2021 17th International Symposium on Wireless Communication Systems (ISWCS) | 978-1-7281-7432-7/21/$31.00 ©2021 IEEE | DOI: 10.1109/I1SWCS49558.2021.9562199

Decoding of Moderate Length LDPC Codes via
Learned Clustered Check Node Scheduling

Salman Habibf, Allison Beemer*, and Jorg Kliewer'
THelen and John C. Hartmann Dept. of Electrical and Computer Engineering, New Jersey Institute of Technology
*Dept. of Mathematics, University of Wisconsin-Eau Claire

Abstract— In this work, we consider the sequential decoding
of moderate length low-density parity-check (LDPC) codes via
reinforcement learning (RL). The sequential decoding scheme is
modeled as a Markov decision process (MDP), and an optimized
decoding policy is subsequently obtained via RL. In contrast
to our previous works, where an agent learns to schedule only
a single check node (CN) within a group (cluster) of CNs per
iteration, in this work we train the agent to schedule all CNs in a
cluster, and all clusters in every iteration. That is, in each RL step,
an agent learns to schedule CN clusters sequentially depending
on the reward associated with the outcome of scheduling a par-
ticular cluster. We also propose a modified MDP and a uniform
sequential decoding policy, enabling the RL-based decoder to be
suitable for much longer LDPC codes than the ones studied in
our previous work. The proposed RL-based decoder exhibits an
SNR gain of almost 0.8 dB for fixed bit error probability over
the standard flooding approach.

I. INTRODUCTION

Binary low-density parity-check (LDPC) codes are sparse
graph-based channel codes. Due to their excellent error cor-
recting performance for symmetric binary input channels [1],
[2], they have recently been standardized for data communi-
cation in the 5G cellular new radio standard [3], [4]. Tanner
graphs of LDPC codes are sparse bipartite graphs whose vertex
sets are partitioned into check nodes (CNs) and variable nodes
(VNs). Typically, iterative decoding on an LDPC Tanner graph
is carried out via flooding: all CNs and VNs are updated
simultaneously in each iteration [5]. In contrast, sequential
LDPC decoding seeks to optimize the order of all CN (or
VN) updates to improve the convergence speed and/or the
decoding performance with respect to the flooding scheme [6],
[7]. In this work, we study the performance of a sequential
LDPC decoding scheme in which groups (clusters) of CNs
are updated sequentially. In each scheduling instant, a clus-
ter’s neighbors are updated via flooding based on the latest
messages propagated by its neighboring clusters.

A node-wise scheduling (NS) algorithm was proposed in
[8], where a single CN is scheduled per decoding iteration
based on its residual, given by the magnitude of the difference
between two successive messages emanating from that CN.
Intuitively, scheduling CNs with higher residuals is expected

This work has been supported in part by U.S. NSF grant ECCS-1711056
and the U.S. Army Research Laboratory under Cooperative Agreement
Number W911NF-17-2-0183.

to lead to faster and more reliable decoding compared to the
flooding scheme. Our previous work in [9], [10] proposes a
reinforcement learning (RL)-based NS (RL-NS) scheme which
obviates the need for computing residuals. In [9], we consider
model-free RL methods by (1) computing the Gittins index of
each CN, and (2) utilizing standard Q-learning [11], [12]. In
[10], in addition to model-free RL, we also consider a model-
based RL-NS approach based on Thompson sampling. In this
work, we improve the sequential decoding performance even
further by implementing an RL-based scheme that sequentially
updates all clusters in each iteration, as opposed to a single CN
as considered in our previous works, until a stopping condition
or a maximum number of iterations is reached.

The proposed sequential LDPC decoding algorithm is mod-
eled as a finite Markov decision process (MDP) [12], where
the code’s Tanner graph is viewed as an environment with
[m/z] possible actions (cluster selections), where m denotes
the total number of CNs in the Tanner graph and z is the cluster
size. Then, we apply RL to learn an action-value function
that determines how beneficial a particular choice of cluster
is for optimizing the cluster scheduling order. Specifically,
we take the optimal order to be the one which yields a
codeword output with the smallest number of propagated CN
to VN messages using the belief propagation (BP) decoding
algorithm. The action-value function is learned using both
standard Q-learning and deep reinforcement learning (DRL)
[12], [13], [14]; action-values are predicted using artificial
neural networks (NNs) in the latter.

Given a cluster of CNs in the Tanner graph, let the output
of that cluster at a particular iteration be the binary sequence
resulting from hard-decisions on the posterior log-likelihood
ratios (LLRs) computed by the (ordered) neighboring VNs.
The state of the MDP in our RL framework is then given
by the collection of all possible (cluster, cluster state) pairs.
As a result, for the cluster sizes considered in this paper,
the proposed RL scheme encounters a much smaller state
space cardinality than the RL-NS schemes of [9], [10], in
which the state space contains sequences of quantized real
CN values. This modification renders the proposed RL-based
decoding approach suitable for much longer block lengths of
LDPC codes than those considered in our previous work. Our
RL-based LDPC decoder outperforms standard BP decoding
schemes in complexity by reducing the number of CN to

97 Bulhofi2Edlickhsett dde ltfadd 16 &8syl nEiifute of Technology. Downloaded on November 11,2022 at 22:29:21 UTC from IEEE Xplore. Restrictions apply.

VN message updates required for convergence. Further, for
moderate-length LDPC codes, our proposed sequential de-
coder is able to provide an SNR gain over flooding decoding
of up to 0.8 dB for fixed bit error probability.

II. PRELIMINARIES
A. Low-density Parity-check Codes

An [n, k] binary linear code is a k-dimensional subspace
of 5, and may be defined as the kernel of a binary parity-
check matrix H € F7**", where m > n— k. The code’s block
length is n, and rate is (n — rank(H))/n. The Tanner graph
of a linear code with parity-check matrix H is the bipartite
graph Gg = (V UC,E), where V = {vp,...,vp_1} is a
set of variable nodes (VNs) corresponding to the columns of
H, C = {ecp,...,em—1} is a set of check nodes (CNs) corre-
sponding to the rows of H, and edges in E correspond to 1’s
in H [15]. LDPC codes are a class of highly competitive linear
codes defined via sparse parity-check matrices or, equivalently,
sparse Tanner graphs [1]; they are amenable to low-complexity
graph-based message-passing decoding algorithms, making
them ideal for practical applications. BP iterative decoding,
considered here, is one such algorithm.

In this work, we present experimental results for a stan-
dardized [384, 256]-Wireless Regional Area Network (WRAN)
LDPC code [16] and a (-, p)-regular array-based (AB-) LDPC
code. In general, a (v, k)-regular LDPC code is defined by a
parity-check matrix with constant column and row weights
equal to v and k, respectively [1]. A (v,p) AB-LDPC code,
where p is prime, is a (-, p)-regular LDPC code with addi-
tional structure in its parity-check matrix, H(~, p) [17]. In
particular,

I 1 I I

I o o? oP~1
Hv.,p)=1. . : : ;M

I.I o1 g2(v-1) g('f—l)(p—l}J

where ¢* denotes the circulant matrix obtained by cyclically
left-shifting the entries of the p x p identity matrix I by z (mod
p) positions. Notice that ¢ = L. In this work, lifted LDPC
codes are obtained by replacing the non-zero (resp., zero)
entries of the parity-check matrix with randomly generated
permutation (resp., all-zero) matrices.

B. Reinforcement Learning

In an RL problem, an agent (learner) interacts with an
environment whose state space can be modeled as a finite
MDP [12]. The agent takes actions that alter the state of the
environment and receives a reward in return for each action,
with the goal of maximizing the total reward in a series of
actions. The optimized sequence of actions is obtained by
employing a policy which utilizes an action-value function
to determine how beneficial an action is for maximizing the
long-term expected reward. In the remainder of the paper, let
[[z]] £ {0, ...,z — 1}, where z is a positive integer. Suppose
that an environment allows m possible actions, and let the

random variable A; € [[m]], with realization a, represent the
index of an action taken by the agent during learning step £.
Let S¢, with realization s € Z, represent the current state of
the environment before taking action A,, and let S, ;, with
realization &', represent a new state of the MDP after executing
Ag. Let a state space S contain all possible state realizations.
Also, let R¢(Sp, Ay, Ser1) be the reward yielded at step £ after
taking action A, in state S,.

Optimal policies for MDPs can be estimated via Monte
Carlo techniques such as Q-learning [18], [19], [20]. The
estimated action-value function Q(Sg, A,) in Q-learning rep-
resents the expected long-term reward achieved by the agent
at step £ after taking action A, in state S,. To improve the
estimation in each step, the action-value function is adjusted
according to a recursion

Qei1(s,a) = (1 — a)Qq(s,a)+a (Rg(s, a,s’)+

Qe(s’, a’)),

where s’ represents the new state of the MDP after taking
action a in state s, 0 < a < 1 is the learning rate, 3 is the
reward discount rate, and Qg 1(s,a) is a future action-value
resulting from action a in the current state s [20]. Note that
the new state is updated with each action. The optimal policy
for the agent, 7(¥), in state s is given by

2)

max
a’e[[m]]

78 = arg max Q(s, a), 3)

where £ is the total number of learning steps elapsed after
observing the initial state Sj.

ITI. RL FOR SEQUENTIAL LDPC DECODING

An RL-based sequential decoding (RL-SD) scheme consists
of a BP decoding algorithm in which the environment is given
by the Tanner graph of the LDPC code, and the optimized
sequence of actions, i.e., the scheduling of individual clusters,
is obtained using a suitable RL algorithm such as Q-learning.
A single cluster scheduling step is carried out by sending
messages from all CNs of a cluster to their neighboring
VNs, and subsequently sending messages from these VNs to
their CN neighbors. That is, a selected cluster executes one
iteration of flooding in each decoding instant. Every cluster
is scheduled exactly once within a single decoder iteration.
Sequential cluster scheduling is carried out until a stopping
condition is reached, or an iteration threshold is exceeded. The
RL-SD method relies on a cluster scheduling policy based on
an action-value function, which is estimated offline using the
RL techniques to be discussed in Section IV.

An example of a cluster-induced subgraph for the case
z = 2 is shown in Fig. 1. Since the full LDPC Tanner graph
is connected and contains cycles, there exist dependencies
between the messages propagated by the different clusters of
the LDPC code. Consequently, the output of a cluster may
depend on messages propagated by previously-scheduled clus-
ters. To improve RL performance, we ensure that the clusters

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:29:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Example of a cluster-induced subgraph, shown with blue
squares (CNs), edges, and circles (VNs). The cluster with size z = 2
is given by the solid blue square CNs.

are chosen to be as independent as possible. The choice of
clustering is determined prior to learning using the cycle-
maximization method discussed in [9], [10]: in short, clusters
are selected to maximize the number of cycles in the cluster-
induced subgraph to minimize inter-cluster dependencies.
Let x = [zg,.-.,Tn_1] and ¥ = [yo,...,Yn_1] represent
the transmitted and the received words, respectively, where
for each v € [[n]], z, € {0,1} and y, = (—1)*™ + 2
with z ~ N(0,02). The posterior log-likelihood ratio (LLR)

of x, is expressed as L, = logg%(z”—fé{g—“% Let E(”) =

2 e N(v) m, + L, be the posterior LLR computed by VN
v during iteration I, where L(U) = L, and mE"_lv is the
message received by VN v from neighboring CN ¢ in iteration
I. Similarly, let L(J *) be the posterior LLR computed during
iteration I by VN j in the subgraph induced by the cluster
with index a € [[[m/z]]]. Hence, LY = L{) if VN v in
the Tanner graph is also the jth VN in the subgraph induced
by the cluster with index a.

After scheduling cluster a during iteration I, the output
2D = [x‘g‘rg, : “(‘r} 1 oJ€ {0,1}= of cluster a, where [, <
kmaxz, and kmax 1s the maximum CN degree of the cluster.
is the number of VNs adjacent to cluster a, is obtained
by taking hard decisions on the vector of posterior LLRs
Lro =LY .. 2" computed according to

2o _ Jo, it LP >0,
Tia .)
' 1, otherwise.

We call %) the output of cluster a: it is comprised of the
bits reconstructed by the sequential decoder after scheduling
cluster a during iteration I, ie., the state of the cluster is
a sequence of hard-decision VN values associated with the
cluster. We denote the index of a realizatmn of xt(,,) in iteration
I by sV € [[2%]]. The signals %", ..., % at the end
of decoder iteration I forms the state of the f\/[bP associated
with our RL scheme. At the end of iteration I, we may obtain
the fully reconstructed signal estimate X = [Zg,...,%n_1]-
During the learning phase, our RL method informs the
agent of the current state of the decoder and the reward
obtained after performing an action (propagating a cluster).
Based on these observations, the agent takes future actions,
to enhance the total reward earned, which alters the state of
the environment as well as the future reward. Given that the
transmitted signal x is known during the training phase, let
Xq = [Zo,a,---,T1,—1,a) be a vector containing the I, bits of

x that are reconstructed in X5 by cluster a. In each learning

step £, the reward R, obtained by the agent after scheduling
cluster a is defined as
1 a1

R, —I—Z]]_(.Bj.a—.ﬂja) (5)

where 1(-) denotes the indicator function. Thus, the reward
earned by the agent after scheduling cluster a is identical to
the probability that the corrupted bits corresponding to the
transmitted bits xoq, ...,z 1,4 are correctly reconstructed.

The RL-SD scheme is shown in Algorithm 1. The algo-
rithm inputs are the soft channel information vector L =
[Lo, ..., Lp_1] comprised of LLRs and a parity-check ma-
trix H of the LDPC code, and I, = 0 .. L(ﬂ' 1) is
initialized using L. The output is the reconstructed 51gnal X
obtained after executing at most I« decoding iterations, or
until the stopping condition shown in Step 32 is reached.
The optimized scheduling order in Step 9, learned using the
methods discussed in Section IV, is dynamic and depends both
on the graph structure and on the received channel values.

Note that the RL-SD scheme can be viewed as a sequential
generalized LDPC (GLDPC) decoder when z > 1, where
BP decoding of a cluster-induced subgraph is analogous to
decoding a sub-code of a GLDPC code. When z = 1, each
cluster represents a single parity-check code, as is the case in
a standard LDPC code.

IV. LEARNING THE SCHEDULING POLICY

Let x() denote the state of the MDP after scheduling a
cluster with index a during learning step £, and let s, € [[22]]
refer to the index of a realization of)“ct(f}. Thus, s, also refers
to the state of the MDP. Since the state-space of the clusters are
pairwise disjoint, set S of our MDP contains 3 7, crir, /7 2!
realizations of all the cluster outputs :v“qgg), . fc(rfi J2-10
where a realization can be thought of as a {cluster cluster
state) pair. The action space is defined as A = [[[m/z]]]. In
the following, we discuss two distinct Q-learning-based RL

approaches for solving the sequential decoding problem.

A. Using Standard Q-learning

For MDPs with moderately large state spaces, we utilize
a standard Q-learning approach for determining the optimal
cluster scheduling order, where the action-value for choosing
cluster a in state sq is given by

Qf—l—l(‘sa: G.) = (1 - Q)Qf(sa:a)+
oRa+8 Qu(sya'))-
(6)

In each learning step £, cluster a is selected via an e-greedy
approach according to

max
a'e([[m/z]]]

)

{selected uniformly at random w.p. € from A,

¢
?I"(Q) selected w.p. 1 — e,

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:29:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: The RL-SD Scheme

Inmput : L, H
Output: %
1 Initialization:
I+0
Moy < 0
Mye Ly
if I < I,ax then
foreach cluster index a do

Determine state sy}

end

Obtain an optimized cluster scheduling order w:(‘r)

10 foreach cluster with index a; do
// decode cluster wvia flooding

// for
// for

all CN to
all VN to

VN messages
CN messages

TS LT B P

11 foreach CN c in cluster a; do
12 foreach VN v € N(c) do
13 ‘ compute and propagate m®,
14 end
15 end
16 foreach VN v in the subgraph of cluster a; do
17 foreach CN c € N(v) do
18 ‘ compute and propagate m,f‘,‘r_}}c
19 end
20 LJ(,U) < DN () mBy+ L, // update
posterior LLR
21 end
// hard-decision step
2 foreach VN v in the subgraph of cluster a; do

23 if L") > 0 then
24 ‘ :Eg‘:g‘ +—0

25 end

26 else

. | &0, 1
28 end

29 end

30 i+—i+1

31 end

32 if HX = 0 then

33 | break // stopping condition reached
34 end

35 IT+T+1

36 end

wherfe wg) = arg maX,c (o1 Q;(s4,a). For ties (as in the
first iteration of Algorithm 2 for £ = 0 and the first L), we
choose an action uniformly at random from all the maximizing
actions. During inference, the optimized cluster scheduling
policy of standard Q-learning, w:(”, for scheduling the 7th
cluster during decoder iteration I is expressed as

20 =

(8)

arg max
a;eA\{ao,....ai_1}

Q* (51(1{}: ai):
where Q*(sg‘:), a;) represents the optimized action value after
training has been accomplished. The policy w:(‘r) is incorpo-
rated in Step 9 of Algorithm 1 to determine the optimized
cluster scheduling order.

A standard Q-learning method for sequential LDPC decod-
ing is shown in Algorithm 2. The input to this algorithm is a
set Z = {Lo,...,Lj#|—1} containing |#| realizations of L
over which Q-learning is performed, and a parity-check matrix

H. The output is Q*(sé‘?, a;). For each L € &, the action-
value function in (6) is recursively updated £iax times.

Algorithm 2: Standard Q-learning for Sequential
LDPC Decoding

Input : ¥, H
Output: optimized action value function invoked in (8)

1 Initialization: Qq(sg,a) < 0 for all s, and a
2 for each L € ¥ do

3 !i «—0

4 IQ + L

5 Determine initial states of all clusters using (4)
6 while ¢ < .« do

7 select cluster a according to (7)

// decode cluster via flooding

8 foreach CN c in cluster a do

9 foreach VN v € N(c) do

10 ‘ com d 52

pute and propagate me sy

11 end

12 end

13 foreach VN v in the subgraph of cluster a do
14 foreach CN c € N (v) do

15 ‘ compute and propagate miﬂm

16 end

17 LEU) < DeeN(v) mBy+ L, // update

posterior LLR
18 end
// determine cluster output

19 foreach VN v in the subgraph of cluster a do
20 if Lg”) > 0 then

21 ‘ :E&ﬂ; ~0

22 end

23 else

N | 501

25 end

26 end

27 determine index s of X,

28 update R, according to (5)

29 compute Q4 1(sq,a) according to (6)

30 8q + 5,

31 £+—f+1
32 end
33 end

B. Using Deep RL

For MDPs with very large state spaces, the action-value
function Q(s, a) can be approximated as Q;(s, a; W) using a
deep learning model with tensor W representing the weights
connecting all layers in the NN [12]. We utilize a separate
NN with weight Wga) for each cluster in each learning step
£, since a single NN cannot distinguish between the signals
X ,...,)“c(fi ,1_1- and hence the rewards Ry, ..., Rm/21-1
generated by the [m/z] different clusters. The NN corre-
sponding to each cluster learns to map the cluster output £
to a vector of [m/z] predicted action-values [Q,(s], O; Wga}),

oy Qelsh, [m/2] — 1; W],
V. EXPERIMENTAL RESULTS

In this section, we test the performance of our RL-SD
scheme in Algorithm 1, where the cluster selection policy of

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:29:21 UTC from IEEE Xplore. Restrictions apply.

Step 9 is learned using both DRL and standard Q-learning. As
a benchmark, we compare the RL-SD scheme with flooding
(i.e.,, all clusters are updated simultaneously per iteration)
and the scheme where the cluster scheduling order is ran-
domly generated. We utilize each scheme for decoding both
[384, 256]-WRAN irregular (see [16]) and (3,5) AB-LDPC
codes. For both codes, the choice of block length (at most
500 bits) is influenced by the run-time of Algorithm 2 on our
system.

Note that the LLR vectors used for training are sampled
uniformly at random over a range of A equally-spaced SNR
values for a given code. Hence, there are |#|/A LLR vectors
in ¥ for each SNR value considered, For both considered
codes, we let the learning parameters be as follows: a = 0.1,
B =09, =086, lpax = 50, A =5, and |Z|= 5 x 10°,
where |-#| is chosen to ensure that the training is as accurate
as possible without incurring excessive run-time for Algorithm
2. Once RL is accomplished using either DRL or standard Q-
learning, the corresponding cluster scheduling policy for each
code is incorporated in Step 9 of Algorithm 1, resulting in RL-
SD for that code. For decoding, we let Iiyax = 50 (resp., 5)
for the AB (resp., WRAN) code.! In the case of DRL, each
cluster NN is based on a feed-forward architecture with an
input layer of size l,, two hidden layers of sizes 250 and 125,
respectively, and an output layer of size [m/z]. The activation
function used for the hidden and output layers are rectified
linear unit and sigmoid, respectively.

For both training and inference, we consider the AWGN
channel and transmit all-zero codewords using BPSK mod-
ulation. Training with the all-zero codeword is sufficient as,
due to the symmetry of the BP decoder and the channel, the
decoding error is independent of the transmitted signal [22,
Lemma 4.92]. For performance measures, we consider both
the bit error rate (BER), given by Pr[#, # z,], v € [[n]],
and the frame error rate (FER), given by Pr[X # x]. In the
case of the WRAN LDPC code, we consider z = 1 only
as this code has several degree-11 CNs which render both
learning schemes too computationally intensive for z > 1. On
the other hand, for the AB code, multiple cluster sizes chosen
from z € {1,2,3} are used for both the random and RL-SD
schemes. For z € {1,2}, we employ standard Q-learning to
learn the cluster scheduling policy. For z = 3, DRL is utilized,
as standard Q-learning is not feasible due to the significantly
increased state space. Note that we use the same number of
training examples for both standard Q-learning and DRL.

The BER vs. channel signal-to-noise ratio (SNR), in terms
of Ey/Np in dB, for the [384,256]-WRAN and (3,5) AB-
LDPC codes using these decoding techniques are shown in
Figs. 2 and 4, respectively. The experimental results reveal
that sequential decoding of clusters outperforms the flooding
scheme. Furthermore, regardless of the cluster size, the RL-
SD scheme outperforms the random sequential scheduling
schemes, revealing the benefit of RL. For both codes, the RL-

'We choose Imax = 5 in case of the WRAN code for comparison with
the hyper-network scheme of [21].

SD scheme outperforms the other decoding schemes, including
the state-of-the art hyper-network decoder of [21] (in case
of the WRAN LDPC code) with a gain of around 0.5 dB
for fixed BER. Note that for both codes, sequential decoding
performance improves as the cluster size is reduced, mainly
because the subgraphs induced by the smaller clusters are
less likely to contain detrimental objects, such as cycles and
absorbing sets. The FER vs. SNR performance shown in Figs.
3 and 5 show similar behavior.

In Table I, we compare the average number of CN to
VN messages propagated in the considered decoding schemes
to attain the results in Figs. 2-5. We note that the RL-SD
scheme, on average, generates a lower number of CN to
VN messages when compared to the other decoding schemes,
irrespective of the cluster size. Thus, the RL-SD scheme also
provides a significant reduction in message-passing complexity
for moderate length LDPC codes.

101

108k

=€)} fooding

= rnd. sequential (z = 1)
RI-8D (z=1)

=€) hyper-network [21]

1 2 3

Ey/Ny (dB)
Fig. 2: BER results using different BP decoding schemes for a
[384, 256]-WRAN LDPC code with block length n = 384.

108

10 === o T
i -..,__h._a
-. .
107! ~ e
BN
L. >
102 . &
T ~
~ N
~h\ .\\
e 107® \\ RS
oY
10 -4 L 3
P
1075 4 =€¥ flooding
> rnd. sequential (z =1)
RL-SD (z = 1) i
10 -6 T L L
1 2 4 5

3
Ey /Ny (dB)
Fig. 3: FER results using different BP decoding schemes for a
[384, 256]-WRAN LDPC code with block length n = 384.

VI. CONCLUSION

We presented novel RL-based sequential decoding schemes
to optimize the scheduling of CN clusters for moderate length
LDPC codes. In contrast to our previous work, the main
contributions of this work include a new state space model
built using the collection of possible outputs of individual

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:29:21 UTC from IEEE Xplore. Restrictions apply.

SNR (dB) I 1 > 3
flooding 63750 16400 3123
I SNR (dB) I 1 | 2 [3 | tandom (z = 3) 44338 11102 5005
flooding 6480 6422 5171 RLSD (z = 3) A0448 10694 2908
random (z = 1) 6480 5807 3520 Tandom (z = 2) 36328 10254 2904
RLSD (z = 1) 6A67 5450 3170 RLSD (z = 2) 31383 7340 4225
tandom (z = 1) 50750 10602 812
RLSD (z = 1) 51250 6240 3046

TABLE I: Average number of CN to VN messages pmf%gated in various decoding schemes for a [384, 256]-WRAN (left) and (3,5) AB-

(right) LDPC codes to attain the results shown in Figs.

107
“‘ii =
-""-:!& "‘-‘ T
-, L) 3
1072 S ST 3
RS
N
1078 M\ é—x;\ "---..,“~ J
g
e &
‘\:\‘ i‘i- “\
& 10 P
N RS
L S
- S ~
-5 | |6 flooding s, \\3
10 =€) rnd. sequential (z = 3) N *.
RL-SD (z = 3) \\\\ .
" =€} rnd. sequential (z = 2) N
107 Hoae RL-SD (z = 2) e
md. sequential (z = 1) * .
@ RL-SD (2 = 1)
10 -7 T L L
1 1.5 25 3

2
Ey /Ny (dB)
Fig. 4: BER results using different BP decoding schemes for a (3, 5)
AB-LDPC code with block length n = 500.

10 == : . i
S R
107} - e E
v e
e
R NS
102 N e]
oy O
M SN
E 3 NS ‘4..‘\ _\
= 10 \\:\ ~*"‘*:~'n §
% \\"".il
-4 || flooding w5, S,
10 -o- rnd. sequential (z = 3) \‘.\\ 0
RLSD (= =3) N
= ¢} rnd. sequential (z = 2) N Y
10™ Fete RL-SD (2 = 2) Nos
rnd. sequential (z =1) 0
s =@ RLSD (: =1)
10° T | |
1 1.5 2 25 3
Ey/No (dB)

Fig. 5: FER results using different BP decoding schemes for a (3, 5)
AB-LDPC code with block length n = 500.

clusters, and a scheduling approach that updates all CN clus-
ters sequentially within each decoder iteration. We employed
DRL for cluster size 3 and standard Q-learning for smaller
clusters. Experimental results show that by learning the cluster
scheduling order, we can outperform a random scheduling
scheme, irrespective of the cluster size. The performance gains
include lowering both BER and message-passing complexity.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21-28, Jan 1962.

[2] D. I Costello, Jr, L. Dolecek, T. Fuja, J. Kliewer, D. G. M. Mitchell,
and R. Smarandache, “Spatially coupled sparse codes on graphs: theory
and practice,” IEEE Commun. Mag., vol. 52, no. 7, pp. 168-176, 2014.

[3] S. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On the
design of low-density parity-check codes within 0.0045 dB of the
Shannon limit,” JEEE Commun. Lett., vol. 5, pp. 58-60, Feb. 2001.

[4] Y. Kou, S. Lin, and M. Fossorier, “Low density parity-check codes based
on finite geometries: A rediscovery and new results,” JEEE Trans. Inf.
Theory, vol. 47, pp. 2711-2736, Nov. 2001.

[5] M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of Low Density Parity Check codes based on belief propaga-
tion,” IEEE Trans. Commun., vol. 47, pp. 673-680, May 1999.

[6] J. Zhang and M. Fossorier, “Shuffled belief propagation decoding,” in
Proc. 36th Asilomar Conf. Signals, Syst. Comput., 2002, pp. 8-15.

[7] H. Kfir and I Kanter, “Parallel versus sequential updating for belief
propagation decoding,” Physica A, vol. 330, pp. 259-270, 2003.

[8] A. V. Casado, M. Griot, and R. D. Wesel, “LDPC decoders with
informed dynamic scheduling,” JEEE Trans. Commun., vol. 58, no. 12,
pp- 3470-3479, Dec 2010.

[9] S. Habib, A. Beemer, and J. Kliewer, “Learning to decode: Reinforce-
ment learning for decoding of sparse graph-based channel codes,” Adv.
in Neural Inf. Processing Systems, vol. 33, pp. 22 396-22 406, 2020.

[10] S. Habib, A. Beemer, and Kliewer, “Belief propagation decoding of short
graph-based channel codes via reinforcement learning,” IEEE Journal
on Sel. Areas in Inf. Theory, vol. 2, no. 2, pp. 627-640, 2021.

[11] 1. C. Gittins, “Bandit processes and dynamic allocation indices,” J. R.
Statistics Soc. B, vol. 41, no. 2, pp. 148-163, 1979.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd Edition. The MIT Press Cambridge, 2018.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, and G. O. et al,,
“Human-level control through deep reinforcement learning,” Nature, vol.
518, no. 7540, 2015.

[14] Y. Li, “Deep reinforcement learning,” [Online]. Available: arXiv.org,

arXiv:1810.06339v1 [cs.LG], 2018.

R. M. Tanner, “A recursive approach to low complexity codes,” IEEE

Trans. Inf. Theory, vol. 27, no. 5, pp. 547-553, Sep 1981.

“TU Kaiserslautern channel codes database,” [Online]. Available:

https://www.uni-kl.de/channel-codes/channel-codes-database/more-ldpc-

codes, 2015.

[17] 1. L. Fan, “Array codes as low-density parity-check codes,” in Proc. of
Intl. Symp. on Turbo Codes and Rel. Topics, 2000, pp. 543-546.

[18] M. O. Duff, Q-Learning for Bandit Problems. ~CMPSCI Technical
Report, 1995.

[19] E Carpi, C. Hager, M. Martalo, R. Raheli, and H. D. Pfister, “Rein-
forcement learning for channel coding: Learned bit-flipping decoding,”
Proc. of 57th Allerton Conf. on Commun., Control and Computing.

[20] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King's College, 1989.

[21] E. Nachmani and L. Wolf, “Hyper-graph-network decoders for block
codes,” in Adv. in Neural Inf. Processing Systems, 2019, pp. 2320-2339.

[22] T.J. Richardson and R. L. Urbanke, “Modern coding theory,” Cambridge
University Press, 2008.

[15]
[16]

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:29:21 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T21:27:36-0400
	Preflight Ticket Signature

