IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021 627

Belief Propagation Decoding of Short Graph-Based
Channel Codes via Reinforcement Learning

Salman Habib

Abstract—In this work, we consider the decoding of short
sparse graph-based channel codes via reinforcement learning
(RL). Specifically, we focus on low-density parity-check (LDPC)
codes, which for example have been standardized in the con-
text of 5G cellular communication systems due to their excellent
error correcting performance. LDPC codes are typically decoded
via belief propagation on the corresponding bipartite (Tanner)
graph of the code via flooding, i.e., all check and variable nodes in
the Tanner graph are updated at once. We model the node-wise
sequential LDPC scheduling scheme as a Markov decision process
(MDP), and obtain optimized check node (CN) scheduling policies
via RL to improve sequential decoding performance as compared
to flooding. In each RL step, an agent decides which CN to
schedule next by observing a reward associated with each choice.
Repeated scheduling enables the agent to discover the optimized
CN scheduling policy which is later incorporated in our RL-based
sequential LDPC decoder. In order to reduce RL complexity, we
propose a novel graph-induced CN clustering approach to parti-
tion the state space of the MDP in such a way that dependencies
between clusters are minimized. Compared to standard decod-
ing approaches from the literature, some of our proposed RL
schemes not only improve the decoding performance, but also
reduce the decoding complexity dramatically once the schedul-
ing policy is learned. By concatenating an outer Hamming code
with an inner LDPC code which is decoded based on our learned
policy, we demonstrate significant improvements in the decoding
performance compared to other LDPC decoding policies.

Index Terms—Reinforcement learning, belief propagation,
LDPC codes, optimization.

I. INTRODUCTION

INARY low-density parity-check (LDPC) codes are
B sparse graph-based channel codes whose rates approach
the capacity of symmetric binary input channels [3], [4].
Due to their excellent error correcting performance, they have
recently been standardized for data communication in the
5G cellular new radio standard [5], [6]. LDPC codes are
decoded via iterative algorithms, such as belief propagation

Manuscript received October 15, 2020; revised March 18, 2021 and April
9, 2021; accepted April 10, 2021. Date of publication April 16, 2021; date
of current version June 21, 2021. This work was supported in part by
U.S. NSF under Grant ECCS-1711056, and in part by the Combat Capabilities
Development Command of the U.S. Army Research Laboratory through
Cooperative Agreement under Grant W911NF-17-2-0183. This paper was
presented in part at the 2020 IEEE Information Symposium on Information
Theory, Los Angeles, CA, USA, [1], and the 34th Conference on Neural
Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 2020 [2].
(Corresponding author: Salman Habib.)

Salman Habib and Jorg Kliewer are with the Helen and John C. Hartmann
Department of Electrical and Computer Engineering, New Jersey Institute of
Technology, Newark, NJ 07102 USA (e-mail: sh383@nijit.edu).

Allison Beemer is with the Department of Mathematics, University of
‘Wisconsin-Eau Claire, Eau Claire, W1 54701 USA.

Digital Object Identifier 10.1109/JSAIT.2021.3073834

, Allison Beemer ~, and Jorg Kliewer, Senior Member, IEEE

(BP), which operate on the code’s Tanner graph representa-
tion [7]. Tanner graphs of LDPC codes are sparse bipartite
graphs whose vertex sets are partitioned into check nodes
(CNs) and variable nodes (VNs). Typically, iterative decod-
ing on a Tanner graph is carried out via flooding: all CNs and
VNs are updated simultaneously [8]. The flooding schedule
is computationally intensive compared to sequential schedul-
ing, where nodes are updated serially based on the latest
messages propagated by their neighbors. Sequential schedul-
ing problems deal with finding the optimized order of node
updates to improve the convergence speed and/or the decoding
performance as compared to the flooding scheme.

A sequential CN scheduling scheme, so-called node-wise
scheduling (NS) was proposed in [9], where the scheme’s cri-
terion for selecting the next CN depends on residuals, given
by the magnitude of the difference between two successive
messages emanating from each CN. In NS, all CN to VN
messages corresponding to a CN with the highest residual
are propagated simultaneously. NS of an iterative decoder can
lead to improved performance, as shown in [9]: intuitively,
the higher the residual of a CN, the further that portion of
the graph is from convergence. Hence, scheduling CNs with
higher residuals is expected to lead to faster and more reli-
able decoding compared to the flooding scheme. However, the
computation of provisional messages is necessary for updating
CN residuals in real-time, rendering NS more computationally
intensive than the flooding scheme for the same total number
of messages propagated.

To mitigate the computational complexity inherent in the
approach to NS in [9], we propose an RL-based NS (RL-NS)
scheme for sequential iterative decoding of short block length
LDPC codes suitable for operating in the waterfall region of
the bit error rate (BER) versus signal-to-noise-ratio (SNR)
performance curve. Instead of computing residuals prior to
scheduling, RL-NS employs a CN scheduling policy that uti-
lizes an action-value function to determine how beneficial
an action is for optimizing the scheduling order, where the
optimal scheduling order is the one that yields a codeword
output by propagating the smallest number of CN to VN mes-
sages. An action is defined here as selecting a single CN
to convey its outgoing messages to its adjacent VNs. The
scheduling algorithm is modeled as a Markov decision process
(MDP) [10], where the Tanner graph is viewed as an environ-
ment with m possible actions (CN scheduling operations), and
an agent learns to schedule CNs that elicit the highest reward.
Repeated scheduling enables the agent to accurately estimate
the action-value function.

2641-8770 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0699-5312
https://orcid.org/0000-0002-1759-5026
https://orcid.org/0000-0003-0942-8006

628 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

Note that machine learning-assisted BP decoding of linear
codes has been addressed in, e.g., [11]-[13], which use deep
learning based on neural networks to learn the noise on the
communication channel. A deep learning framework based
on hyper-networks is used for decoding short block length
LDPC codes in [14], where the hidden layers of the network
unfold to represent Tanner graphs executing successive mes-
sage passing iterations. In [15], [16], reinforcement learning
(RL) is proposed for constructing polar codes. [15] focuses
on BP-based polar code decoding and frames the factor graph
selection problem as a multi-armed bandit (MAB) problem.
On the other hand, [16] frames the construction of polar codes
as a maze traversing game where a chosen path in the maze
corresponds to a unique polar code construction. Further, RL
was recently applied to hard decision-based iterative decoding
in [17]. However, to the best of our knowledge, RL has not
previously been successfully applied to soft iterative decoding
of LDPC codes in the open literature. Our work also differs
from the vast majority of works (including [11]-[14], [17])
in that our decoder is not based on deep learning. In this
paper, we propose both model-free and model-based RL strate-
gies for sequential decoding of short LDPC codes targeted for
operating in the waterfall region. In the model-free category,
we consider both computing Gittins indices (GIs) of CNs and
Q-learning for estimating the corresponding action-value func-
tions. For our model-based approach, we employ Thompson
sampling (TS).

In the GI scheme, our RL problem is viewed as Markovian
MAB problem where each CN (arm) is considered to be an
independent bandit process (with independent rewards), lead-
ing to a learning complexity that grows linearly with the
number of CNs. In the case of TS, CN to VN messages are
assumed to be independent and normally distributed, allow-
ing us to sample rewards from a known distribution in each
learning step. For our model-free strategy, we first employ a
TS-based NS algorithm, where the rewards are sampled from
a chi-squared distribution, without learning any action values.
Later on, we propose a variant of this approach by incor-
porating Q-learning. Specifically, to generate action values,
rewards are sampled instead of being computed as in standard
Q-learning.

Q-learning [18], [19] is a Monte Carlo approach for esti-
mating an action-value function without explicit assumptions
on the distribution of the bandit processes [20]. A major draw-
back of applying Q-learning to the sequential CN scheduling
problem at hand is that the learning complexity grows expo-
nentially with the number of CNs. Indeed, a straightforward
choice of the underlying state space of the Q-learning problem
is the space of vectors of quantized CN values: however, the
number of CNs ranges in the hundreds for practical LDPC
codes, so that even for a binary quantization of each CN value,
the cardinality of the state space is not computationally man-
ageable in the learning process. A multitude of methods for
reducing the learning complexity in RL have been proposed
in the literature: for example, complexity may be reduced by
partitioning the state space (see, e.g., [21], [22]), imposing
a state hierarchy (see, e.g., [23]), or reducing dimensionality
(see, e.g., [24], [25]).

In this work, we follow an approach similar to these
methods in order to reduce complexity, albeit tailored to
the problem at hand. Specifically, for Q-learning we pro-
pose grouping the CNs into clusters, each with a separate
state and action space. While this approach has the poten-
tial to make learning tractable, it also assumes independence
of the clusters, an assumption that will not hold due to the
inevitable presence of cycles in the Tanner graph. In order
to mitigate the detrimental effect of clustering on the learn-
ing performance, we leverage the structure of the Tanner
graph of the code by optimizing the clusters so that depen-
dencies between clusters are minimized. To this end, we
define novel graphical substructures in the Tanner graph
termed cluster-connecting sets (CCSs), which capture the
connectivity between CN clusters, and analyze their graph-
theoretic properties. We give general bounds on the size of
a CCS, as well as tighter bounds and some exact results
for regular and array-based LDPC codes whose performance
is simulated. Guided by the properties of CCSs, we pro-
pose a novel cluster selection scheme to optimize Q-learning
performance.

This paper extends our previous work in [1], [2] in several
aspects and presents these novel results in a comprehensive
fashion, highlighted as follows:

« We propose a model-based version of RL based on
Thompson sampling in addition to model-free methods.
This approach has the salient feature that it allows us to
incorporate the graph message densities into the model
and thus is capable of providing a significant performance
improvement.

« We provide an additional graph-theoretic result related
to the size of CCSs in array-based LDPC codes, along
with the complete proof of Theorem 2, superseding the
results in [2].

« Based on the observation that RL scheduling schemes
tend to result in isolated bit errors in the decoded code-
word estimate, as compared to bursty errors for BP
flooding, we also propose a novel code construction with
an added high rate outer code. Our results show that
with only a minor rate penalty and negligible additional
complexity, a low complexity Hamming outer code can
significantly improve the performance beyond the gain
already observed for RL sequential decoding, but that
this outer code is not able to improve on BP decoding
via flooding.

The rest of the paper is organized as follows. Necessary
background is given in Section II. In Section III, we discuss
the RL-NS scheme in detail. In Section IV we provide the
details of CN scheduling policies learned via the model-free
and model-based RL methods outlined above. In Section V
we introduce CCSs and show how they are related to the
dependencies between clusters. A novel cluster optimization
scheme based on the detection of cycles is discussed in
Section VI. In Section VII we discuss the experimental setup,
and analyze numerical results by comparing the proposed
RL-based sequential decoding schemes to conventional
decoders found in the literature. Section VIII concludes the

paper.

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

HABIB et al.: BP DECODING OF SHORT GRAPH-BASED CHANNEL CODES VIA RL

II. PRELIMINARIES
A. LDPC Codes

An [n, k] binary linear code is a k-dimensional subspace of

5. and may be defined as the kernel of a (non-unique) binary
parity-check matrix H € F3*", where m > n — k. The Tanner
graph of a linear code with parity-check matrix H is the bipar-
tite graph Gy = (VU C, E), where V = {vp,...,v,_1} is a
set of variable nodes (VNSs) corresponding to the columns of
H, C = {co,--.,Ccm—1} is a set of check nodes (CNs) corre-
sponding to the rows of H, and edges in E correspond to the
I’s in H [7]. That is, H is the (simplified) adjacency matrix
of Gy. For a subset X of nodes, denote by A/(X) the set of
all neighbors of X, and define N4(X) = N (X) N A, where A
is some subset of nodes.

LDPC codes are a class of highly competitive linear codes
defined via sparse parity-check matrices or, equivalently,
sparse Tanner graphs [3]. Due to this sparsity, LDPC codes
are amenable to low-complexity graph-based message-passing
decoding algorithms, making them ideal for practical appli-
cations. BP iterative decoding, considered here, is one such
algorithm. Note that critical substructures in the Tanner graph,
such as absorbing sets (ABSs) [26], are capable of producing
decoder failures. We have stated in [1] that sequential schedul-
ing significantly reduces the impact of ABSs on the decoder
performance.

In this work, we present experimental results for two par-
ticular classes of LDPC codes: (j, k)-regular and array-based
(AB-) LDPC codes. A (j, k)-regular LDPC code is defined by
a parity-check matrix with constant column and row weights
equal to j and k, respectively [3]. A (y,p) AB-LDPC code,
where p is prime, is a (y, p)-regular LDPC code with addi-
tional structure in its parity-check matrix, H(y, p) [27]. In
particular,

| I I I

I o o oP-1
Hy.pp=1|. . . : ;

|_i o7l G201 5 —D-1)
(1)

where 0% denotes the circulant matrix obtained by cyclically
left-shifting the entries of the p x p identity matrix I by z (mod
p) positions. Notice that 0% = L. Each row (resp., column) of
sub-matrices of H(y, p) forms a row (resp., column) group.
Observe that there are a total of p (resp., pz) column groups
(resp., columns) and y (resp., yp) row groups (resp., rows)
in H(y, p). A lifted LDPC code is obtained by replacing the
non-zero (resp., zero) entries of the parity-check matrix with
randomly generated permutation (resp., all-zero) matrices [28].

B. Reinforcement Learning

In an RL problem, an agent (learner) interacts with an
environment by taking actions, which alter the state of the
environment, and receiving a reward in return for each action.
The goal of the agent is to maximize the total reward in a series
of actions. Here, the environment is given by the Tanner graph
of the code whose state space is modeled as a finite MDP [10],

629

and the optimized sequence of actions, i.e., the scheduling of
individual CNs, is obtained by employing an action selection
policy learned either by computing Gls, via Q-learning, or
via TS.

In the remainder of the paper, define [[x]] ES {0,...,x—1},
where x is a positive integer. In an environment with m
possible actions, let S§°), .,S,(m_l) represent the m possi-
ble states resulting from taking those actions, where each
random variable (r.v.) S(’), j € [Im]]l, can take M possi-
ble real values. Let state space S contain all M™ possible
realizations of the sequence S() S(m D , and let the r.v.
S; € [[M™]], with realization s represent the index of the
realization s,(o), cees s,(m D Since each index corresponds to
a unique realization, we also refer to S; as the state of the
environment at time 7. If an action (scheduling of a CN) is
modeled as an independent random process, we define a r.v.
S’, € [[M]], with realization §, as the realization s,j of any CN
j- Let Ay € [[m]], with realization a, represent the index of
an action taken by the agent at time #, and 4 = [[m]] be an
action space, where a € A. Let S;;1 represent a new state of
the MDP after taking action A,, and let s’ denote its realiza-
tion. Also, let a r.v. R;(S, Ay, St41), with realization r be the
reward yielded at time f after taking action A; in state S;.

C. Solving the RL Problem by Computing Gittins Indices

In case of GIs, our RL problem can be viewed as a MAB
problem with Markovian bandits, where the playing of an
arm represents an action and is equivalent to scheduling a
CN in our setup. If an m-armed bandit problem, formulated
as an MDP, is solved via Markov decision theory, the state
space consists of M™ possible state realizations of all the m
arms. Consequently, the complexity of solving the MAB via
Markov decision theory grows exponentially with the number
of arms. On the other hand, if the arms are independent bandit
processes, it is clear that the optimal solution to the m-armed
bandit problem can be obtained by solving m 1-dimensional
optimization problems, leading to an exponential complexity
reduction. Hence, for a given arm with index a, one need only
compute its action-value function, in this case known as the
Gittins index (GI) G(8, a), given by [29]

Eri”[z::t)l ﬁer(gr,Ar,) 5,A; =]
E[Xi #1850 = 5,4

G(5,a) = ;12%

2

where t is a r.v. with realizations in {1, 2, ..., } that gives the
number of times the agent plays arm a, p, is the distribution of
7, P represents the collection of all allowed distributions and is
determined by allowed stopping time policies, and 0 < 8 < 1
is the reward discount rate. The action-value function G(3, a)
represents the long-term expected reward for taking action a in
state §, indicating how beneficial it would be for the agent to
take that action [10], [29]. For the Gittins scheme, the optimal
arm scheduling policy for an agent is given by

3)

¢ = argmax G(3, a).
a

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

630 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

D. Solving the RL Problem via Q-Learning

Optimal policies for MDPs can also be estimated via Monte
Carlo techniques such as Q-learning [17], [18], [20]. The esti-
mated action-value function Q(S;, A;) in Q-learning represents
the expected long-term reward achieved by the agent at time ¢
after taking action A; in state S;. To improve the estimation in
each time step, the action-value function is adjusted according
to a recursion

Orr1(5,a) = (1 —a)Qi(S; = 5,A; = a)
+ a(R:(s, a, Sey1 =f(s, a)

+ B Jmax Oi(f(s,a),a)), @)

where f(s, a) represents the new state s’ as a function of s
and a, 0 < a < 1 is the learning rate, and Qr1(s, a) is
a future action-value resulting from action a in the current
state s [18, pp. 95-96]. Note that the observed state, which is
a collective state S() S(m_]) of all m bandit processes,
allows the agent to 1nc0rp0rate any dependencies of the arms,
unlike the Gittins scheme.

In Q-learning, the optimal policy for the agent, :rrg), in state
s is given by

7wy = argmax Q. (s, a), ®)

where t is the total number of time steps after observing
an initial state Sp. Although the optimal policy is initially
unknown to the agent, with the aid of Q-learning it is pos-
sible to recursively determine the policy and the action-value
function together via e-greedy exploration (see Section IV for
details).

E. Solving the RL Problem via Thompson Sampling

TS is widely used for solving RL problems [30]. In this
approach, the environment is represented using a statistical
model which, in each TS step ¢, predicts the reward R, and/or
the new state S; given the current state S; and action A;.
The rewards associated with each action are randomly sam-
pled from a posterior distribution representing the agent’s
prior belief of the expected reward. This randomization allows
the agent to actively explore the environment. Suppose that
the modeled environment generates a new state based on a
conditional probability measure p(S; = s'|A; = a), and let
6a = Ey[R;|S:, a] denote the mean reward (model parameter)
for playing a bandit’s arm a, which is initially unknown to the
agent. Also, let the agent’s uncertainty about the value of 8, be
represented using the prior distribution p, = P(6, € R|S:, a),
where R denotes the set of all possible rewards.

In a typical TS scheme, an estimated mean reward 6, is ran-
domly sampled from the prior p,, and the action a with the
potential of generating the highest expected long-term reward
is selected according to @ = argmax, 4 6. The prior distri-
bution p, is then updated based on the knowledge of a and
s, and subsequently used for sampling the reward in the next
TS step. Repeated sampling allows the agent to take actions
which are expected to generate high rewards in the long run.

III. RL-BASED NODE-WISE SCHEDULING

The proposed RL-NS is a serial decoding algorithm in
which a single message-passing iteration is given by mes-
sages sent from a scheduled CN to all its neighboring VNs,
and subsequent messages sent from these VNs to their other
CN neighbors. Sequential CN scheduling is carried out until
a stopping condition is reached, or an iteration threshold is
exceeded. The RL-NS decoder applies a scheduling policy
based on an action-value function to decide the CN to be
scheduled next, avoiding the real-time calculation of residuals.

We define the optimal scheduling order to be the one that
yields a codeword output by propagating the smallest number
of CN to VN messages. The decoding algorithm informs the
imaginary agent of the current state of the decoder, and the
reward obtained after performing an action (scheduling a CN).
Based on these observations, the agent takes future actions,
to enhance the total reward earned, which alters the state of
the environment and also the future reward. In this work, the
reward R, obtained by the agent after scheduling CN a is
defined as R, = max,ep(q) fa—sv, Where the residual r,_,, is
computed according to

— Masy]. (6)

Here, m,_,, is the message sent by CN a to its neighboring
VN v in the previous iteration, and m/,_, , is the message that
CN a would send to VN v in the current iteration, if scheduled.

The magnitude of the residual diminishes as the BP algo-
rithm converges. Consequently, propagating CN to VN mes-
sages with relatively large residuals first is expected to lead to
faster convergence of the BP algorithm [9]. Note that in our
RL problem, residuals are computed for estimating the action-
value functions only, which is done offline (see Section IV for
details).

An iteration number £ (resp., iteration threshold £,,4) of the
RL-NS scheme is analogous to a time step f (resp., stopping
time t) discussed in Section II. Let x = [xg,...,x,_1] and
Y = [Yo, - .., Ya—1] represent the transmitted and the received
word, respectively, where x; € {0,1}, y; = (—1)" + z, and
z~N(0, 0‘2) The posterior log -likelihood ratio (LLR) of x; is
expressed as L; = log Pr(x‘_lb" The soft channel information
1npul to the RL-NS algorlthm is a vector of LLRs denoted

= [Lg,...,Ly_1]. In the RL-NS scheme, the value

(or slale) of CN _g at the end of iteration £ is defined by
Z"_ H[,,L(*), where L = Y ceN () Memvi + Li i

lhe posterior LLR computed by VN v; at the end of iteration
£, and m._,,,; is the message received by VN v; from a neigh-
boring CN c. The resulting vector Sg Sgo), ey S%’"]), with

realization §; = .1\‘{(E), s 3‘%’"_]), represents a “soft-syndrome”
vector of the RL-NS scheme obtained at the end of iteration £.

Since we model the NS scheme as a finite MDP, it is nec-
essary to quantize each soft CN state. Let gy(-) denote an
M-level scalar quantization function that maps a real number
to any of the closest M Posmble representation points set by

the quantizer. Let Sy = . Sg D be the quantized syn-
drome vector, where a reallzatlon s = gM(s) We call Sy

a quantized soft syndrome for the case M > 2, and a binary
syndrome if M = 2. The state space containing all possible

ra—yv |ma_) v

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

HABIB et al.: BP DECODING OF SHORT GRAPH-BASED CHANNEL CODES VIA RL 631

Algorithm 1: RL-NS for LDPC Codes

Input : L H

Output: reconstructed signal

Initialization:
£<«0
Mme_y <0
My_se <= Ly

i

2

3 // for all CN to VN messages
4

s Ly« L

6

7

8

9

// for all VN to CN messages

gg b HI:g
foreach a [[m]] do
Sga) <—gM(.§'§a)) // M-level quantization
end
// decoding starts

if stopping condition not satisfied or £ < £pax then

=
=

11 5 < index of Sy

12 select CN a according to an optimum scheduling policy

13 foreach VN v € N'(a) do

14 compute and propagate mg_

15 foreach CN c e N'(v) \ a do

16 | compute and propagate m,_, o

17 end

18 igv) «— ZceN'(v) me_sy+Ly, // update LLR of v
19 end

20 foreach CN j that is a neighbor of v € N (a) do

21 S'g) « ZV’E}VU} L?‘)

2 5 < gM(S‘g)) // update syndrome Sy
23 end

24 £ «—¥F+1 // update iteration
25 end

quantized syndromes is represented as SM) | et Se € [[M™]],
Xvith realization s, denote the index of a realization of Sy, let
S¢ € [[M]], with realization §, represent a quantized CN value,
and let an action Ay € A, with realization a, denote the index
of a scheduled CN in iteration £. The proposed RL frame-
work for sequential decoding is shown in Fig. 1. The idea is
that scheduling a CN updates the state of the environment,
namely the Tanner graph of the code, which in turn provides
the resulting residual as a reward to the agent. This reward is
used to schedule a new CN in the next iteration.

The RL-NS based sequential LDPC decoder is shown in
Algorithm 1. The input to this algorithm is a soft channel
information vector L and a parity-check matrix H. Note that
the CN scheduling policy in Step 12 of Algorithm 1 is equiv-
alent to scheduling the CN with the highest expected residual.
Observe that the time complexity for selecting this CN grows
linearly with the total number of CNs, as opposed to being
zero for flooding BP.

The RL-NS algorithm is dynamic, and depends both on
the graph structure and on received channel values: thus,
the scheduling order may differ with subsequent transmis-
sions, and will outperform a scheduling order which is fixed
in advance. As NS follows a greedy schedule, there exists
a non-zero probability that initially correct, but unreliable,
bits are wrongly corrected into an error that is propagated in
subsequent iterations. In contrast, our RL-NS scheme allows
some room for exploration (not just exploitation, as in NS)
by scheduling the CN with the highest expected long-ferm
residual, mitigating such a potential error propagation.

Finally, we remark on a decoding error type encountered
by the NS scheme which we expect to correct using RL-NS:
namely, undetected errors. Undetected errors occur when the
Hamming distance between the received and decoded code-
words is greater than the distance between the transmitted
and received ones. In the RL-NS scheme, the agent attempts
to schedule a CN based on its expected residual instead of
the immediate one. As a result, the RL-NS scheme employs
a more global decoding approach in contrast to the pure NS
scheme [9] and is more likely to overcome undetected errors.

IV. LEARNING CN SCHEDULING POLICIES

In our RL problem, the agent’s goal is to estimate, from
experience, an optimum CN scheduling policy to be used in
Step 12 of Algorithm 1. This task manifests an exploration
vs. exploitation trade-off which is typical of any RL frame-
work. To maximize the total reward in the long-run, the agent
must schedule CNs that are known to produce high residuals
(exploitation). But to discover such CNs, the agent must select
CNs that were not scheduled before (exploration). To accom-
modate this trade-off, we utilize the well-known e-greedy
exploration scheme [10], [31]. The estimate of the action-
value function improves as more CNs are scheduled by the
agent. In the following, we discuss several RL techniques, both
model-free (in Sections IV-A and IV-B) and model-based (in
Section IV-C), for learning the action-value function used in
RL-NS.

A. Estimating the Gls

In this approach, the m CNs are assumed to be m indepen-
dent bandit processes, implying that scheduling a particular
CN does not affect the state of the remaining ones. This
assumption would hold in tree-like Tanner graphs where a
message propagated by a CN to a VN is independent of the
messages computed by all other CNs in the graph. However,
in practice, Tanner graphs contain cycles that induce depen-
dencies between the CN to VN messages. Nonetheless, the GI
approach offers a low-complexity learning task where the size
of the state space observed by the agent increases linearly with
the number of CNs in the underlying graph. Note that in our
problem P(Sgy1|S¢, A¢) € {0, 1} as the Tanner graph is fixed
and the messages are deterministically computed. We also
apply a specific stopping time policy by selecting an integer
e €{1,2,...,} with the condition Pr({max = £€5,,) = 1.
Based on these considerations, (2) is rewritten for our MAB
problem as
G(3, a) = max 5 lﬁgff(s’ @ SJ).

El?max n'_lax ﬁg
£=0

Since an agent must obtain the GIs via RL, we obtain an
average GI, denoted é{ﬁ, a), over multiple realizations of L.
After computing G5, a) for all § and a, the optimum CN
scheduling policy is 7 = arg max, G(§, a).

)

B. Q-Learning

Q-learning is an adaptive algorithm for computing optimal
policies for MDPs [18], [20]. Q-learning does not rely

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

632 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

agent

state of all CNs s €¢SM)
schedule CNa € A

/_\
~——

get reward R,

environment

observe new state s’ €¢S™)

Fig. 1.

Ilustration of the RL setting used in this work. In every learning step, a fictitious agent schedules a CN with index a when the state of the environment

is 5, and receives reward R, which is also the maximum residual of CN a. The state of the environment changes from s to 5" as the quantized soft-syndrome

is updated after scheduling.

on explicit assumptions on the distribution of the bandit
processes, unlike the Gittins scheme where the LLRs ema-
nating from CNs are assumed to be independent. However,
the state space observed by the agent now grows exponen-
tially with m. As a result, the traditional Q-learning approach
suffers from a much greater learning complexity. To overcome
this problem, we propose a novel clustering strategy. A cluster
is defined as a set of CNs with separate state and action spaces.
Let z < m represent the size (number of CNs) in a cluster. The

state of a cluster with index u € [[[%—‘]]. is a sub-syndrome

S?"Z} = s S&“Hz_l) of the syndrome Sy, with a state
space S™ containing all possible M? sub-syndromes S?“Z),
where |S§M)| &« |S™)|. Hence, the total number of states that
may be observed by the agent is upper-bounded by %—| IS,
The action space of cluster u is defined as A, = [[z]]. We
will discuss graph-theoretic properties of CN clusters and the
resulting optimization approach in Sections V and VI, respec-
tively. For now, let us assume that a set of CN clusters has been
chosen as a result of this optimization. We denote the set of
CNs belonging to the cluster of index u by C,, = {c1, ..., ¢}.

Smaller clusters lead to reduced complexity, but the larger
the size of the cluster, the greater the ability of the agent
to take into account any dependencies between CN LLRs.
Hence, there exists a trade-off between the ability of clustered
Q-learning to take into account these dependencies, and the
learning complexity: the cluster size should be large enough to
accommodate the dependencies of the CN messages as much
as possible, but not so large that learning is infeasible.

Apart from this trade-off, clustering does not restrict
Q-learning, as the reward obtained by the agent is indiffer-
ent to the size and location of the clusters in the Tanner
graph. Moreover, scheduling a CN in one cluster may affect
the residuals of other CNs distributed across multiple clusters
due to their connection with a common set of VNs. Also note
that in traditional Q-learning, a scheduling operation alters the
state corresponding to the entire syndrome Sy, whereas in the
clustering approach, only the states of the clusters that are
connected to the neighbors of scheduled CN are affected. As
a result, states of the unaffected clusters may be reused for
estimating future action-values. Based on the considerations
above and noting that decoder iteration £ is analogous to time
t, (4) can be rewritten for clustered Q-learning as

QE—I—] Sy ay) = (1 —a) Q¢ (S,, ay)

" a(Rg(Su, s f (5 @)

+ B max Qe(f (s> aw), au')), (8)

where s, € [[M?]] and a, € A, are the state and action
indices of cluster u, respectively, f(sy, a,) represents the new
state 5, € [[M®]] as a deterministic function of s, and a,,
and Ry(s,, a,. s,) = R,,. In clustered Q-learning, the action
in optimization step £ is selected via an e-greedy approach
according to

uniformly random over u and A, w.p. €,
a=1{" " ©
Ty W.p. 1 —e,
where the CN scheduling policy is
mp' = argmax Qr(su.a). (10)

o[2]

Once RL has been accomplished, o yields an optimized
CN scheduling policy, where £, is the maximum number of
decoder iterations (learning steps) for a given input of channel
information L.

Algorithm 2 gives the method for clustered Q-learning. The
input to this algorithm is a set .Z = {Lo, ..., L|#_} con-
taining || realizations of L over which clustered Q-learning
is performed, a clustering C, for all cluster indices u, and
a parity-check matrix H. This algorithm trains the agent to
learn the optimum CN scheduling policy in (10) for a given
H, which is later incorporated in Step 12 of Algorithm 1. In
each optimization step £, the agent performs NS for a given L.
As a result, clustered Q-learning can be viewed as a recursive
Monte Carlo estimation approach with L being the source of
randomness.

C. Thompson Sampling

TS has been applied successfully for RL in finite MDPs (see
e.g., [30]). In this work, we show how TS can also be used
for sequential decoding of LDPC codes. To accomplish this,
we consider two distinct RL schemes which incorporate TS.

In the first approach, we model the decoding environ-
ment using a density evolution approach based on Gaussian
approximation of the CN to VN messages [32]. The decoding
error probability, Pg, in iteration £, computed by this density

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

HABIB et al.: BP DECODING OF SHORT GRAPH-BASED CHANNEL CODES VIA RL 633

Algorithm 2: Clustered Q-Learning

Algorithm 3: NS Based on TS

Input : %, H, and a clustering C,, for all cluster indices u
Output: Estimated Qy_ (sy, a,) for all u

1 Initialization: Qq(s,, a,) < 0 for all s,, a, and u

2 for each L € ¥ do

3 £ <0

4 Lg «— L

5 Sg «— HLg

6 foreach a € [[m]] do

7 (a) <« gM(S(a)) // M-level quantization

8 end

9 while £ < £,5¢ do

10 schedule CN a, according to (10)

11 select u as cluster index of CN a,

12 SEH‘Z) <« sg‘”), ng), . ng)

13 5y < index of SEH‘Z)

14 foreach VN v € N'(ay) do

15 compute and propagate mg,—y

16 foreach CN c e N(v) \ ay, do

17 | compute and propagate m,_, .

18 end

19 igv) < Y ceN(v)Me—»v+Lyv // update LLR
of v

20 end

21 foreach CN j that is a neighbor of v € N (ay,) do

2 SE < XveNG) L(v)

23 <« gM{SU)) // update syndrome Sy

24 end

2 s}, < index of updated SEH‘Z)

26 Ry (Sy, ay, s;,) < highest residual of CN a,

27 compute Q¢ 1(Su, ay) according to (8)

28 £«—f+1 // update iteration

29 end

30 end

evolution scheme can be formulated exactly as

ur + mﬁfﬁﬂ.

Pp=0Q 2

for regular LDPC codes, where ,LLL:?_W is the mean of the CN to
VN message m,(gﬂv, A is the VN degree of the LDPC code, and
pr is the mean of the input LLRs. By incorporating Gaussian
approximation, we assume that a CN to VN message (m,(ﬁ,,,)
in NS is independent of the other messages generatcd by CN
¢, and normally distributed according to N(#mc_,‘,, 2,um) o)
where ,u,E,,cL‘ is the mean of m,(:_),,, Based on this assump-
tion, the difference ma_w Mgy, Of the successive CN to
VN messages passing along edge ¢ — v, possesses a normal
difference distribution with mean ., — ”:nc_n» and vari-
ance 2ppy,. ., + 2;5;, _,- This allows us to employ the MSE
residual 7/_ = (m/_, —m,_,,)? as a non-central chi-square
distributed reward, sampled in each decoding step. We call
the resulting RL approach NS based on TS (NS-TS), shown in
Algorithm 3.

In contrast to the other decoding methods proposed in this
paper, Algorithm 3 directly solves our RL problem without

learning action-values, and hence no clustering is required. In

Input : L. H

Output: reconstructed signal X
Initialization:

£ <0

My_se < Ly

Me_sy < 0

// decoding begins

5 while £ < £mpax do

// for all VNs
// for all CNs

LTI

6 if £ = 0 then

7 | schedule CN a randomly

8 end

9 else

10 | schedule CN a with the highest residual

1 end

12 foreach VN v € N'(a) do

13 compute and propagate mg_sy

14 foreach CN c e N'(v) \ a do

15 compute and propagate m,_, o

16 foreach edge ¢ — v such that v e N'(a) do

17 M, < Me_sy // previous mesg.
18 compute mMe_,y // current mesg.
19 update pm,_,, and ppy

Heme—sy —Hopy!

20 6(,‘—)1’ — (—f_*"
f ZEme—syF 2
non-centrality parameter

u r::—w ~ x (1, 8c—v) // sample and
store residual

2
) // update

2 end
23 end
u i‘g") ~ ZceN'(v) Me—sv + Ly // update

aposterior LLR
25 end
// hard-decision step

26 foreach VN v do

27 if ig") < 0 then
28 | i) 1

29 end

30 else

31 | i™ <0

32 end

33 end

3 if HX = 0 then

35 | break // stopping condition reached
36 end

a7 L «—£E£+1

38 end

Step 21 of Algorithm 3, x(1,8.—,) denotes the non-central
chi-squared distribution of r.._,, with degree of freedom 1 and

By —
non-centrality parameter 8o_,, = (—m————_=e)?, which
Zﬁmc—xv"‘zﬂm:,_._ﬂ

is updated in each TS step. The CN with the highest sam-
pled residual r/_ , is selected in Step 10. In comparison, the
CN selection criteria in NS is based on a calculated r._,,, as
defined in (6). The means computed in Step 19 of Algorithm 3
are taken over the previous ten messages (at most) passed
along the edge ¢ — v. Since no Q-learning is involved,
Algorithm 3 can be used to decode much longer block codes
than considered in this paper, with reasonable computational
complexity.

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

634 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

Algorithm 4: TS-Based Clustered Q-Learning

Input : %, H, and a clustering C,, for all cluster indices u
Output: Estimated action-value Qg (54, ay) for all 5, and a,

1 Initialization: Qq(sy, a,) < 0 for all 5, and a,
2 for each L € ¥ do
3 £ <0
4 my_e < KL // for all VNs
5 Me_sy < 0 // for all CNs
[]:g «— L
7 SE <« Hi.g
8 foreach j € [[m]] do
9 Sg) <—gM(3‘g)) // M-level quantization
to obtain Sp
10 end
11 while £ < £,5¢ do
12 schedule CN a, according to (10)
13 select u as cluster index of CN ay
14 s sg'), ng) ng)
15 foreach VN v € N'(ay) do
16 Hmgysy < 71 (1 —[- ¢o(umw,,}]*’—‘)
// update sampling parameter
17 sample and propagate mg,_y
18 foreach CN c e N(v) \ ay, do
19 Hmyye <= BL+ A — Do,
20 foreach edge ¢ — v such that v e N (ay) do
21 ey < Bmesy
2 pme,, < ¢~ (1 —- ¢(umw}1=°—‘)
’ 2
23 6(,‘—)1’ <« (MﬂL)
v ?-ru'-mc—w“‘?'ﬂ;nc_;v
// update non-centrality
parameter
24 rw~x(,8c—y) // sample and
store residual
25 end
26 end
7 ig") < Y ceN@)Mesv+Ly // update LLR
28 end
29 Ry (Su, au) < highest residual of CN ay
30 compute Q¢ (S, ay) according to (8)
3 foreach CN j that is a neighbor of v € N (ay) do
2 sg) < XveNG) Lg,v)
33 5 < gM{S‘g)) // update syndrome Sy
34 end
35 L «—£E£+1
36 end
37 end

Second, we propose a novel TS-based clustered Q-learning
scheme, shown in Algorithm 4. The inputs to the algorithm
are %, H, and a clustering C, for all cluster indices u. The
algorithm outputs the estimated action-values. The mean of the
input LLR, pz, and the CN and VN degrees in the correspond-
ing Tanner graph of H, p and A respectively, are used to update
the message means propagated in each iteration (see Steps 16,
19, 22). The rewards in this algorithm are sampled from a
x (1, 8.—.,) distribution in each Q-learning iteration, as shown
in Step 24. Unlike Algorithm 3, Algorithm 4 is not a direct
decoding scheme. Instead, Algorithm 4 is a model-based RL
approach which estimates the action-values via TS for offline

learning of the CN scheduling policy in (10). The policy is then
incorporated in the CN scheduling step of Algorithm 1, result-
ing in a unique RL-NS scheme. Consequently, Algorithm 4 is
the TS counterpart of Algorithm 2.

In contrast to Algorithm 3, the means of the CN to VN
messages in Algorithm 4 are computed based on the Gaussian
approximation of messages (see Steps 16 and 22) by evaluating
the ¢ function (whose details can be found in [32]), while the
means of the CN to VN messages in Algorithm 3 are computed
empirically. Indeed, the CN to VN message m,,_, in Step 17
of Algorithm 4 is sampled from N (u,(fﬂu_,v, 2;;,(32“_,‘,), whereas
the CN to VN message m,_,, in Step 13 of Algorithm 3 is
computed. In other words, Algorithm 3 directly employs NS to
update the non-centrality parameter §._,,, while Algorithm 4
obviates the need for NS by updating §._,, based on a statisti-
cal model of the environment (decoder), providing a significant
reduction in learning complexity with respect to a TS algo-
rithm that would run NS. Nonetheless, Algorithm 4 is still
more complex than Algorithm 2 due to the TS step involved in
Step 24. Note that though Algorithm 3 invokes the NS scheme,
it can still be viewed as a model-based RL approach as the
agent interacts with the environment in real-time to update
(learn) the non-centrality parameter 8., (see Step 20).

An advantage of the model-based scheme is that it is not
necessary to learn action values to choose the optimum CN
scheduling policy, as shown in Algorithm 3, and hence fairly
long LDPC codes can be decoded. Moreover, TS allows the
agent to actively explore the environment via reward sam-
pling. However, the downside of TS is that once Q-learning
is incorporated, the resulting algorithm (Algorithm 4) is even
more complex than the method used for model-free learning
(Algorithm 2) due to the residual sampling step.

V. CLUSTER-CONNECTING SETS

In clustered Q-learning, the total number of states observed
by the agent is upper-bounded by the number of clusters times
the number of states within each cluster: % |S‘(¢M)| < |5 ™)|.
Note that the learning complexity in clustered Q-learning is
O(z™), whereas in standard Q-learning the complexity scales
as O(mM), with cluster size 7 < m. Consequently, clustering
enables a tractable RL task for sequential scheduling of short
LDPC codes.

While clustered Q-learning serves as an approximation for
standard Q-learning, the strategy suffers from a performance
loss due to the existence of dependencies between sepa-
rate clusters. As cluster size increases, the agent can more
accurately take into account any dependencies between CN
log-likelihood ratios (LLRs).

To better analyze this loss in performance, we introduce
a critical sub-structure in the Tanner graph Gy of an LDPC
code. For a cluster C, = {c1, ..., ¢} let C, = C\ C, be the
remaining CNs in the Tanner graph. Let A'y(C,) be the set of
all neighbors of C, in V. For W C Ny/(Cy), let Nc(W) be the
set of all neighbors of W in C.

Definition 1: Fix a CN cluster C,, and let W € Ny (C,). We
say that W is the cluster-connecting set (CCS) corresponding
to C, if and only if for all v € W, both N¢,(v) and an(v)

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

HABIB et al.: BP DECODING OF SHORT GRAPH-BASED CHANNEL CODES VIA RL 635

(Y ~<— a(3,3) CCS

Fig. 2. Depiction of the (3,3) CCS (shown using solid red circles) cor-
responding to cluster Cy (red squares). The dashed edges connect Cy to
neighboring VNs (dashed red) not belonging to the CCS. Arrows highlight
the cycles incident to the cluster.

are nonempty. If |W| = A, and |Ncu(W)| = B, we say that W
is an (A, B) CCS.

CCSs induce dependencies between the messages generated
by the CNs in C, and those in C,. Roughly speaking, the
number of edges in a Tanner graph that connect C, to C.,
grows with the size of C,’s CCS. That is, on average, the
larger the size of the CCS corresponding to C,, the greater
the dependence between C, and C,. This holds exactly for
Tanner graphs in which all VNs have the same degree.

Fig. 2 depicts a Tanner graph Gy containing a cluster
of CNs C, whose corresponding CCS, W, is a (3,3) CCS.
Squares (resp. circles) represent CNs (resp. VNs). The three
CNs shown using red squares represent C,,, whereas the black
squares represent C,. The VNs in Ny(C,) are represented
using red circles. The three VNs of the CCS, W, are repre-
sented by solid red circles. Note that the VNs in dashed red
circles, belonging to the set N'y(C,)\ W, are connected to only
C,, and hence do not belong to the CCS. Observe that there are
no cycles in the subgraph induced by WU N¢,(W). However,
there are three distinct 4-cycles in the subgraph induced by
Wy (C) \ W) U .

In the remainder of the paper, we will consider Tanner
graphs that are connected and contain cycles. We first show
that any choice of cluster that is a proper subset of the CNs
of a connected Tanner graph has a nonempty CCS.

Proposition 1: Consider a connected Tanner graph with m
CNs, and choose a cluster C,, with z < m CNs. Then, the CCS
corresponding to C, is nonempty.

Proof: Consider the set of VNs given by ANy (C,). If every
VN in this set is only adjacent to CNs in C,, then the Tanner
graph is not connected. By the contrapositive, we conclude
that the CCS corresponding to C, has at least one element. W

In Section VI, we will be interested in optimizing clusters
by minimizing the number of edges incident to the correspond-
ing CCSs. However, because (j, k)-regular codes have regular
VN degree, the size of a CCS for these classes is a constant
multiple of the number of incident edges. Since our simu-
lations in Section VII focus on (j, k)-regular and AB-LDPC
codes (a subclass of regular codes), we present here specific
results on the size of a CCS for each class.

Theorem 1: Let j, k = 2, and z > 1 be integers. Suppose G
is a (j, k)-regular Tanner graph, and let C, be a cluster of CNs

of size |C,| = z in G. If [Ny (C,)| = v, then the number of
variable nodes in W, the CCS corresponding to C,, is bounded
as follows.

v— [%J < |W] < min{jv — kz, v}.

Proof: 1t is straightforward to see that there are jv — kz
edges in G that are incident to Ny(C,) but not to C,. In other
words, there are jv — kz edges exiting the subgraph induced
by C, UNv(C,). Consider the CCS W, the subset of Ny(C,)
comprised of all VNs incident to an exiting edge. The mini-
mum size of W corresponds to the case in which the exiting
edges are concentrated at a few VNs in Ny(C,). That is,
IW| > [Gv — k2)/jl = [v— (ke/j)] = v — |kz/j]. On the
other hand, the maximum size of W corresponds to the case
where the exiting edges are spread across as many VNs as
possible: |W| < min{jv —kz, v}. Notice that W = jv — kz when
there is one edge per VN in W exiting the subgraph, but that
this bound will not be tight if any VN in W has more than
one incident exiting edge. |

Remark 1: For fixed j, k, and z, the upper and lower bounds
given in Theorem 1 are increasing functions of [Ny (C,)| = v.
In other words, the more neighbors a cluster has, the larger the
maximum possible size of W (and resulting j|W| CCS edges),
and the larger the minimum possible size of W (and j|W|). It is
important to note that we are not claiming that a higher number
of neighbors necessitates a larger CCS. Rather, the shifting
window of possible CCS sizes suggests a trend, even if a strict
increase does not hold. Indeed, we cannot make such a claim,
since subsequent intervals may be overlapping as v increases.
Take, for example, j = 3, k = 6, and z = 5. Then, if v =11,
[W] e {1,2,3}, while if v = 12, [W] € {2, 3,4, 5, 6}. Thus,
a cluster with 12 neighbors could have fewer CCS elements
than a cluster with 11 neighbors. We also observe that v is
bounded above by kz and below by kz/j, so that |W| is always
bounded below by 1 (in a connected graph with 7 < m) and
above by kz.

Because they are (3, p)-regular, Theorem 1 gives bounds
on the size of CCSs in (3, p) AB-LDPC codes as well. In
particular, for a cluster of size z, v — L%J < |W| < min{3v —
pz, v}. However, given the added structure of an AB-LDPC
code Tanner graph, we may conclude more. We restrict z <
p: this is a reasonable assumption, given m = 3p in (3, p)
AB-LDPC codes.

Theorem 2: Consider an AB-LDPC code defined by a
parity-check matrix H(3,p), let C, be a cluster of size
1 <z <p, and let W be the CCS corresponding to C,.

(i) If all CNs in C, belong to the same row group of

H(, p), W = 2p.

(ii) If all CNs in C, belong to two row groups of H(3, p),
Wl =z(p —a) + a?, where a is the number of CNs in
one of the row groups.

(iii) In general, |W| > ((1 4+ 2p)z — zz),z‘4.

(iv) If 3 < 7 < p and every CN in C, belongs to at least one
6-cycle such that the other two CNs in the 6-cycle also
belong to C,, |[W| <zp —z.

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

636 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

Proof:

(i) If all the rows corresponding to the CNs of cluster C,
are in the same row group, then no two CNs in C, will
have any VNs in common. Hence, each VN in Ny(C,)
must also be adjacent to C,, implying that Ay (C,) is a
CCS with |Nv(C)| = [Culp = 2p.

If all the rows corresponding to the CNs of cluster C,, are
in the same two row groups, then every VN in Ny(C,)
has at most two neighbors in C,, and hence must be in
W. Since any two CNs falling in different row groups
share exactly one VN, the number of VN neighbors of
Cy is zp — a(z — a), where a is the number of CNs in
one row group. Indeed, exactly a(z—a) VNs are counted
twice in zp.

There are p VN neighbors of each CN ¢ € C,,, no pair of
which can share another CN neighbor due to the absence
of 4-cycles in (3, p) AB-LDPC Tanner graphs. Thus, the
number of VNs in Ny (c) that have no neighbors outside
of C, is at most (z — 1)/2: each such VN has two other
neighbors in the remaining 7z — 1 CNs of C,, and all
neighbors of these VNs must be distinct. Thus, there
are at least p — (z — 1)/2 VNs adjacent to ¢ that have
at least one neighbor outside of C,. This is true for all
Z choices of ¢ € C,. Since we may be counting each of
these VNs up to two times with different CNs, there are
at least (p — [(z — 1)/21)z/2 = ((1 + 2p)z — z2)/4 VNs
in W.

In this scenario, at least 2z of the zp edges incident to C,
are incident to VNs of degree 2 in the subgraph induced
by C, U Ny(C,). The remaining z(p — 2) edges may
be incident to VNs of degree 1 in the subgraph. Thus,
the number of elements of Ny (C,) is bounded above by
2p—2)+ %5 = zp—2z. Since |W| < |Ny(C,)|, the result
follows. |

Notice that Theorem 2(iii) holds for all configurations of
CNs, but is only useful if the CNs in C, span all three row
groups of H(3, p) since we have exact results for the other
two cases. This bound, along with that in part (iv), should
be compared with those of Theorem 1. Indeed, we find that
Theorem 2(iii) gives a tighter lower bound for smaller val-
ues of Ny(C,), and Theorem 2(iv) is a tighter upper bound
for (a particular type of cluster and) larger values of Ny (Cy).
Theorem 2(i) and (ii), as an exact results, give clear improve-
ments on Theorem 1 for row configurations spanning fewer
than all three row groups.

The CNs of the clusters in Theorem 2(i) belong to the same
row group in the corresponding parity-check matrix; if the
rows corresponding to the CNs are consecutive within the row
group, we call them contiguous. Clusters as in Theorem 2(ii)
may also have contiguous CNs. In comparison, the CNs of
the clusters in Theorem 2(iv) cannot all be contiguous, since
a 6-cycle must span three distinct row groups of a H(3, p)
AB-LDPC code [26], [33]. By comparing the result on CCS
size given in Theorem 2(i) with the bound in 2(iv), we see that
choosing CNs that span three row groups and form internal
6-cycles is guaranteed to lower the bound on the size of the
corresponding CCS from the case where we choose CNs all
within a single group. Provided that z > 4, this will also be

(i)

(iii)

(iv)

an improvement on clusters spanning two groups, as stated in
Theorem 2(ii). Observing that the number of edges incident
to a CCS W in a (3, p)-regular graph is equal to 3|W|, we
conclude that in case of (3,p) AB-LDPC codes, any clus-
ter selection scheme should ensure that clustered CNs are
not contiguous, and each cluster contains as many 6-cycles
as possible. This is indeed the approach used in Section VI to
minimize connectivity of clusters.

VI. CLUSTER OPTIMIZATION

In this section, we leverage the results from the previous
section and propose a cluster optimization strategy, with the
goal of minimizing the number of edges connected to each
CCS in a Tanner graph. Indeed, these edges are responsi-
ble for the propagation of messages between clusters, and
consequently for the resulting dependencies between clusters.

Let E(C,, W) be the set of edges that connect C, to its
CCS W, E(a,,, W) the set of edges connecting a, to W, and
£(C,) = |E(C,, W)| + |E(C,, W)]| the total number of edges
by which C, is connected to C, via W. As discussed in the
previous section, minimizing ¢(C,) is equivalent to minimiz-
ing the size of a CCS for (j, k)-regular Tanner graphs, since
£(C) = jIWI.

We cluster the set of CNs of a Tanner graph via a greedy
iterative process: the z CNs of the first cluster, C’l", are chosen
optimally from the set of all CNs. Each subsequent cluster
is then chosen optimally from the set of remaining check
nodes, with the last cluster consisting of the leftover CNs.
Let 1,...,ur,7 denote the indices of the clusters. Formally,

this multi-sleﬁ optimization is given by

Ci = arg min £(Co), (1
CegC\C:_|U'“UCT| |Ce =Z
where ¢ € 1,..., % — 1 denotes the index of the

optimization step, C, represents a cluster with index e, and C;
denotes the optimal cluster obtained in step e. The final cluster
is obtained automatically, and hence excluded from (11).
Note that the complexity of the optimization in (11) grows
exponentially with m, as we need to search over (m_z;_]))
possible cluster choices in each step. To overcome this, we
propose a more computationally feasible cluster optimization
approach based on our observation that the lower bounds in
Theorems 1 and 2 correspond to a maximization of cluster-
internal cycles: in each step, we cluster CNs so that the
subgraph induced by the cluster and its neighbors contains as
many cycles as possible. Such a cluster will in general have
fewer neighbors compared to one that does not induce cycles.
In turn, the maximum possible size of the corresponding CCS
(and the number of exiting edges) will likely be reduced (see
Remark 1). The cluster optimization approach based on cycle
maximization is given by
C‘: = arg max
C.CC\C*_|U..UC}, |C.l=2

M (Ce), (12)

where C': denotes a cycle-maximized cluster, and n,(C.)
denotes the number of length x cycles in the graph induced

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

HABIB et al.: BP DECODING OF SHORT GRAPH-BASED CHANNEL CODES VIA RL 637

TABLE I
OVERVIEW OF THE DECODING SCHEMES USED FOR OBTAINING THE SIMULATION RESULTS

Scheme NS-TS NS QR QO QR-TS QO-TS
Name Node-wise scheduling via TS | Node-wise scheduling | Random clus. Q-learn. | Opt. clus. Q-learn. | QR based on TS | QO based on TS
Approach Alg. 3 Alg. 3 of [9] Algs. 1 and 2 Algs. 1 and 2 Algs. 1 and 4 Algs. 1 and 4

by ANv(C.) U C,. The possible values of x depend on the
girth of the considered code. Smaller choices of «x yield lower
optimization complexity, as larger cycles are more difficult to
enumerate. In case of LDPC codes, optimized cycle detec-
tion algorithms based on message-passing have complexity of
O(gEz), where g is Tanner graph’s girth and E is the total num-
ber of edges [34]. In a (3, p) AB-LDPC code, whose graph
has girth 6, we choose x = 6. The method for generating
cycle-maximized clusters is presented in [2, Algorithm 3]. Let
T be the total number of k-cycles in Gy. The optimization
complexity of this algorithm depends on T, which is expected
to be much smaller than (m_zg“’_])) for sparse H. For exam-
ple, in a (3, p) AB-LDPC code, there are only T = pz(p —-1)
6-cycles in the Tanner graph [26].

In Section VII we consider the case where p > 5 and z = 7.
For these parameters and for e = 1, the number of cluster
choices using the optimization in (11) is (*7) = O@’) as
opposed to pz(p — 1) using (12).

VII. SIMULATION RESULTS
A. Experimental Setup

We perform learned sequential decoding by employing
cluster-based RL with random and (cycle-)optimized clus-
ters. We then utilize each of these schemes for sequential
decoding of random (3, 6)-regular LDPC, (3,7) AB-LDPC
lifted by a factor of 4, (96, 48) MacKay [35], (63, 51) BCH,
and a (186, 78) concatenated code with rate 13/31, compris-
ing an outer Hamming code and an inner systematic LDPC
code. This is motivated by the observation that the individ-
ual bit error after RL based sequential decoding are relatively
spread out across the decoded codewords and thus may be
“cleaned-up” by an appropriate outer code. Specifically, we
consider three (31, 26) Hamming outer codes, and a (186, 93)
systematic (and thus irregular) LDPC inner code. In the encod-
ing step, a message vector of length 78 is split into three
length 26 vectors. The three resulting Hamming codewords,
each of length 31, are then concatenated into a single vector,
u=[up,...,un_1], m =93, and subsequently encoded using
the inner systematic LDPC code encoder to generate a code-
word x of length n = 186. The LDPC code is decoded via
RL based sequential decoding to a length 186 binary vec-
tor X = [Xp,...,%,_1], and the systematic portion of this
vector is decoded via separate Hamming decoders producing
the vector @ = [#p, ..., #m_1]. Note that for this concate-
nated construction the observed BER is given by Pr [ﬁj # uj],
j € [[m — 1]], whereas for the other codes it is given by
Pr%; #xl, i e [[n— 1]1.

We use Algorithms 2 and 4 to implement the cluster-based
learning approaches mentioned above. The RL-NS schemes
resulting from Algorithm 2 (resp., 4) for random and opti-
mized clustering are denoted by QR and QO (resp., QR-TS

and QO-TS), respectively. Note that in Algorithms 2 and 4 the
SE“’Z) vector is updated as S; (,2) [s(“)) ...,sg;‘)], where
CN indices ji,j2,...,j; € {0 ,m—1} are randomly ordered
in the case of random clustering, whereas in optimized clus-
tering, the order depends on the underlying cluster C‘fj obtained
via cycle maximization. We compare these two schemes to our
other RL-based decoders, one of which is based on computing
GIs, while the other is based on z@lgorithm 3 (NS-TS).

Each element of the state vector Sy is quantized using a stan-
dard scalar quantization algorithm [36], where a realization 3?
represents the “source signal” to be quantized. Provided that
there exists a sufficiently large dataset of source realizations,
the quantization algorithm recursively optimizes the boundary
and the representatlon pomts of the quantizer by minimiz-
ing the distortion [EI[(.ﬂE — gM(sgj))z] over the entire dataset.
Depending on the code, we generate a dataset comprising 10°
realizations of 3%") by randomly scheduling CNs via NS to
estimate its distribution.

Although clustering reduces the state-space significantly
compared to standard Q-learning, clustered Q-learning is still
more complex than estimating GIs. Hence, our choice of
code block lengths for the clustered Q-learning schemes are
influenced by the run-time complexity of our Q-learning algo-
rithms. We found short codes, with a block length 200 or less,
to be suitable for Q-learning on our system with a reason-
able cluster size z. For the considered codes, we choose the
learning parameters as follows: @ = 0.1, 8 = 0.9, ¢ = 0.6,
Cmax = 25, and |.Z| = 1.25 x 10%. We choose z = 6 for the
MacKay and BCH codes, and z = 7 for the remaining codes,
respectively. In addition, M = 8 is chosen for (63, 51) BCH,
whereas M = 4 is considered for the other codes. Finally,
we compare the performances of our proposed RL methods
with standard decoding schemes such as flooding and NS for
€max = 25.

Note that M directly impacts the accuracy of our Q-learning
schemes. A large number of quantization levels would nat-
urally improve the Q-learning accuracy, but the learning
complexity grows exponentially with increasing M. The mag-
nitudes of the differences between the CN states at a given
iteration diminishes as the decoder approaches convergence.
Consequently, a large M (>> 4) is necessary to accurately
quantize the CN values at high SNR. We found Q-table! sizes
corresponding to a small M to be the most suitable to learn
on our system within a reasonable time period.

B. Numerical Results

The BER vs. channel SNR performances in dB of the con-
sidered codes using various decoding techniques are shown in
Figs. 3 and 4. For clarification of the acronyms used in the

Ia Q-table consisting of [m/z] sub-tables, each of dimension M® x g, is
used to store the action-values learned using Algorithms 2 and 4.

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

638 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

BER

—
N -
= - -
-..__,ol i ~q.
—— e o ™ = ey - -
—— T -
""‘o... B
“----.-..__o__ -
~——
L —

——

0.5 1 1.5 2 25
Ey/No (dB)

107'g - . . .

€ flooding
+Cl Q.
NS-TS Sl
4NS “"'s.
#1EF QR Q,
QO o s,
¥ QR-TS St e
-6 QO-TS DN
- T "":Qu_c
% ““"“u {:"""-.
. -]
102 N 3
Simggy -~ ~,
I ‘=E==;==;§= n *-..4‘" .
e =====ﬂ== 4“'--
- B
| Z§i=- e T
o‘“‘“*"‘—?
0.5 1 1.5 2 2.5
Ey/Ny (dB)

Fig. 3. BER results using different BP decoding schemes for a (3, 6)-regular LDPC (left figure) and (3, 7) AB-LDPC code (right figure, code is lifted), with

block length n = 196.

-1 T T T 7
10711 fooding
- GI
NS-TS See
-« NS T~
£ QR o el
T»Qo =, *~.
:gQRFTs L a‘--..“‘ S
QO-TS =, - ~
e -© hyper-nw. [14] ““'-‘n-:.e\ S..
&) —~ s e,
m "'--.‘. \&"-. N
‘ﬁq"'«.. \“I‘“-:,
~— o R
--..__-:_:&__- ‘\.‘ LN
2=z, I - N
10 & -5 - .
S —— -:A--.A__-. 1“ A
S E N
. . B Yy
0.5 1 1.5 2 2.5
E3/Ny (dB)

0.08 ;
0.07 S :
. 2
ak, \\
0.06 RS - RN]
bR ?\‘\‘
> Y
 0.05 . NN]
A R
“‘"’ﬂ. \\
0.04 ‘\"xi\\‘ ~]
ﬂ\“"mk \‘_u
I '\\
Q\ 3
0.03 - S
b
0.5 1 1.5 2 2.5
Ey/N, (dB)

Fig. 4. BER results using different BP decoding schemes for a (96, 48) MacKay code (left figure) and (63, 51) BCH code (right figure), with block lengths

96 and 63, respectively.

e DN
..o__________o_
R S
107 Ee
1 L - y 1
15 2 2.5 3 3.5 4
Eb,n"ND (dB)

Fig. 5. Performances of a rate 1,/2 systematic (186, 93) LDPC (Code 1) and
a rate 13/31 concatenated (186, 78) Hamming-LDPC (Code 2) code using
the flooding, NS, and QR decoding schemes.

plots, see Table 1. The experimental results reveal that RL-
based decoding schemes in general are superior to the non-RL
decoding schemes in terms of BER performance, thus show-
ing the effectiveness of our learning approach. In the case of
the MacKay and BCH codes, we outperform the state-of-the

TABLE II
AVERAGE NUMBER OF CN TO VN MESSAGES PROPAGATED IN VARIOUS
DECODING SCHEMES FOR A (3, 6)-REGULAR ((3,7) AB-) LDPC CODE
TO ATTAIN THE RESULTS SHOWN IN FIG. 3

| SNR (dB) | 1.5 | 2 | 25 |

flooding | 13327 (16098) | 6316 (8117) [2500 (3064)
GI 234 (281) 210 (247) | 174 (205)
NS 229 (279) 203 (245) | 173 (203)
QR 235 (286) 214 (244) | 182 (214)
QO 209 (283) 181 (243) [163 (208)

QR-TS 244 (282) 209 (243) | 179 (210)

QO-TS 237 (290) 216 (243) | 178 (208)

art hyper-network decoder proposed in [14] for the chosen
SNR regime and £y, = 25. In Tables II and III, we com-
pare the average number of CN to VN messages propagated
in the considered decoders to attain the results in Figs. 3
and 4, respectively. In Table II, the numbers without (resp.,
with) parentheses correspond to the (3, 6)-regular (resp., (3, 7)
AB-) LDPC code. On the other hand, in Table III, the
numbers without (resp., with) parentheses correspond to the
(96, 48) MacKay (resp., (63, 51) BCH) code. We note that, on
average, the Q-learning based decoders generate a much lower

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

HABIB et al.: BP DECODING OF SHORT GRAPH-BASED CHANNEL CODES VIA RL

Residual bit error distribution in flooding

10000
5000 .:1‘ 1"_1.. -y
] 0
e 20 40 60 80
@ Residual bit error distribution in NS
+ 2000 T T & .
=)
51000
E 20 40 60 80
= Residual bit error distribution in QR
1000 ' ' ' 1

500

Information bit index

60

639

Residual bit error distribution in ﬂooding

20

il Rl T || it el bl oA
20 40 60 30

number of bit errors

Information bit index

Fig. 6. Residual bit error distribution for u after decoding 10° transmissions at Ep/Np = 4 dB using different decoding schemes for a (186, 93) systematic
LDPC code (left figure), and a (186, 78) concatenated Hamming-LDPC code (right figure), respectively. These results correspond to the BER values shown

in Fig. 5.

TABLE III
AVERAGE NUMBER OF CN TO VN MESSAGES PROPAGATED IN VARIOUS
DECODING SCHEMES FOR A (96, 48) MACKAY ((63,51) BCH) CODE TO
ATTAIN THE RESULTS SHOWN IN FIG. 4

| SNR (dB) | 1.5 | 2 | 2.5 |

flooding [8531 (40442) | 5833 (33787) [4303 (28127)
GI 254 (17003) | 209 (13914) | 178 (13758)
NS 220 (16593) | 206 (14345) | 163 (11392)
QR 244 (15816) | 204 (15211) | 182 (12899)
QO 239 (17422) | 200 (15957) | 180 (13542)

QR-TS 243 231 211

QO-TS 275 252 238

number of CN to VN messages when compared to the flood-
ing scheme. Moreover, in contrast to NS, these schemes avoid
the computation of residuals in real-time, providing a signifi-
cant reduction in message-passing complexity for short LDPC
codes. Note that the BCH code has a much denser Tanner
than those of the other codes. Therefore, the TS results for
the BCH code are excluded due to a significantly increased
training complexity resulting from the code’s graph density.
This is also the reason that the number of CN to VN messages
in Table III is much higher for the BCH code as compared to
the MacKay code.

The results for the (186, 78) Hamming-LDPC concatenated
code (labeled Code 2) are shown in Fig. 5. As a bench-
mark, we compare its performance to the (186, 93) systematic
LDPC code (labeled Code 1) used as the inner code for the
(186, 78) concatenated code. The systematic LDPC code has
been obtained by converting the parity check matrix of a
(3, 6) regular non-systematic LDPC code into reduced row
echelon form. For decoding the systematic inner LDPC code,
we only implement the QR scheme. The reason is that our
cluster optimization and TS approaches are not suitable for
systematic LDPC codes, for which the non-systematic portion
of the code’s Tanner graph is dense and irregular. The BER
of the (186, 93) (inner) LDPC code is computed by detect-
ing the number of erroneous bits in d. Fig. 5 shows the poor
performance of BP flooding decoding the (186, 93) system-
atic LDPC code in isolation, which is due to the existence of

many short cycles in the parity part of its parity check matrix.
The (186, 78) concatenated construction significantly outper-
forms the systematic LDPC code by using RL-NS sequential
scheduling with QR clustering. The reason for this surprising
behavior is displayed in Fig. 6, which shows the bit error dis-
tribution in u for the (186, 93) systematic LDPC (left) and the
(186, 78) concatenated code (right). As anticipated, we can see
that the outer Hamming code acts as a clean-up code for the
inner LDPC code. By comparing the error distribution of the
concatenated code to the non-concatenated one, we notice that
an outer code significantly reduces the number of bit errors
in the systematic portion of the signal reconstructed by the
inner LDPC code. Notably, due to the nature of the error dis-
tribution seen on the left side of the figure, the concatenated
coding scheme is more effective when used in conjunction
with RL-based decoding. In particular, the inner LDPC code,
decoded via QR, generates a large number of singe-bit errors,
and the Hamming outer codes are able to correct these individ-
ual errors. On the other hand, the flooding scheme generates
burst errors throughout each length-31 decoded block, render-
ing the Hamming code ineffective. However, these burst errors
occur to a lesser extent in the case of NS, resulting in a BER
reduction.

VIII. CONCLUSION

We presented several RL-based decoding schemes to
optimize the scheduling of BP decoders for short LDPC
codes suitable for performing in the waterfall regime. The
main ingredient is a new state space clustering approach
to significantly reduce the learning complexity. Experimental
results show that optimizing the cluster structure by maximiz-
ing cluster-internal short cycles provides significant improve-
ments in the decoding performance when compared with both
previous scheduling schemes and clustered Q-learning with
non-optimized clusters. These gains include lowering both
BER and message-passing complexity. We also demonstrate
that by concatenating a short outer Hamming code with an
inner LDPC code, we significantly improve the error cor-
rection capability of our RL-based sequential decoder with

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 2, JUNE 2021

only a minor penalty in rate and complexity. As Bayesian
inference over graphical models is at the core of many machine
learning applications, ongoing work includes extending our
RL approach to other applications involving BP-based mes-
sage passing over a factor graph defined by an underlying
probabilistic model.

(1

(21

(31

(41

(51

(6]

(71
(81

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

S. Habib, A. Beemer, and J. Kliewer, “Learned scheduling of LDPC
decoders based on multi-armed bandits,” in Proc. IEEE Int. Symp. Inf.
Theory, 2020, pp. 2789-2794.

S. Habib, A. Beemer, and J. Kliewer, “Learning to decode:
Reinforcement learning for decoding of sparse graph-based channel
codes,” in Proc. 34th Conf. Neural Inf. Process. Syst. (NeurIPS),
Vancouver, BC, Canada, 2020.

R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.

D. J. Costello, Jr., L. Dolecek, T. Fuja, J. Kliewer, D. G. M. Mitchell, and
R. Smarandache, “Spatially coupled sparse codes on graphs: Theory and
practice,” JEEE Commun. Mag., vol. 52, no. 7, pp. 168-176, Jul. 2014.
S. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 db of the
Shannon limit,” JEEE Commun. Lett., vol. 5, no. 2, pp. 58-60, Feb. 2001.
Y. Kou, S. Lin, and M. P. C. Fossorier, “Low density parity-check codes
based on finite geometries: A rediscovery and new results,” IEEE Trans.
Inf. Theory, vol. 47, no. 7, pp. 2711-2736, Nov. 2001.

R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Trans. Inf. Theory, vol. IT-27, no. 5, pp. 547-553, Sep. 1981.

M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative
decoding of low density parity check codes based on belief propagation,”
IEEE Trans. Commun., vol. 47, no. 5, pp. 673680, May 1999.

A. I V. Casado, M. Griot, and R. D. Wesel, “LDPC decoders with
informed dynamic scheduling,” IEEE Trans. Commun., vol. 58, no. 12,
pp- 34703479, Dec. 2010.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2015.

E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein,
and Y. Béery, “Deep learning methods for improved decoding of linear
codes,” IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 119-131,
Feb. 2018.

I. Béery, N. Raviv, T. Raviv, and Y. Béery, “Active deep decoding
of linear codes,” IEEE Trans. Commun., vol. 68, no. 2, pp. 728-736,
Feb. 2020.

Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh, and P. Viswanath,
“Deep learning based channel codes for point-to-point communi-
cation channels,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 2758-2768.

E. Nachmani and L. Wolf, “Hyper-graph-network decoders for block
codes,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 2329-2339.

N. Doan, S. A. Hashemi, and W. Gross, “Decoding polar codes with
reinforcement learning,” 2020. [Online]. Available: arXiv:2009.06796.

Y. Liao, S. A. Hashemi, J. Cioffi, and A. Goldsmith, “Construction
of polar codes with reinforcement learning,” 2020. [Online]. Available:
arXiv:2009.09277.

(7

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

34]

[35]

[36]

F. Carpi, C. Hager, M. Martalo, R. Raheli, and H. D. Pfister,
“Reinforcement learning for channel coding: Learned bit-flipping decod-
ing,” in Proc. 57th Allerton Conf. Commun. Control Comput., 2019,
pp. 922-929.

C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. disserta-
tion, King’s College, Univ. Oxford, Oxford, U.K., 1989.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
nos. 34, pp. 279-292, 1992.

M. O. Duff, “Q-learning for bandit problems,” Dept. Comput. Sci., Univ.
Massachusetts, Amherst, MA, USA, Rep. CMPSCI 95-26, 1995.

0. Simsek, A. P. Wolfe, and A. G. Barto, “Identifying useful subgoals
in reinforcement learning by local graph partitioning,” in Proc. 22nd Int.
Conf. Mach. Learn., 2005, pp. 816-823.

S. Mannor, 1. Menache, A. Hoze, and U. Klein, “Dynamic abstraction
in reinforcement learning via clustering,” in Proc. 21st Int. Conf. Mach.
Learn., 2004, pp. 71-78.

R. Parr and S. J. Russell, “Reinforcement learning with hierar-
chies of machines,” in Proc. Adv. Neural Inf. Process. Syst., 1998,
pp. 1043-1049.

S. Bitzer, M. Howard, and S. Vijayakumar, “Using dimensionality reduc-
tion to exploit constraints in reinforcement learning,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2010, pp. 3219-3225.

D. Shah and Q. Xie, “Q-learning with nearest neighbors,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 3111-3121.

L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based
LDPC codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181-201,
Jan. 2010.

J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. Int.
Symp. Turbo Codes Rel. Topics, 2000, pp. 543-546.

A. Beemer, S. Habib, C. Kelley, and J. Kliewer, “A generalized algebraic
approach to optimizing SC-LDPC codes,” in Proc. 55th Allerton Conf.
Commun. Control Comput., Oct. 2017, pp. 672-679.

1. C. Gittins, “Bandit processes and dynamic allocation indices,” J. Roval
Stat. Soc. B, Methodol., vol. 41, no. 2, pp. 148-163, 1979.

D. Russo, B. V. Roy, A. Kazerouni, and I. Osband, “A tutorial on
Thompson sampling,” Found. Treﬂds® Mach. Learn., vol. 11, no. 1,
pp. 1-96, 2017.

J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empir-
ical evaluation,” in Proc. Eur. Conf. Mach. Learn. (ECML), 2005,
pp- 437—448.

S. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-
product decoding of low-density parity-check codes using a Gaussian
approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657-670,
Feb. 2001.

R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and
D. J. Costello, Jr., “LDPC block and convolutional codes based on circu-
lant matrices,” JEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 29662984,
Dec. 2004.

J. Li, 8. Lin, and K. Abdel-Ghaffar, “Improved message-passing algo-
rithm for counting short cycles in bipartite graphs,” in Proc. IEEE Int.
Symp. Inf. Theory, 2015, pp. 416-420.

D. J. C. MacKay, Information Theory, Inference and Learning
Algorithms. Cambridge, U.K.: Cambridge Univ. Press, 2003.

A. Gersho and R. M. Gray, Vector Quantization and Signal Compression
(Engineering and Computer Science), vol. 159. Boston, MA, USA:
Springer, 1992.

Authonzed licensed use limited to: New Jersey Institute of Technology. Downloaded on November 11,2022 at 22:36:01 UTC from IEEE Xplore. Restrictions apply.

