Multi-Channel FFT Architectures Designed via
Folding and Interleaving

Nanda K. Unnikrishnan
Dept. Electrical and Computer Engineering
University of Minnesota
Minneapolis MN, USA
unnik005 @umn.edu

Abstract—Computing the FFT of a single channel is well
understood in the literature. However, computing the FFT of
multiple channels in a systematic manner has not been fully
addressed. This paper presents a framework to design a family
of multi-channel FFT architectures using folding and interleaving.
Three distinct multi-channel FFT architectures are presented in
this paper. These architectures differ in the input and output
preprocessing steps and are based on different folding sets, i.e.,
different orders of execution.

Index Terms—FFT, Multi-Channel FFT, Folding, Interleaving

I. INTRODUCTION

Fast Fourier Transform (FFT) algorithm is a critical part of
modern signal processing and machine learning systems, and is
used in applications ranging from digital communication [1]-
[4] to generating features for neural networks. There has been
significant research on design of pipelined [5]-[7] and parallel
[8], [9] FFT architectures for both complex and real-valued
input signals [10]-[12]. These architectures were designed
mostly with systematic principles. However, systematic design
of architectures for multi-channel has not been fully explored.

We can broadly classify existing multi-channel approaches
into two categories. The first approach is memory-based
which store all input channels into a large memory bank [4],
[13], [14]. While this approach has less data movement and
reordering, it requires a significantly larger memory footprint,
especially simultaneous writing and reading support. The
second approach uses a combination of delay elements and
switches to create data commutators [1], [15], [16]. These data
commutators can manipulate input data into the proper format
to interleave the channels and handle the data reordering for
the first stage. While this approach is memory efficient, it lacks
systematic exploration and is tailored for specific hardware
applications or architectures. Therefore, this paper explores
the systematic design of multi-channel FFT architectures by
applying folding and interleaving to existing architectures.

The rest of the paper is organized as follows. Section II
describes the proposed interleaving models and how to derive
them. Section III compares the different proposed approaches
and their advantages over existing designs. Finally, section IV
summarizes the main conclusions of the paper.

This research was supported in part by the National Science Foundation
under grant number CCF-1954749.

Keshab K. Parhi
Dept. Electrical and Computer Engineering
University of Minnesota
Minneapolis MN, USA
parhi@umn.edu

Fig. 1. DFG of a Radix-2 16-point DIF FFT with processors allocation for
folding.

X15 - X2X1Xg Y14 - YgXg - YoXo
| ey

Channel X

Channel Y

Y15 Y2 Y1 Yo Y15 - Y9Xg - Y1X1

Clock 15 Clock 0 Clock 16 Clock 1

Fig. 2. Pre-processing multi-channel input into an interleaved 2-parallel form
using a 1-DSD circuit.

II. PROPOSED MULTI-CHANNEL FFT ARCHITECTURES

This section presents the multi-channel interleaved architec-
tures for complex-valued signals with the radix-2 algorithm.
These architectures were designed with the use of folding sets
[17]. Folding sets are ordered sets that describe how operations
map to a hardware resource in a time-multiplexed manner.
Through folding, we can derive different FFT architectures
by varying the operations’ order. Additionally, we can use
the process of interleaving [18] to alternate between the
computation of each channel. Using folding sets, we present
three architectures for a multi-channel FFT. For brevity, we
only present the folding sets and the final architectures.

A. Architecture 1: 2-parallel FFT architecture with interleav-
ing factor 2

A direct approach to multi-channel interleaving is to take
existing FFT architectures and perform the interleaving oper-
ation. There are multiple candidates for the choice of a base
architecture [19], and for this example, we use the 16-point
2-parallel DIF FFT proposed in Fig. 12 of [5] as the starting

Pre-processing

2-Parallel DIF FFT with Interleaving Factor 2

Post-processing

Fig. 3. Proposed 2-parallel interleaved architecture (Architecture 1) for the computation of a 2 channel 16-point DIF FFT.

point for interleaving. The base architecture defines the folding
sets in Eq. (1) for the dataflow graph shown in Fig. 1.

Interleaving by a factor of 2 doubles the number of delays in
the architecture. In terms of the folding set, we insert null op-
erations in the new locations as shown in Eq. (2). This change
leads to a 2-parallel FFT architecture that accepts inputs on
alternate cycle. The system still maintains the throughput of a
single channel system, albeit with 50% utilization.

A = {Ao, A2, Ay, As, A1, Az, A5, A7}
B = {Bs, B7, Bo, B2, B4, Bs, B1, B3}
C = {C3,C5,C07,Co,C2,C4,Cs,C1 }
D = {D>,Dy4, D¢, D1,D3,Ds, D7, Do} (1)

A={Ap,0,A2,0,A4,0,A6,0,A1,0, A3, 0, A5,0, A7,0}
B ={Bs,0,B7,0,Bo,0,B2,0,B4,0,Bs,0, B1,0, B3, 0}
C={Cs,0,C5,0,C7,0,C0,0,C2,0,C4,0,Cs,0,C1,0}
D ={D2,0,D4,0,D¢,0, D1,0,D3,0, Ds,0, D7,0, Do, 0} 2

We can use these null operations to interleave the second FFT
channel to the same hardware as shown in Eq. (3), where prime
operations refer to the second channel.

A ={Ao, Ay, A, Ay, Ay, Ay, As, Ag, Ar, A, As, Ay, As, AL, Ar, ALY
B ={Bs, B, B7, B7, By, By, B2, B}, By, B}, Bs, By, B1, B}, Bs, B} }
c ={C3,C4,Cs,Cy,Cr,Cy,Co, Ch, Ca,Cy, Cy, Cy, Cs,Cg, C1, Cr }

D ={Dy, D}, D4, D}, D¢, Dg, D1, D}, D3, Dy, Ds, Dg, D7, Dy, Do, Dy }
3

Fig. 3 describes the proposed architecture for the 2-parallel
DIF FFT interleaved by a factor of 2. Using interleaving, we
can derive this architecture by doubling the number of delays
in the original circuit and interleaving the input signals. For
example, the above folding set alternately accepts two inputs
from each channel. To pre-process the data into this format,
we make use of a one delay-switch-delay (1-DSD) shown in
Fig. 2. The same 1-DSD circuit can be used at the final output
to post-process the information such that the corresponding
results of each channel line up. This ordering is advantageous
if we need to multiply the related FFT results of the two
channels. In addition, there is a delay in both the upper and
lower path after the pre-processing step. We can eliminate
these delays from the circuit without any consequence by
the principle of reverse pipelining [20]. If we require the
outputs in the natural order, then we must implement a reorder
circuit (REOC) in [5] with seven registers per channel or seven
registers in total if we multiply and use each channel.

X15 o XaX1X0 RO 1 RO 4
Channel X 0 0 i
:=|. RisiS e o
0 0
Channel Y N — N N = 3
Y15 --Y2¥1 Yo 1 NP o
Clock 15 Clock 0
XoYoX1Y1 Y7 RO 3
—]
Of
i
0]
301«
XgYgX9y9 - Y15 o 1[ep¢

Clock 9 Clock 24

Fig. 4. Pre-processing multi-channel input into an alternative interleaved 2-
parallel form.

Xo Xo Xo Xo
X1 >< X T T X2 Xg
X2 X T X X1
X3 T T X3 T " X3 X9
Xy — Xy Xg X2
Xs >< X6 X10 X10
X6 Xs X9 X3
X7 T X7 X11 T Xn
Xg T~ Xg Xg T Xy
X9 >< X10 X6 X12
X10 X9 Xs Xs
X191 T X1 X7 X13
X12 T T X1z T T X12 X6
X13 >< X14 T X4 X14
X14 X13 T X13 X7
X15 X15 X15 X15

Fig. 5. Data movement in the reorder circuits.

B. Architecture 2: Alternate 2-parallel FFT architecture with
interleaving factor 2

The main difference between Eq. (4) and Eq. (3) is the
ordering of the computations within the folding set. Eq. (4)
applies a simple ordering scheme for mapping the computa-
tions to the processor. As a consequence, the output order of
the circuit follows the output order of the DFG in Fig. 1. To use
the new folding sets, we design a pre-processing step, shown
in Fig. 4, that takes the two input channels and generates a
sequence required for the circuit.

The circuit in Fig. 4 uses REOC circuits to swap data entries

Pre-processing

DIF FFT with Interleaving Factor 2

Post-processing

Fig. 6. Proposed interleaved architecture (Architecture 2) for the computation of a 2-channel 16-point DIF FFT.

Pre-processing

R2MDC with Interleaving

Post-processing

X15 - X2X1Xg V7 . YoX7 . X1Xg

Channel X

Channel Y

Y15 Y2 Y1 Yo Y15 - YgXi5 .- XgXg

Clock 15 Clock 0 Clock 24 Clock 8

Fig. 8. Pre-processing multi-channel input into an interleaved form, where
FFT is performed on one channel at a time.

that are a fixed delay apart. For this architecture, the data
movement function of the REOC circuit is shown in Fig. 5.
The first step in the pre-processing uses a combination of
RO1+R0O3+ ROA4 to bring all the inputs used for a butterfly to
adjacent cycles. Additionally, the circuit ensures that the order
of operations matches the order in the DFG in Fig. 1. Finally,
the post-processing step uses a 1-DSD to un-interleave the
two FFT channel outputs. The overall architecture showing the
pre-processing, post-processing, and FFT modules is shown
in Fig. 6. The outputs of the circuit are in a standard bit-
reversed order, and we use bit reversal circuits like [21] to
bring them to a natural order. This reversal circuit corresponds
to 9 registers per output channel for a 16 point FFT.

A={Ao, Ay, A1, A, Az, Ay, Az, Ay, Ay, A}, As, Ay, Ag, Ag, A7, A7}
B ={Ba, B}, Bs, By, Bs, Bg, Br, By, Bo, B, B1, By, B2, By, Bs, By }
C ={C2,C4,C5,C4,C4,Cy, Cs5,C4, Co, Cg, C7,Cy, Co, Ch, C1, Cr }

D ={D1, Dy, D2, Dy, D3, Dy, Dy, D}y, Ds, D, Dg, Dg, D7, D%, Do, Dy}
@

C. Architecture 3: Direct channel interleaving

Prior architectures perform interleaving on existing archi-
tectures with 100% utilization. However, we can derive ar-
chitecture with full utilization using interleaving even when
starting from architectures with half utilization. For example,
consider the radix-2 multipath delay commutator (R2MDC)
with the folding sets in Eq. (5).

A ={Ao, A1, Az, A3, Ay, A5, As, A7,0,0,0,0,0,0,0,0}
B ={0,0,0,0, By, B1, B2, B3, Ba, Bs, Bs, B7,0,0,0,0}
C={0,0,0,0,0,0,Co,C1,C2,C3,C4,C5,Cs,C7,0,0}
D ={0,0,0,0,0,0,0, Do, D1, D2, D3, D4, Ds, Ds, D7,0} (5)

There has been extensive research on using different tech-
niques like 2-parallel approaches serial commutators to over-
come these inefficiencies. However, we can exploit these null
operations in the folding sets to perform interleaving as seen
in the folding sets in Eq. (6).

A ={Ao, A1, Az, A3, As, A5, Ag, A7, Ay, A, A, AL, Ay, AL, Ag, An}
B ={B,, B, Bg, By, Bo, B1, B2, B3, B4, Bs, Bg, Br, By, By, By, By}
c={c,,C;,Cy,Cs,Cq,Cr,Co,C1,C2,C3,Cy, Cs, Cs,C7,Ch, C1 }
D ={Dj, D, Dy, Dy, Dy, Dg, D7, Do, D1, D2, D3, D4, Ds, Dg, D7, Dy}
(©6)
The advantage of the proposed folding set is that it dramati-
cally simplifies the pre-processing step. For example, we can
use an 8-DSD circuit as shown in Fig. 8 to interleave the two
channels while also aligning the inputs for the first butterfly
stage. Then, after performing the FFT, we can post-process
the outputs with another §-DSD circuit to realign the two
channels. The overall architecture showing the pre-processing,
post-processing, and FFT modules is shown in Fig. 7. This
architecture has further advantages in that it also reduces the
complexity to bring the result back into a natural order. As
the outputs of the circuit are in a bit-reversed order for only
half the FFT size, we use half-size bit reversal circuits to bring
them to a natural order. This reversal circuit corresponds to 3
registers per output channel for a 16 point FFT.

D. Extension to powers of 2 channels

The previous subsections described the process for inter-
leaving two channels. However, this approach can be gen-
eralized to any number of channels that is a power of 2.
Fig. 9 shows the proposed interleaving pre-processing circuit
for Architectures 1 and 3. This is a generalized circuit for

X63 + X1X0 — lachannel — ™.ThannelT—
> sl i h Ny . k >
D 1 D 1 D
Y63 - Y1Yo s 1 S 1 S
fth 3: 'i-’—"_'_o_ >
i J k| >
D D Dl
S S s
[O] [0] (o]
i j k
D D D
S S S
(O] L] LD}
j : i_,.k .
D D
S S
O] L] LD}
Merge Merge Merge
channels that channels that channels that
are 4 apart are 2 apart are 1 apart

Fig. 9. Common circuitry to interleave 2, 4, or 8 channels. The values of i,
j, and k depend on whether we are processing architecture 1 or 3.

2, 4 and 8 channels. However, adding additional stages can
easily extend this approach to more channels. For Architecture
1, the values of the registers i, j, and k are 4, 2, and 1,
respectively. In this example, an 8-channel interleaver, the
output is directly in the form required for an 8-parallel FFT
circuit. For Architecture 3, with a 16-point FFT, the values
for i, j, and k are 8, 4, and 2, respectively. For the 64-Point
example shown in Fig. 9, Architecture 3 would require ¢, j,
and k to be 32, 16, and 8, respectively.

III. COMPARISON OF ARCHITECTURES

All three proposed architectures have identical throughput
and processors. Therefore, we compare the memory footprint
of these approaches and focus primarily on the pre-processing,
post-processing, and reorder steps. These components are the
differentiating factors when interleaving multiple channels.
The pre-processing step interleaves the multiple channels as
required by the architecture. The post-processing separates
the results into their corresponding channels. The output after
post-processing is not in the natural order and requires reorder-
ing. The details for each of these components are described
in their respective architectures. Table I shows the breakdown
of the memory footprint into pre-processing, post-processing,
architecture, and reordering registers.

TABLE I
COMPARISON OF THE MEMORY FOOTPRINT, IN TERMS OF NUMBER OF
REGISTERS, OF THE THREE PROPOSED ARCHITECTURES ON A 16-POINT

DIF FFT
[Architecture | Pre-processing [FFT [Post-processing | Reordering |
Arch 1 17 28 2 14
Arch 2 18 28 2 18
Arch 3 16 14 16 6

Table I shows that each architecture focuses on different
aspects of the design for optimization. We have combined
the pre-processing step with the first stage data reordering
as these reported together in some architectures for a fair
comparison. Architecture 2 is a direct implementation of

interleaving while maintaining the order of computations.
However, to bring the inputs to the required order requires
complicated pre-processing step that consists of multiple
REOCs. Architecture 1 provides elementary pre-processing
and post-processing steps and keeps the base 2-parallel FFT
block, that is optimized for performance and output reordering,
relatively intact. As a result, Architecture 1 maintains the
advantages of the base architecture performing better than
Architecture 2. Architecture 3 has the same advantages of
Architecture 1 while also simplifying the final reorder circuit.
The post-processing step for Architecture 3 un-interleaves the
channels and performs half the movement required for the
data reordering. Thus we only need an N/2 REOC circuit to
perform reordering, where N is the size of the FFT.

TABLE I
COMPARISON OF THE PROPOSED INTERLEAVING PRE-PROCESSING STEP
VERSUS EXISTING APPROACHES

Pre-possessing circuit Memory Latency Control complex-
elements ity
Memory banks [4], | M X N N Complex memory
[13], [14] reads
Multi-channel commu- | (M—1)x | (M—1)x | Complex pre-
tators [1], [15], [16] N N/M processing control
Proposed architecture | (M —1)x | (M—1)x | Counter based
3 N N/M pre-processing
control

Table II shows a detailed comparison of the proposed pre-
processing method with existing literature. Here, M is the
number of interleaved channels, and N is the size of the FFT.
The prior approaches are based on using a large memory bank
[4], [13], [14] to store the information from all channels and
retrieving the information as required. However, this method
often employs complicated memory access patterns to retrieve
the data in the required form. Additionally, they have a larger
memory footprint as they do not optimize register utilization
by performing a lifetime analysis.

Multi-channel commutators are increasingly common in
MIMO-OFDM applications [1], [15], [16], and they overcome
some of the shortcomings of memory bank approaches. This
method minimizes the number of registers required to pre-
process the inputs and have optimal latency. However, existing
approaches are ad-hoc and do not design generalized structures
for various channels and points. Additionally, the control
circuit complexity of the pre-processing step increases with
the number of channels, M, and FFT size, N.

IV. CONCLUSION

This paper presented a novel approach to design multi-
channel interleaved architectures from existing FFT archi-
tectures systematically. The paper proposed three separate
approaches to deriving pipeline models based on folding and
interleaving. In addition, the paper presents a framework for
efficiently interleaving any number of channels with elemen-
tary control logic. Thus the paper can be used as a baseline to
deriving any C' channel FFT module from a C' parallel baseline
FFT architecture.

[1]

[3]

[4]

[5]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

K.-J. Yang, S.-H. Tsai, and G. C. Chuang, “MDC FFT/IFFT processor
with variable length for MIMO-OFDM systems,” IEEE transactions on
very large scale integration (VLSI) systems, vol. 21, no. 4, pp. 720-731,
2012.

Y.-W. Lin and C.-Y. Lee, “Design of an FFT/IFFT processor for MIMO
OFDM systems,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 54, no. 4, pp. 807-815, 2007.

P. O. Taiwo and A. Cole-Rhodes, “MIMO equalization of 16-QAM
signal blocks using an FFT-based alphabet-matched CMA,” in 2017
51st Annual Conference on Information Sciences and Systems (CISS),
2017, pp. 1-6.

M. Mahdavi, O. Edfors, V. Owall, and L. Liu, “A low latency and area
efficient FFT processor for massive MIMO systems,” in 2017 [EEE
International Symposium on Circuits and Systems (ISCAS), 2017, pp.
1-4.

M. Ayinala, M. Brown, and K. K. Parhi, “Pipelined parallel FFT
architectures via folding transformation,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 20, no. 6, pp. 1068-1081,
2012.

M. Garrido, “A survey on pipelined FFT hardware architectures,”
Journal of Signal Processing Systems, 2021.

S. He and M. Torkelson, “Design and implementation of a 1024-point
pipeline FFT processor,” in Proceedings of the IEEE 1998 Custom
Integrated Circuits Conference (Cat. No.9SCH36143), 1998, pp. 131-
134.

J. Wang, C. Xiong, K. Zhang, and J. Wei, “A mixed-decimation MDF
architecture for radix-2k parallel FFT,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 24, no. 01, pp. 67-78, jan 2016.
M. Garrido, J. Grajal, M. A. Sanchez, and O. Gustafsson, “Pipelined
radix-2k feedforward FFT architectures,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 21, no. 1, p. 23-32, Jan. 2013. [Online]. Available:
https://doi.org/10.1109/TVLSI.2011.2178275

N. K. Unnikrishnan, M. Garrido, and K. K. Parhi, “Effect of finite word-
length on SQNR, area and power for real-valued serial FFT,” in 2079
IEEE International Symposium on Circuits and Systems (ISCAS), 2019,
pp. 1-5.

M. Garrido, N. K. Unnikrishnan, and K. K. Parhi, “A serial commutator
fast Fourier transform architecture for real-valued signals,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 65, no. 11, pp.
1693-1697, 2018.

M. Ayinala and K. K. Parhi, “FFT architectures for real-valued signals
based on radix-23 and radix-24 algorithms,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 60, no. 9, pp. 2422-2430,
2013.

Z.-G. Ma, X.-B. Yin, and F. Yu, “A novel memory-based FFT architec-
ture for real-valued signals based on a radix-2 decimation-in-frequency
algorithm,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 62, no. 9, pp. 876-880, 2015.

J. Lee and H. Lee, “A high-speed two-parallel radix-24 FFT/IFFT
processor for MB-OFDM UWB systems,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 91, no. 4, pp. 1206-1211, 2008.

B. Kang and J. Kim, “Low complexity multi-point 4-channel FFT
processor for ieee 802.11n MIMO-OFDM WLAN system,” in 2012
International Conference on Green and Ubiquitous Technology, 2012,
pp. 94-97.

S. Yoshizawa, A. Orikasa, and Y. Miyanaga, “An area and power efficient
pipeline FFT processor for 8x8 MIMO-OFDM systems,” in 2011 IEEE
International Symposium of Circuits and Systems (ISCAS), 2011, pp.
2705-2708.

K. Parhi, C.-Y. Wang, and A. Brown, “Synthesis of control circuits
in folded pipelined DSP architectures,” IEEE Journal of Solid-State
Circuits, vol. 27, no. 1, pp. 29-43, 1992.

K. K. Parhi, “Hierarchical folding and synthesis of iterative data flow
graphs,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 60, no. 9, pp. 597-601, 2013.

C. Cheng and K. K. Parhi, “High-throughput VLSI architecture for FFT
computation,” /EEE Transactions on Circuits and Systems II: Express
Briefs, vol. 54, no. 10, pp. 863-867, 2007.

K. K. Parhi, VLSI digital signal processing systems: Design and imple-
mentation. John Wiley & Sons, 2007.

[21] M. Garrido, J. Grajal, and O. Gustafsson, “Optimum circuits for bit

reversal,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 58, no. 10, pp. 657-661, 2011.

