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Low-Power Wide-Area Networks (LPWANS) are an emerging Internet-of-Things (IoT) paradigm, which caters
to large-scale and long-term sensory data collection demand. Among the commercialized LPWAN technologies,
LoRa (Long Range) attracts much interest from academia and industry due to its open-source physical layer and
standardized networking stack. In the flourishing LoRa community, many observations and countermeasures
have been proposed to understand and improve the performance of LoRa networking in practice. From the
perspective of the LoRa networking stack, however, we lack a whole picture to comprehensively understand
what has been done or not and reveal what the future trends are.

This survey proposes a taxonomy of a two-dimensional (i.e., networking layers, performance metrics) to
categorize and compare the cutting-edge LoRa networking techniques. One dimension is the layered structure
of the LoRa networking stack. From down to the top, we have the Physical (PHY) layer, Link layer, Media-access
Control (MAC) layer, and Application (App) layer. In each layer, we focus on the three most representative layer-
specific research issues for fine-grained categorizing. The other dimension is LoRa networking performance
metrics, including range, throughput, energy, and security. We compare different techniques in terms of these
metrics and further overview the open issues and challenges, followed by our observed future trends. According
to our proposed taxonomy, we aim to clarify several ways to achieve a more effective LoRa networking stack
and find more LoRa applicable scenarios, leading to a brand-new step toward a large-scale and long-term IoT.
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1 INTRODUCTION

In recent years, Low Power Wide Area Network (LPWAN) has been proposed as a promising
way to adapt to the increasing needs of connecting large numbers of low-complexity, low-cost
Internet-of-Things (IoT) devices with long battery life and relatively low throughput in a wide
area. In comparison with similar approaches via short-range wireless techniques (e.g., Zigbee
based wireless sensor network (WSN), Bluetooth based body-area network, Wi-Fi based local-area
network [59]), LPWAN is known for its better scalability, which is one of the most critical concerns
in wide-area IoT (e.g., smart-industry [2, 130], smart-city, smart-agriculture [92, 106], and medical
IoT [61, 91]). Commercialized LPWANS are developed with three mainstream threads characterized
by different underline wireless communication techniques [102].
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e As a part of 5G, several cellular IoT technologies (e.g., NB-IoT [95], LTE-M [80]) are developed.
As a result, service providers can fully utilize the existing cellular infrastructures to lower the
deployment cost. However, these techniques operate at licensed Long-Term Evolution (LTE)
bands, bringing subscription fees to the uses’ side.

e Some LPWANSs use patented and proprietary wireless techniques like SIGFOX [13], INGENU (55,
83], and TELENSA [56]. Although they operate on free bands, users can only request services and
build their applications through a service provider. SIGFOX is widely deployed in the European
region, INGENU infrastructure is mainly deployed in the United States, and TELENSA focuses
on smart city [32]. SIGFOX and TELENSA operate at unlicensed ISM Sub-GHz bands, while
INGENU operates at unlicensed ISM 2.4GHz bands.

e LoRa (Long Range) [4] is an open-source technique operating at the unlicensed ISM Sub-GHz
bands. Specifically, LoRa uses Chirp Spread Spectrum (CSS) as a physical-layer modulation
scheme, which allows a LoRa radio to send a packet at various data rates (e.g., 0.018—37.5 kbps)
to gateways several or even tens of kilometers away (5—15 km). Users and developers can follow
the technical specification to customize their own LoRa networks for application demand and
academic purposes in various ways.

Due to the open-source privilege, most existing research works focus on LoRa rather than other
LPWAN techniques. LoRa networks have been deployed in various application scenarios like
city/island environment monitoring [69], metering collection [18], campus vehicle tracking [128],
golf cart monitoring [102], and so on. Although LoRa CSS-based physical layer enables data symbol
decoding at a low SNR level, even below the noise floor, the observed communication range varies
due to the different land-covers in the deployed area [74]. Additionally, the standard ALOHA media
access control is quite simple to avoid too much energy waste on network status maintenance,
resulting in diverse network throughput and energy consumption in these deployments with
different scales and configurations [69]. Many methods have been proposed to optimize LoRa
performance in terms of communication range, transmission throughput, and energy consump-
tion with these observations. These studies cover the whole LoRa networking stack, including
SNR-enhanced physical-layer encoder and decoder, fine-grained link estimation and configuration,
low-cost collision avoidance, and recovery. Moreover, besides the traditional data collection enabled
IoT applications, several new LoRa driven long-distance applications like human position/behavior
sensing, backscatter communication, and cross-technology communication are proposed. A com-
prehensive survey is needed to understand the state-of-the-art (SOTA) development of the LoRa
networking stack and new emerging LoRa driven applications.

Several LoRa related surveys summarized and reviewed LoRa from different aspects, including
essential characteristics (e.g., standard specification, networking architecture, theoretical perfor-
mance, and user cases) and advanced progress (e.g., real-environment measurements, research
challenges, and designs). For example, U. Raza et al. [94], Q. Qadir et al. [92], and R. Sinha et al. [106]
focus on comparing LoRa with other LPWAN techniques in terms of the essential characteristics.
J. M. Erturk [27] and Sundaram et al. [102] show the advanced progress classified by various key
performance issues (e.g., energy, coverage, security, throughput). Existing surveys cannot meet our
goals for two reasons. First, the research designs are not fully aligned with the LoRa network stack,
making ambiguity to connect all the research efforts in a whole picture and obtain a clear future
trend in LoRaWAN. Additionally, LoRa is a way to enable massive IoT and has great potential to
facilitate other communication and sensing approaches on a large scale. Existing surveys, however,
do not take into consideration the newly emerged LoRa driven applications. These two limitations
motivate us to review existing LoRa research studies from a new angle.
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Fig. 1. The illustration of LoRa network architecture and the corresponding networking stack.

1.1 LoRa Background

Before introducing our taxonomy, we first illustrate the LoRa background from its network archi-
tecture to the layered techniques and protocols.

Network Architecture. As shown in Figure 1a, a LoRa networking system comprises end nodes,
gateways, network, and application servers, in which sensory data generated and transmitted by
distributed LoRa end nodes through the wireless channel is relayed by gateways, then reaches
network and application servers. For a LoRa packet, multiple gateways can simultaneously serve
as the forwarders to the network servers, which suppress duplicate receptions, perform security
checks, schedule acknowledgments, adjust the network configurations on end nodes and gateways
if needed. Eventually, the received data is forwarded to suitable application servers for further
processing [20].

Networking Stack. Figure 1b illustrates a typical LoRa networking stack [3, 27] consisting of the
physical layer (PHY), link layer, media access control (MAC) layer, and application (App) layer
from bottom to top. The functionality of each layer is specified as follows:

o PHY layer: The functionality of the PHY layer is symbol modulation and demodulation. Taking
the uplink data transmission as an example, an end node encodes its data as symbols that are
modulated with baseband signals. Then, given the received symbols shadowed by the physical
channels, gateways demodulate and decode them accordingly.

e Link Layer: The link layer is also known as Hardware Abstraction Layer (HAL), which is
commonly used in low-power IoT (e.g., WSN) with dynamic links. We abstract several generic
interfaces in the link layer to configure radio-specific physical layer settings (e.g., transmission
power, bandwidth, channel frequency). A high-level link model is developed to adaptively adjust
physical layer configurations when facing dynamic behaviors of low-power links.

e MAC Layer: In a large-scale LoRa deployment, a large number of end nodes have to share the
same spectrum resource. In the MAC layer, we regulate the transmission of each end node to
achieve efficient data delivery. For different duty-cycle modes, the common purpose of MAC
layer protocols is power management and collision avoidance.

e App Layer: In the application layer, we use the under-layer transmission primitives to achieve
application-specific and secure end-to-end data delivery.

As shown in Figure 1b, end nodes have a full networking stack, split into two parts at gateways
and servers. The under-layer functions (e.g., PHY and link) are executed on gateways while the
other layers (e.g., MAC and App) are put at the network server-side.

Layered Technique and Protocol Specification. We further introduce the basic LoRa techniques
and protocols from down to top in the LoRa networking stack.
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Fig. 2. LoRa PHY layer: (a) initial frequency shifting based modulation and dechirp based demodulation; (b)
LoRa packet format with a preamble, SFD, and payload.

e PHY Layer: LoRa PHY layer enables a bidirectional communication via Chirp Spread Spectrum
(CSS) modulation using linear chirp signals The frequency of a base up-chirp increases linearly
at the rate of k over time from — BW to 8% denoted as C(t) = s Thus, encoded data
bits can be modulated by shifting the mltzalfrequency of a base up-chirp to f;, rendering encoded
chirp symbols as y, = C(t)e/?"f!, as the solid blue lines in Figure 2a. The standard demodulation,
called dechirp, extracts encoded data bits by obtaining the shifted initial frequency f;. Specifically, it
multiplies a received chirp symbol with a base down-chirp (e.g., the green dash lines in Figure 2a),
the conjugate of the base up-chirp. Then, with Fast Fourier Transform (FFT), the energy of a chirp
symbol can be focused at a single tone at f; in the spectrum [114] (e.g., the blue arrows in Figure 2a).
We further decode the data bits with the knowledge of f;, SF, and BW. Figure 2b shows the structure
of a LoRa packet, which consists of the preamble, start frame delimiter (SFD), and payload. Precisely,
the preamble consists of multiple base up-chirps, followed by the SFD with 2.25 base down-chirps
for packet detection and alignment [111, 112]. The payload contains multiple modulated chirps
with different shifted initial frequencies for encoded data bits.

e Link Layer: In the link layer, four parameters are abstracted to balance the performance (e.g.,
range, energy efficiency, data rate) of a LoRa link.

1) Spreading Factor! (SF), ranging from 7 to 12, can be configured to balance communication range
and energy consumption [111, 112]. And a symbol sent with higher SF takes more time on-air, thus
reducing the data rate? but improves resilience to noise, signal fading, and interference [96].

2) Bandwidth (BW) can be selected from 125kHz, 250kHz, and 500kHz. The smaller the BW is, the
lower the data rate is. However, it is much resilient to noise, thus can work at a lower SNR level.
3) Transmission Power (TP) can be adjusted, but it is hardware-specific [66]. A larger TP enables a
more extended communication range and increases energy consumption as well.

4) Channel Frequency can be configured [1]. In North America, the frequency band from 902MHz
to 928MHz is split into 64 125kHz channels plus eight 500kHz downlink channels and eight 500kHz
up-link channels. In Europe, ten 125kHz channels spread on the frequency band 867MHz to 869MHz.
Due to the multi-path effect in complex environments, frequency selective effect [24] incurs different
communication range by selecting different channels.

In LoRaWAN, the default link model is a binary model which utilizes RSSI to indicate whether
a packet can be successfully transmitted over a link [19, 66]. Given a fixed BW and SF, an RSSI
sensitivity is determined by PHY layer CSS modulation. Then, packets can be successfully trans-
mitted over the link if the observed RSSI of a link is larger than the sensitivity. Otherwise, we
fail to send any packet. Based on the binary link model, an intuitive adaptive data rate (ADR)
strategy is adopted. With different SFs, we can have various sensitivity at different RSSI levels. End

1The SF denotes the number of bits that a chirp symbol can represent, determining the data rate of LoRa’s CSS modulation.
2More precisely, decreasing spreading factor from n + 1 to n scales data rate by 2n/(n + 1)
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nodes use the smallest SF to ensure transmission reliability to keep energy efficiency as much as
possible. Specifically, an end node asks the network server to adjust its SF by setting a request in a
packet. After the network server gets the request, it returns the optimal SF setting by reviewing
the historical RSSI records.

® MAC Layer: For power management, gateways and network servers always keep on. Therefore,
an end node can send its data to gateways (i.e., uplink) at any time. However, end nodes are usually
operating in duty-cycle mode to save energy. Therefore, gateways can only communicate with a
duty-cycled end node (i.e., downlink) when it turns awake. Three duty-cycle modes (e.g., Class A,
B, and C) are offered with different power consumption and down-link latency. Specifically, Class
A is an event-driven duty cycle. An end node only wakes up when it has data to transmit. Class
B is a periodic duty cycle. All end nodes periodically send a coordination beacon to the network
server. In Class C, the radio of an end node is always on. Hence, Class A is the most energy-efficient
with the highest downlink latency. Class C is the opposite, while Class B is the most balanced one.
In all three duty-cycle modes, LoRaWAN adopts ALOHA as the default MAC protocol [36]. With
ALOHA, end nodes transmit as soon as their packet is ready without synchronizing carrier sense
and time slot. Due to the poor performance of ALOHA in collision avoidance, we need to regulate
the duty cycle of an end node to 1% or less [23]. Besides widely adopted Cyclic Redundancy Check
(CRC), LoRa adds Forward Error Correction (FEC) to protect against transmission interference. In
FEC, we set the Code Rate (CR) to encode 4-bit data with 5-to-8-bit redundancies, increasing the
collision resilience by detecting and correcting errors in a MAC frame.

e App Layer: LoRa’s long-range communication capability inevitably renders itself susceptible
to wireless attacks launched from remote and hidden sites. For the App layer, authentication,
integrity, and encryption are achieved by using a couple of security keys pre-installed on end nodes
or generated during the over-the-air activation (OTAA) registration mechanism [134].

1.2 Taxonomy Methodology and Overview

Range ," § 4 PHY Layer “‘ ," § 5 Link Layer \“ {  §6 MAC Layer \} ," § 7 Driven Apps
i i H i
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Fig. 3. Taxonomy overview of down-to-top layers and performance metrics, followed by issues and trends.

As shown in Figure 3, to provide a whole picture for building an efficient LoRa networking stack,
we categorize research studies with a two-dimensional (2D) taxonomy. On the one hand, from the
down-to-top view of the LoRa networking stack, we divide current solutions by matching their
functionalities with those across PHY, link, MAC, and App layers. In each layer, techniques are
organized according to three fine-grained and representative research issues. We briefly summarize
the sub-branches of the specific research issues in each layer as follows:

e PHY Layer includes coding mechanisms, resolving collisions, and transmission security (§ 3).
Coding mechanisms (PHY-1) refer to techniques supporting weak/biased signal decoding at both
gateway and low-cost end node sides; Resolving collisions (PHY-2) contains the techniques en-
abling concurrent transmission; Transmission security (PHY-3) cares about device authentication
and jamming defense via PHY layer signal features.
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Table 1. The overview of existing studies in the 2D taxonomy.

PHY Layer: 1) coding mechanisms; 2) resolving collisions; 3) transmission security
PHY-1: RA [24, 26, 110], TP [79], EG [122]

PHY-2: TP [17, 26, 52, 111, 112, 117, 119, 121, 125, 126]

PHY-3: SE [51, 104, 118]

Link Layer: 1) link measurements; 2) link estimations; 3) parameter allocation

Link-1: RA [9, 10, 14, 45, 69, 85, 90, 120, 124], TP [69, 89], EG [69]

Link-2: RA [22, 69, 74], TP [40, 113], EG [107], SE [50]

Link-3: RA [8], TP [33, 76, 82], EG [28, 33, 37, 38, 66]

MAC Layer: 1) error correction; 2) data compression; 3) multi-channel access;

MAC-1: EG [6, 20, 78]

MAC-2: TP [34], EG [73, 127]

MAC-3: TP [15, 21, 36, 46, 100, 116, 134], EG [36, 100, 116], SE [42]

App Layer: 1) wireless sensing; 2) backscatter radios; 3) cross-technique communications
App-1: RA [16, 34, 48, 49, 58, 71, 84, 93, 104, 123, 128, 131, 132], EG [47, 84] , SE [25, 34, 70, 103]
App-2: RA [53, 88, 108, 109, 115, 115], TP [43, 46, 60, 108], EG [43, 88, 109]

App-3: RA [67, 68], TP [68, 75, 105]

e Link Layer consists of link measurements, link estimations, and parameter allocation (§ 4). Link
measurements (Link-1) focus on link behavior measurement in real deployment with commercial-
of-the-shelf (COTS) hardware; Link estimations (Link-2) indicate the adaptive link models and
corresponding estimation methods; Parameter allocation (Link-3) refers to the techniques to
achieve optimal link performance by adaptively adjusting link layer parameters.

e MAC Layer considers the research issues of error correction, data compression, and multi-
channel access. (§ 4). Error correction (MAC-1) refers to the coding techniques enabling data error
detection and recovery; Data compression(MAC-2) includes techniques that locally or globally
reduce the total amount of data transmissions to achieve efficient media access; Multi-channel
access (MAC-3) focuses on collision avoidance among the huge amount of end nodes.

e App Layer considers some new emerging LoRa-driven applications, including wireless sensing,
backscatter radios, and cross-technique communications (§ 6). Wireless sensing (App-1) contains
the applications like gesture recognition, human localization and tracking, object imaging, and
so on; Backscatter radios (App-2) refer to LoRa enabled backscatter hardware design for battery-
less applications; Cross-technique communication (App-3) focuses on the direct communication
between LoRa and other wireless techniques (e.g., Zigbee).

On the other hand, from a horizontal view, the motivations of existing studies emphasize
improving several common performance metrics, including communication range, network
throughput, energy consumption, and network security. And we wrap up existing studies with
their concerned performance metrics as follows.
¢ Range (RA): enhancing communication and sensing distance for extensive network scalability.
e Throughput (TP): increasing network throughput and guaranteeing network reliability for

low-cost network capacity.

e Energy (EG): reducing energy consumption for a long network lifetime.
e Security (SE): developing authentication, encryption and integrity for network security

We fill the existing studies into our taxonomy. An overview in Table 1 demonstrates the current
research focus in each layer. Based on the layers and performance of the existing works in our
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proposed taxonomy, we summarize some common open issues and challenges faced by the current
LoRa community, covering the scalability, capacity, lifetime, and security of LoRa networking.
Beyond reviewing the recent literature, we finally expound on our observed future trends for
pervasive LoRa deployments, from the advanced processing techniques (e.g., deep Al augmentation,
In-network processing) to sophisticated networking stack design (e.g., cross-layer design, stateless
network design). Our ultimate prospect is to provide a structured review of current LoRa research
advancements, inspiring researchers to resolve intractable open issues from new perspectives.
Survey Organization. Related surveys are discussed in § 2 to demonstrate the difference between
ours and them. Then, based on our 2D taxonomy, we expound current research studies in a down-
to-top manner from § 3 to § 6. Then, open issues and remaining challenges are demonstrated in
§ 7, followed by § 8 for future trends. We conclude our survey in § 9.

2 RELATED WORK

To compare our survey with the existing LoRa related surveys, we summarize them with taxonomy
and topic focus perspectives, as shown in Table 2.

Table 2. Summary of Related LoRa Surveys

Survey Taxonomy Topic focus

[94] [92] | standard goals and comparison and integration of LPWAN technologies
[106] [39] | specifications
[27] [97] | networking layers summary of existing LoRa research studies on networking
[44] [102] | performance metrics | summary of existing LoRa research studies on networking
[41] [64] | performance metrics | summary of LoRa sensing and localization methodologies
Ours networking layers + | summary of existing LoRa research studies on networking
performance metrics | and sensing

Raza et al. [94] present the emerging LPWAN technologies and the standardization activities from
the standards development organizations (e.g., IEEE, IETF, 3GPP, ETSI) and the industrial consortia
(e.g., LoRa Alliance, WEIGHTLESS-SIG, and DASH?7 alliance). Besides the standard specifications,
Qadir et al. [92] emphasize the need for horizontal integration of diverse LPWAN technologies.
By focusing on the well-deployed LoRa and NB-IoT in LPWANS, Sinha et al. [106] compare their
standard specified PHY features, network architecture, and MAC protocol, and the corresponding
system goals like Quality of Service (QoS), latency, communication range, and deployment cost, in
massive LPWAN application scenarios. Ghena et al. [39] observe that unlicensed LPWANS (e.g.,
LoRaWAN and SIGFOX) are not yet ready to connect massive IoT devices due to the limited capacity
of the unlicensed LPWAN:S. For the research issues on capacity and coexistence for ubiquitous
connectivity, potential network solutions are discussed from the design of PHY/MAC layers.

Beyond the standard specification-based surveys, Ertiirk et al. [27] and Saari et al. [97] illus-
trate the techniques of LoRa networking stack, then show the effectiveness of LoRa research
studies of different layers in a variety of application scenarios. Haxhibeqiri et al. [44] review the
research progress of LoRa and LoRaWAN on technical algorithms, simulatorsé&testbeds, evalua-
tions&improvements, and feature extensions, from 2015 to 2018. Sundaram et al. [102] expound
open issues in the LoRa community from power consumption, communication range, multiple
access, error correction, and security. By focusing on the performance measurements and current
solutions, recent studies are discussed on methodologies of link coordination, resource allocation,
channel coding, interference cancellation, and secure authorization. Moreover, considering the
research on LoRa driven applications, Gu et al. [41] and Li et al. [64] supplement recent studies on
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LoRa based sensing and localization techniques. Specifically, Gu et al. [41] exploit the physical layer
features of LoRa to optimize the localization accuracy. Li et al. [64] propose a generic processing
flowchart with diverse wireless signals and integrate deep Al techniques for ubiquitous sensing.

With more research opportunities and innovative advancements proposed since 2019, to the best
of our knowledge, none of the existing surveys presents a uniform and comprehensive taxonomy
from the LoRa networking stack to various performance metrics. Besides, it is different from existing
ones in that we categorize and compare scattered open issues and current solutions for the LoRa
based communication and sensing completely in Table 1. In this way, we hope this survey can
provide a comprehensive review of recent research studies on LoRa.

Remark. Overall, for the topic focus, some surveys [39, 92, 94, 106] focus on the performance
comparison among various LPWANS, rather than the cutting-edge research progress on open
issues in the LoRa community. Moreover, some surveys [27, 44, 97, 102] emphasize network
research studies while some others [41, 64] target on LoRa driven applications. None of them
provides a full-stack view of the research studies. For taxonomy, none of the existing surveys
demonstrates a 2D structured taxonomy to categorize existing research studies. Instead, most
taxonomies [39, 41, 44, 64, 102] contain only one storyline (e.g., networking layers, standard goals,
performance metrics), mixing each part. In contrast, we focus on the full-stack research studies
on LoRa networks rather than the specification comparison among various LPWAN technologies
or networking research without emerging applications. Additionally, we provide a 2D taxonomy,
rendering more connections and comparisons among different research studies, a significant step
towards achieving the whole picture of LoRa networking research.

3 PHY LAYER - EXPLORING CHIRP SIGNAL FEATURES

Research studies on the PHY layer rely on exploring chirp signal features in time, frequency and
energy domains. We summarize them with three main research sub-branches: coding mechanisms
for decoding weak/biased signals at both gateway and low-cost end node sides, resolving collisions
for concurrent transmission, and transmission security for device authentication and jamming
defense. These studies are concluded in Table 3.

3.1 PHY-1: Coding Mechanism

Problem Statement. LoRa’s PHY layer takes CSS modulation and dechirp demodulation to
enable symbol decoding under low SNR levels. Some research studies have observed the following
performance metric related problems:

e RA - Weak Signal Decoding. Though the CSS modulation enables a strong noise tolerance for
long-distance LoRa transmissions, Charm [24] observes that Transmissions from end nodes located
deep within buildings or in remote neighborhoods will suffer severe attenuation making the weak
signal unable to reach the closest gateway. To demonstrate the noise resilience of the CSS modulation,
as shown in Figure 5, we leverage the SX1278 based commodity devices and the USRP N210 platform
as end nodes and the gateway to generate and capture over-the-air LoRa transmissions. In dechirp,
by adopting FFT on the temporal LoRa signals, the energy of a chirp symbol can be focused at
a single tone on the spectrum [114], as shown at the bottom of Figure 4(a). Thus we can decode
the data bit by detecting the energy peak in the spectrum. As long as the communication distance
increases or the non-line-of-sight (NLoS) link appears, Figure 4(b) and 4(c) illustrate the noisy chirp
symbols by decreasing the Signal-to-Noise Ratio (SNR) gradually, where the energy peak can be
distorted, or even overwhelmed by nearby noise energy. To validate the SNR limit for a successful
dechirp, we add Gaussian white noise with controlled amplitudes to the I and Q traces of the
collected 4 million chirp symbols [111, 112] for a fine-grained SNR control. Figure 4(d) then shows
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Fig. 4. (a), (b) and (c): Dechirp suffers from the noise overwhelmed energy peak, rendering the increasing
symbol error rate at low SNR levels. (d) SER v.s. SNR under various configurations of SF and BW [65].

an increasing symbol error rate (SER) of dechirp as SNR goes down and renders the SNR limit for
configurations across SFs and BWs, under which the dechirp cannot guarantee a robust transmission.
Some research studies propose new coding mechanisms on rro—
weak signal decoding under low SNR levels to improve the i | Qﬂggmgf‘ o
communication range. Low Noise Ampifier
o TP - Biased Signal Decoding. The low-cost oscillators

may bring time and frequency jitters at end nodes during
their long-term and unattended deployment. At gateways,
the jitters converted to sampling frequency offset (SFO) and
carrier frequency offset (CFO) cause unreliable demodulation. Fig. 5. LoRa experimental hardware.
While we use a preamble to compensate initial SFO and CFO,

oscillator offset tracking is necessary to prohibit demodulation failure from oscillator fluctuation.
¢ EG - Decoding with low-cost end nodes. Since energy is a precious resource on low-cost
LoRa end nodes which are usually powered by non-rechargeable batteries. PHY layer consumes
considerable energy during down-link packet reception. For end nodes, it is a fundamental way to
save energy consumption with an energy-efficient decoding scheme.

Testbed Node:
SX1278MB1LAS Client
STM32L0 R8T6

Current Approaches. e RA: Inspired by using multiple antennas (e.g., MIMO) to improve SNR in
Wi-Fi and cellular communication, recent studies [24, 26] bring the diversity gains of distributed
MIMO on the uplinks in LoRa. Charm [24] proposes the idea of coherent combining decoding,
which coordinates multiple gateways to decode weak signals that are undecodable at any individual
gateway with the combined energy peak in the spectrum. Figure 6a illustrates how Charm enhances
the packet detection process, in which windows of the resulting peak ratio in the spectrum are then
combined for further threshold detection. Due to the extra signal gains of the geographical diversity,
it achieves up to 3X in range by capturing additional 1-3dB SNR gains with 2-8 gateways. Choir [26]
exploits the constructive signal correlation among 30 end nodes to make them simultaneously
transmit the same data packets to a faraway gateway, achieving a communication range expansion
by 2.65x than each one. The most recent work is Falcon [110], which leverages the fact that
low-SNR LoRa signals can introduce interference to other LoRa transmissions via destructive
signal overlapping. Thus, it provides emergency links for unreachable LoRa clients by selectively
interfering with other LoRa transmissions on the same channel, achieving 2.5X increment on
communication range.

o TP: Marquet et al. [79] design an offset tracking loop with two symbol-by-symbol estimators
for offset correction to avoid the impact of timing and frequency offsets on CSS modulation. The
simulation results show that the offset tracking loop can provide the same demodulation reliability

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:10 Chenning Li and Zhichao Cao

Window offset of Packet-A
|Window offset of Packet-B

|

| L & |
|

|

|

I

| Non-Stati
oown oo M/ le Wi/ v MMM oratonary

(b) Data FFT after multiplication M ‘
with a downchirp k

I g .
£ ‘ £ | prom 5’ |31H
¥

¥ (inta) fin Ha) (inHz) Down-Chirp

F(in He) i . athy
(€) Combining signals modulo 10Hz :é El
" ion” 1 i
‘Charm enhanced detection” < ® 0 @0
f(in Hz) Frequency Frequency Frequency

(a) Coherent Combining [24]  (b) Peak Ratio on the Spectrum [112]  (c) Non-stationary scaling [111]

Amplitude
4/

|41HL

Abs. FFT
Abs. FFT

Magnitude ~ Frequency

Fig. 6. PHY Layer: Processing on radio frequency signals by designed coding mechanism and physical features.

as the ideal case with a 0.4dB per-bit signal-to-noise ratio sacrifice.

o EG: Observing that the power consumption of core LoRa radio components (e.g., MCU, ADC) is
generally proportional to the operating clock rates [133], LiteNap [122] proposes a decoding method
for down-clocked LoRa symbol demodulation. By exploiting the timing information of phase jitters
and frequency leakages as physical fingerprints, it can uniquely identify an under-sampled chirp
and resolve ambiguities in symbol demodulation. LiteNap can downclock LoRa end nodes to 1/8 of
Nyquist rate, reducing the half energy consumption without affecting packet reception performance
(e.g., >95% packet reception rate).

Remark and Limitations. At the gateway side, existing demodulation methods [24, 26] can
provide 1dB - 3dB SNR gains with multiple gateways or end nodes rather than applying dechirp
on an end node’s signals received by a single gateway. Thus 2.65X - 3X communication distance
can be enlarged. The extra cost is the demand for deploying multiple gateways and co-located end
nodes. Additionally, biased signals’ time and frequency offset can be tracked and compensated
in a symbol-to-symbol manner [79] to guarantee transmission reliability. The limitation is to
keep the accuracy of the existing tracking method, and we need a little higher SNR than the
ideal cases without any offset. On the end node side, the energy consumption can be halved by
downclocking [122]. However, the downclocking works efficiently when the SNR is higher than 5dB,
thus sacrificing symbol reception’s sensitivity, leading to a tradeoff between energy consumption
and communication distance.

3.2 PHY-2: Resolving Collisions

Problem Statement. In LoRa networks, a star-of-stars topology is conventionally implemented
with thousands of nodes connected to a single gateway, resulting in a severe collision with the
overlapped transmissions [72, 117], especially in dense networks. Figure 7a gives an example to
illustrate the collided symbols from two end nodes (e.g., different colors and line types) on the
spectrogram. After dechirp, as shown in Figure 7b, multiple spectral energy peaks can be observed,
in which target peak (e.g., p, has to be larger than the other two interfered peaks). However, the
weak symbols can be buried by the strongest ones, leading to packet loss which impairs the network
throughput.

Current Approaches. e TP: The basic idea of current approaches is to disentangle the overlapping
symbols via their unique hardware, time domain, or frequency domain features. Choir [26] extracts
the frequency offset related to the hardware imperfections of LoRa end nodes to represent
the symbols from different end nodes, improving network throughput by 6.84x. However, recent
studies [111, 112, 121] observe that it is difficult to extract the hardware frequency offset accurately
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Fig. 7. Collisions prohibit weak signals from being decoded with dechirp, limiting the network throughput.

due to noises. Besides, the frequency offset of LoRa end nodes may be similar in a dense LoRa
network, rendering inevitable decoding failure. To recover collided LoRa packets with low SER
under diverse SNR levels, time-domain features [117, 119, 121] are extracted from periodical
chirp symbols to separate collisions. mLoRa [117] detects the collision-free symbols from the
beginning and decodes them iteratively via successive interference cancellation (SIC), achieving
3% network throughput improvement with up to three concurrent transmissions. Observing that
mLoRa [117] incurs significant latency for collided packets, OCT [119] achieves the online con-
current transmissions with three steps (i.e., preamble detection, Start-of-Frame-Delimiter (SFD)
detection, and packet decoding), enabling the comparable concurrency while reducing 67% time
delay. FTrack [121] jointly exploits the distinct frequency tracks with misaligned edges of periodical
LoRa symbols to separate collided symbols, boosting the network throughput by up to 3x.

To combat packet collisions by exploiting the intrinsic CSS modulation by concentrating energy
in the frequency spectrum, CoLoRa [112] translates the time offsets of the collided packets into
spectral peak ratio to concentrate energy as unique features, enabling extended communication
range under low SNR levels. Figure 6b gives an example of decomposing a two-packet collision with
packet time offset. When choosing a misaligned window, each chirp is divided into two segments
by two consecutive windows, delivering the frequency peak of incomplete chirp segments for each
window. Since the height of the peak is proportional to the length of the segment [111, 112], the
peak ratio between two peaks belonging to the same chirp with the same frequency is identical for
chirps of the same packet, while it is distinct for chirps different packets. Thus, by grouping chirps
with the same peak ratio, CoLoRa [112] can finally disentangle the collided packets. Illustrated in
Figure [111] with the incomplete chirp segments, NScale [111] further designs a non-stationary
scaling function to amplify the time domain signal within two consecutive windows, rendering
the controlled frequency peak with different peak scaling factors. Thus, it can improve the extra
noise resistance in the following iterative peak recovery algorithm, which only incurs SNR loss
<1.7 dB to original LoRa theoretically but improves the network throughput by 3.3x for low SNR
LoRa signals compared with other methods [26, 117, 121].

Besides the time-domain and frequency-domain features, SCLoRa [52] leverages multi-dimensional
information (e.g., amplitude and frequency offset) of chirps for symbol separation, rendering the
robust feature cumulative spectral coefficient. Besides, the channel fading, similar symbol boundary,
and spectrum leakage are also considered for accurate feature extraction, achieving a 3X network
throughput. Additionally, observing the quasi-orthogonality between up-chirp and down-chirp in
LoRa, FlipLoRa [125] encodes information with interleaved up-chirps and down-chirps instead of
only using up-chirps. Algorithms on chirp cancellation are further designed to reduce cross chirp
interference and decode packets iteratively, improving the throughput by 3.84x over LoRa physical
layer. Pyramid [126] tracks the variation of peak height for each chirp via a sliding demodulation
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window, achieving a 2.11x throughput improvement over the dechirp approach. Similarly, Align-
Track [17] also relies on the window alignment and energy peak height across all demodulation
windows for resolving collisions. Specifically, it decodes LoRa collisions with the least SNR loss as
a chirp is transformed to the highest peak with the aligned window. As a result, it improves the
throughput by 5.5% over the standard LoRa.

Remark and Limitations. Prior works on resolving LoRa collisions have followed a central
scheme: exploring the unique features of collided LoRa symbols in time domain [117, 119, 121],
frequency domain [26, 111, 112, 125], or both [52], achieve 2~14X network throughput improvement
with different SNR requirements. However, all of these approaches do not scale to the near-far
deployment where the distance from the transmitters to the receiver differs significantly from each
other. This is because, after dechirp, the weak reception from a remote transmitter produces a tiny
FFT peak that is likely to be buried by strong FFT peaks from LoRa nodes that are closer to the
receiver. Although SIC can be leveraged to deal with this near-far issue [26, 117], it functions only
in high SNR conditions (e.g., mLoRa [117] requires SNR > 5dB) to ensure strong transmissions can
be successfully recovered and then canceled out. This, however, sacrifices the noise resilience of
chirp signals and thus deviates the design principle of LoRa for long-range communication.

3.3 PHY-3: Security

Problem Statement. PHY layer attacks: Current LoRa networking mainly adopts message
encryption to ensure the security of end-to-end communication. For example, symmetric key
algorithms (e.g., AES-128) are adopted and implemented at MAC and App layers, rendering some
risky attacks from the PHY layer, such as the information leak of illegal LoRa end nodes and
jamming attack. Moreover, PHY layer features can benefit the end node authentication process.
Observing that the CSS modulation ignores the changes of other RF parameters (e.g., amplitude and
phase), CloakLoRa [51] builds a covert channel over LoRa PHY by modulating amplitudes of LoRa
chirps for sensitive information leakage, which is orthogonal to CSS modulation and transparent
to all encryption at upper layers. Evaluations with COTS LoRa end nodes show that the covert
information can be transmitted over 250m.

Current Approaches. EN authentication with PHY layer features: To secure the LoRa com-
munication by determining whether the received signal is conveyed from a legitimate LoRa node,
SLoRa [118] proposes two physical features, hardware-related CFO and multi-path based spatial-
temporal link signature, for LoRa node authentication. Experiments show a high authentication
accuracy for legitimate nodes by SLoRa, around 97% indoors (5~25m) and 90% outdoors (400m).
Additionally, Shen et al. [104] explore fine-grained time-frequency spectrogram of LoRa signals for
LoRa end node authentication. By compensating the estimated CFO to maintain the stability of the
extracted feature, an adaptive convolutional neural network (CNN) is designed for predictions as
the classifier, achieving the best authentication accuracy of 97.61% for 20 LoRa end nodes.
Remark and Limitations. With the abundant features of chirp signals, new side-channel at-
tacks [51] and authentication systems [104, 118] are proposed in LoRa networks. However, the
efficient range is relatively short in comparison with the communication range of LoRa links.

Table 3. Summary of Research Advancements in PHY Layer

Reference | Research Issue | Performance Metric Methodology and Algorithm

Charm PHY-1: Weak ) . Geographical diversity combination
[24] signal decoding RA: 3 default dechirp among 2~8 GWs
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PHY-1:  Weak Hardware diversity and constructi
Choir signal decoding; | RA: 2.65%; TP: 6.84% de- coarre;,:?efl tr:r?s:ni}s]s?on ocfocos-lglccatzg
[26] PHY-2: Colli- | fault dechirp EN's
sion resolving

Falcon PHY-1: Weak ) . data coding by selectively interfering
[110] signal decoding; RA: 2.5% default dechirp LoRa transmissions

. ) Timing of physical features (e.g., phase
I[Jllt;;?]ap (I:flﬁ_Icherll:c f:(;;gy EG: Half default CSS jitters and freq leakages) as fingerprints

& to identify modulated chirps

Marquet | PHY-1: Biased | TP: reliable as ideal with | Tracking slow varying timing and fre-
etal. [79] | signal decoding | a 0.4dB SNR loss quency offsets by symbols
AlignTrack BHY—Z: colh- TP: 5.5 default dechirp Wlndgw alignment gnd packet separa-
[17] sion resolving tion via the peak height
CoLoRa | PHY-2: Colli- ) . Take spectral peak ratio as feature to
[112] sion resolving TP: 14 default dechirp separate collided packets
FlipLoRa | PHY-2: Colli-| TP:  3.84x  default | Interleaving quasi-orthogonal up-
[125] sion resolving | dechirp chirps and down-chirps
FTrack PHY—Z: Colh— TP: 3x default dechirp Featurlr%g Cf)ntlnulty of frequency track
[121] sion resolving and periodical symbol edges
mLoRa P.HY_Z: .COHI- TP: 3% default dechirp | Iteratively decoding with SIC
[117] sion resolving
NScale PHY-2: Colli- | TP: 3.3x default dechirp | A noise-resistant iterative peak recov-
[111] sion resolving at SNR loss < 1.7dB ery for spectral ratio features
OCT PHY-Z: Colh— TP: 2~3x default dechirp Preamble dete'zctlon, SFED detection, and
[119] sion resolving packet decoding
SCLoRa BHY—Z: colh- TP: 3x default dechirp Rgbust cumulative spectral coefficient
[52] sion resolving with frequency and power features
Pyramid | PHY-2: Colli-| TP:  2.11x  default | Track the variation of peaks’ height via
[126] sion resolving dechirp a sliding demodulation window
Shen et al. | PHY-3: Authen- | SE: 97.61% accuracy with | Spectrogram based features and adap-
[104] tication ENs 20 ENs tive CNN
SLoRa PHY-3: Authen- | SE: 90% accuracy in 1
[118] tication EN's 400m distance CFO and temporal-spatial link features
CloakLoRa) PHY-3: ~ PHY SE: data leak over 250m | Modulate amplitudes of LoRa chirps
[51] layer attack

4 LINK LAYER - REAL DEPLOYMENTS AND ADAPTIVE CONTROL

LoRa promises a communication coverage spanning tens of kilometers. And a potentially large
number of unattended IoT devices can be covered by a single gateway with a simple star topology,
simplifying deployment, operation, and management cost of the communication infrastructure.
However, due to the low-power nature of LoRa transmissions, the performance of a LoRa link is
intrinsically dependent on the environment it traverses. So, how is the LoRa link performance in a
real deployment, and how to adaptively set link configuration are critical problems to guarantee the
delivery reliability and energy efficiency of LoRa end nodes? This section includes the literature that
focuses on three research sub-branches, including measurements, estimations, and configurations
of LoRa links. The existing research studies are summarized in Table 4.
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4.1 Link-1: Link Measurements in Real Deployments

Problem Statement. Although LoRa standard [4] specifies the theoretical link performance in
terms of its range, reliability, and energy efficiency. To empirically understand the capability of LoRa
links, some real systems are deployed in different environments. According to our performance
metrics, real deployment-based link measurements cover the communication range in outdoor and
indoor environments, link reliability in the mobile scenarios, and energy consumption.

Current Approaches. e RA: Petajajarvi et al. [90] report that the maximum ranges can reach
15km and 30km on ground and water by setting LoRa to end nodes on the roof-rack of cars
or radio mast of the boat and a gateway on a 24m tower. Liando et al. [69] show that the LoS
and NLoS communication ranges are 9.08km and 2km, respectively, in a campus environment.
Centenaro et al. [14] observe a communication range of 2km in an area of high-buildings. Wixted
et al. [120] observe the communication range varies from 1.6km to 2.2km in different directions in
the central business district. Bor et al. [9, 10] observe 100m and 2.6km communication range in
built-up environments and rural areas, respectively. Focusing on the indoor environments (e.g.,
office building, residential building, car park, warehouse), Xu et al. [124], Navarro et al. [85] and
Haxhibegqiri et al. [45] verify that the communication range can reach over 100m.

o TP: Petajajarvi et al. [89] show that the packet delivery ratio is above 96.7% and 95% when the
end nodes are static and mobile in a campus environment. Liando et al. [69] observe the packet
delivery ratio is higher than 85% when the speed of end nodes is between 50kmph and 80kmph.

¢ EG: Liando et al. [69] provide energy profiling of end nodes. Under the experimental setting (
e.g., 6 bytes payload, CR=4/8, BW=125kHz, and battery capacity 3.7V 2Ah), the measured lifetime
is 4.6 and 1.37 years with different SFs and transmission powers.

Remark and Limitations. LoRa link can provide more than 10km communication under LoS
environments (e.g., rural area, deploy gateway as high as possible). In contrast, the communication
range dramatically decreases to 100m under NLoS scenarios (e.g., urban area, high buildings, indoor
environment). However, the only communication range is not accurate enough to understand the
fine-grained coverage performance of the LoRa network due to the expensive cost of dense and
large-scale deployments. LoRa links are resilient to Doppler Effect. The end nodes’ lifetime is deeply
coupled with link configuration.

4.2 Link-2: Link Estimation Models and Methodologies

Problem Statement. Facing the dynamic physical-layer communication observed with the link
measurement studies, link estimation plays an essential role in guiding the link configuration and
upper-layer MAC protocol designs. We summarize the existing link estimation studies from two
aspects, link model and estimation methodology. We can utilize an accurate link model to estimate
the coverage of LoRa gateways before deployment and achieve reliable link communication by
adaptively adjusting link configuration. Meanwhile, an efficient estimation methodology can reduce
the overhead of on-site measurements for the model establishment and local computation at an
end node.

Current Approaches. Link Model: Existing studies focus on establishing a path loss model to
depict link behavior. Then, we can use the model to predict whether a packet can be receipted by
taking transmission power, antenna amplification, radio receiver sensitivity, and link distance as
input. Bor et al. [8], Losee [128], Toro-Betancur et al. [113], and Xu et al. [124] adopt the log-distance
path loss model, which uses a reference path loss at dy a loss coefficient to calculate the path loss.
Demetri et al. [22] utilize the Okumura-Hata empirical model, which uses different empirical
functions for urban and rural areas. DeepLoRa [74] utilizes Bi-LSTM (Bidirectional Long Short
Term Memory) to develop a land-cover aware path loss model.
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Link Estimation Method: With a log-distance path loss model, for a different environment, we
need to collect measurements of the path loss at different distances to determine dy and the loss
coefficient with data regression. The more data we collect, the more accurate the model is. The
loss coefficient is hard to be reused in a different environment, even with the same land-cover type.
An end node needs to know the distance between it and the gateway to estimate its link path loss
with the model. With the Okumura-Hata model, Demetri et al. [22] use the multi-spectral images
from remote sensing to classify the landscape along with a link, then determine which empirical
function should be adopted. There is no site survey cost, but we need to label the land cover in
the interested area and train a land-cover classifier. A validation on 8,000+ samples from a real
dataset shows that this automated approach predicts the expected signal power within a ~10dBm
error. DeepLoRa [74] needs to collect more training data (e.g., 30,000 packet records) to train the
DNN model. A land-cover classifier is required as well. Then, when we move to a new gateway, the
original trained model can be fine-tuned with a relatively small data set—the estimation error to
less than 4dBm. With the latter two models, we need a specific position of an end node beyond the
distance since the land cover along the link should be known in advance. The link estimation can
also be used for security protection, such as the undecodable collided packets with synchronized
jamming chirps at high power [50]. To separate LoRa chirps from jamming chirps, Hou et al. [50]
leverage their difference on the received signal strength in the power domain, effectively protecting
LoRa gateways from the jamming attacks.

Remark and Limitations. Log-distance path loss model, Okumura-Hata model, and DNN based
model are adopted to depict the link path loss. We need different methodologies to establish and
utilize these models for link estimation. The most accurate path loss estimation error can reach
4dB, achieved by DeepLoRa [74]. In Demetri et al. [22], the site survey is not needed anymore if
we have the relatively low overhead remote sensing image to achieve a lightweight estimation
method. Besides these centralization link estimations, how to enable a distributed link estimation
on the end node is a challenging and untouched research issue due to the balance between model
accuracy and methodology cost facing the long-term deployment requirement of LoRa end nodes.

4.3 Link3: Adaptive Link Parameter Allocation

Problem Statements. Given the direct link between the LoRa nodes and gateways, various
transmission parameters can be allocated to ensure efficient and reliable communication (§4.1).
For example, a LoRa device can be configured with different SFs, BWs, CRs, and transmission
power from 0dBm to 14dBm [20], resulting in over 6,720 possible settings [8]. Mahmood et al. [76]
further analyze the scalability issue of a LoRa network under the imperfect orthogonality of SFs,
quantifying the interference by co-SF and inter-SF with 1,500 devices. This section discusses how
to adapt the link parameter allocation to minimize transmission energy cost while meeting the
required communication performance.

Current Approaches. The impact of link parameter allocation. Recent advancements for
adaptive parameter allocation start from the link measurements evaluation on the impact of various
transmission parameters and environmental factors for the optimal parameter allocation. For
example, Angrisani et al. [5] evaluate the coverage and throughput with varying SF, BW, and CR
and expound the relationship and trade-off. Meanwhile, five performance measurements in the
wild [12, 57, 62, 81, 86] further investigate the performance with different parameter allocations in
various environments (e.g., mountain regions) and emphasize the necessity of adapting transmission
parameters with the deployed environment. For example, Cattani et al. [12] focus on communication
reliability and energy efficiency and conclude that the packet reception ratio of the fastest parameter
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allocation is only 10% lower than the slowest one for LoRa end nodes far away from the gateway.
And the received signal strength is decreased by 6dBm at 60°.

Adaptive parameter allocation mechanism. To adapt the link parameter allocation for optimal
performance, Bor et al. [8] develop a link probing regime for quick parameter allocation, which
uses only 44% more energy than the state-of-the-art to balance the network performance and
energy consumption. FLoRa [107] further develops an open-source framework for end-to-end
LoRa simulations. It implements and optimizes the Adaptive Data Rate (ADR) mechanism to
dynamically manage link parameters for scalable and efficient network operations on LoRa. Besides,
several adaption mechanisms are inspired from observations on specific parameters and problems as
follows. 1). Observing the critical confliction induced by SF 3, ShuttleNet [82] employs the K-Nearest
Neighbors algorithm to adapt the SF configuration based on the current link condition, achieving
1.58x throughput improvement against existing SF selection algorithms [8, 107]. 2). Given hundreds
of operating frequencies to choose from for LoRa transmissions, Chime [33] identifies an optimal
operating frequency for LoRa radios by coherently combining phase measurements from multiple
gateways. A wide-area deployment at CMU (0.7x0.5 km?) shows a net increase in battery-life of
1.4-5.7 years (230%) and network throughput by 3.3X compared to commodity LoRa. 3). Observing
the unfair energy consumption across end nodes with various parameters, EF-LoRa [37] further
formulates the parameter allocation as a max-min optimization problem for energy efficiency’s
fairness. As a result, it carefully allocates different network resources (e.g., frequency channels,
SFs, and transmission power) and improves the energy fairness of legacy LoRa networks by 177.8%.
4). Beyond the designed parameter selections via a heuristic method, Fahmida et al. [28] enable a
low-cost offloading with a lightweight MAC protocol for peer-to-peer communication, in which
LoRa nodes with depleting batteries offload packets to the neighboring nodes with affluent energy.
As such, it increases the network lifetime up to 4x while maintaining the same throughput as
the traditional LoRa network. 5). To further extend the communication range of LoRa, Flauzac et
al. [31] propose a new LoRa to LoRaWAN relay protocol for data collection from isolated end nodes
which cannot join a LoRaWAN gateway.

Remark and Limitations. The link parameters can be configured based on the global knowledge
of the network (e.g., the location of the devices) [107]. Though LoRa links are robust and resilient by
design, it varies significantly while deploying in real environments. The dynamic link channel brings
new challenges and potential improvements for parameter allocation in real-life applications [38, 66].
To adapt the dynamic link quality of end nodes, AdapLoRa [38] first periodically adjusts the resource
allocation by estimating the corresponding network life, improving the lifetime by 23.7% against
the state-of-the-art works [37]. We believe its performance can be further improved with a detailed
measurement of the dynamic LoRa links to understand the relationship between the parameter
allocation and performance.

Table 4. Summary of Research Advancements in Link Layer

Reference | Research Issue | Performance Metric Methodology and Algorithm
Petajajarvi | Link-1: Link | RA: 15 km and 30 km
etal. [90] | measurement | on ground and water

Bor et al.| Link-1: Link | RA: 100m built-up and | ENs: 1.5m above floor; GW: 3 floor

ENs: car and boat; GW: 24m tower

[9, 10] measurement 2.6km rural area windowsill in built-up
[85], [124], | Link-1: Link | RA: about 100m indoor | Static ENs deployments at different
[45] measurement | communication distance with different obstacles

3 A larger SF provides higher network reliability at the cost of lower throughput.
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Petajajarvi | Link-1: Link | TP: 95% PRR of mobile | Compare the PRR of static and mobile
et al. [89] | measurement ENs ENs.
Liando et | Link-1: Link | RA: 2-9.08km; TP: 85% e
al. [69] measurement PRR; EG: 1.37-4.6yrs 50 ENs and 3 GWs on 3 building roofs
Centenaro | Link-1: Link BA: 2km in high build- GW: two storey building roof
etal [14] | measurement | ings
Wixted et | Link-1: Link | RA: 1.6km-2.2km in .
al. [120] measurement CBD area ENs: mobile on foot; GWs: 7-floor roof
DeepLoRa | Link-2: Long | RA: Estimation error of | Bi-LSTM model for path loss estima-
[74] link estimation | <4 dB tion of long links in the wild
Demetri et | Link-2: Auto. | RA: ~10dB error with | Toolchain on landscape based link
al. [22] link estimation | 20~40dB of others modeling from remote sensing images
Link-2: LoRa | SE: Synchronized jam- | Separate LoRa chirps from jamming
N. Hou et . . . . . .
al. [50] Jamming and | ming chirps jam all pre- | ones by the difference in the received
' defences vious solutions signal strength in the power domain
ToroBe- Link-2: Link | TP: device-level packet Q.uantlfy tbe capture effect, duty cy-
tancur et . . . . . cling, multiple GWs, and shadow fad-
estimation delivery ratio modeling | .
al. [113] ing on performance
AdapLoRa | Link-3: Param- | EG: 123.7% lifetime | Periodically estimate lifetime via a lin-
[38] eter adaptation | over EF-LoRa [37] ear regression for energy fairness
Angrisani | Link-3: Param- | RA: Packet loss in | The distance, payload, and preamble
et al. [5] eter allocation | larger BWs, lower SFs | are set to 10m, 1 byte, and 8 symbols.
Cattani et | Link-3: Param- RA: 10% variance on Conclufie .selectmg high data rate and
. packet reception ratio | transmission power for ENs far away
al. [12] eter allocation . .
for parameters from GWs in diverse environments
Chime[33] Link-3: Freq. | EG: 230%(1.4~5.7 yrs); | Coherently combine phase info at
adaptation TP: 3.3% / 3.4 dB gains | multi-GWs for multi-path estimations
DyLoRa Link-3: Param- | EG: 41.2% improve- | Model energy efficiency by SER/PDR
[66] eter adaption ment over ADR [107] | with transmission parameters
EF-LoRa Link-3: Param- EG: 177.8% of the | Allocate network resources,‘ (e'.g.,
. legacy LoRa on energy | freq channels, SFs and transmission
[37] eter allocation - . .
fairness power) via greedy resource allocation
Fabmida | Link3: Param- | 00 o O ey ooading and o hearisie
et al.[28] eter allocation gacy P &

same throughput

method for parameter allocation

Flauzaci et

Link-3: Param-

RA: A relay protocol on

A LoRa-LoRaWAN relay protocol

al. [31] eter allocation | out-of-range ENs with synchronization
Link-3: Adap-| EG: Increase reliabil- | Implement the ADR on LoRa to dy-
FLoRa . . . . .
[107] t%ve configura- | ity / energy efficiency nam}cally manage link pgrameters for
tion against legacy ADR efficient network operations
Mahmood | Link-3: SFs’ or- | TP: 15% drop for 1500 | Inference modeling and measure-
et al.[76] thogonality devices in a channel ments on co-SFs and inter-SFs
ShuttleNet | Link-3: SF con- TP: 1.58% aga%nst exist- | K-Nearest Neighbors a.ngorithm to
[82] figuration ing SF selection algo- | adapt the SF configuration based on

rithms [8, 107]

the current link condition
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5 MAC LAYER: DATA TRANSMISSION CONTROL AT SCALE

LoRa networking is specially designed and well-suited to support low data rates, delay tolerance,
and battery-powered IoT devices, which excludes LoORaWAN from using the Listen-Before-Talk
(LBT) mechanisms commonly used in wireless communication technologies, such as WiFi and
ZigBee [119]. Thus, current LoORaWAN uses the ALOHA mechanism with the duty-cycle setting
for media access control. As the LoRa network scales up, we review several core research problems
induced by the increasing number of end nodes and unscheduled radio transmissions, including
error correction, data compression, and multi-channel access. And recent solutions are expounded
aiming for optimal throughput and energy efficiency by focusing on the massive data transmission
incurred channel contention in the MAC layer, illustrated in Table 5.

5.1 MAC-1: Error Correction for Corrupted Packets

Problem Statements. Conventional wireless communication systems are typically designed for
a single transmitter-receiver pair in each link, which is often overly pessimistic for LPWANs
in terms of link budget as the network scales up [6]. And multiple co-located networks will
cause interference in unlicensed spectrum, requiring extra re-transmissions for those corrupted or
lost packets. Beyond exploiting physical features of LoRa packets in the PHY layer for collision
resolving [46, 111, 112, 121], another way to avoid the re-transmissions is to recover those corrupted
packets from being discarded for energy efficiency.

Current Approaches. e EG: Recent works mainly utilize the data redundancy for error correction
in corrupted packets. For example, DaRe [78] combines the convolutional and fountain codes
to explore the spatial (i.e., frame loss over distance) and temporal (i.e., burstiness of frame loss)
information of LoRa communication channels. As such, it exploits the redundant data from the
other received frames for data recovery. Compared with a naive repetition coding method of LoRa,
DaRe reduces up to 42% of energy consumption, with a significant recovery rate of 99% at a CR=1/2
when the frame loss is up to 40%. Observing the correlations of packets across multiple gateways,
OPR [6] collects those corrupt packets that suffered failed CRCs in the network service and groups
them based on geographic proximity and reception time for efficient recovery. The rationale is that
even though these packets may fail integrity checks, they often fail in a disjoint manner due to the
spatial diversity in the receivers, which can be recovered opportunistically by collaborating multiple
gateways. Wide-deployed evaluations at CMU over a 10 km? area demonstrate that up to 72% of
packets can be corrected that usually would be dropped (when received by multiple gateways),
improving the battery life by removing the need for costly re-transmissions. LoRaFFEC [20]
combines the error correction with a fragmentation mechanism using Low-Density Parity-Check
(LDPC) by incorporating a new coding mechanism[35]. By exploiting the Forward Error Correction
(FEC) redundancy at the cross-packet level, it obtains a better application Data Delivery Rate (DDR)
of >98% for energy efficiency. WiChronos [100] further proposes the error detection and correction
mechanisms for timing-induced bit errors (e.g., anchor symbol loss, processing time error, clock
skew error, and propagation error). Thus, it achieves 100% accuracy of received data even in the
presence of timing error.

Remark and Limitations. While exploiting the data redundancy, the processing latency and
security issues can be induced without appropriate system designs. For example, Sandell et al.
[99] prove a limit to what can be recovered by introducing the redundancy for DaRe [78]. Besides,
OPR also analyzes its compatibility with LoRaWAN’s security model. By only intercepting traffic
between the gateways and the network server, the newly recovered payloads can then be validated
on the network server without further security issues. Meanwhile, OPR does not assume knowledge
of the device-specific root keys (NtwKey and AppKey) for its system design. Diving into the lower
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Fig. 8. Network-level data transmission control in the MAC layer.

layer from the MAC, future studies can study the impact of how the underlying structure of chirp
spread spectrum coding could be used to search the possible error codes efficiently [6]. For example,
those particular symbols are much more likely to fail in a specific manner. Another direction for
error correction in the MAC layer is to explore the trade-off of how much information is indeed
gained from the redundant data by additional frames [78] or receivers [6]. Thus, a system should
expand or refine the number of bits it can error-correct based on the number of redundant data
sources, which could be beneficial in systems with extremely low SNR ratios like what one might
expect with backscatter LoRa devices [6].

5.2 MAC-2: Data Compression for Efficient Transmissions

Problem Statements. The core of LoRa networking is to connect massive low-cost devices
widely to conduct an in-depth analysis of the collected data. Given the densely deployed IoT
devices and correspondingly massive data, it expects flexible connection, real-time control, and
data optimization, especially for the transmission and integration with the cloud enormously [2].
Multiple communication channels are required with high bandwidth of network infrastructure
between gateways and the cloud server for the cloud radio access, rendering potential network
congestion and increased cost due to the Internet data usage.

Current Approaches. ¢ EG: The data compression is a well-used method for efficient transmissions.
For example, Nephalai [73] proposes a compressive sensing-based LPWAN packet acquisition
mechanism by designing a customized design dictionary to demodulate compressed PHY samples
in the cloud with (joint) sparse approximation. Experiments with four gateways show up to 93.7%
of PHY samples can be reduced, extending the battery lifetime of embedded LoRa nodes to 1.7.
To reduce data transmissions between sensor nodes and gateways, Joltik [127] applies recent
theoretical advances in universal sketching [11] to induce nodes to report a compact summary
of sensed data for a variety of statistical summaries. Figure 8a shows the difference between the
traditional data collection and Joltik. By completing the aggregation over significantly more sensed
samples, Joltik compresses them within a single packet transmission and can further compute
a wide range of unforeseen metrics without additional energy overhead at the sensor. Such an
energy-efficient analytic provides up to a 24.6x reduction in energy cost compared to transmitting
raw data. Analogous to Joltik on the sensor data compression, QuAiL [34] exploits the coherent
construction of concurrent transmissions from multiple sensor nodes. Thus it can quickly estimate
the spatial distribution of sensed data across sensor nodes at the base station. Figure 8b gives an
illustrative example for the distribution construction of sensor data, in which massive temperature
sensors are supposed to be queried to obtain a spatial heatmap of the current impact of the forest
fire quickly. QuAiL first relies on the high degree of spatial correlation of sensor heatmaps, which
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is sparse in linear domains such as the Discrete Cosine Transform. Then, by recovering the top-n
most significant non-zero terms (e.g., vy, - - - ,vy) of this linear domain quickly from distributed
low-power sensor nodes, the contribution of each sensor node can be computed locally to each of
these n terms. For quick estimation at the base station, each sensor node can concurrently transmit
n orthogonal codes at powers weighted precisely by the n terms efficiently, which can be coherently
constructed at the base station. Evaluations in a wide-area area of 3 km? show QuAiL [34] achieves
4x faster aggregation of representation of forest fire maps from over 30,000 unique locations when
the same number of queries are used over individual sparse sampling.

Remark and Limitations. Inspired by the compression-based transmission in LPWANS, the
massive data from densely deployed IoT devices also presents a promising opportunity for highly
data-intensive machine learning algorithms, including deep learning. This will allow the vast
computation resources at the edge and cloud to leverage rich sensed information for various
applications while maintaining the energy efficiency of individual sensors [127].

5.3 MAC-3: Enable Multi-channel Access

Problem Statements. Though the adopted primitive ALOHA mechanism guarantees the deploy-
ment simplicity and the battery longevity, it inevitably disables the channel sensing, which suffers
from massive collisions when LoRa end nodes grow sharply in this era of IoT. And a growing body
of researches [7, 94] shows that the scalability of LoRaWAN does not live up to the marketing claim
that a single gateway can handle many thousands of end nodes [21].

Current Approaches. Specially designed carrier sense mechanism: To improve the network
throughput and energy efficiency by exploiting the disabled Carrier-Sense Multiple Access (CSMA)
scheme from ALOHA in LoRaWAN, LMAC [36] explores the channel-selective carrier sense capa-
bility of the PHY feature called Channel Activity Detection (CAD), designed for energy-efficient
preamble detection. An extensive measurement study shows that CAD can detect the occupancy of
a logic channel due to an ongoing frame transmission, with more than 95% accuracy. By balancing
the communication loads among channels defined by frequencies and SFs, LMAC [36] designs
an efficient CSMA-based LoRa MAC (LMAC), achieving 2.2X goodput and 2.4X reduction of ra-
dio energy per successfully delivered frame on a 50-node lab test-bed and a 16-node university
deployment. However, CAD can introduce false negatives for medium sense via direct preamble
detection [116], as packets can take a long to transmit. p-CARMA [116] combines CAD with
principles of persistent-CSMA (p-CSMA) [63] to evade collisions with neighboring end nodes via a
p-value based probability estimation. As such, it reduces 37.31%—58.17% of energy consumption
against the LoRaWAN. By exploiting the data features with deep learning, DeepSense [15] designs
two tailored DNNs for carrier sense and configuration recognition. A comprehensive evaluation
at the campus-scale deployment achieves a 1.7x of the number of locations connecting to the
campus-wide network.

Specially designed coding mechanism: We can also design unique coding mechanisms for
collision avoidance from multiple sensor nodes. Illustrated in Figure 8c, NetScatter [46] presents
a distributed CSS coding by assigning a different cyclic shift of the chirp to each concurrent
device. In comparison with the traditional CSS systems, which use various cyclic shifts to convey
bits, NetScatter uses ON-OFF keying over these cyclically shifted chirps to convey bits. For
example, the presence and absence of the corresponding cyclic shifted chirp correspond to a
‘1’ and ‘0’ bit, respectively. Incorporating the CSS and ON-OFF keying enables hundreds of end
nodes to concurrently transmit on the same frequency band, achieving throughput and latency
improvements of 14~62% and 15~67X over existing approaches. A similar ON-OFF keying-based
coding mechanism is also adopted in the battery-free backscatter radios [43, 88], achieving a low
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data rate but extremely long-range communication (§6.2). Different from NetScatter’s ON-OFF
keying-based coding, WiChronos [100] encodes information in the time interval between two
narrow-band symbols, in which two anchor symbols are transmitted for per message, and the
data modulates the duration between them. To further alleviate issues on scalability and reliability
of ALOHA-based MAC layer, On the one hand, Zorbas [134] combines time division protocols
with efficient slot allocation mechanisms, rendering a LoRa(WAN)-based time-slotted protocol as
alternatives to ALOHA. Multiple parameters and characteristics of LoRa can be considered (e.g.,
the radio duty cycle, transmit power restrictions, scheduling, battery lifetime, and security), and a
time-slotted frame structure is proposed based on the experimental time-slotted LoRa platform. On
the other hand, FLIP [21] proposes the first fully distributed and open architecture for LoRaWAN
gateways. By transforming LoRa gateways into a federated network that provides inherent support
for roaming while tackling contention using consensus-driven load balancing, FLIP [21] decreases
channel utilization by 45% against independent gateways while allowing 20% more devices to join.

Remark and Limitations. The security issues are still a challenge for multi-channel access. Given
the LoRaWAN’s delay-inherent, low duty cycle, scarce bandwidth, and wide-area star topology, it
prefers the sync-free approach for up-link data timestamping, which can suffer from the frame delay
attack consisting of malicious frame collision and delayed replay. As such, the multi-channel access
cannot be coordinated as scheduled. To secure such a sync-free approach, LoRaTS [42] estimates
the inherent frequency biases of the end nodes for the awareness of the frame delay attack and
securing multiple timestamp-sensitive applications. However, how to recover the timestamp under
attack is challenging and needs further study. Meanwhile, DeepSense [15] verifies the feasibility
of adopting deep learning techniques in LoRa networking (e.g., carrier sense and configuration
recognition). Unfortunately, the borrowed WaveNet [87] of DeepSense from speech synthesis lacks
prior knowledge of CSS modulation, making it ineffective to deal with more complicated tasks.
(e.g., the demodulation of LoRa at extremely low SNRs) We believe it is promising to incorporate
the data-hungry deep learning techniques with the data-abundant LoRa deployments (§8.1).

Table 5. Summary of Research Advancements in LoRa on Data Transmission Control in the MAC Layer

Reference | Down-to-top Performance Metrics | Methodologies and Algorithms
MAC-1: Lost | EG: Save 42% of con- Explore spatlal and te.:mporal features f)f
DaRe [78] . frames via convolutional and fountain
frame recovery suming energy codes
LoRaFFEC | MAC-1: Error cor- | EG: Data delivery | Combine error correction with the frag-
[20] rection rate>98% mentation for data redundancy
OPR [6] MAC-1: Recovery | EG: Correct 72% pack- | Detect error bits via RSSI and combine
on corrupted bits | ets in failed CRCs multiple GWs coherently
Joltik MAC-2: Universal | EG: 24.6x reduction | Sensor nodes report compact data for
[127] sketching for data | in energy against raw | massive statistical summaries to reduce
compression data transmission memory and computation
. | MAC-2: Compres- | EG: 1.7X battery life | Customized dictionary to exploit the
Nephalai | ", . )
(73] sive sensing based | with 87.5% PHY sam- | structure of LPWAN packets and sparse
cloud radio access | ples compressed approximation for PHY samples
. MAC-2: Compres- | TP: 4X faster informa- | Enable base stations to simultaneously
QuAiL . . . . .
[34] sion for fast infor- | tion retrieval from 30k | find approximate responses to types of
mation retrieval unique locations queries on aggregate sensed data

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:22 Chenning Li and Zhichao Cao
DeepSense| MAC-3: DL carrier | TP: 4% data-rate in 21 | Transform processing function; spec-
[15] sense LoRa configurations | trogram+CNN / dilated CNN + RNN
D. Zorbas | MAC-3: Time- | TP: Parameters from | All parameters of LoRaWAN to be con-
et al. | slotted protocols | the Aloha to a time- | sidered and a frame structure for the
[134] for access slotted protocol time-slotted LoRa(WAN) protocol

MAC-3: Con- | TP: Improved con-| Transforms LoRa GWs into a federated
FLIP[21] | tention manage- | tention management | network for inherent support roaming
ment for access with 20% more ENs by consensus-driven load balancing.
LMAC MAC-3: Efficient | TP: 2.2%x;EG: 2.4X per | CAD feature to detect payload chirps
[36] carrier-sense multi- | successfully delivered | and LoRa CSMA to balance communi-
ple access frame against ALOHA | cation loads among multiple channels
LoRaTS MAC-3: Frame de- | SE: Efficient aware- | Track the inherent freq biases of the
[42] lay attack and the | ness of attack over 50, | ENs for the detection of the frame delay
defense 000 m? attack which induces extra freq bias
NetScatter | MAC-3: Dis- | TP: 14~62X with con- | Combining coding of CSS and ON-OFF
[46] tributed CSS current 256 ENs keying for concurrent transmissions
. MAC-3: Time- | TP/EG: 60% battery | Improve spectral efficiency by minimiz-
WiChronos | o . .
interval modula- | life improvement at | ing symbols per message / bound tim-
[100] . ) N : . .
tion for access distance of 800m ing induced bit errors with correction
p- MAC-3: Channel | TP: 5.25x% scaling up; | Combine CAD with persistent-CDMA
CARMA | activity recogni- | EG: 37.31%~58.17% | to evade collisions across ENs via p-
[116] tion less than LoRaWAN | value opportunistic estimation

6 APP LAYER: ENABLING LOW-POWER & LONG-RANGE APPLICATIONS

Given the uniquely low-power long-range LoRa, several research problems and solutions are
inspired by applications and deployments to integrate and tailor the LoRa techniques. And we
expound on the mainstream LoRa-driven applications in Table 7, such as the long-range wireless
sensing, low-power backscatter radios, and cross-technology communication, with sub-branches
on methodologies in Table 6.

Table 6. Summary of Methodologies on LoRa Driven Applications

Wireless Sensing: Activity Recognition (e.g., drone state, human recognition ) [48, 49, 123, 131],
Target Localization (e.g., human, gesture, bike) [16, 41, 58, 84, 128, 131, 132], Sensing Heatmap [34]
Backscatter Radios: CSS Coding Mechanism [46, 109, 115, 115], Ambient LoRa Transmissions
as the Excitation Signals [43, 53, 60, 84, 88, 108]

Cross-tech Communication: BLE to LoRa [67, 68], ZigBee to LoRa [67, 105], LoRa to WiFi [75]

6.1 Wide-range wireless sensing augmented via LoRa techniques

Problem Statement. Recently, wireless sensing has been well studied due to its promising progress
in human-machine interaction, enabling various smart applications, such as gesture recognition, hu-
man localization, and pose estimation [64]. However, current wireless systems (e.g., WiFi, acoustics,
and UWB) are restricted by their sensing range and power consumption, hindering their wide-area
deployment in the wild. For example, the maximum localization range can be 10 —35m for WiFi and
UWB while it only reaches a couple of meters for acoustics and ultrasound [129]. Therefore, LoRa
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based sensing attracts many research interests. And the main problem is to enlarge the sensing
range while guaranteeing decent accuracy and security for the applications.

Current Approaches. e RA: As the first localization system that consumes microwatts of power
at a mobile device, pLocate [84] achieves a long-range low-power 3D localization by extracting the
phase information from the weak backscattered signals via commercial LoRa devices. Real-world
deployments show that pLocate achieves an accuracy of 2, 12, 50, and 145cm at ranges of 1, 5, 30,
and 60 m, respectively, with a sub-centimeter-sized IoT platform. Observing the Doppler frequency
shift distortion from moving targets on the LoRa based localization, Marvel et al. [132] fuse the
backscatter-based sensing estimation with the IMU measurements, achieving a mean error of 0.8m
against 2.45m for pLocate [84].

To further broaden the LoRa sensing area actively, on the one hand, WIDESEE [16] incorporates
drone’s mobility with the long-range propagation characteristic of LoRa for wide-area human
detection and localization, with the localization error of 4.6m at a building with the size of 20x42x85
m?3. On the other hand, to alleviate the noise of long-distance transmission, Zhang et al. [131] extract
the noise-resilient and offset-free ratio of signals to model the fine-grained target movements (e.g., a
subtle 5mm chest displacement for human respiration). Thus it achieves accurate respiration sensing
and human tracking with a distance of 25m and 30m, respectively. Following Zhang et al. [131] on
noise reduction, Sen-fence [123] creates a virtual fence to constrain sensing area to mitigate the
interference of multi-path and shadowing effect, which maximizes the movement-induced signal
variation for analysis and achieves a 50 m sensing range for fine-grained respiration monitoring.
Note that Sen-fence can even detect human respiration even through 5 concrete walls at a distance
of 9.3 m due to the strong penetration capability of LoRa.

Beyond human-centered sensing, LoSee [128] delivers the LoRa-based long-range tracking system

for the shared bike’s route by quantifying the relationship between the Packet Delivery Rate (PDR)
and Signal to Noise Ratio (SNR). A campus-scale experiment shows that LoSee achieves the tracking
range radius of 1,031 m with up to 423 bike nodes. Furthermore, SateLoc [71] applies well-known
fingerprinting-based localization on LoRa signals and achieves a wide-range localization over
a 227,500 m* area, with a median localization error of 47.1m. By incorporating the land-cover
type in satellite images across multiple gateways, SateLoc adaptively gets an accurate path loss
of an arbitrary LoRa link and generates a virtual fingerprinting map to associate the physical
locations with the distributed link estimations. QuAiL [34] renders a real-time heatmap of sensed
data by exploiting the coherent construction of concurrent transmissions across sensor nodes at
the base station to enable a larger sensing area. And a wide-area deployment at the campus of CMU
demonstrates the feasibility of the quick spatial sensor heatmap generation over 3 km?.
o SE: The long-range communication of LoRa also poses security threats for wireless sensing on
information disclosure. For example, EMLoRa [103] launches the long-range EM convert channel
attack via LoRa signals. Its transmitter is a user-space malware that can encode sensitive data of the
infiltrated system by shaping memory Electromagnetic Radiation (EMR) into LoRa-like chirps. On
the receiver side, a low-cost, portable software radio can decode EM chirps to exfiltrate sensitive
data from a long distance or behind an aggressive shield. In comparison with prior EM covert
channels, EMLoRa boosts communication range by 20x and improves attenuation resilience by
up to 53 dB due to the interference-resilient CSS mechanism of LoRa, making existing defenses
ineffective (e.g., range limitation, shielding). To secure its communication via LoRa, QuAiL [34]
establishes a secure transmission for real-time sensing heatmap to specific attacks (e.g., passive
eavesdrop, side-channel information disclosure) by randomizing the weights of individual sensors
in signal processing.
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We further discuss some studies on applying blockchain techniques on low-power IoT scenarios

for security issues [25, 54, 70, 98]. To resolve trust issues between application customers and
network operations, Lin et al. [70] build a trusted, decentralized LoRaWAN server architecture
to verify that the data of a transaction has existed at a specific time in the network. In addition,
it enables large-scale deployments of LoRa in the wild, such as animal tracking, fleet tracking,
asset tracking, smart parking. Dorri et al. [25] further propose a blockchain-based smart home
framework by thoroughly analyzing its security on fundamental security goals of confidentiality,
integrity, and availability.
Remark and Limitations. LoRa technologies featuring long-range communication capability and
low power consumption enables the long-range sensing applications for IoT consisting of many
geographically distributed objects. A variety of studies mainly focuses on algorithm design and
signal processing to enlarge the sensing range and optimize the performance securely. However,
they underperform due to the current commodity LoRa hardware (e.g., low-resolution internal
time counter) [41], which can be a promising direction for the research progress. For example,
TinySDR [47] designs the hardware and protocol of a newly low-power Software Defined Radio
(SDR), rendering a fully programmable testbed for large-scale deployment. It gives access to I/Q
signals and, therefore, phases across the 2.4 GHz and 900 MHz bands, forming the basis for many
localization algorithms [84]. Note that the newly power-constrained IoT endpoint consumes as
little as 30 yW of power in sleep mode, which is 10,000 lower than existing SDR platforms.

6.2 Low-power Backscatter Radios enabled by LoRa techniques.

Problem Statement. Driven by the vision of embedding connectivity into billions of everyday
objects [53], backscatter communication holds potential for ubiquitous and low-cost connectivity
among low-power IoT applications. However, they operate at a concise range or experience ex-
tremely low throughput [109], making them underperform in real-deployment. As such, recent
years have seen significant innovations in designing LoRa-enabled backscatter radios to integrate
the low-power backscatter with the long-range LoRa techniques [43, 46, 53, 60, 88, 108, 109]. 1l-
lustrated in Table 6, on the one hand, the backscatter communication integrates the CSS-based
coding mechanism for weak signal decoding [46, 109, 115, 115]. On the other hand, the ambient
LoRa transmissions can be utilized as the excitation signals, achieving a battery-free long-range
communication via backscatter [43, 53, 60, 84, 88, 108].

Current Approaches. e RA: For long-range and low-cost communication, LoRaBackscatter [109]
delivers the first wide-area backscatter communication system for weak backscatter signal de-
coding. To fully exploit the high sensitivity of the CSS mechanism, each LoRa backscatter tag
in LoRaBackscatter backscatters the single tone transmitted by the Excitation Source (ES) while
encoding bits into different cyclic shifts in synthesizing chirp signals. Thus, the noise-resilient
CSS mechanism for backscatter modulation enables a communication range up to 2.8 km with the
co-located excitation source and backscatter tags at a distance of 5m.

¢ EG: By relying on the single tone as excitation signals for backscatter, LoRaBackscatter [109]
only consumes 9.25 yW of power at the rate of 37.5 kbps. Besides, backscatter tags can also harvest
energy from ambient LoRa transmissions. Therefore, they can then transmit the collected data (e.g.,
machine status) back to the gateway hundreds of meters away. For example, PLoRa [88] implements
an ambient backscatter radio to take ambient LoRa transmissions as the excitation signals, which
can be modulated into a new standard LoRa “chirp" signal to convey data. A low-power circuit is
further designed for packet detection and energy management, delivering a holistic RF front-end
hardware and software design, with the power cost of 220 yW. Similarly, The low-power end nodes
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in pLocate [84] use a micro-controller to shift signals by 1~2 MHz and backscatter it back to the
gateways, delivering an energy-efficient CSS backscatter system for LoRa based localization.

o TP: Analogous to LoRaBackscatter [109], NetScatter [46] also adopts the single tone as excitation
signals. However, it also designs a distributed CSS coding mechanism to enable the concurrent LoRa
transmissions by assigning a different cyclic shift of the chirp to each concurrent device. Thus, each
device uses ON-OFF keying over these cyclically shifted chirps to convey bits, achieving a 14~62%
throughput improvement against LoRaBackscatter [109]. Observing the trade-off between the data
rate and the ES-tag distance, COOK [53] integrates the link estimation and bitrate adaptation to
balance the communication range and rate. It thus expands the ES-tag distance up to 27m while
supporting a bitrate adaptation range of 0.33kbps~1.2Mbps.

To improve the network throughput in LoRa backscatter systems, PolarScatter [108] adopts the
channel polarization in long-range backscatter links by designing Sozu polar codes to exploit the link
capacity and automatically adjust to an effective bit rate for different channel quality. Furthermore, a
low-cost encoder is proposed to accommodate polar codes on resource-constrained tags, achieving
up to 10X throughput gain against PLoRa [88]. Building on the long-range battery-free LoRa
backscatter [88], Aloba [43] provides flexible data rate and transmission range using ON-OFF
Keying for different IoT applications and deployments. The backscatter radio reflects the signal
when transmitting a bit one and absorbs the signal when transmitting a bit zero. Methodologies on
phase alignment and signal reconstruction are further designed for backscatter signal demodulation
overlaid on the carrier LoRa signals. Circuit implementation shows Aloba [43] can detect the
ambient LoRa signal as low as -60 dBm with 0.3 mW power consumption, achieving 39.5~199.4
kbps data rate at various distances, 10.4~52.4X higher than PLoRa [88]. P2LoRa [60] uses multiple
tags to shift the frequency of ambient LoRa signal to achieve parallel backscatter. The excitation
signal and multi-channel backscatter signal in P%LoRa share the frequency band, which enables a
small spectrum consumption. The decoded data of the excitation signal is used to eliminate the
interference, which extents the communication range of the backscatter signal. P2LoRa achieves
16.3% higher throughput compared with PLoRa [88] with 1.67x

Remark and Limitations. LoRa backscatter enabled applications generally demand moderate-
throughput (i.e., tens of Kbps) communication links for sensing data forwarding in a low-power
and long-range manner. And the effective communication range and energy efficiency are still
two key performance metrics in the research field. On the one hand, the backscatter range scales
with the strength of backscatter signals, which is orders of magnitude weaker than the carrier
signal. Hence how to further increase the backscatter range remains open with several promising
solutions. For example, leveraging beamforming techniques or negative impedance components
like tunnel diode [43]. On the other hand, most existing ambient LoRa backscatter systems [88]
adopt a palm-size solar panel to harvest energy. To further reduce the power consumption on
packet detection, one possible solution could be implementing the packet detection module on
Application-specific integrated circuit ASIC [43].

6.3 Cross-technique Communication by Integrating LoRa Sensors

Problem Statement. Wireless Personal Area Network technologies (e.g., Bluetooth, ZigBee, WiFi)
have been widely used in our daily life. However, their short transmission distances and high
power consumption hinder further connectivity into billions of everyday objects. Thus, recent
Cross-Technology Communication (CTC) advancements have built direct communications across
heterogeneous technologies with LPWANS.

Current Approaches. ® RA: Observing that the heterogeneous communication in CTC in-
evitably incurs extra hardware cost, deployment inconvenience, and traffic overhead from gateways,
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BLE2LoRa [68] proposes the BLE-to-LoRaWAN CTC to utilize the frequency shifting ability of the
BLE device to emulate LoRa’s chirp signal. On the one hand, a LoRa device can demodulate BLE
frames without any hardware modification at the transceiver side. On the other hand, a long distant
CTC can be achieved based on the high sensitivity of the LoRa base station, leading to over 600 m
communication distance, which is over 20X range extension over native Bluetooth. Symphony [67]
further connects Bluetooth and ZigBee into LPWANSs through payload manipulation. Besides, it
enables concurrent transmissions from heterogeneous radios (e.g., BLE, ZigBee, and LoRa) at a
LoRaWAN base station by cross-technology parallel decoding, achieving a concurrent wireless
communication from BLE, ZigBee, and LoRa commercial chips to a LoRaWAN base station over
500 m, 16X range extension over native BLE/ZigBee.

o TP: LoRaBee [105] first connects LoRa and ZigBee via payload encoding in the Sub-GHz bands, in
which ZigBee can recognize data encoded in LoRa payloads through sampling the Received Signal
Strength. By elaborately tuning the LoRa’s central carrier frequency and packet chirps, LoRaBee
achieves a throughput of up to 281.61bps. By integrating WiFi and IoT devices (e.g., LoRa, ZigBee),
XFi [75] achieves the wide-area data collection with a throughput of 1.8 Mbps via concurrently two
streams of ZigBee or eight streams of LoRa. The critical point is the intentional collisions induced
by the hitchhiking IoT data over WiFi payloads, which can be reconstructed and decoded at the

W Fi side, even after WiFi demodulation.

Table 7. Summary of Research Advancements in LoRa on LoRa-driven Applications

Reference | Down-to-top Performance Metrics | Methodologies and Algorithms
F. Zhang | App-1: Respira- | RA: 15~25m, even | Model the target movement with signal
etal. [131] | tion recognition | with walls variation via the noise-resilient chirps
G. Shen et | App-1: EM covert | RA/SE: Info disclo- | Encode sensitive data into chirps to be
al. [103] channel attack sure with a 20X range | received by long-range LoRa radios
LoSee App-1: Bike route | RA: Radius of 1031 m | Adaptive transmission parameter/link
[128] tracking for 423 bike nodes estimation with LDPL for higher PDRs
Marvel App-1: State esti- | RA: 50m with a error | Attach backscatter tags to MAV for CSS
[132] mation for MAV | of 34cm decoding and phase extraction
SateLoc APP-1: Wide-area | RA: 227,500 m* in lo- | ML virtual fingerprinting map via satel-
[71] Localization cating error of 47.1 m | lite images by multi-GW combination
Sen- App-1: Respira- | RA:2X (50m), even by | Virtual fence to constrain signals, opti-
fence[123] | tion recognition 5 walls of 9.3 m mize movement-induced variations
TinySDR | App-1: SDR plat- | EG: 10,000x lower- | Design of hardware/protocol for over-
[47] form power sleep mode the-Air programmable IoT endpoints
WIDESEE | App-1:  Detec- | RA: Locating error of | Combine the agility of drone and long-
[16] tion/localization | 4.6 m at building scale | range LoRa, by a single transceiver pair
uLocate App-1: 3D wide- | RA: Up to 60m away; | Phase analysis from weak backscat-
[84] area localization | EG: 93uW/5~15 years | tered signals of sub-cm sized platform
COOK App-2: Chirp cod- | RA: ES-tag distance | Backscatter tags change the ON-OFF
[53] ing backscatter from 1m [88] to 27m | key unit length to adapt bitrate
Aloba [43] App-2: Ambient | EG: 0.3mW;TP: 10.4~ | Track the amplitude and phase for back-
LoRa Backscatter | 52.4x (39~199.4 kbps) | scatter signal overlaid on carrier signals
LoRaBack- | App-2: CSS cod- | RA: 2.8 km for ES-tag | CSS backscatter to synthesize continu-
scatter[109]| ing backscatter distance; EG: 9.254W | ous freq modulated chirps
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PLoRa App-2: Ambient | RA: GWs from 1.1 km; | Ambient excitation signal, light-weight
[88] LoRa backscatter | EG: 220 yW power chirp modulation, low-power circuit
P?LoRa App-2: Ambient RA:GWs from. 2.2 km; Ambient excitation signal, in-band par-
[60] LoRa backscatter TP: 16.3x gain over allel backscatter
PLoRa [838]

Polar Scat- | App-2: Ambient | RA: 1.8xX TP: 10X | Sozu polar codes to exploit link capac-
ter [108] LoRa backscatter | gain over PLoRa [88] | ity, adjust bit rate for channel quality
BLE2LoRa | App-3: CTC from | RA: 20X (600m) over | a BLE device constructs chirp signals
[68] BLE chips to LoRa | BLE; TP: 4.06bps with ladder-shaped frequencies
Symphony | App-3: CTC (BLE/ | RA: 16X extension | Narrow-band comm. by payload manip-
[67] ZigBee-LoRa) over BLE/ZigBee. ulation and parallel decoding
XFi [75] App-3: CTC (Zig- | TP: 1.8 Mbps via 8 | Low-speed IoT data hitchhikes on the

Bee/LoRa to WiFi) | streams of LoRa high-speed WiFi packet
LoRaBee | App-3: CTC from | TP: 281.61bps by pay- | ZigBee recognizes payload chirps of
[105] LoRa to ZigBee load encoding LoRa by sampling the received RSS

7 ISSUE & CHALLENGE

While recent advancements of LoRa techniques demonstrate the promising ubiquitous IoT connec-
tion, several open issues and challenges remain to be addressed. By exploring our down-to-top
architecture of LoRa networking, we present the issues and challenges as follows.

7.1

Low-cost deployment is necessary to initialize IoT systems in the wild. Although the COTS Semtech
LoRa radio [101] is cheap, the communication range also determines the deployment cost as the
system scales up. And LoRa nodes can be scaled readily at a low cost if transceivers can reliably
cover a large area. However, existing range-expansion approaches from different network layers
inevitably increase human-labored site surveys’ computation and energy consumption.

In the PHY layer, the basic idea to increase LoRa nodes’ communication range is to capture extra
SNR gain at gateways for weak signal decoding. For example, Charm [24] achieves 1-3dB SNR gains
with 2-8 gateways by coherent combining decoding. Choir [26] further coordinates 30 co-located
end nodes for the exact data packet decoding, achieving a 2.65X longer communication distance
than using the single LoRa node. Although the communication range is enlarged, the deployment
cost is sacrificed [26]. Meanwhile, the decoding process must be offloaded to the cloud incurring
extra computation costs if signals are collected from multiple gateways [24].

In the Link layer, link estimation is helpful to understand communication scalability. Correspond-
ingly, we can determine the optimal gateway deployment for an optimal communication range and
reliability as the network scales up. Taking the landcover and distance as inputs, DeepLoRa [74]
propose a DNN approach to estimate the link path loss, with the error of less than 4dB. Flauzaci
et al. [31] enable two-hop relay to increase the communication range and reliability of isolated
LoRa nodes. However, to achieve accurate link estimation, DeepLoRa needs to collect training data
with the extra site survey cost, and the online link estimation consumes extra energy for link-state
maintenance. For low duty-cycle and energy-constrained LoRa nodes, the energy cost cannot be
neglected.

Overall, how to enhance network scalability is still an open issue. The challenge lies in reducing
the extra negative cost, including deployment, computation, energy, and site survey.

Network Scalability
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7.2 Network Capacity

Network capacity is essential in a large-scale IoT deployment to tolerate the potential inter-network
inference among massive LoRa nodes. B.Ghena et al. [39] raise the capacity issue if directly adopting
default LoRaWAN techniques. Recent LoRa techniques have been proposed to improve the network
throughput in different layers. However, existing solutions suffer from the gap between the inherent
constraints in theory and the complex network environment in practice for LoRa Networking.

In the PHY layer, the time-domain and hardware features [26, 52, 117, 121] are extracted to
resolve collisions for potential network throughput gains, respectively. However, all require a large
SNR (i.e., 0dB), which is inevitably prohibited in real-life deployment. As such, CoLoRa [112] and
NScale [111] achieve the low-SNR collision resolving from concurrent transmissions of LoRa nodes
but still introduce 1.7dB SNR loss over the SNR bound of a LoRa link.

In the Link layer, several methods [33, 76, 82] guarantee the packet delivery reliability in a dense
deployment by adjusting the link configurations (e.g., frequency, SF). However, the performance
highly depends on the accuracy of link state estimation and will be degraded if the link states
change quickly in dynamic networking environments.

In MAC Layer, we can adopt several efficient channel utilization approaches [15, 34, 36, 46, 100,
134] for channel contention/collision avoidance. For example, DeepSense [15] and LMAC [36]
develop efficient carrier sense techniques. And Wichronos [100] increases the efficiency of ALOHA
by changing the coding strategy while NetScatter [46] increases the number of orthogonal logical
channels with a specially designed coding mechanism. QuAiL [33] and Zorbas et al. [134] further
explore the time synchronization information to coordinate the channel access. Although these
methods work well for dense LoRa networks, the coordination cost degrades the energy efficiency
in sparse ones.

Overall, to achieve a high network capacity in practice, we need further bridge the gap between
the applicable assumptions and the real environments to achieve a general model in practice.

7.3 Network Lifetime

Besides network scalability and capacity, long network lifetime is another essential feature in
LoRa networking, enabling multiple long-term IoT applications. And most LoRa techniques aim
to optimize the energy consumption of LoRa nodes from the Link layer [33, 66, 107] and MAC
layer [6, 36, 100, 127].

In the PHY layer, Charm [24] and LiteNap [122] separately use spatial and temporal features
of LoRa signals to save energy. The former relies on multiple gateways to tolerate the low SNR
communication for energy efficiency at low-SFs. At the same time, the latter reduces the energy
consumption on packet reception by using down-sampling techniques.

In the Link layer, adapting the parameter settings (e.g., SFs and frequency) of LoRa nodes can
tradeoff its energy consumption with the communication data rate and distance. Given the known
link-state, we can adaptively select the transmission parameters to guarantee a reliable data delivery
and keep the energy consumption as low as possible. For example, DyLoRa [66] establishes an
efficient energy model to associate the link properties (i.e., PDR, SNR, and SFs) with transmission
parameters (SF, power). And AdapLoRa [38] uses a linear regression process to estimate the network
lifetime periodically for optimal parameter settings.

In the MAC layer, the carrier sense techniques [36] avoid the extra energy consumption on packet
re-transmission. Besides, OPR [6] utilizes multiple gateways to correct the corrupted packet and
saves the energy of re-transmission. Moreover, Joltik [127] uses the universal sketching to enable a
LoRa node to report information summaries instead of energy-exhausted packet transmission.
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Overall, although we can save energy by enhancing physical SNR tolerance, it is still challenging
in practice to improve the model generality and reduce the extra energy consumption by adapting
the link-state, avoiding re-transmission, and exploring information compression.

7.4 Network Security

Network security in IoT has become a more critical research issue as we have experienced several
attacks through the vast amount of IoT devices in the real world.

In LoRa networking, Sundaram et al. [102] demonstrate that the security of LoRa spans over a
range of attacks, covering jamming attacks, replay attacks, beacon synchronization attacks, traffic
analyses, and man-in-the-middle attacks. Even though recent advancements enhance the security
of the existing LoRa standards, an end-to-end security framework has not been discussed from
the down-to-top architecture of LoRa networking. On the one hand, a variety of possible security
threats are still undisclosed in large-scale deployments. For example, as LoRa networks are widely
deployed for various IoT applications, Fahmida et al.[28] propose that peer-to-peer communication
can be adopted for packet offloading across LoRa nodes to prolong the lifetime. On the other
hand, however, it exposes issues on the privacy preservation of packets while offloading. On the
other hand, security issues emerge with more advanced techniques in LoRa networking, such as
side-channel information disclosure [51, 103] and deep learning attacks [15, 34, 104]. For example,
QuAiL [34] points out the necessity of securing private data for inference using neural networks
and shows how to ensure anonymization and privacy of client’s data.

Overall, the existing LoRa networking stack mainly focuses on improving the performance rather
than keeping the networks secure. The newly designed networking stack may expose new ways to
compromise the whole network. Moreover, the low-cost LoRa nodes and large-scale deployment
increase the difficulty of designing and implement complex security mechanisms for preventing all
kinds of potential attacks from down-to-top layers.

8 FUTURE TREND

Issues and challenges provide promising research directions toward pervasive IoT connections. And
we present several future trends to bootstrap the widespread of LoRa across Deep Learning (DL),
data processing approach, and communication protocol with COTS LoRa devices, respectively.

8.1 Deep Al Augmentation

Most existing approaches rely on physical model analysis and demonstrate promising potentials for
performance improvement as the data-driven Deep Neural Networks (DNN) and Al techniques have
been used in other wireless systems [64]. The Al-enabled approaches can benefit from the massive
wireless training data to guarantee high performance for various practical IoT applications due to
its robust feature learning ability. For example, a review of nearly 65 papers [91] presents several
machine learning algorithms adaptable for lung cancer detection linked in medical IoT. In LoRa
networks, DeepLoRa [74] uses the Bi-LSTM model to estimate the signal path loss in a complicated
environment. Evaluation results show high accuracy and low retraining cost while transferring a
model from one gateway to another. Meanwhile, DeepSense [15] achieves a DNN-based carrier
sense mechanism, enabling high network capacity and scalability. NELoRa [65] incorporates ML
techniques into signal demodulation to improve the packet reception rate and extend the battery
life for sensor nodes at the campus scale. Moreover, the FPGA on TinySDR [47] can potentially
support deep Al algorithms on-board, which boosts the research on Al-augmented LoRa networks.
And we believe the deep Al augmentation techniques can bring a new direction to the design of
communication stack and sensing applications for LoRa networking.
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8.2 In-network Processing

Given the dense LoRa deployment, how to improve LoRa communication and sensing efficiency
by exploiting the spatial and temporal diversity should not be neglected. For example, we can use
in-network processing to compress the total data instead of returning all sensing data. Thus, it can
extend the network lifetime and avoid contention/collision for efficiency. Specifically, QuAiL [34]
exploits the concurrent transmissions to enable faster information retrieval represented by the
accumulated transmission power. Joltik [127] proposes a compression framework to reduce the
energy consumption among multiple LoRa transceivers exceptionally. To further enhance the
efficiency of the LoRa networking stack, the in-network processing provides a new angle to save
energy consumption and onboard computation resources.

8.3 Cross-layer Design

Recent advancements in LoRa networking mainly optimize network performance in separate layers.
And we point out that it is possible to optimize the network performance and control the extra
cost thoroughly if we break the boundary of the layers and allow layers to share information. For
example, Fahmida et al. [28] and Flauzaci et al. [31] explore the multi-hop relay to improve energy
efficiency and communication range for those isolated LoRa nodes. By combining the information
from the link layer and MAC layer, an efficient multi-hop relay can be modeled and established.
Besides, Cross-layer network stack design also enables a new paradigm to optimize the network
performance and save the total cost of LoRa network maintenance.

8.4 Stateless Network Design

The estimation and maintenance of network state on LoRa nodes/gateways require extra deployment
cost. Furthermore, Manfredi et al. [77] show that the benefits of link-state estimation would be
compromised if network states change frequently. In LoRa, Choir [26] explores the beamforming to
increase the link SNR, which can combat the unpredictable path loss. Meanwhile, Glossy [30] and
LWB [29] are the successful stateless network design for wireless sensor networks by exploring
constructive interference. The stateless network design is an alternative network stack to reduce
the deployment cost by avoiding unnecessary maintenance on the network state.

9 CONCLUSIONS

In this survey, we review recent research advancements on LoRa networking. We propose a two-
dimensional taxonomy to categorize and compare the cutting-edge LoRa networking techniques to
explore open issues and future trends. On the one hand, from down to the top, current solutions
can be divided into PHY, link, MAC, and app layers in the LoRa networking stack, each of which
contains sub-branches on respective research subjects. On the other hand, research efforts from
the down-to-top architecture have been undertaken to compare and improve various performance
metrics (i.e., range, throughput, energy, and security). Our literature taxonomy provides an overview
of the open issues and challenges, followed by our observed future trends for the LoRa community.
This survey aims to inspire more research systems and advancements on LoRa networking, leading
to a brand-new step toward the pervasive IoT at long-range and low cost.
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