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Abstract—Internet-of-Things (IoT) aims to connect billions of
low-date rate and energy-constrained end-devices in the near
future. Although many IoT systems have been commercialized,
most of them focus on home and body scale applications. To
establish a low-cost IoT at the city scale, LoRa Wide Area
Networks (LoRaWAN) have become attractive in recent years
due to their desirable kilometer or even longer communication
distance with low energy consumption. However, due to the
expensive cost of densely deploying end-nodes, the understanding
of LoRa link behavior is still coarse-grained, and hard to fully
realize the link dynamics, networking coverage, and localization
accuracy of LoRaWAN in an urban environment.

This paper shows a fine-grained LoRa link-level measure-
ment via mobile end-nodes. We deploy two gateways and six
mobile end-nodes and collect data packets over four months
at a 6x6 km? urban area. The evaluation mainly focuses on
answering three questions: 1) Does a LoRa link stably perform
in both spatial and temporal dimensions? 2) How large area
can be covered for reliable communication by each gateway
in the urban environment? 3) What accuracy can be achieved
to localize an end-node through LoRa links? According to our
measurement, our key findings are 1) The spatial and temporal
behavior of LoRa links is quite dynamic due to the different types
of land covers and the frequent micro-environment changes in
the urban areas; 2) Each gateway can cover about 11.3 km?
area and marginal SNR gains (e.g., 2 dB) of LoRa links are
efficient enough to enlarge 32.6% coverage area of a gateway;
and 3). The median localization error is about 400 m. Without
densely deployed LoRa gateways, the SOTA LoRa localization
can support road-level localization, even when an end node is
close to one of the gateways.

I. INTRODUCTION

Internet-of-Thing (IoT) is another excellent innovation after
Internet and mobile networks in the information era, aiming
to connect billions of low data-rate end-devices in an energy-
constraint unattended manner. Among the commercial wireless
techniques, Bluetooth Low Energy (BLE) is widely used in
body-area networks, such as connecting wearable devices
to smartphones. Wi-Fi and Zigbee can establish local-area
connections like the smart home and smart building to extend
the communication range further. However, all techniques
mentioned above are restricted by power consumption and
maintenance requirements, making it hard for wide-area and
long-term deployment.

Low-power Wide Area Network (LPWAN) is an emerging
IoT paradigm aiming for low-power wireless communication
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over kilometer links. Several LPWANs (e.g., Long Range
(LoRa) [1], Narrow-Band(NB)-IoT [2], SIGFOX [3]) with
different physical layer designs have been commercialized,
enabling city-scale IoT applications at a low cost. For example,
NB-IoT [2] and LTE-M operate on the LTE band as a part
of 5G for the massive IoT. SIGFOX [3] uses an unlicensed
band but is a proprietary network. In contrast, LoORaWAN [1]
operates at an unlicensed spectrum and follows an open-
source standard, attracting much attention from academia and
industrial communities.

LoRa networking stack adopts the Chirp Spread Spectrum
(CSS) modulation at the physical layer (LoRa-PHY). By sup-
pressing the background noise on the spectrum in CSS, LoRa-
PHY can successfully demodulate a symbol even if its SNR
level is as low as -20 dB [4], [5], making it a representative
of the low-power and long-distance communication. With
such LoRa links, spatial-temporal link dynamics, coverage,
and link-information based localization are three fundamental
research issues [6] which can be formulated as follows:

« For spatial-temporal link dynamics, the critical questions
are whether different links with the same distance show
similar link performance and whether a link’s perfor-
mance is stable over a long period.

« For coverage, the critical question is whether the concep-
tual “long-distance” can be realized in a wide area with
a few LoRa gateways, enabling smart-city applications
(e.g., vehicle sharing [7], environment monitoring [8], [9],
metering, logistics)?

¢ For link-information based localization, the critical ques-
tion is whether an end-node can be accurately localized
with LoRa link fingerprint in a wide area and sparse
deployment.

With the answers to these questions, a fine-grained link-level
measurement can benefit the deployment of LoRa gateways,
service quality in mobile applications, and network manage-
ment in practice.

Status Quo and their Limitations: Several works [10]-
[12] have observed the spatial diversity of LoRa links, but
lack detailed analysis in different distance scales. To our
best knowledge, no work reports the temporal performance of
LoRa links. Similarly, to answer the coverage question, some
measurement studies [7], [13]-[18] deployed real LoRaWAN
systems to study the coarse-grained communication range in
real environments. For example, Liando et al. [13] deployed



three LoRa gateways and more than 50 static LoRa end nodes
in a 3x3 km? campus environment to conduct a coverage
measurement. And they further use a 70% packet delivery ratio
(PDR) as a threshold to approximate the communication range
of a LoRa link. The results show that the maximum communi-
cation range is 9.08 km and 2 km in Line-of-Sight (LoS) and
Non-Line-of-Sight (NLoS) scenarios. However, with only a
communication range, the communication heterogeneity [11],
[19] will cause significant uncertainty in the coverage area for
a gateway. Thus, the coverage problem is not fully addressed.

Compared to the energy-consuming GPS-based localization,
LoRa link fingerprint based localization consumes much less
power at the expense of accuracy. To answer the localiza-
tion question, the SOTA LoRa localization method, Sate-
Loc [20] reported a median localization error of 43.5 m in
a 350x650 m? urban area with three gateways. However, the
size of the evaluated area is limited, and the cost of dense
gateways deployment is unaffordable. Thus, whether we can
achieve the same localization accuracy in a larger area and
with sparsely deployed gateways is still questionable.
Challenges: To achieve fine-grained spatial-temporal dynam-
ics, coverage, and localization measurement, the key infor-
mation is to obtain the link PDR and signal fingerprint at a
fine-grained geography scale. We take a 6x6 km? area as
an example to demonstrate the difficulty of obtaining such
information. If we split the whole area into 100 m? (i.e., the
geography scale) cells and deploy a LoRa end node in each
cell, 3,600 LoRa end nodes are required. The number of LoRa
end nodes increases as the geography scale becomes more
fine-grained. The expensive cost makes a static deployment
impossible to achieve the fine-grained link-level measurement.

In this paper, we deploy a mobile LoORaWAN system and
propose novel methods to measure the LoRa link-level cover-
age area and localization accuracy in a wide urban area at a
fine-grained geography scale. Our deployed mobile LoRaWAN
system consists of two LoRa gateways and six mobile LoRa
end nodes in a 6x6 km? urban area, which continuously
transmits data packets with the location information while they
are moving. Although benefiting from the mobility of the LoRa
end nodes, thousands of LoRa links are recorded efficiently,
covering a variety of different locations, we still encounter
two challenges to achieve the fine-grained and whole-area
measurement On the one hand, since a LoRa end node keeps
moving, it needs time to observe enough packets for PDR
calculation, but it travels for a distance as well. Such mobility
leads to a granularity tradeoff between the PDR calculation
and the geography scale. On the other hand, the users carrying
the mobile end nodes moved freely in their daily life, without
any requirement for movement. Thus, the locations of the
collected data are not uniformly distributed across the areas
of interest. Although we have available data records over four
months, some locations and roads are still uncovered. In such
areas, it is not trivial to infer the coverage performance and
establish a fingerprint map for localization.

To solve the first challenge, The PDR granularity indicates
the PDR estimation precision we can achieve by observing

different numbers of packet transmissions. The more packets
we count, the higher the precision is. For example, the
precision will be 0.1 if we only count 10 packets in total,
but it will be 0.01 if 100 packets are counted. We estimate
the speed of each LoRa end node (§III-C), then adaptively
adjust the geography scale to ensure the PDR granularity is not
higher than 0.1 (§IV-A). Moreover, we adopt DeepLoRa [11]
to generate the expected signal power (ESP) [10] for every
location in the area. DeepLoRa [11] is a deep neural network
(DNN) based ESP estimation model to predict accurate ESP
values by taking a land-cover type sequence as input. For
coverage, with the calculated PDRs in the covered locations,
we establish an ESP based PDR prediction model to infer the
PDRs in the uncovered locations (§IV-E). For localization, we
use the ESPs observed by different gateways as fingerprints to
generate a fingerprint map for each location.

With the ESP, PDR, and fingerprint map, our link-level
measurement includes the following aspects. First, with the
ESPs and PDRs in the covered locations, we analyze the
overall, spatial and temporal link dynamics for link property
analysis (§IV-C and §IV-D). Second, we estimate the coverage
area of each gateway with/without link ESP gains (§V). Third,
we study the localization accuracy with the fingerprint map
under various settings (§VI). Our measurement study presents
three key observations, and the conclusions are as follows:

o The distance cannot reflect the link quality anymore, and
the temporal link behavior is much more dynamic due to
the micro-environment changes.

o Although the maximum communication range of a gate-
way observed by us is over 3 km, its actual coverage area
is irregular and only about 11.3 km?, which is much less
than expected.

o The fingerprint-based LoRa localization accuracy is quite
limited in sparse gateway deployment. More gateways,
site-survey, and dynamic calibration are needed.

We summarize our contributions as follows:

o We deploy a real mobile LoORaWAN system in an urban
area and measure massive LoRa links over four months.
The dataset is available ! and will inspire more fine-
grained studies of LoRaWAN than state-of-the-arts [7],
[13]-[18].

o We propose several methods to measure spatial/temporal
link dynamics and enable coverage area calculation using
sparsely received LoRa packets.

o We report the localization accuracy in such a wide-area
deployment providing more insights for future localiza-
tion method design in LoRaWAN.

II. RELATED WORK

LoRa Link Dynamic Study. To estimate the coverage of
LoRa gateways without the deployment and on-site measure-
ments, Demetri et al. [10], SateLoc [20], and DeepLoRa [11]
develop different models to accurately estimate the signal path

ICodes and datasets can be found on GitHub: https://github.com/lilygeek/
LoSee_ICNP.
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Fig. 1: Mlustration of our LoRaWAN architecture.

loss by understanding the impact of land-cover types in an
urban environment. And a variety of remote sensing techniques
are adopted to recognize land covers through the LoRa link.
For example, Demetri et al. [10] first design an automated
processing toolchain with the multi-spectral images from re-
mote sensing and then apply the Okumura-Hata formula [21]
for path loss prediction. Similarly, SateLoc [20] proposes a
segmented Bor model [22] to capture the different path loss
exponents with corresponding land covers. DeepLoRa [11]
further incorporates the deep learning techniques for LoRa
link estimation. It develops a land-cover aware path loss
model based on the Bi-LSTM (Bidirectional Long Short Term
Memory) and reduces the estimation error to less than 4
dB, which is 2x smaller than state-of-the-art models [10]. In
contrast, we study the relationship between a path loss and the
resulting PDR, which is crucial in bridging the gap between
link behavior and network coverage.

LoRa Coverage Measurement. Recent years have witnessed
several measurement works [3], [7], [12], [13], [23]-[25]
to reveal the LoRaWAN performance in real environments.
Liando et al. [13] deploy three gateways and more than 50
static end nodes in a 3x3 km? campus to study the LoRaWAN
performance for measurement, including the communication
range, network throughput, and energy efficiency. Results
show that the LoS and NLoS communication ranges are
9.08 km and 2 km, respectively. Similarly, Centenaro et al.
[3] observe a communication range of 2 km in an area of high
buildings. And the communication range they reported varies
from 1 km to 20 km in the central business district [24].
Besides, LoSee [7] adopts a mobile end node mounted on a
bike to study the LoRaWAN coverage ability on the campus
scale (e.g., 4.5 km?). For reliable PDR calculation, the mobile
end node must transmit 50 to 100 packets on the spot.
Focusing on the indoor environments (e.g., office buildings,
residential buildings, car parks, warehouses), Xu et al. [23]
study the LoRa link behavior and energy profile by deploying
ten static and two mobile LoRa end nodes. Compared to
these measurement studies only focusing on the spatial link
behavior, we analyze the temporal characteristics of LoRa
links and provide a more fine-grained coverage area study than
existing works in a 6x6 km? urban area.

LoRa Localization Method. Studies mainly adopt two kinds
of technologies for LoRa localization: 1) TDoA-based local-
ization; 2) RSSI-based localization. TDoA-based approaches
utilize the time differences of the same signal arriving at
different gateways. TDoA has been implemented in the Lo-

RaWAN network to perform localization both for station-
ary [26] and mobile scenarios [27]-[29]. However, due to the
limited bandwidth of commercial LoRa end nodes, TDoA-
based localization error can reach hundreds of meters since
only ps-level time resolution [30], [31] can be achieved.
Researchers have improved TDoA-based localization to meter-
level by customizing dedicated LoRa devices. Nandakumar
et al. [32] proposed a multi-band LoRa backscatter device
based on CSS modulation. Bansal et al. [33] present a dis-
tributed software-radio-based station network that spans a wide
bandwidth encompassing the TV whitespaces and offers a
high aperture. Those approaches, however, cannot be applied
directly in existing LoRaWAN systems. Besides, TDoA-based
systems require at least three gateways that are strictly time-
synchronized or phase-synchronized which is not applicable
in scenarios with sparse gateway deployment.

We can utilize received signal strength indicator (RSSI)
measurements for localization [34] according to the path loss
models mentioned above [22], [35]. However, the performance
is highly affected by channel dynamics in complicated envi-
ronments [10], [11], [20]. Fingerprint-based approaches [36]—
[39] also use RSSI values as a fingerprint to locate an end
node by matching its fingerprint with known reference loca-
tions in the database. Machine learning approaches have been
adopted for fingerprint matching, such as k-Nearest-Neighbor
(KNN) [37], SVM [36], Bayesian inference [38], [39]. Sate-
Loc [20] proposes a weighted combination strategy for multi-
gateway likelihood maps based on fingerprint matching and
selects the point with the highest likelihood as the predicted
location. Sateloc achieves a 43.5 m median localization error
in a 227,500 m?2 urban area. Based on our LoORaWAN setting,
we adopt link RSSI localization which is similar to SateLoc
and provide a detailed localization comparison with the data
collected from our mobile LoRa system.

III. SYSTEM AND DATASET OVERVIEW

In this section, we first briefly review the LoRaWAN
technical specification and define the LoRa coverage problem.
An overview is then given on the system architecture, config-
uration, and deployment. Finally, we show the measurements
and analysis results from our deployed mobile LoRa system.

A. LoRaWAN Primer

We illustrate the architecture of LoRaWAN in Figure 1,
which operates in the infrastructure mode. Multiple LoRa end
nodes run the LoRa-MAC (media access control) and LoRa-
PHY protocols and connect to the gateways in their commu-
nication range. Transport protocols like TCP, 6lowpan, and
COAP is not involved in the LoRaWAN networking stack yet.
Hence, we mainly focus on the link layer performance. Upon
receiving the LoRa packets, gateways forward them to LoRa
network servers for further processing. Note that there is no
energy constraint on the gateway in most scenarios [5], [40].
Since the connection between gateways and network servers
are usually cellular networks or wired networks. As the packet
forwarder, gateways also forward the control messages (e.g.,
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Fig. 2: The structure of a LoRa packet.

PHY configurations, MAC settings) from network servers to
end nodes. Finally, network servers filter duplicated LoRa
packets and disseminate the valid ones into application servers
for different applications.

As for LoRa networking, LoRa-PHY uses CSS to modulate
data symbols. Figure 2 shows the structure of a LoRa packet,
which consists of the preamble, start frame delimiter (SFD),
and payload. Specifically. the preamble consists of multiple
base up-chirps, followed by the SFD with 2.25 base down-
chirps for packet detection and alignment. The payload con-
tains multiple modulated chirps with different shifted initial
frequencies for encoded data bits. In LoRa-PHY, three param-
eters (i.e., bandwidth (BW), spreading factor (SF), and coding
rate (CR)) can be configured to adapt the communication
range. For example, BW determines the frequency range of a
chirp symbol, such as 125, 250, and 500 kH z, in which a small
BW corresponds to an extensive communication range [5].
SF denotes the data bits a chirp symbol represents, ranging
from 7 to 12. The communication range gets larger as the SF
increases and enhances the noise resilience of LoRa signals.
Besides, CR introduces data redundancy in the coding process
for extra noise tolerance, which can be assigned as 4/5, 4/6,
4/7, and 4/8.

Sitting upon LoRa-PHY, LoRa-MAC adopts an ALOHA-
based protocol that allows end nodes to transmit as soon
as they wake up, and exponential back-off is involved in
case of collisions. However, ISM bands regulation imposes
a maximum 1% transmission duty cycle to end nodes and
gateways when using an ALOHA MAC. As a result, it puts a
significant limitation on the downlink capacity of the gateways
as they need to serve all the surrounding end nodes with
relatively scarce transmission opportunities.

B. Our System Overview

We first introduce the hardware and deployment of our mo-
bile LoORaWAN system. Illustrated in Figure 3, two gateways
(1 and G5 and six mobile end nodes (e.g., bicycle, car) are
deployed in the 6x6 km? urban area. Both gateways are
equipped with an MCU, an SX1276 transceiver [4], and a
Raspberry Pi 3 for programming remotely. We further indicate
the location of our two gateways G; and G in the campus as
white points in Figure 3(a), which are located at the rooftop
of two different buildings at the height of 84 m and 68 m,
respectively. Note that the ground altitude of the campus
area is about 52 m, and the distance between G and Go
is 1332.14 m. The gateways are powered by PoE (Power
over Ethernet) and provided with Internet access. Thus it can
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Fig. 3: We deploy two gateways and six mobile nodes in the
urban areas, covering various land cover types.

forward the LoRa packets to our network and application
servers running on the cloud (e.g., Digital Ocean).

On the transmitter side, the LoRa end nodes are imple-
mented with an MCU, an SX1278 transceiver, and a GPS unit,
as shown in Figure 3(b). Figure 3(c) illustrates the 5 LoRa end
nodes mounted on different bicycles, and the remaining end
node is put inside a BYD car under the front windshield glass.
These end nodes move freely with the bicycles/car in the users’
daily life without any constraints, they send a packet to the
gateways every five seconds only when they are moving for
power efficiency.

By default, our experiment uses the spreading factor SF =
12, bandwidth BW = 125 kHz, and coding rate CR =
4/5. We enable a regulation-compatible power amplifier con-
trolled by the register PA_HP [4] and connected to the pin
PA_BOOST [4] on the SX1278 transceiver. The total transmis-
sion power reaches 19 dB, which complies with LoRa regula-
tions. The operating channel is set as 486.3 kH z, 486.5 kH z,
486.7 kHz, 486.9 kHz, 487.1 kHz and 487.3 kHz, re-
spectively. Thus we can avoid potential packet loss due to
collisions between different end nodes. The experiment spans
four months, during which the end node owners traveled as
usual (e.g., eating, office, home). Thus the collected data
records can only cover several parts of the whole area. To
obtain the land-cover types in this area for the LoRa based
localization, we apply the satellite remote sensing imaging
on the whole area of interest by following the instructions
in existing works [10], [11], [20], including buildings, roads,
parking lots, lakes, a river, grassland, trees, and playground.

C. Collected Dataset Overview

This section provides detailed instruction on our collected
LoRa dataset, spanning from Dec 22 to Mar 15. Considering
the fast movement of an end node, the transmission interval
between two adjacent packets is set as 5s. We encode the
GPS coordinates, timestamps, and sequence numbers into
the payload of LoRa packets. And the corresponding SNR
and RSSI are logged at the gateway side. Upon receiving
the packets, the logged data records can be extracted from
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the network server to keep the duplicate packets at both
gateways, delivering over 30,000 records in total. Besides,
we can calculate the link distance and the height difference
between the end node and gateway pair by decoding the GPS
data in the payloads.

We further illustrate the measuring locations on the main
roads of the 6x6 km? urban area, shown in Figure 5. The
yellow points and red ones indicate the moving end nodes
and the gateway (GG, and G4 as the receivers for successful
packet transmissions. And the maximum communication range
of G; and G2 can be larger than 3 km. Additionally, we
observe similar trajectories of end nodes for G; and G5, but
the PDR of an identical road is quite diverse. For example,
both G; and G2 have poor performance on the right-center
roads in common. However, G; has better coverage for the
left-bottom road while G5 performs better on the middle-top
road, especially the part in the north of a river on the top. The
observation shows that the maximum communication range is
too coarse-grained to understand the coverage of LoRaWAN in
an urban area, and a finer-grained report on the measurement
of LoRaWAN is required.

To demonstrate the coverage of both gateways statistically
in our mobile LoRa system, we show the total number of
covered locations with successful transmissions in terms of
end nodes and days, shown in Figure 4. Specifically, we use
a 10x10 m? square block to define our “locations”. Thus the
whole area can be divided into 600x600 locations. For each
end node, we calculate the total number of various trajectories
with corresponding transmitting locations. For example, if
more than one packet is received in a new location, we count

once for the current end node and derive the total covered
locations. Figure 4(a) and 4(b) show that the covered locations
by G7 on 23 different days, while G5 observes data for 19
days. Regarding the successful transmissions for each day, the
maximum and minimum locations observed by G are 452
and 7. In contrast, Go’s maximum and minimum observed
locations are 352 and 10, respectively. From the view of
mobile end nodes, end nodes 1 (e.g., red) and 2 (e.g., deep
blue) contribute the most data records in different locations
on most days. And other nodes demonstrate a varied covered
location. For example, end node 4 (e.g., orange) only delivers
the most covered locations in two days.

To measure the mobility of our end nodes, we further
calculated the speed of each end node by using the timestamps
between two adjacent locations in a trajectory. The speed
distributions (i.e., min, 25%, median, 75%, and max) of
different end nodes are shown in Figure 4(c). The maximum
observed speed is about 25 m/s (90 km/h) from the end
node 1 (i.e., the BYD car). The median speed is less than
5 m/s (18 km/h) for most nodes, which is reasonable for
a bicycle. Note that data records related to end node 1 are
taken during the morning and afternoon traffic peak hours.
Since LoRa-PHY is resilient to the Doppler effect [13] in
the range of our observed speed, we can use these data
records to estimate an equivalent PDR for different locations
for transmitting nodes.

IV. LINK BEHAVIOR STUDY

Given our collected dataset with mobile LoRa nodes, we
study the LoRa link behavior in the urban area. Two metrics,
ESP and PDR, are adopted to indicate the signal path loss
over a physical channel and reliable coverage in an area. By
carefully analyzing their spatial and temporal distributions, we
establish a PDR prediction model that associates a position’s
computed ESP value to the estimated PDR.

A. Estimation Methodology on Metrics

ESP Estimation. We use ESP to depict the LoRa signal
attenuation over a long-distance transmission. Although RSSI
is a widely adopted indicator to measure the signal attenuation
of a physical link in WSNs [41]-[43] and Wi-Fi [44], it can be
more error-prone below the noise floor in LoORaWAN. Thus,
we choose ESP which combines RSSI and SNR to calibrate



the expected signal path loss in our measurement study, which
be calculated as follows [11], [37]:

ESP = RSSI + SNR — 10 loglo(l + 100.1SNR) (1)

where RSSI is the received signal strength indicator, and SNR
is the signal-to-noise ratio. Given a received data packet, its
RSSI and SNR will be automatically calculated by gateways
forwarded to the network server.

PDR Estimation. Given a PDR threshold, the PDR of nodes
with each position can be used to determine the coverage of
our mobile LoRa system. Due to the mobility of the end nodes,
the data packets are scattered along various trajectories. Our
basic idea is to utilize all trajectories that pass the position
based on their coordinates to calculate the PDR of a specific
position.

Given this trajectory-based PDR estimation method, a trade-
off should be considered between the position granularity and
the estimation accuracy. On the one hand, a fine-grained posi-
tion granularity is desirable so that the micro-differences can
be reflected across the observed “positions” by our mobile end
nodes. On the other hand, the number of available trajectories
can be reduced for observed locations if we split the urban
area at a highly finer-grained scale to represent a position.
Consequently, the PDR accuracy of mobile end nodes can
suffer from the estimation bias from limited trajectories. For
example, assuming the true PDR of a position is 90%, the
calculated PDR is only 80% due to one packet loss of five
observed packets. More than ten packet records are required
for each position to mitigate the scarce trajectory distribution.

In practice, we first divide the 6x6 km? area into 1,600
150x 150 m? square blocks. Each block represents a position
denoted as p(i,7) to balance the estimation granularity and
the estimation error, where ¢ and j are the coordinates of the
corresponding block. Assuming the average speed of an end
node is 3 m/s from Figure 4(c), the packet interval between
two adjacent transmissions is set as 5 s. Thus the end node
can travel through 150 m for ten continuous packet records.

Upon receiving the LoRa packets at the gateway side,
we first extract all trajectories for each end node. Then,
we estimate all n positions that a trajectory t covers. For
the k" position p;(k) of trajectory ¢, we use the sequence
numbers of the data records to count the total number of
transmitted LoRa packets passing through the current position,
denoted as ¢;(p¢(k)). And the number of successfully received
LoRa packets is denoted as c¢,(p;(k)). The trajectory ¢ only
contributes a valid PDR estimation as ¢, (p:(k))/c:(p:(k)) for
the position p; (k) when ¢;(p:(k)) is larger than 10. When we
traverse all trajectories to compute their PDR estimations for
the covered positions, we calculate the average value with all
PDR estimations for each position.

Furthermore, we adaptively enlarge the splitting area of a
position where the observed packet is less than five but not 0.
Specifically, if the total number of packet transmissions is less
than 5 for position p;(k), we keep increasing the area of the
position by adding its adjacent blocks until more than 5 data
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records are reported. For G, the blocks of packets less than
5 take 12.16% of all the blocks number. For (55, the blocks
of packets less than 5 take 12.97%. In this way, we deliver a
reliable PDR estimation for those covered positions with one
or two lossy trajectories (e.g., the right-middle roads for G
and G5 in Figure 5).

B. Overall PDR and ESP Distribution

We further demonstrate the estimated PDR and ESP across
different positions for G; and Gs. Illustrated in Figure 6(a),
the CDFs of PDR are distributed similarly for G; (e.g., blue
dashed curve) and G5 (e.g., solid red curve). In comparison,
(G1 provides a little better PDR for the covered positions than
G4 does. And 60% of links are reliable with a PDR higher
than 90% for G;. And the remaining 40% LoRa links are
intermediate links with dynamic link behaviors.

Figure 6(b) further shows the CDFs of ESP in all recorded
data packets. We can observe that the minimum ESP is
—142.3 dBm for all packets, which is consistent with the
reported —148 dBm for the sensitivity of SX1276 [4]. Notice
that LoRa gateways with different transceiver types definitely
receive signals at different sensitivity levels, resulting in a
varied link budget. Compared with G, the ESP observed at
G is much higher. For example, GG; has 20% ESP higher
than —120 dBm and the maximum ESP is —80 dBm.
However, 80% ESP of G, is higher than —120 dBm, and
the maximum ESP is approaching —47.34 dBm. As shown in
Figure 3(a), we attribute the ESP difference to the deployment
environment. (G1’s antenna is partially hidden by the wall and
railing while there is no obstacle for G.

Remark. Figure 6 reflects the distribution inconsistency be-
tween PDR and ESP. Due to the strong noise tolerance ability
of LoRa, low ESP (e.g., median value -127 dB) can achieve
similar PDR distribution as high ESP (e.g., median value -
87 dB) does.

C. Spatial PDR and ESP Distribution

We study the spatial distribution of PDR and ESP regarding
the link distance. For each position (e.g., 150x 150 m? block),
the distance between the center of the block to a gateway
location is first calculated as its distance. And we use the
GPS coordinates to compute the distance between the end
node and a gateway for each data packet. The spatial PDR
distribution is shown in Figure 7. A similar spatial distribution
can be observed at G and (G5, where the intermediate links
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with low PDR are scattered at all distance levels. We further
illustrate the spatial ESP distribution in Figure 8. As the
distance increase, the ESP values are reduced for both G; and
G and scattered in a relatively wide range at different distance
levels. Specifically, the maximum range of ESP values is from
—140 dBm to —95 dBm at Gy in Figure 8(a), when the
distance is about 1,000 m. In contrast, it is from —139 dBm
to —100 dBm for G in Figure 8(b). Additionally, the longest
distance observed by ESP is about 3.5 km, which is longer
than 3.2 km observed by PDR. The main reason is that the
data records reported at those long-distance positions are from
the end node 1 (i.e., the car). And it becomes hard to observe
enough data records in our defined position area due to the
high mobility, resulting in a failed estimation of PDR in long-
distance areas.

Remark. The distance of a LoRa link is weakly associated
with its PDR and ESP. A rough estimation of ESP can be
given with the link distance (Figure 7), but the link distance
cannot be used for fine-grained PDR prediction (Figure 8).

D. Temporal PDR and ESP Distribution

The temporal distribution of PDR and ESP is evaluated for
transmission days. We first associate the trajectories per day
to each position and then compute the standard deviation of
per-day PDR values to depict the temporal PDR changes for
each position. As for ESP, we first divide the whole area into
360,000 10x 10 m?2 blocks and then calculate the average ESP
of the associated data records to represent the ESP of the
block. The standard deviation of ESP values can be further
derived for each block.

We show the CDFs of PDR and ESP deviation in Figure 9(a)
and 9(b), respectively. On the one hand, G; and G2 exhibit
analogous temporal deviation on PDR and ESP. For example,
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Fig. 10: Gaussian process regression analysis between PDR
and ESP at G; and GSs.

30% of positions have more than 5 dB variance for ESP. And
the maximum ESP deviation is about —15 dB. Besides, more
than 10% variances of PDR are reported for 40% of positions.
And the maximum PDR deviation is larger than 30%. On
the other hand, the only difference in temporal distribution
over time is from the micro-environment (e.g., surrounding
obstacles like other bicycles and cars), demonstrating the
significant impact of the micro-environment patterns on the
link performance for different end nodes.

Remark. LoRa links are highly dynamic over time in an urban
environment, shown in Figure 9, which can be attributed to the
frequently varying micro-environment [12].

E. ESP based PDR Prediction

Based on the above observations on PDR and ESP distri-
butions, we build a PDR prediction model by feeding ESP as
input. First, we calculate the average ESP of all observed data
records for each associated position in the urban area. Given
the measured PDR for covered areas, we obtain a variety of
pairs of PDR and ESP. Then, the Gaussian process regression
(GPR) [45] is adopted to predict the numerical PDR from ESP
for those uncovered areas.

To achieve a more accurate regression learner, we choose the
exponential function as the kernel function and complete the
fitting processing, shown in Figure 10. Statistically, the root-
mean-square error is 0.12448 and 0.13678 for G; and G2, and
the coefficient of determination is 0.84 and 0.82, respectively.
From the raw data pairs (e.g., blue dot), when ESP is lower
than —133 dBm and —131 dBm for both gateways, the
measured PDR nears 0 based on our measurement study.
Additionally, a 11 dB wide transition zone (i.e., [—131 dBm,



—120 dBm]) can be observed in both G; and G5, which is
larger than a 3 dB transition zone in WSNs [43]. The reason
is that in LoRa long-distance communication, LoRa links are
affected by more complicated factors and are less predictable
with only ESP, thus introducing more ambiguity. Even when
the ESP is larger than —120 dBm, the PDR achieves a high
performance but is not always 100%. And it can decrease
below 70% due to a large temporal variance of PDR and ESP
observed in §IV-D. As for the uncovered areas with the given
ESP, the predicted data points (e.g., yellow triangle) exhibit a
good match with the ground truth. However, it cannot reflect
the dynamic PDR accurately in our mobile LoRa system.

Remark. ESP is a relatively good indicator to predict the PDR
of a position. A 13 dB transition zone and the PDR dynamic
under large ESP indicate LoRa links are less predictable than
other wireless techniques like Wi-Fi and Zigbee.

V. COVERAGE AREA STUDY
A. LoRa Coverage Problem

The coverage area indicates where a gateway can reliably
communicate with any end node and is determined by LoRa-
PHY and LoRa-MAC. The influence of LoRa-PHY on cover-
age is explicit. LoRa-PHY determines a signal-to-noise ratio
(SNR) threshold, under which LoRa chirp symbols cannot
be decoded correctly. The SNR thresholds are determined by
different LoRa-PHY configurations [5]. The observed ESP of
various LoRa links is related to their distance. Thus, LoRa-
PHY determines the link reliability for LoRa transmissions.

Besides, LoRa-MAC may influence the coverage, too. For
example, LoRa-MAC determines collision probability when
multiple LoRa end-nodes are deployed in the same area and
share an identical gateway. WiChronos [46] reported that when
an end node transmits a 1-byte message every ten minutes, the
collision probability is about 1.4% for 100 nodes, increasing to
12.75% for 1000 nodes. However, the influence of collision on
the coverage is implicit since the collision is not determined by
link distance but by the transmission schedule. If the schedule
is not well adjusted, the end nodes far from the gateway may
not have a higher collision probability than the end nodes near
the gateway even if the transmission of the far end nodes
is using a longer signal on-air time (e.g., larger spreading
factor). Therefore, if the transmission schedules of all end-
nodes are uniformly random, the collision will uniformly
degrade the transmission reliability for long and short links,
making it stained for part of the LoRa-PHY covered area.
Many works [40], [47] focus on solving the collided LoRa
signals to enhance the LoRa transmission reliability.

In our measurement work, we focus on the LoRa-PHY
coverage to determine the maximum area a LoRa gateway
can cover. By adjusting the channel of each mobile end node
to a different frequency III-B, there is no signal collision in
our collected datasets.

B. Methodology and Implementation

In this section, we study the coverage of each gateway in
our deployed mobile LoRa system. And the coverage area is
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defined as the covered area whose sum of the positions with a
PDR value larger than 70%. Specifically, by dividing the urban
area into “positions” (150x 150 m?), we first compute the cor-
responding PDR with our data records for those covered areas.
We first adopt DeepLoRa [11] to estimate an average ESP for
each position for those uncovered ones. Then, we can predict
the associated PDR based on the PDR-ESP regression model
in § IV-E. Figure 11 illustrates the distribution of calculated
and predicted PDR values for all positions in the urban areas.
We can observe an irregular PDR distribution in different
directions for both (G; and G3. And the covered positions
for G; and G4 are distributed non-uniformly. Statistically, the
coverage area of Gy and Go is 11.4 km? and 11.6 km?,
respectively, far from covering all 6x6 km? reliably.

C. Coverage Improvement ESP Gain

To enhance the coverage area of each gateway in the
wild, several systems [38], [48], [49] have been proposed
to cooperate with multiple gateways for extra SNR gains of
received LoRa signals. For example, an SNR gain of 2 ~ 3 dB
can be achieved through the coherent combining across three
or more gateways [38], [48]. Equation 1 shows the SNR gain
is equivalent to the ESP gain. To quantitative the relationship
between the ESP gains and the coverage area in our deployed
system, we manually add an ESP gain for each position and
then recalculate the corresponding PDR under the enhanced
ESP. For fairness, different ESP gains from 2 dB to 10 dB
are selected randomly, resulting in the CDF of predicted PDR
in Figure 12. As the extra ESP gains go up, the PDR increases
as well. For example, the median PDR improvement can reach
48.6% to 62.8% at G; with a 3 dB ESP gain, shown in
Figure 12(a). And it gets larger from 50.3% to 62.7% when



TABLE I: Coverage area under different ESP gains.

ESP Gains (dB) 0 2 3 6 10
G'1 Coverage Area (km?) 114 | 15.2 17.7 | 27.1 359
G2 Coverage Area (km?) | 11.6 | 153 | 17.3 | 23.7 | 33.0

the ESP gain is 10 dB, delivering a covered area with all PDR
values larger than 70%. The observations in Figure 12 verify
the effectiveness of the SNR enhancement method.

Mlustrated in Table I, we further adopt the enhanced PDR
to calculate the coverage area. And a steady improvement of
the coverage area can be observed at G; and G as the ESP
gains increase. Given the 2 dB ESP gains, the coverage area
can be increased by 32.6%. And we can approximately cover
the whole urban area of 6x6 km? via only one gateway, with
a given ESP gain of 10 dB.

Remark. Due to the observed link dynamics, the coverage
area of a gateway is usually irregular. Beyond deploying new
gateways, it can be more effective to enlarge the coverage area
of a gateway by capturing extra SNR gains of LoRa signals.

VI. LOCALIZATION ACCURACY STUDY
A. Methodology and Implementation

Recent years have witnessed a variety of localization sys-
tems [7], [11], [20], [50]-[53] built on the knowledge of LoRa
link behaviors with path loss. Among them, SateLoc [20] is
the SOTA method. The basic method is illustrated as follows:
Suppose we have several gateways to cover a certain area
for localization. Each gateway will generate an ESP map as
a part of the fingerprint map. The whole area is split into
many geography cells, which indicate the location unit in the
localization process. Given the m!" gateway’s ESP map, the
likelihood of L, ; for the ith cell that an end node e is located
can be formulated as follows:

|Em,e - Em7z|

Ly = = = 2
" max(|Eme — En|) — min(|Em.e — Enl)

where E,, . is the average ESP value of each packet, which is
transmitted by the end node e and received at the m‘" gateway.
E,,; is the ESP value predicted by path loss models at the
it" cell in the m'* ESP map. The likelihood is then scaled
and normalized according to the value range of differences
between received and ESP values in the m!" ESP map.
Given the likelihood map for each gateway, the fingerprint-
based localization leverages the joint likelihood of multiple
gateways, in which the cell with the highest likelihood is
selected as the predicted location:

M
Location = arg max Z Ly 3)
! m=1
To evaluate the performance of LoRa link-based localization
systems in our deployment, we implement SateLoc based

on four different path loss models for ESP map genera-
tion, including Bor model [22], PATH/INTERSECTION [10],
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Fig. 13: The CDF of localization errors under different ESP
estimation methods in different ranges.

SateLoc [20] and DeepLoRa [11]. To obtain the re-
mote sensing images for the environmental analysis for
PATH/INTERSECTION, Satel.oc, and DeepLoRa, we first use
the Sentinel-2 open-access API to get multi-spectral images
of 10 m resolution for all four path loss models. The models
are then trained with the collected dataset in our deployed
system, delivering 2 ESP maps for both gateways. Each pixel
in our ESP map corresponds to a 10 x 10 m? cell in a real
map. Note that the evaluated data points are filtered from the
whole dataset, in which each packet record contains the ESP
values of the same frame from the end node received at two
gateways. Finally, we collected available data records covering
1,495 different 10 x 10 m? locations.

B. Overall Comparison of Localization Accuracy

Mlustrated in 13(a), the CDF of localization error is given for
the comparison study of localization accuracy. On our dataset,
with the most accurate DeepLoRa [11], the median localization
error reaches up to 400 m while adopting the approach in
SateLoc [20], we got a median localization error of about
500 m. The worst localization error of those state-of-the-art
models can even reach 2,000 m.

This localization accuracy is much worse than that reported
by SateLoc [20]. The best accuracy achieved by SateLoc
shows that 100% localization error is within 100 m and the
median localization error is 43.5 m given the multi-spectral
images of 50 c¢m resolution for three gateways.

This is reasonable due to the property difference of the
datasets used. On the one hand, only two gateways are
deployed in our system, resulting in serious fingerprint am-
biguity compared to three or more gateways. On the other
hand, the localization accuracy is bounded by the resolution
of cell splitting. Since the fine-grained link estimation is
based on cell splitting and a cell is the smallest unit of
distance comparison in our system. Therefore, a less fine-
grained cell splitting can induce much higher localization
errors in urban areas. For example, we compute the median
localization error of 40 cells (which equals 400 m since each
cell is a 10 m x 10 m area). With a similar cell-wise error,
we can get a median error of 20 m if we have access to
remote sensing of 50 c¢m resolution which can outperform the
localization error reported by SateLoc. Thus, improving the
resolution of multi-spectral images can improve localization
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accuracy.Compared with other models, DeepLoRa achieves
the best performance, consistent with the reported results [11].
Since DeepLoRa can provide more accurate ESP estimation
than others, which can mitigate lots of fingerprint ambiguities.
Besides, PATH/INTERSECTION has the worst performance
among all approaches.

Given the two generate ESP maps for G; and Ga, we
further show the spatial distribution of the localization errors
of DeepLoRa [11] in Figure 14. The lighter the color is, the
smaller the localization error is. And the PDR reaches 0 for
the black areas. An interesting observation is that the evaluated
data records near G2 have the best accuracy while it suffers
from the estimated data records near GG;. The evaluated data
records far from both G; and G5 have the worst localization
performance. The reason has two folds. First, the ESP dy-
namic increases at distant locations. The ESP dynamic makes
DeepLoRa hard to predict the ESP fingerprint accurately.
Second, the ESP value is close to the LoRa sensitivity at
long distances. The fingerprint ambiguity is increasing at many
borderline areas in the whole area.

We further reduce the number of evaluated data records
to see whether we can achieve a better localization accuracy
when the evaluated data records are close to either G1 or Gs.
We only select the cells whose distance from the gateway is
smaller than 500 m. We use DeepLoRa to generate the two
ESP map of G; and G,. Figure 13(b) shows that the data
records around (G have more accurate localization results than
those around GG;. The reason is that the ESP observed by G,
is much more dynamic than G (Section IV-C). For G, the
median localization error is about 220 m. Regarding the 500 m
range, it is still hard to support fine-grained localization. As
shown in Figure 15, we can detect different traffic trends under
current median localization of 500 m by drawing part of the
trajectories of a single end node. The trends of the predicted
locations almost follow the actual movement of the end node
when it stays around a gateway(a), moves across the blocks,
or moves towards(b)/away(c) a gateway. It possible to apply
the localization model to traffic trend prediction.

Remark. The ESP fingerprint-based localization highly de-
pends on the granularity of the position unit, the number of
gateways, and the distance to gateways. Given two gateways
at 100 m? granularity, a sparse site survey can only achieve
road-level localization for traffic trend tracking. Additionally,
the dynamic nature of link ESP in urban areas degrades the

localization accuracy.

VII. OBSERVATIONS, INSIGHT, AND DISCUSSION

Observations. We deploy a LoRaWAN with two gateways
and six mobile LoRa end nodes. By taking advantage of
mobility, we accumulate data records that last more than 20
days to cover a large area. Moreover, we develop a mobility
adaptive method to achieve the PDR estimation and coverage
area calculation. Based on our link behavior study, we further
verify the feasibility of fingerprint-based LoRa localization in
practice. We have three key observations: 1) The temporal
link behavior is much more dynamic. The main reason is the
micro-environment change; 2) To obtain SNR gains of LoRa
signals is an efficient way to enlarge the network coverage;
3) The localization accuracy by taking LoRa signals as the
fingerprint is far from needed. It highly depends on system
deployment and the granularity of site-survey.

Our Insights. We present a few key insights for the LoRa
communication stack and localization method design in the
future as follows:

o To deal with the link dynamics, SF 12 may not be resilient
enough. We need a flexible way to extend SF to 13 or
more, which is not supported on commercial-of-the-shelf
LoRa radios, to avoid temporal disconnection.

e To deal with the link dynamics, the ad-hoc multiple-
hop relay may be an alternative way to forward the
data reliably. How to reduce the energy consumption for
forwarders searching at a very low duty cycle and extra
cost to maintain the network status is a critical problem.

o To obtain SNR gains in a LoRa gateway is an efficient
way to enhance the coverage ability. Hence, how to detect
and recover weak signals with less overhead is another
important problem.

o The fingerprint-based LoRa localization suffers from the
hard taming link behavior. More sophisticated techniques
are needed to achieve accurate localization with narrow
bandwidth and low-cost end nodes.

Measurement Universality and Deployment Diversity. With
the similar settings of the LoRa transceivers, our observations
may be applicable to other typical urban areas with high-
density obstacles and frequent micro-environment changes as
shown in Figure 3. For new areas with great disparities (e.g.,
rural areas, forest areas, mountain areas) from our current ur-
ban environment, the results may vary since the link behavior
is highly related to the types of different land covers along the
link path. The gateway siting and deployment also affect final
results. A higher antenna and fewer obstacles would result in
higher PDR, higher ESP, and better coverage with more LOS
links.
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