbial FIT frame-
work is described in further detail in Wiesner-Friedman et al.7

For the f ind stage, reliability scores for each d database for a
given source type u were obtained. Reliability scores help to
represent databases that reliably represent a source (i.e.,
association with response represented by regression coefficient
is positive) for the contaminant for unseen (i.e., a test set)
response data. The reliability score has three components. The
sign stability score (SSS) indicates the number of models of test
set data where the source term, constructed from training data
assumptions, is positively associated (i.e., the database of source
locations appears to contribute). The average magnitude, M,
indicates the sum of the quantified associations between test set
data and the source term constructed from training data
assumptions. Lastly, the standard deviation on the test set
regression coefficients, σβ, was obtained. Across each uth source
type, FIT selects the dth database with the highest reliability
score.
After reliable databases of spatially distributed contamination

sources were selected for each response, each source term was
informed individually by using an objective function that selects
the hyperparameter α (u) that maximizes the βu using 100% (i.e.,
all of the data) of the observations yi

(r) using a penalty on a
combination hyperparameters that yield poor regression or
mapping qualities (i.e., non-normal residuals or y i(r) > 0). We
visualized the objective function in the hyperparameter space to
determine the upper and lower bound values for αO, αR, and γG
that would better capture a more global maximum. We assessed
collinearity between source terms with a Pearson correlation
coefficient. If source terms were correlated (ρ ≥ 0.7), then a
source term was chosen from among the correlated source terms
with a higher univariate R-squared and a positive coefficient.36

After source terms were constructed, the predictive ability of
the climatic terms and each noncollinear, informed source term
were tested with a stepwise regression approach using the Akaike
Information Criterion (i.e., test stage of FIT). Sixfold cross-
validation of the stepwise selection procedure was used to
evaluate the inclusion of source terms in the case of influential
observations.
The code to obtain the results of this paper and coded

examples of the f ind and inform stages of FIT can be accessed at
github.com/wiesnerfriedman/FIT_FecalContamination. In-
structions on running the code (e.g., required MATLAB
toolboxes) and the link to this study’s data (required for
running the code) can be found in the README.md file at this
web address.

3. RESULTS AND DISCUSSION
3.1. Overland and River Flows from AFOs Impact Both

Sediment and Surface Water. Table 1 provides results from
FIT for bovine-associated responses. For details on detecting
host-associated responses, the variability of responses across
sampling events, and the effects of precipitation and freezing
temperature, see Supporting Information, S4. FIT selected the
GORF AFO spatial predictor, representing contributions from
manure hauled from AFOs and applied onto fields. Results
indicate that a one-standard-deviation increase in these
contributions was associated with a 99% (p-value < 0.05)
increase in the relative abundance of bovine-associated markers
(copies-BoBac-per-16S-rRNA-copies) in sediment. For surface
water, FIT selected the ORF AFO spatial predictor representing
the contributions of AFO sites directly to the river (i.e., not
hauled to distant manure fields). A one-standard-deviation

increase in AFO contributions was associated with a 79% (p-
value < 0.05) increase in the relative abundance of bovine-
associated markers in surface water.
One other LUR study associated bovine sources with bovine-

associated markers in rivers and found that a one-standard-
deviation increase in cattle density at the watershed level was
associated with a 20.2% (p-value < 0.05) increase in the absolute
abundance of bovine-associated markers (BacR-copies) in
surface water.5 The difference in the modeling approach (i.e.,
source terms modeled at the watershed-level in Dila et al.5) and
the host source sensitivity of the marker (i.e., BoBac has a higher
source-sensitivity37) offer explanations for larger effects in our
study.
Differences existed in selecting the AFO spatial predictor (i.e.,

AFO via ground hauling vs AFO) and the selection of databases
representing AFO (i.e., WPDES CAFO vs AFO manure
storages). These differences may reflect that where and how
manure is applied depends on the scale of the AFO38 or that
varying manure application practices (e.g., broadcasting or
injection) may contribute to differences in the detection and
persistence of host-associated markers and fecal indicators when
comparing soil sediments and surface waters.39−41 Additionally,
sediment samples were unavailable for this dataset during high
flow conditions due to site inaccessibility. Results suggest that
under higher flow conditions, AFOs may be better represented
as sources by AFO manure storages, which are known to leak
under extreme precipitation events,42 compared to manure
application from CAFOs.

3.2. Overland and River Flows from Low-Intensity
Developed Land-Cover Impact Both Sediment and
Surface Water. FIT selected the ORF low-intensity developed
land-cover predictor, representing contributions from land
classified as a low density of impervious/manmade features.43

A one-standard-deviation increase in these contributions was
associated with a 108% (p-value < 0.05) increase in the relative
abundance of bovine-associated markers in the sediment.
Few studies have explored relationships between bovine fecal

markers and low-intensity land-cover or impervious surfaces.
None have found any statistically significant associations.4,25,44

However, studies have explored and revealed relationships
between low-intensity land-cover and fecal indicator bacteria in
freshwater.4,21,22,25,44 In an area strongly affected by industrial
livestock operations, Alford et al. found that a percentage point
increase in low-intensity developed land-cover increased fecal
coliforms by 5% in rivers.21 Therefore, this land cover may act as
an important source of fecal contamination, but its behavior as a
source may be tied to the presence of other sources.
Previous work investigating the relationship between bovine

fecal markers and low-intensity developed land-cover did not
take samples from livestock-dense regions.4,25,44 Thus, an
essential consideration for defining source terms with this low-
intensity developed land-cover is that the land-cover may
capture different phenomena for different regions. In Kewaunee
County, low-intensity developed land-cover captures an
intermediate manure application rate due to two phenomena
unique to dense livestock farming in populated areas (Figure 1).
First, we have found that on average, low-intensity developed
land-cover areas are located 6.48 km from CAFOs, 442 m from
AFOs, and 292 m from manure fields. These distances support
the application of manure on nearby large farms that migrate off-
site, specifically when these large farms are near low-intensity
developed land-cover. An alternative second scenario is
contributions from small farms located in the low-intensity
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developed land. Due to the pervasiveness of dairy farming in
Wisconsin,45 we cannot exclude that the low-intensity
developed land-cover may represent small family farms.
The second phenomenon may account for the contributions

of cowpats from small farms, which may be substantial enough
to increase the abundance of bovine markers in riverbed
sediment significantly. Bovine-associated markers can persist in
cowpats past a month, disseminate from cattle grazing, and
release manure into aquatic settings over days.46−48 For the first
phenomenon, impervious surfaces near pollution sources may
increase the conveyance of pollutants and reduce the soil’s
ability to filter pollution.
We similarly find that the low-intensity developed land-cover

is a source of bovine fecal contamination for surface water. A
one-standard-deviation increase in this land cover was
associated with a 39% increase (inclusion reduced AIC) in the
relative abundance of bovine-associated markers. However, this
association was not statistically significant and indicates that the
sample size is insufficient for this response.
3.3. Overland and River Flows from Septic Systems

Impact Sediment and Surface Water. The lower half of
Table 1 provides the results of the human-associated responses.
FIT selected the ORF septic system source term, representing
contributions from drainfield polygon centroids to explain
human-associated fecal pollution in surface water and sediment.
A one-standard-deviation increase in contributions from septic
systems was associated with a 79% (p-value < 0.10) increase in
the relative abundance of human fecal markers (copies-HuBac-
per-16S-rRNA-copies) in surface water and a 48% (inclusion
lowered AIC) increase in this relative abundance in the riverbed
sediment.
Two previous studies of human-associated markers have

found that an increase in 1 septic system per square kilometer
was significantly (p-value < 0.05) associated with a 1% or 18.6%
increase in the absolute abundance of human fecal markers (e.g.,
copies-, HF183-, or HumM2-per-100 mL-water).11,15 An
increase in distance of 1 km for a septic system to a stream
sampling site was associated with a decrease of 0.003 (p-value <
0.05) in the absolute abundance of human-associated markers
(log10 HF183-copies-per-100 mL-water).11 Similar findings on
proximity of septic systems occurred in a groundwater study.14

These studies suggest that the density or proximity of sources is

key to characterize human fecal contamination. The associations
we found with the ORF SPM link these studies by finding
associations using both the density and proximity of systems and
overland and downstream flow.
Below-detects (BD = 19) were only found for HuBac in

surface water. Removing BDs from the data bias our estimates of
RARs upward. We find that BD inclusion (i.e., set them to one-
half of the detection limit) yields climatic-only models of the
relative abundance of HuBac in surface water (i.e., RAR = 1).
With BDs removed, the septic system source term was selected
and yielded the model presented in Table 1. Due to this
exclusion of low values, we are likely overestimating the RAR for
septic system impacts on surface water.

3.4. High-Intensity Developed Land-Cover as a Source
of Human Fecal Pollution in Sediment. For the model of
human-associated pollution in sediment, FIT selected the ORF
high-intensity developed land-cover source term, which
characterizes a high density of impervious surfaces. A one-
standard-deviation increase in high-intensity developed land-
cover was associated with a 56% (inclusion lowered AIC)
increase in the relative abundance of human fecal markers. High-
intensity developed land-cover has been previously associated
with human fecal pollution in surface water and ground-
water.4,23−25 To our knowledge, our study is the first to report
this association in the riverbed sediment. In this scenario, our
study and others may be capturing signals from cross-reactive

Figure 1. Example of a low-intensity developed land-cover area, defined
as a low density of impervious surfaces, is highlighted in yellow. This
low-density imperviousness is near a large farm with an AFO manure
storage. Image generated with ArcGIS 10.5 and Wiscland-2 Land
Cover.43,49

Table 1. Two-by-Two Table of Regression Results for Predicting the Relative Abundance of Bovine in Sediment (log10 BoBac-
Copies-per-16S-rRNA-Copies), the Relative Abundance of Bovine in Surface Water (log10 BoBac-Copies-per-16S-rRNA-
Copies), the Relative Abundance of Human in Sediment (log10 HuBac-Copies-per-16S-rRNA-Copies), and the Relative
Abundance of Human in Surface Water (log10 HuBac-Copies-per-16S-rRNA-Copies)a

response bovine in sediment (n = 90) bovine in water (n = 98)

source term hyperparameters α coefficients β RAR hyperparameters α coefficients β RAR
low-intensity developed αO > 1 km 0.318** 2.08 αO < 1 km 0.142 1.39
AFO NS NS NS αO < 1 km 0.253** 1.79
AFO (via ground hauling to manure fields) γG = 13 km, αO > 1 km 0.298** 1.99 NS NS NS

response human in sediment (n = 90) human in water (n = 79)

source term hyperparameters α coefficients β RAR hyperparameters α coefficients β RAR
septic systems αO > 1 km 0.170 1.48 αO > 1 km 0.178* 1.51
high-intensity developed αO > 1 km 0.193 1.56 NS NS NS

aFor each of the responses, columns represent the inform and test stages of the FIT framework. Hyperparameters, α, standardized regression
coefficients, β, and the RAR. Rows correspond to stepwise selected source terms. The table only displays consistencies for hyperparameter values,
α. Below detect values were removed prior to statistical modeling. **p-value < 0.05, *p-value < 0.10. NS: not selected. Bovine source terms never
selected: manure fields (no ground hauling from AFO), land-applied sludge (all types or industrial types), industrial wastewater treatment plants.
Human source terms never selected: wastewater treatment plants and land-applied sludge (all types or wastewater/septage).
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fecal contamination (i.e., nonhuman hosts), which is expected
due to HuBac’s low estimated specificity to human feces.2

3.5. Higher Host-Associated Marker Specificity Leads
to Better Signals from Sources. The databases representing
bovine sources were more reliable in behaving as sources (i.e.,
positive test-set regression coefficient from training model in the
f ind stage) of bovine marker abundance compared to databases
of human sources for human marker abundance. Figure 2
summarizes the success rate of a candidate database representing
a source of contamination for unseen response data (i.e.,
database-as-source success rate) across the databases options
relevant to each microbial response. This rate was calculated by
averaging the SSSs calculated in the f ind stage and dividing them
by the number folds used. The database-as-source success rate
was higher for the bovine-associated responses (57.3%)
compared to human-associated responses (50.8 and 33.8%).
However, databases representing potential sources of human
fecal contamination were small and numerous compared to the
databases representing potential sources of bovine fecal
contamination (e.g., septic system vs AFO). More sampling
sites may be needed to characterize contributions for smaller and
more numerous sources.
Additionally, the higher specificity of BoBac to bovine feces

versusHuBac to human feces29,37,50,51 may lead to better signals
from sources. Although HuBac has been shown to efficiently
detect human fecal contamination (>95% sensitivity),52 the high
rate of false positives for other fecal contamination sources (e.g.,
swine)2 may confound the results of this study. Future work
should look to more recently developed markers with higher
specificities to validate our findings. However, a tradeoff may
exist between marker sensitivity and marker specificity. In one
study, quantifying the human-associated HF183 marker from
sewage-contaminated environmental samples led to more false
negatives compared to HuBac.53

Alternatively, better source signals may come from the ease of
detecting BoBac versusHuBac (p-value < 0.05) in our study (see
Supporting Information, S8), likely due to larger loads of bovine
versus human waste. This detection pattern has been previously
observed in a region with a higher bovine to human ratio.54 Our
findings suggest the value of the f ind stage of FIT in determining
database-as-source success rates, which can help evaluate the
performance of host-associated markers in LUR studies.
3.6. Sediment Responses Better Capture Signals from

Distant Sources than Surface Water. As a result of the
inform stage of FIT, hyperparameter values were selected and
provide the first estimate of overland ranges of influence (αO) of
sources for surface water and sediment contamination in the
same study, thereby allowing comparisons of αO for surface
water versus sediment contamination (see Supporting Informa-
tion, S9 for detailed hyperparameter results). We observed that
the overland flow hyperparameter, αO, was longer for responses
measured in the sediment compared to surface water. The
hyperparameter values selected to inform the source terms are
available in Table 1. The RAR is maximized when overland
distance decay ranges, αO, are greater versus less than 1 km for
sediment responses compared to water. The spatial depiction of
overland transport would show larger overland ranges of
influence around sources for sediment contamination compared
to surface water contamination. The longer αO for responses
from sediment versus surface water found in this study support
that sediment can provide more time-integrated information
than river waters due to their transient nature. Sediment
sampling may offer a more complete characterization of

microbial risks in surface water, which also increase under
conditions that disturb the sediment.27,55,56

Mechanisms leading to long-term pollutant storage in
sediment may differ from the short-term contamination of
surface water.26,27 Short-term surface water contamination may
be affected by high-intensity runoff over a short distance.57 In
contrast, our novel inclusion of long-term sediment contami-
nation may allow us to detect time-integrated contamination
over longer distances than short-distance runoff. These
mechanisms fall under two explanations.
The first may be differences in physical pathways of transport.

They include differences in manure application (e.g., broad-
casting, incorporation, or injection), and that the transport
occurs over different pathways (e.g., sheet flow or runoff,40,57,58

or subsurface flow through geological features including
karst59−61 and tile drainage,39,59,62 or even wind transport63).
Different attachment to particles may also influence transport.64

Another explanation may be differences in sensitivity in
measuring an effect using time-integrated sediment concen-
trations versus transient water concentrations. In general, host-
associated markers persist longer in sediments than surface
water.65,66 It is possible that this persistence in sediment
represents time-integrated responses to pollution and is,
therefore, more sensitive to pollution and detecting effects
from more distant sources.67 This is supported further by our
study, where we observe a higher average database-as-source
success rate (Figure 2) for the human-associated response in
sediment (50.8%) versus water (33.8%).

3.7. Implications, Limitations, and Future Work. This
study found that sediment samples were important for detecting

Figure 2. Average normalized SSS across candidate databases for each
of the four responses. The average normalized SSS represents a
database-as-source success rate. The database-as-source success rate
describes the average success across a k-fold cross-validation on the
regression coefficient positivity. The database-as-source success rate
captures one element of the reliability score for finding reliable
databases of spatially distributed sources. The goal of the reliability
score is to determine how well the SPM hyperparameters work to
construct spatial predictors that are positively associated (i.e., source
terms) with unseen data. Hyperparameters and associations are
obtained for k = 5 folds (i.e., five sets of already modeled/unseen
data). The SSS equals the number of times that the spatial predictor
corresponded to a source term. The average normalized SSS is the SSS
normalized by the number of folds.
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signals from AFOs, septic systems, and developed land cover by
defining spatially distributed source locations and estimating

influence ranges around sources and RARs. One advantage of
FIT is that model information can predict impacts from sources
at unsampled locations, informing quantitative microbial risk
assessment, epidemiological study design, or future monitoring
site selection. Using the databases selected from the f ind stage of
FIT, the hyperparameter values obtained from the inform stage,
the regression coefficients obtained from the test stage, and
averages of the climatic variables, we predict key source impacts
to the log10 relative abundance gene marker responses (Figure
3). The modeled associations between source terms and bovine
and human marker responses were used to depict the fecal
pollution impacts from these sources in the riverbed sediment
and surface water from AFOs (Figure 3a,e), low-intensity
developed land-cover (Figure 3b,f) septic systems (Figure 3c,g),
and high-intensity developed land-cover (Figure 3d) under
average precipitation and temperature sampling scenarios (see
Supporting Information, S10 for details).
From Figure 3, we see that the spatial predictions of source

impacts appear localized around dense clusters of sources, but
impacts are not limited to smaller order streams. Our model
indicates that higher-order reaches of the river (e.g., the main
reaches of the Kewaunee, Ahnapee, and East Twin Rivers) are
affected. Because smaller-order streams do not benefit from
dilution, they are predicted to be the most affected.
Other spatial factors may contribute to the variability, which is

one limitation of our study. Factors such as geology, soil
characteristics, or fields with tile drainage, where pipes convey
water away from agricultural fields toward nearby rivers and
streams,39,59,68 will vary from region to region. For example,
Kewaunee County has karst geology where fractured rock may
easily convey pollutants to rivers through groundwater.31,69 Tile
drainage is also present in Kewaunee County and field
experiments in other regions report its impact on surface
water pollution.39,68 In future work, we plan to explore how tile
drainage, in addition to water table depth, bedrock depth, and
soil permeability, may amplify or attenuate microbial pollution
in surface and sediment.
This study supports previous work28,70 by showing how

bovine and human host-associated sources impact fecal
pollution region’s sediment and surface water. Our SPM,
which accounts for density and utilizes overland ranges of
influence, indicates how buffering sources from rivers and
streams by distances greater than 1 km and reducing fecal source
density could improve water quality in agriculture-dense
regions, such as Kewaunee. This study highlights the importance
of sediment sampling when characterizing microbial risks.
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terms selected by the FIT model; depiction of source

Figure 3. Modeled relative abundance host-associated fecal contam-
ination (logl0 gene-copies-per-16S-rRNA-copies) plotted on the river
network for Kewaunee County given average recent and antecedent
precipitation and freezing temperature. (a) AFO contributions to the
relative abundance of BoBac in sediment, (b) low-intensity developed
landcover contributions to the relative abundance of BoBac in sediment,
(c) septic system contributions to the relative abundance of HuBac in
sediment, (d) high-intensity developed land-cover contributions to the
relative abundance ofHuBac in sediment, (e) AFO contributions to the
relative abundance of BoBac in surface water, (t) lowintensity
developed land-cover contributions to BoBac in surface water, and
(g) high-intensity developed land-cover contributions to HuBac in
surface water. The river network is depicted by a blue outline.
Kewaunee County sampling sites are depicted as circles with colors
corresponding to modeled relative abundance.
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