
Computer Physics Communications 272 (2022) 108218
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

KLIFF: A framework to develop physics-based and machine learning

interatomic potentials✩,✩✩

Mingjian Wen 1, Yaser Afshar, Ryan S. Elliott, Ellad B. Tadmor ∗

Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 August 2021
Received in revised form 1 October 2021
Accepted 30 October 2021
Available online 16 November 2021

Keywords:
Interatomic potentials
Machine learning
Uncertainty
OpenKIM

Interatomic potentials (IPs) are reduced-order models for calculating the potential energy of a system of
atoms given their positions in space and species. IPs treat atoms as classical particles without explic-
itly modeling electrons and thus are computationally far less expensive than first-principles methods,
enabling molecular simulations of significantly larger systems over longer times. Developing an IP is
a complex iterative process involving multiple steps: assembling a training set, designing a functional
form, optimizing the function parameters, testing model quality, and deployment to molecular simula-
tion packages. This paper introduces the KIM-based learning-integrated fitting framework (KLIFF), a package
that facilitates the entire IP development process. KLIFF supports both physics-based and machine learn-
ing IPs. It adopts a modular approach whereby various components in the fitting process, such as atomic
environment descriptors, functional forms, loss functions, optimizers, quality analyzers, and so on, work
seamlessly with each other. This provides a flexible framework for the rapid design of new IP forms.
Trained IPs are compatible with the Knowledgebase of Interatomic Models (KIM) application program-
ming interface (API) and can be readily used in major materials simulation packages compatible with
KIM, including ASE, DL_POLY, GULP, LAMMPS, and QC. KLIFF is written in Python with computationally
intensive components implemented in C++. It is parallelized over data and supports both shared-memory
multicore desktop machines and high-performance distributed memory computing clusters. We demon-
strate the use of KLIFF by fitting a physics-based Stillinger–Weber potential and a machine learning neural
network potential for silicon. The KLIFF package, together with its documentation, is publicly available at:
https://github .com /openkim /kliff.

Program summary
Program Title: KIM-based Learning-integrated Fitting Framework (KLIFF)
CPC Library link to program files: https://doi .org /10 .17632 /fk77gs5b2d .1
Licensing provisions: LGPL 2.1
Programming language: Python, C++
Supplementary material: Example scripts for the demonstrations, which are compatible with KLIFF v0.3.0.
Nature of problem: Development of a model called an interatomic potential (IP) representing the potential
energy of a system of atoms based on their positions in space and species. This is a complex iterative
process involving multiple steps: assembling a training set, designing a functional form, optimizing the
function parameters, testing IP quality, and deployment of the fitted IP to molecular simulation packages.
Solution method: The fitting process is formulated as an optimization problem where a loss function
characterizing the IP error over a training set is minimized to obtain the optimal fitting parameters. KLIFF
is designed in a modular fashion providing the user with flexible access to different functional forms, loss
functions, optimization algorithms, and analyzers for testing the quality of the fitted IP. KLIFF is built on

✩ The review of this paper was arranged by Prof. Blum Volker.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).
* Corresponding author.

E-mail address: tadmor@umn.edu (E.B. Tadmor).
1 Current address: Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
https://doi.org/10.1016/j.cpc.2021.108218
0010-4655/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2021.108218
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2021.108218&domain=pdf
https://github.com/openkim/kliff
https://doi.org/10.17632/fk77gs5b2d.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:tadmor@umn.edu
https://doi.org/10.1016/j.cpc.2021.108218

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218

the Knowledgebase of Interatomic Models (KIM) API standard, which enables immediate deployment of
fitted IPs to major materials simulation packages that are compatible with KIM.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Molecular simulations are a powerful computational technique
for exploring material behavior and properties based on an under-
standing of the physics of bonding at the atomic scale [1]. This
approach is used across the sciences with examples such as phase
transition in crystals [2], protein folding [3], and thermal expan-
sion and conductivity of layered 2D materials [4,5] to name just
a few. At the core of any molecular simulation lies a descrip-
tion of the interactions between atoms that produces the forces
governing atomic motion. First-principles approaches (e.g. density
functional theory (DFT)) that involve solving the Schrödinger equa-
tion of quantum mechanics are most accurate, but due to hardware
and algorithmic limitations, these approaches are limited to ex-
tremely small system sizes and time scales precluding the study of
most systems of technological interest. For example, the supercell
required to simulate a graphene bilayer with a 1.1◦ twist angle has
more than 10,000 atoms, which is well beyond the capabilities of
current first-principles approaches [5].

Interatomic potentials (IPs, also known as force fields) provide
a classical alternative based on the Born–Oppenheimer approxi-
mation (BOA) [6]. Due to the large mass difference between nu-
clei and electrons, the BOA assumes that electrons instantaneously
adapt to changes in nuclei positions adopting their ground state
configuration — effectively decoupling nuclei and electron physics.
This approximation is reasonable for many problems of interest
in materials science and condensed-matter physics [1]. Consistent
with the BOA, IPs treat atoms as classical particles without explic-
itly modeling the electrons, but strive to capture their influence
on atomic nuclei in an effective manner. As such, IPs are compu-
tationally far less expensive than first-principles methods and can
therefore be used to compute static and dynamic properties that
are inaccessible to first-principles calculations [7–9]. In essence, an
IP is a reduced-order model for the quantum-mechanical interac-
tion of electrons and nuclei in a material through a parameterized
functional form that depends only on the positions of the atomic
nuclei (atoms hereafter).

Development of an IP is a complex iterative process involving
multiple steps as shown in Fig. 1. (Refer back to this figure as you
read the remainder of this section.) First, a dataset of experimental
and/or first principles reference data must be assembled to which
the IP will be fitted. When developing machine learning potentials,
it is common practice to split the dataset into three parts: (1) a
training set that is used to optimize the model parameters, (2) a
validation set for fitting hyperparameters and monitor overfitting,
and (3) a test set to assess the goodness of the fit.

Traditionally, the reference dataset contains material properties
considered important for a given application, such as the cohesive
energy, equilibrium lattice constant, and elastic moduli of given
crystal phases to name a few. In recent years, many IPs adopt a
force-matching scheme [10], in which the training set is augmented
with the forces on atoms obtained by first-principles calculations
for a large set of atomic configurations.2 An advantage of this ap-
proach is that the issue of insufficient training data (particularly

2 These can be configurations associated with important structures or snapshots
of the crystal as the atoms oscillate at finite temperature or through random per-
turbations.
2

Fig. 1. Flowchart of the IP development process. Developing an IP involves four ma-
jor steps: (1) assemble a set of reference data and design an IP functional form;
(2) optimize IP parameters, typically carried out by minimizing a weighted least-
squares loss function of the model predictions and the reference data; (3) assess the
quality of the optimized model via verification and validation tests; and (4) deploy
the model to molecular simulation packages. These steps can be iterative. When a
model fails a verification test (e.g. by not satisfying a universal requirement, such
as translational and rotational invariance, or by having a low goodness of fit on a
test set) or fails a validation test (e.g. being unable to reproduce experimental ma-
terial properties), it is necessary to return to earlier steps, make adjustments, and
redo the fitting.

true for machine learning potentials) can be resolved because as
many training data as needed can be readily generated.

Construction of a good reference dataset is critical for success.
The fidelity of the IP for a given application hinges on includ-
ing the appropriate physics in the dataset. It is also important to
not swamp out rare configurations (such as transition states) that
can have a disproportionate effect on material behavior. Dataset
curation remains a difficult open problem and an area of active re-
search [11].

Next an appropriate functional form has to be selected. Tradi-
tionally, the functional form of an IP was devised to represent the
physics underlying the material system. One of the earliest exam-
ples is the pair potential developed by Lennard-Jones (LJ) in the
1920s to model van der Waals interactions in noble gases [12–14].

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
The LJ potential includes an r−6 term (where r is the distance be-
tween atoms) that is based on a theoretical model for London dis-
persion, and an r−12 term meant to model repulsion due to Pauli
exclusion. In the past century, a large number of physics-based po-
tentials have been developed for a variety of ionic, metallic, and
covalent systems [1]. A physics-based potential typically adopts a
closed-form functional expression that is based on known physi-
cal or geometric aspects of bonding in the material. The functional
forms of these IPs have become increasingly complex with an ever
growing number of parameters.3

Devising the appropriate functional form to correctly capture
the physics underlying the material system is arguably the most
difficult task in developing a physics-based potential. It involves
a mix of art and science as pointed out by Brenner [16]. This is
largely alleviated by machine learning potentials [17–21], which
have emerged in recent years and been shown to be highly ef-
fective for a spectrum of material systems ranging from organic
molecules [19] to alloys [22]. Different from physics-based poten-
tials, machine learning potentials are constructed by first trans-
forming the atomic environment information in a large training
set of first-principles results into vector representations (descrip-
tors) and then training general-purpose regression algorithms on
the atomic environment descriptors. In a machine learning po-
tential, the regression algorithm contains no physics, but instead
it attempts to “learn” the quantum mechanical Schrödinger equa-
tion directly from the training set of reference data. Properly tuned
with a sufficiently dense training set, machine learning potentials
have the advantage that, in principle, they can describe arbitrary
bonding states and thus can achieve extremely high accuracy.

After the functional form has been selected (either physics-
based or machine learning), the next step is to determine the
values of the function parameters. This is typically formulated as
a least-squares minimization problem by first constructing a loss
function that quantifies the difference between the IP predictions
and the reference values in the training set and then adjusting
the parameters to reduce the loss function as much as possible.
This can be challenging because IPs are nonlinear functions that
are often “sloppy” in the sense that their predictions are insensi-
tive to certain parameters or certain combinations of parameters
[23,24]. These soft modes in parameter space can cause the min-
imization algorithms to fail to converge [9]. A solution is to use
a minimization algorithm that moves along flat regions in param-
eter space more quickly (e.g. the geodesic Levenberg–Marquardt
algorithm [25–27]), or better yet, to identify soft modes using a
sensitivity analysis (e.g. a Fisher information based method [4])
and then apply a suitable model reduction.

Once an IP is trained, its quality must be assessed. This can
be approached from a verification & validation (V&V) perspective.
These terms are defined as [28]:

• Verification: The process of determining that a computa-
tional model accurately represents the underlying mathemati-
cal model and its solution.

• Validation4: The process of determining the degree to which
a model is an accurate representation of the real world from
the perspective of the intended uses of the model.

Verification for an IP includes satisfaction of universal require-
ments such as translational and rotational invariance (objectivity),
permutation symmetry, forces returned by the IP correspond to the

3 For example, there are only two parameters in the LJ potential [14], whereas the
ReaxFF [15] model developed for more complex systems has hundreds of adjustable
parameters.
4 Note that the term validation is used differently in the V&V context than the

validation set in machine learning mentioned above.
3

negative gradient of the energy, and so on. These are referred to
as “verification checks” within the Knowledgebase of Interatomic
Models (KIM) framework [29–32]. In addition, verification includes
tests that assess the quality of the model in terms of the un-
certainty in parameter determination, and the goodness of the fit
using a test set as mentioned above.

The V&V notion of validation can be understood within the con-
text of transferability, i.e. the ability of the IP to predict phenomena
that it was not fit to reproduce. This includes prediction of material
properties, computed by “KIM Tests” within the KIM framework
[31], and predictions obtained through large-scale molecular sim-
ulations of real-world behavior. For example, the ability of IPs for
carbon to reproduce the experimental structure of amorphous car-
bon [33].

As a general rule, physics-based potentials are better placed to
exhibit transferability than machine learning potentials as long as
the functional forms capture the requisite physics. For example an
LJ potential fitted to the properties of an ideal gas provides a good
approximation (within 10%) for the ground state crystal structure
obtained by cooling the gas down to 0 K [1]. This is an impres-
sive demonstration of transferability. In contrast, machine learning
potentials have no physics beyond that in the training set (and
possibly the descriptors). This means that a machine learning po-
tential can only “transfer” to configurations that are close to what
already exists in its training set.

Transferability can be included in the IP fitting process through
a comparison of IP predictions with separate reference data. In
cases where this fails, either the functional form needs to be ex-
tended for a physics-based potential, and/or the training set needs
to be expanded for both physics-based and machine learning po-
tentials. The training must then be redone.

Finally, once the IP fitting process is complete, the IP must be
deployed to one or more molecular simulation packages of choice.
Traditionally this is done on a code-by-code basis, which can be
a time consuming and error prone process. If the IP class is al-
ready implemented in the code, then simply providing parameters
may be enough — although even there things can go wrong. For
example, for the REBO potential [34] implemented in LAMMPS
[35], some of the parameters were not the ones presented in the
original paper by Brenner et al. [34], but rather from the closely re-
lated AIREBO potential [36].5 In situations where an IP class is not
available in a simulation code, the work involved in implement-
ing it may be prohibitive. For example in the amorphous carbon
study mentioned above [33] only IPs implemented in LAMMPS
were tested, leaving out more than half of the possible IPs iden-
tified by the authors. The KIM application programming interface
(API) [37] was designed to address this by creating a standard that
allows a conforming IP to work seamlessly with any simulation
code that supports it. The KIM API is supported by major materials
simulation platforms including ASE [38,39], DL_POLY [40,41], GULP
[42,43], LAMMPS [35,44,45], and QC [46,47].

This paper introduces the KIM-based learning-integrated fitting
framework (KLIFF), a package that facilitates the entire IP devel-
opment process described above. KLIFF provides a unified Python
interface to train both physics-based and machine learning poten-
tials, and is constructed in modular fashion, making it easy to use
and extend. It integrates closely with the KIM ecosystem for ac-
cessing IPs to train, testing trained IPs, and deploying trained IPs.
The paper is structured as follows. Section 2 introduces two ex-
ample IPs (one physics-based and the other machine learning) that
will be trained later, and discusses the least-squares approach used
to parameterize IPs. Section 3 presents KLIFF features and capabil-
ities. Implementation details of the code are outlined in Section 4.

5 This has been corrected in more recent implementations.

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
Section 5 presents a demonstration of using KLIFF to fit the two
IPs introduced in Section 2. The paper concludes in Section 6 with
a summary.

2. Interatomic potentials

An IP is typically formulated as a parametric model that takes
the positions of the atoms as its arguments and returns the poten-
tial energy,6

V=V(r1, r2, . . . , rN ; θ), (1)

where r1, r2, . . . , rN are the positions of a system of N atoms, and
θ denotes a set of fitting parameters associated with the IP func-
tional form. An IP must be invariant with respect to rigid-body
translation and rotation, inversion of space, and permutation of
chemically equivalent species according to the laws of physics [1].
These symmetry requirements are typically intrinsic to the func-
tional form of the IP. For example, if an IP is expressed in terms
of distances between atoms, it automatically satisfies the require-
ments of translation, rotation and inversion invariance.

2.1. Physics-based potentials

The functional form of a physics-based potential is carefully de-
vised to model the physics underlying the material system. For
example, as discussed above, the LJ potential [12–14] provides a
good model for van der Waals interactions in the noble gases,
whereas for covalent systems more complex forms are required,
such as bond-order potentials [15,34]. Here, we briefly review the
three-body Stillinger–Weber (SW) potential for silicon [48] as an
example.

The SW potential energy V of a system consisting of N atoms
has the form,

V=
N∑

i=1

N∑
j>i

φ2(ri j) +
N∑

i=1

N∑
j �=i

N∑
k> j
k �=i

φ3(ri j, rik, β jik), (2)

where the two-body interaction takes the form

φ2(ri j) = ε Â

[
B

(ri j
σ

)−p −
(ri j

σ

)−q
]

× exp

(
1

ri j/σ − a

)
, (3)

and the three-body term is

φ3(ri j, rik, β jik) =ελ̂
[
cosβ jik − cosβ0

]2
× exp

(
γ̂

ri j/σ − a
+ γ̂

rik/σ − a

)
, (4)

in which ri j = ‖ri − r j‖ is the bond length between atoms i and j,
β jik is the bond angle formed by bonds i– j and i–k with the ver-
tex at atom i. The parameters are ε, Â, B, p, q, σ , a, ̂λ, γ̂ , and β0.
The functional form is based on the lattice structure of bulk silicon
shown in Fig. 2. The two-body term (Eq. (3)) models bond stretch-
ing and compression, and the three-body term (Eq. (4)) penalizes
configurations away from the tetrahedral ground state structure of
silicon.

The cutoff distance in the SW potential is implicitly defined
as rcut = aσ . This is not ideal from a potential fitting perspec-
tive. When fitting an IP, it is typical to fix the cutoff distance,

6 In general, IPs also depend on the species of the atoms. For notational simplic-
ity, we limit our discussion to systems of a single atomic species. However, KLIFF
supports systems with arbitrary species.
4

Fig. 2. Bulk silicon crystallizes in a diamond cubic crystal structure in which each
atom has four nearest neighbors forming the sp3 hybridized tetrahedral structure.

and then adjust other parameters to minimize a loss function (dis-
cussed later in Section 2.3). For the standard form of SW, both a
and σ must be fixed to set the cutoff. However, this adds an un-
necessary constraint since two parameters are fixed instead of just
the cutoff. If instead only a or σ are fixed (or neither), then the
cutoff will vary during the fitting process. This can lead to failure
of the optimization due to discontinuity in the loss function when
neighbors enter or leave the cutoff sphere of an atom. In addition
to the cutoff problem, another issue with the SW form is that ε is
a redundant parameter that only scales the energy.

To avoid these pitfalls, Eqs. (3) and (4) are recast in a form in
which all parameters are independent and the dependence on the
cutoff radius is made explicit [4]. Let A := ε Â, λ := ελ̂, γ := σ γ̂ ,
and rcut := aσ , we have

φ2(ri j) = A

[
B

(ri j
σ

)−p −
(ri j

σ

)−q
]

× exp

(
σ

ri j − rcut

)
, (5a)

φ3(ri j, rik, β jik) =λ
[
cosβ jik − cosβ0

]2
× exp

(
γ

ri j − rcut
+ γ

rik − rcut

)
. (5b)

The new parameters are A, B, p, q, σ , λ, γ along with the cutoff
radius rcut and the equilibrium bond angles β0. The SW model im-
plemented in KIM [49] takes the form of Eqs. (5a) and (5b) instead
of Eqs. (3) and (4).

2.2. Machine learning potentials

In contrast to physics-based potentials whose functional forms
aim to capture the physics underlying the material system, ma-
chine learning potentials employ general-purpose regression mod-
els that interpolate across a dense training set of first principles
energies and forces. Similar to a physics-based potential, a machine
learning model returns the energy of an atom based on a finite
neighborhood of atoms in its vicinity. Directly using the positions
of an atom and its neighbors as input to the machine learning po-
tential is ill-advised since this would require the model to learn
the physical invariances of the IP [1,50], significantly increasing
the complexity of the model and required training data. Instead,
the atomic environment in terms of positions is transformed to a
suitable “descriptor” vector representation that identically satisfies
all invariances. For example two atomic environments that differ
only by a rigid-body rotation would yield the same descriptor vec-
tor. Various descriptors have been developed to represent atomic
environments, including the Coulomb matrix [19], symmetry func-
tions [17,51], bispectrum [18,20,50], many-body tensor [52], and
others [53]. As an example, we briefly review the symmetry func-
tions approach, which is one of the earliest and most intuitive

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
representations. For a more detailed discussion, see for example
Ref. [54].

The symmetry functions [17,51] are comprised of a set of two-
body radial functions and a set of three-body angular functions.
Specifically, the environment of atom i is characterized by three
types of radial functions:

G1
i =

∑
j �=i

fc(ri j), (6)

G2
i =

∑
j �=i

e−α(ri j−Rs)
2
fc(ri j), (7)

G3
i =

∑
j �=i

cos(κri j) fc(ri j), (8)

and two types of angular functions:

G4
i = 21−ζ

∑
j �=i

∑
k> j
k �=i

(1+ λ cosβ jik)
ζ e−η(r2i j+r2ik+r2jk)

× fc(ri j) fc(rik) fc(r jk), (9)

G5
i = 21−ζ

∑
j �=i

∑
k> j
k �=i

(1+ λ cosβ jik)
ζ e−η(r2i j+r2ik) fc(ri j) fc(rik), (10)

where ri j and β jik are distance and angle as defined in Section 2.1,
and α, Rs, κ, ζ, λ, and η are hyperparameters. The cutoff function
fc is given by

fc(r) =
{

1
2

[
cos

(
πr
rcut

) + 1
]

for r ≤ rcut

0 for r > rcut
, (11)

where rcut is the cutoff distance beyond which atoms do not con-
tribute to the local environment.

The symmetry functions depend on both distances and an-
gles, however since angles can be expressed in terms of distances
through the law of cosines, the symmetry functions depend en-
tirely on distances and are therefore invariant with respect to
translation, rotation, and inversion of space [1]. The symmetry
functions also satisfy the permutation symmetry requirement, be-
cause they are constructed by summation over all bond lengths
and bond angles within the cutoff sphere and changing the sum-
mation order does not affect the results. One can select all the
symmetry functions G1

i . . .G5
i to describe the atomic environment

or a subset. As an example, we select one radial function and one
angular function, G2

i and G4
i . The descriptor vector is comprised of

distinct G2
i and G4

i values obtained for different choices of the hy-
perparameter sets {α, Rs} and {λ, ζ , η}, respectively. The length of
the descriptor vector is then equal to the total number of hyperpa-
rameter sets, NG2

i
+ NG4

i
. (See the supplementary material for the

hyperparameter sets for G2
i and G4

i used in Section 5.1.)
Many machine learning regression methods are suitable for

constructing IPs including parametric linear regression and neural
network (NN) models, nonparametric kernel ridge regression and
Gaussian process models, and others [53]. Here, we discuss the NN
model. In an NN potential, the total potential energy of a configu-
ration consisting of N atoms is decomposed into the contributions
of individual atoms

V=
N∑

i=1

Ei, (12)

where Ei is the energy of atom i, represented by an NN as shown
in Fig. 3. The NN returns the energy Ei based on the positions of
5

Fig. 3. Schematic representation of an NN potential to compute the atomic energy
Ei . The NN consists of an input layer, two hidden layers and an output layer. The
local atomic neighborhood information of atom i (all atoms within a sphere of ra-
dius rcut around atom i) is transformed to descriptor vector with components y j

0
(j = 1, 2, . . .) that serves as the input to the NN. Each arrow connecting two nodes
between adjacent NN layers represents a weight. The fully-connected NN becomes
a dropout NN when some connections are cut (e.g. removing the dashed arrows).
Biases and activation function are not shown in this plot. See text for explanation
of the variables.

atom i and its neighbors up to a cutoff distance rcut. The values
y10, y

2
0, . . . in the input layer are the components of the descriptor.

Between the input layer and the energy output layer are so-called
“hidden” layers that add complexity to the NN. In a fully-connected
NN, each node in a hidden layer is connected to all the nodes in
the previous layer and in the following layer. The value of node n
in layer m is7

ynm = h

(∑
n′

yn
′

m−1w
n′,n
m + bnm

)
, (13)

where wn′,n
m is the weight that connects node n′ in layer m −1 and

node n in layer m, bnm is the bias applied to node n of layer m, and
h is an activation function (e.g. hyperbolic tangent) that introduces
nonlinearity into the NN. In a more compact way, Eq. (13) can be
written as ym = h(ym−1Wm + bm), where ym is a row vector of
the node values in layer m, Wm is a weight matrix, and bm is a
row vector of the biases. For example, y1 and b1 are row vectors
each with 4 elements and W 1 is a 5 × 4 matrix for the NN shown
in Fig. 3. Consequently, the atomic energy Ei represented in Fig. 3
can be expressed as

Ei = h[h[y0W 1 + b1]W 2 + b2]W 3 + b3. (14)

The weights and biases are the fitting parameters in an NN poten-
tial: θ = {W 1, W 2, . . . , W L, b1, b2, . . . , bL}, where L is the number
of layers (hidden and output).

2.3. Parameterization

Once an IP functional form is selected, the parameters must be
determined. This is typically framed as a least-squares minimiza-
tion problem where the IP parameters are adjusted to best match
a training set of reference data obtained from experiments and/or
first-principles calculations. For a training set of M configurations,
the difference between the predictions of the IP and the reference
data is quantified by a loss function defined as

7 The input layer and the output layer are indexed as the zeroth layer and third
layer, respectively.

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
L(θ) = 1

2

M∑
m=1

we
m

[
E(Rm; θ) − Êm

]2

+ 1

2

M∑
m=1

w f
m‖ f (Rm; θ) − f̂ m‖2, (15)

where E(Rm; θ) ∈ R and f (Rm; θ) = − (∂E/∂R)|Rm
∈ R3Nm are

the energy and forces in configuration m obtained from an IP, Êm
and f̂ m are the corresponding reference energy and forces for con-
figuration m in the training set, with Rm ∈ R3Nm the concatenated
coordinates of all atoms in configuration m and Nm the number of
atoms in configuration m. The weights we

m and w f
m are typically

chosen to be inversely proportional to (Nm)2, so that each config-
uration has an equal contribution to the loss function L(θ). This
prevents configurations with more atoms from dominating the op-
timization. For energy in units of eV and forces in units of eV/Å,
these weights have units of eV−2 and (eV/Å)−2, respectively. Here,
we only use energy and forces to construct the loss function, but
in principle one can fit any physical property, such as the equilib-
rium lattice constants and elastic moduli of a ground state crystal
structure. The objective then is to minimize the loss function in
Eq. (15) with respect to θ to obtain the optimal set of IP parame-
ters.

Simply minimizing Eq. (15) can lead to overfitting and thus low
transferability of an IP. This is especially true for machine learn-
ing IPs due to the lack of physics in their functional forms and
the large parameter space. Various techniques have been proposed
to overcome this problem. One approach is to add regularization
terms to the loss function to prevent overly complex results, for
example an L2 term of the form λ‖θ‖2 can be added, where λ is
a hyperparameter that determines the regularization weight. An-
other widely used approach is early stopping [55], where model
performance is monitored on a validation set and fitting is termi-
nated when accuracy begins to degrade. There are also regulariza-
tion techniques that are specific to certain types of models. For
example, the dropout method [56,57] can be applied to NN poten-
tials (see Section 3.2 for more on dropout).

3. Features and capabilities of KLIFF

A variety of software packages have been developed to develop
IPs, including potfit [58,59], ænet [60], Amp [61], aPIP [62], atom-
icrex [63], DeePMD-kit [64], GAP [18,65], MAISE [66], MLIP [67],
PACE [68], PANNA [69], PyXtal_FF [70], RuNNer [17,71], SIMPLE-NN
[72], among others. KLIFF shares many features with these pack-
ages, but is also distinguished by some capabilities described in
this section that address the problems discussed in Section 1.

3.1. Integration with KIM

As indicated by the name, KLIFF is deeply integrated with the
KIM ecosystem. (We note that the Potfit IP fitting framework is
also compatible with KIM [9].)

First, KLIFF supports the training of IPs archived within the
OpenKIM repository. An IP is called a model in KIM nomenclature,
and a KIM portable model is an independent computer implemen-
tation of an IP that conforms to the KIM API portable model in-
terface (PMI) standard.8 In practice portable models consist of a
“model driver,” which implements an IP class (e.g. the embedded

8 KIM also supports a second type of model called a simulator model. While a
portable model will work seamlessly with any simulation package that supports the
KIM API/PMI standard, a simulator model only specifies how to set up and run a
model that is implemented as an integrated part of a specific simulation package.
KLIFF supports the fitting of portable models.
6

atom method (EAM) form) and a parameter set for a specific set
of species. All content in the OpenKIM repository is archived sub-
ject to strict versioning and provenance control with digital object
identifiers (DOIs) assigned. This makes it possible to access the ex-
act IP used in a publication at a later date to reproduce the calcula-
tions or to conduct further fitting. A large number of physics-based
and machine learning IPs are implemented as portable models and
archived in the OpenKIM repository. These models are subjected
to an editorial review process by the KIM Editor on acceptance to
ensure quality control. Users of KLIFF can employ these models di-
rectly without having to implement them with significant savings
in time and potential errors.

Second, IPs trained with KLIFF can be easily tested via OpenKIM.
KLIFF can automatically generate models that are compatible with
the KIM API, thus allowing a trained IP to run against KIM ver-
ification checks (VCs) and KIM tests [31]. As noted in Section 1,
KIM VCs are programs that explore the integrity of an IP imple-
mentation. They check for programming errors (e.g. memory leak
[73]), failures to satisfy required behaviors (e.g. inversion [74] and
permutation [75] symmetries), and determine general characteris-
tics of the IP functional form (e.g. are the forces returned by the
model consistent with those obtained through numerical differen-
tiation of the energy [76]). As opposed to KIM VCs, KIM tests check
the accuracy of an IP by computing a variety of physical proper-
ties of interest to researchers, such as the stacking fault energy
[77], elastic moduli [78], and linear thermal expansion coefficient
[79] to name a few. The information provided by KIM VCs and KIM
tests can save researchers a great deal of time by identifying lim-
itations of an IP that can lead to subtle problems in simulations
(e.g. poor convergence during energy minimization due to incor-
rect or discontinuous forces), and assisting in the selection of IPs
by considering its predictions for relevant physical properties.

Third, IPs trained with KLIFF can be deployed via KIM. Tradi-
tionally, most IP development papers only report the functional
form of the IPs and the associated parameters, without mention-
ing or providing a computer implementation. Recently developed
machine learning potentials typically do provide computer imple-
mentations, but these are often standalone codes that cannot be
used in major molecular simulation packages. This creates a signif-
icant barrier for the universal usability of IPs. By providing portable
implementations, KIM addresses this issue, as well as enabling re-
producibility.9 As mentioned above, KLIFF can automatically create
IP models that are compatible with the KIM API, which enables the
IP to work seamlessly with any KIM-compliant simulation pack-
age including ASE [38,39], DL_POLY [40,41], GULP [42,43], LAMMPS
[35,44,45], and QC [46,47]. The final production IP can also be con-
tributed to the OpenKIM repository for deployment as source and
binary packages for major Mac, Linux and Windows platforms.

3.2. Uncertainty analysis

Historically, molecular simulation with IPs has been primarily
viewed as a tool limited to providing qualitative insight. A key
reason is that such simulations include multiple sources of uncer-
tainty that are difficult to quantify, with the result that predictions
obtained from the simulation typically lack robust confidence in-
tervals [80]. A major source of uncertainty originates from the IPs
themselves, since these are empirical functional forms fitted to
experimental results and/or first-principles calculations. To make
molecular simulation with IPs more reliable, it is imperative to
quantify the intrinsic uncertainty of the IP and propagate it to

9 In some cases the same parameter file can lead to different results when used
with different implementations of an IP, either in newer versions of the same code,
or in different simulation packages. For example, see Ref. [8] for a discussion of this
effect for tabulated EAM potentials.

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
Fig. 4. Schematic representation of the cost contours in the vicinity of the optimal
parameters θ∗ of an IP with two parameters θ1 and θ2. The aspect ratio of the con-
tours is determined by the eigenvalues λ1 and λ2 of the FIM. The diagonal elements
of the inverse FIM (F−1)11 and (F−1)22 provide a lower bound on the variance of
the parameters θ1 and θ2, respectively.

the simulation results. This is an area that has not received much
attention in the past. To address this limitation, KLIFF provides
functionality that enables uncertainty analysis of IPs.

As mentioned in Section 1, IPs are often “sloppy” [4,23,24] in
that their predictions are insensitive to certain combinations of the
parameters. This behavior can be quantified using the notion of a
Fisher information matrix (FIM). The FIM provides a measure for
the information in the training set on the parameters, which leads
to an estimate for the precision with which the parameters can
be determined [4]. For example, for the case where the loss func-
tion contains only forces (i.e. we

m = 0 in Eq. (15)), the FIM can be
written as [4,24]:

F (θ) ∝
M∑

m=1

(
∂ f m
∂θ

)T (
∂ f m
∂θ

)
, (16)

where f m ∈R3Nm are the forces on atoms of configuration m (Nm

is the number of atoms in configuration m), M is the number of
configurations in the training set, and the superscript T denotes
matrix transpose. The diagonal elements of the inverse FIM provide
lower bounds on the variance of the parameters, known as the
Cramér–Rao bound [81],

Var[θi] ≥ (
F−1)

ii . (17)

The larger a diagonal element of the inverse FIM, the larger the
lower bound on the variance for the corresponding parameter, in-
dicating that the parameter is less well determined. As an illustra-
tive example, we plot in Fig. 4 a schematic representation of the
contours of the cost function in Eq. (15) for an IP with two pa-
rameters. Here, the two diagonal components of the inverse FIM
(F−1)11 and (F−1)22 are nearly of the same magnitude, indicat-
ing that the two parameters θ1 and θ2 are equally determined in
the fitting. If this were not the case and a diagonal component of
the inverse FIM was much larger (an order of magnitude or more)
than the others, then the IP parameter associated with this com-
ponent is poorly determined. To address this, one could attempt to
modify the IP functional form as discussed in Section 1 and shown
in Fig. 1. The FIM also provides an upper bound on the uncertainty
in a physical quantity of interest (QOI) due to small variations in
IP parameters. A detailed discussion of such an analysis for the
7

thickness of monolayer MoS2 can be found in Ref. [4]. The FIM in
Eq. (16) is implemented in KLIFF as an Analyzer (discussed in
Section 4) using numerical differentiation.

The FIM analysis is well suited for physics-based potentials,
which have dozens of parameters and each parameter plays a vi-
tal role. However, machine learning potentials are typically over-
parameterized and the influence of a single parameter on the
model performance is not large. Instead of parameter uncertainty,
it is more important and useful to analyze the prediction un-
certainty of a QOI (e.g. elastic moduli). A simple yet powerful
approach to obtaining the QOI uncertainty is to construct an en-
semble of IPs instead of a single best fit model. This can be done
by either training different IPs using different initial guesses for
the parameters or using different subsets of the training data. At
the prediction stage, each individual model in the ensemble of Np

models is applied to compute the QOI P . The average

P̄ = 1

NP

NP∑
i=1

Pi (18)

is then used as the predictive mean for the QOI, and the standard
deviation

Std[P] =
√√√√ 1

NP − 1

NP∑
i=1

(Pi − P̄)2 (19)

as the uncertainty. The ensemble approach can be applied to any
type of model, either physics-based [82,83] or machine learning
potentials [84–87]. Although straightforward to train, it is com-
putationally expensive since multiple models have to be trained
to form the ensemble. For NN potentials, there is an alternative
that is computationally less costly and performs equally well to
the ensemble approach [88]. By removing some connections be-
tween layers (e.g. removing the dashed arrows for the NN shown
in Fig. 3), a fully-connected NN is changed into a dropout NN
[56,57]. It has been shown that training an NN with dropout (i.e.
dropping different connections at each training step) approximates
a Bayesian NN [89,90]. Consequently, a dropout NN possesses all
the properties of a probabilistic Bayesian model, from which un-
certainty information can be extracted. For dropout NN potentials
[88], only one model needs to be trained at the training stage.
At the prediction stage, it is essentially an ensemble model and
can be used in a similar fashion: conduct multiple stochastic for-
ward passes through the dropout NN (each time drop different
connections) to obtain multiple samples of the QOI and then com-
pute the average and standard deviation. KLIFF supports the train-
ing of both ensemble and dropout NN potentials. The associated
KIM DUNN model driver [91] allows molecular simulation codes
to work with individual members in the ensemble and perform
uncertainty quantification.

3.3. A wide range of support

By conforming to the KIM API, KLIFF supports a wide range of
IPs available through OpenKIM. At the time of this writing, the
OpenKIM repository contains 35 model drivers, including widely
used physics-based potentials such as Stillinger–Weber (SW) [48,
49], Tersoff [92–95], EDIP [96–99], and EAM [100–102] potentials
among others. For machine learning potentials, KLIFF currently
supports the symmetry functions [17,51] and bispectrum [18,50]
atomic environment descriptors. Interfacing with other descriptor
libraries, such as DScribe [103], is being explored. For machine
learning regression algorithms, KLIFF has its own implementation
of simple algorithms (e.g. linear regression) and takes advantage of
PyTorch [104] to build and train NN potentials. The NN model in

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
KLIFF wraps PyTorch so that the user interface appears the same as
other models in KLIFF, but still retains the flexibility of PyTorch to
create customizable NN structures and train with state-of-the-art
deep learning techniques available through this package.

KLIFF provides an interface to many widely-used minimization
algorithms for model training. As discussed in Section 2.3, the
IP parameters are obtained by minimizing a loss function that
quantifies the difference between IP predictions and the training
set. The optimizer directly determines the values of the param-
eters and thus the quality of the IP. It is impossible to make
a general statement about which optimizer is best, since this is
problem-dependent, but some optimizers (e.g. the L-BFGS-B algo-
rithm [105]) tend to work well for a wide range of problems. KLIFF
supports the optimization algorithms in SciPy [106] and PyTorch
[104]. The minimize module of scipy.optimize provides a
large number of general-purpose minimization algorithms, and the
least_squares module of scipy.optimize provides algo-
rithms specific for nonlinear least-squares minimization problems.
The optimizers in PyTorch are targeted for training NN models, in-
cluding the stochastic gradient descent (SGD) method [107,108]
and its variants such as the Adam method [109]. In addition, KLIFF
also supports the geodesic Levenberg–Marquardt (LM) algorithm
[25–27], which has been shown to work well for “sloppy” IPs
whose predictions are insensitive to certain parameters or certain
combinations of parameters.

3.4. Uniformity, modularity, and extensibility

KLIFF is designed to be as uniform, modular, and extensible
as possible. It is implemented using an object-oriented program-
ming (OOP) paradigm and provides a pure Python user interface.
All the atomic environment descriptors, models, calculators, ana-
lyzers, etc. are subclassed from individual superclasses. A subclass
only provides or modifies specific implementations of superclass
methods when necessary, guaranteeing a uniform interface across
subclasses. As mentioned in Section 3.3, KLIFF takes advantage of
the optimization algorithms in SciPy [106] and PyTorch [104], as
well as the geodesic LM algorithm to train models when minimiza-
tion of a loss function is needed. Although vanilla SciPy, PyTorch,
and LM have different APIs to call the optimization algorithms,
KLIFF provides a unified interface that wraps them under the hood.

Extending KLIFF is straightforward. New descriptors, models,
calculators, loss functions, optimization algorithms, analyzers, etc.
can be seamlessly added to existing modules in KLIFF. For exam-
ple, a new physics-based potential can be easily implemented by
subclassing the KLIFF “Model” class, specifying the IP parameters,
and then using Python to code the functional form of the IP. As a
concrete example, we provide a Python code demonstrating how
to implement the Lennard-Jones potential in the supplementary
material. Other parts such as periodic boundary conditions han-
dling are dealt with by KLIFF. The newly created model can then
be used for training with any loss function and optimization al-
gorithms that are available in KLIFF. To gain the benefits of KIM
models discussed in Section 3.1, it is currently necessary to imple-
ment the IP as a separate code conforming to the KIM API. Future
plans include the development of a general KIM model driver that
will directly work with KLIFF IPs stored in a portable format.

3.5. Data parallelization

Computationally intensive KLIFF components, such as neighbor
list generation and descriptor calculation, are internally imple-
mented in C++. Even with this, the computational requirements
can become quite demanding as the size of the training set in-
creases. Fortunately, evaluation of the loss function Eq. (15) can
be easily divided into independent sub-problems allowing for easy
8

Fig. 5. Data parallelization scheme used by KLIFF. S is the number of configurations
assigned to each process, and M is the total number of configurations.

Fig. 6. Flowchart of the procedures of using KLIFF to train an IP.

parallelization. KLIFF adopts the parallelization over data scheme
illustrated in Fig. 5. Atomic configurations in the dataset are dis-
tributed to different processes. Each process computes the sub-loss
according to Eq. (15) for the configurations assigned to it, and the
total loss is then obtained as the sum of the sub-losses from all
the processes. KLIFF supports both OpenMP-style parallelism for
shared-memory architectures, and MPI-style parallelism typical of
high-performance computing clusters composed of multiple stan-
dalone machines connected by a network.

4. Implementation details: the KLIFF code

KLIFF is written primarily in Python with several computa-
tionally intensive components implemented in C++ accessible via
Python bindings. As such, users interact with KLIFF through a pure
Python interface. KLIFF is built in a modular fashion, as discussed
in Section 3.4, with key modules Dataset, Model, Calculator,
Loss, Optimizer, and Analyzer. A flowchart showing the in-
teraction and information transfer between these modules for IP
training is displayed in Fig. 6. The modules are described below.

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
4.1. Dataset module

A dataset is comprised of a set of atomic configurations, which
provide the training data to optimize IP parameters or provide the
test data to test the quality of an IP. An atomic configuration in-
cludes three vectors defining the simulation cell, flags to indicate
whether periodic boundary conditions (PBCs) are applied along
the cell vectors, the species and coordinates of all atoms in the
configuration, and reference outputs. KLIFF reads atomic configura-
tions from extended XYZ files, with each configuration stored in a
separate file. The reference outputs (energy, forces, and stress) as-
sociated with an atomic configuration are also read in from the ex-
tended XYZ file. The standard XYZ format only stores the number
of atoms in a configuration and the species and coordinates of the
atoms. The extended XYZ format allows for additional information
to be stored, either in the second line via a series of key=value
pairs (e.g. PBC="T,T,T" and energy=1.2) or in the body sec-
tion by appending values (e.g. forces) to the coordinates. Internally,
each atomic configuration and the reference outputs are associated
with a Configuration object and a Dataset is essentially a
set of Configuration objects.

4.2. Model module

The fitting process begins with the instantiation of a model (IP).
Depending on the nature of the model, different operations can be
applied. For KIM models and physics-based KLIFF potentials, KLIFF
can provide information on what parameters are available for fit-
ting, together with a description of each parameter and the data
structure and data type of each parameter. Based on this infor-
mation, a user can select the parameters to fit and specify initial
values or use defaults. Lower and upper bounds on parameter val-
ues can also be provided to restrict it to a range. For an NN model,
the descriptor representation of an atomic environment, which
serves as the input to the NN model, must be defined. Then the NN
can be constructed using an arbitrary number of layers, nodes per
layer, and activation functions. Unlike physics-based models, KLIFF
automatically initializes the parameters in the network. For exam-
ple, the He initializer [110] is used to initialize the weights and
biases in Eq. (13). Other default choices are made by KLIFF based
on the authors’ physical understanding and experience to make
it easier for users to develop machine learning potentials with-
out having to master subtle aspects of machine learning training.
For example, in a standard dropout approach, different NN con-
nections would be removed for each atom in a configuration (see
Section 3.2). However, KLIFF defaults to a native dropout scheme
that removes the same NN connections for all atoms in a config-
uration. This ensures that atoms with identical environments (e.g.
all atoms in an ideal silicon crystal) will have the same atomic
energy, forces, and other properties. Users can overwrite default
choices, for example, by selecting the native PyTorch dropout in-
stead of KLIFF’s native implementation.

4.3. Calculator module

The created model is attached to a calculator that computes the
predictions corresponding to the reference outputs for the atomic
configurations in the training set. The native KLIFF calculator sup-
ports the evaluation of energy, forces, and stress. If a property
other than these is to be fitted, a new calculator needs to be imple-
mented. A new calculator can wrap any KIM compliant molecular
simulation package to compute the property with the given model
in a similar fashion to ASE calculators [38,39].
9

4.4. Loss module

The predictions computed by the calculator and the corre-
sponding reference output values stored in the training set are
then used to construct a loss function (e.g. Eq. (15)) that quan-
tifies the difference between the model predictions and the ref-
erences. A weight can be assigned to each configuration, so that
“important” configurations are emphasized more during optimiza-
tion. If the available loss functions in KLIFF do not satisfy a specific
need, a user-defined loss function can be added.

4.5. Optimizer module

The optimization process involves minimization of the loss
function with respect to the IP parameters until specified stop-
ping criteria are satisfied, such as reducing the loss function value
below a tolerance or reaching a maximum allowed number of min-
imization steps.

The optimizers supported by KLIFF can be broadly categorized
in two classes: batch optimizers and mini-batch optimizers. The for-
mer (e.g. the L-BFGS-B and geodesic LM methods) typically require
the evaluation of the entire training set at each minimization step,
whereas the latter (e.g. the SGD and Adam methods) only use
a subset of the training set at a time. Batch optimizers guaran-
tee a monotonic decrease of the loss throughout the minimiza-
tion process and typically yield smaller final loss values compared
with mini-batch optimizers. Mini-batch optimizers become advan-
tageous for very large training sets (typical of machine learning
potentials) where evaluation of the entire training set becomes
prohibitive due to memory and/or computing constraints. For NN
models that contain a large number of parameters, SGD-based op-
timizers can typically find a reasonable solution in parameter space
that minimizes the loss to a certain level. By default, KLIFF uses an
L-BFGS-B optimizer for physics-based potentials, which typically
have relatively small numbers of parameters and small training
sets, and an SGD-based Adam optimizer for NN potentials, which
have many parameters and very large training sets. The user can
overwrite this default and select a preferred optimizer.

Once the optimization is completed, the fitted IP can be written
out as a KIM model that conforms to the KIM API, which can then
be run against KIM VCs and KIM tests or be used with any KIM-
compliant simulations codes as discussed in Section 3.1. Generated
KIM models, can be uploaded to https://openkim .org to receive a
DOI and make the model available to the broader research com-
munity. Also, the model can be attached to an Analyzer to carry
out post-processing analysis, such as computing the FIM discussed
in Section 3.2 and computing the root mean square errors of en-
ergy and forces for a test set.

4.6. Command line tool

KLIFF provides a command line tool called kliff that facili-
tates the execution of many common tasks. For example, query a
physics-based potential for available parameters that can be op-
timized and their associated metadata, print a synopsis of the
atomic configurations in the dataset, or split a dataset into mul-
tiple subsets. Once installed, executing “kliff --help” in the
terminal will list the commands, their arguments, and help infor-
mation.

5. Demonstration

KLIFF has been extensively tested through the development
of multiple IPs, including an SW potential for two-dimensional
molybdenum disulfide [4], an interlayer potential for multilayer
graphene [111], a hybrid NN potential for multilayer graphene [5],

https://openkim.org

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
Table 1
Summary of SW parameters obtained by minimizing the loss func-
tion and the preset parameters.

Parameter Value Parameter Value

A 15.46588611 eV B 0.61032816
p 4 q 0
σ 2.05971554 Å λ 65.46736831 eV
γ 2.71009995 Å rcut 3.77118 Å
β0 109.47◦

and a dropout uncertainty NN potential (DUNN) to quantify un-
certainty in molecular simulations [88]. In this section we present
examples demonstrating the use of KLIFF in training an SW poten-
tial and an NN potential for silicon. The functional forms of the
two IPs are described in Section 2.

5.1. Parameterization

The training set is comprised of the energies and forces for
2513 configurations of silicon in the diamond cubic crystal struc-
ture. This includes configurations with compressed and stretched
cells and random perturbations of atoms, as well as configura-
tions drawn from a molecular dynamics trajectory at a tempera-
ture of 300 K. Since this is only a demonstration, instead of using
first-principles calculation or experimental data, the configurations
were generated using the EDIP model [96–99]. The dataset is pro-
vided in the supplementary material.

The SW potential has seven parameters, A, B , p, q, σ , λ, γ ,
along with the cutoff radius rcut and the equilibrium angle β0.
The cutoff radius is set to rcut = 3.77118 Å, as used by Stillinger
and Weber [48], and the equilibrium angle is set to the tetrahedral
angle of the ideal cubic diamond structure, β0 = 109.47◦ . Follow-
ing most SW parameterizations [4,48,112], the parameters p and
q are set to 4 and 0, respectively. The values of the remaining pa-
rameters are obtained by minimizing the loss function in Eq. (15)
using the geodesic LM algorithm [25–27]. The energy and force
weights are set to we

m = 1/(Nm)2 and w f
m = 10/(Nm)2. A larger

force weight is used to better reproduce the phonon dispersions
discussed in Section 5.2. One exception is that the energy weight
is set to we

m = 10/(Nm)2 for configurations that have an ideal cu-
bic diamond structure at different lattice parameters. The increased
weight ensures that these configurations are not underrepresented
in the fitting since their force terms in Eq. (15) are identically
zero (regardless of the IP parameters) due to the symmetry of the
underlying structure. The optimal parameter set identified by this
process and the preset parameters are listed in Table 1.

For the NN potential, we employ the G2
i and G5

i symmetry
functions (Eqs. (7) and (10)) as the descriptors for characterizing
atomic environments. The hyperparameters α and Rs in Eq. (7)
and ζ, λ, and η in Eq. (10) are provided in the supplementary
material. The cutoff in Eq. (11) is set to rcut = 3.5 Å to include
only nearest-neighbor interactions. A challenging aspect of train-
ing an NN, which is also a source of the power and flexibility of
the method, is that it is up to the developer to select the num-
ber of descriptor terms to retain, the number of hidden layers, the
number of nodes within each hidden layer (which need not be
the same), and the activation function. It is also possible to cre-
ate different connectivity scenarios between layers. Here we have
opted for simplicity and adopted a fully-connected network with
the same number of nodes in each hidden layer. The number of
hidden layers and the number of nodes in each hidden layers are
determined through a grid search and are listed in Table 2. The ac-
tivation function h is taken to be the commonly used hyperbolic
tangent function, tanh(x) = (ex − e−x)/(ex + e−x).

The NN potential parameters are obtained by minimizing the
loss function Eq. (15). The energy weight we

m and forces weight
10
Table 2
Summary of parameters in the NN potential and hyperparameters that
define the NN structure.
number of hidden layers 3
number of nodes in hidden layers 10
cutoff rcut 3.5 Å
activation function h tanh
descriptor hyperparameters see supplementary material

Fig. 7. Potential energy of diamond cubic silicon as a function of the lattice param-
eter predicted by the trained SW and NN potentials along with the EDIP reference
data.

Table 3
Cohesive energy (absolute value of the mini-
mum of the potential energy versus lattice pa-
rameter curve) and equilibrium lattice constant
for diamond cubic silicon computed using the
EDIP potential (taken as the reference) and the
SW and NN potentials (with errors relative to
EDIP given in parentheses).
Potential Ecoh [eV/atom] a0 [Å]

EDIP 4.650 5.43
SW 4.647 (0.06%) 5.39 (0.74%)
NN 4.645 (0.1%) 5.42 (0.18%)

w f
m are the same as those used for the SW potential. The min-

imization is carried out using the Adam optimizer [109] with a
learning rate of 0.001. As discussed in Section 4, to accelerate the
training process a mini-batch technique [113] is employed with a
batch size of 100 configurations at each minimization step for a
total of 2000 epochs.10

The scripts used to train the SW and NN potentials are provided
in the supplementary material.

5.2. Testing the trained potentials

To test the fitted SW and NN potentials, we applied them to
study energetic and vibrational properties of silicon in the di-
amond cubic crystal structure. As discussed in Section 3.1, IPs
trained by KLIFF can be exported in a form compatible with the
KIM API, which allows them to be used directly with a variety of
major molecular simulation packages, such as LAMMPS [35,44,45].
The tests described in this section were carried out using LAMMPS.

First, we investigate the cohesive energy versus lattice param-
eter for ideal cubic diamond silicon (see structure in Fig. 2). The
fitted SW and NN potentials are compared with the EDIP refer-
ence data in Fig. 7. Both potentials reproduce the equilibrium state
well as seen in Table 3, however the NN potential with its flexible
functional form is able to follow the reference data more closely

10 An epoch is one complete pass over the dataset. For example, if a dataset in-
cludes 50 configurations and a mini-batch size of 10 configurations is used, then
one epoch consists of 5 minimization steps.

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
Fig. 8. Potential energy of diamond cubic silicon as a function of the lattice param-
eter predicted by the DUNN potential. (a) Predictive mean and uncertainty of the
energy by DUNN, where the uncertainty band is twice the width of the standard
deviation in the energy. Also plotted are the reference EDIP energies. (b) DUNN un-
certainty. The uncertainty band is the same as that in panel (a) except that here it
is centered around 0 instead of the prediction mean in panel (a).

across most of the range except for lattice parameters smaller than
5 Å and larger than 5.9 Å. The training set contains configurations
with lattice parameters up to ±10% from the equilibrium value (i.e.
4.89 ∼ 5.97 Å). Thus configurations with lattice parameters smaller
than 5 Å and larger than 5.9 Å are at the “edge” of the training
data where accuracy of the NN potential is clearly reduced. This is
consistent with the discussion in Section 1. While highly accurate
within the training set, the NN potential has low transferability
and thus its ability to extrapolate beyond its training set is limited.
This is particularly clear on the compressive end of the response
(lattice constant smaller than 5.0 Å). In contrast, the SW potential
has a lower accuracy overall since it is constrained by its physical
functional form, but this leads to a more correct trend outside the
training set.

It is important to quantify the uncertainty in the predictions
of machine learning potentials given their low transferability. As
discussed in Section 3.2, KLIFF supports the training of DUNN po-
tentials [88] that are based on dropout uncertainty estimation. To
demonstrate this, we train a DUNN potential for the silicon dataset
and apply it to investigate the same energy versus lattice param-
eter problem discussed above. Since the emphasis is on the un-
certainty in energy, forces are not used in the training. (Details of
the parameterization procedure are provided in the supplementary
material.) When a DUNN model is used it provides a mean value,
which is the average over the dropout ensemble, and an associ-
ated uncertainty estimate. The results for the cohesive energy ver-
sus lattice parameter are compared with the EDIP reference data
in Fig. 8(a). The mean DUNN values are in excellent agreement
with the reference data.11 More importantly, the band around the
mean values shows that the DUNN uncertainty estimate increases
as the silicon crystal is strained away from its equilibrium state
(a = 5.43 Å) and that the increase accelerates towards the edges
of the training set (see Fig. 8(b)). Such uncertainty information can
help to determine whether a molecular simulation is reliable or
not.

11 The agreement is better than the NN potential in Fig. 2 since only energies are
used in training the DUNN potential allowing it to obtain a better fit, whereas the
NN potential is fit using energies and forces.
11
Fig. 9. Phonon dispersions of diamond cubic silicon along high symmetry points in
the first Brillouin zone predicted by the trained SW and NN potentials along with
the reference data by EDIP. (For interpretation of the colors in the figure, the reader
is referred to the web version of this article.)

As a second example, we consider phonon dispersion. This set
of curves provides a comprehensive view of the elastic vibrational
properties of a material, which play a key role in many dynami-
cal properties including thermal transport and stress wave prop-
agation. It is therefore important for IPs to predict phonon dis-
persion correctly. Fig. 9 presents the phonon dispersion curves
of silicon along high-symmetry points in the first Brillouin zone
obtained using the phonopy package [114]. The SW potential is
in better agreement with the reference data for branches with
larger phonon frequencies, but is less accurate for the two lowest-
frequency branches, which can be seen at the W, K, and U points.
Despite these small differences, the predictions by both the SW
and NN potentials are in good agreement with the reference data.
The training set does not explicitly contain phonon frequency data,
so the fact that both the SW and NN potentials are able to correctly
reproduce EDIP’s phonon dispersion curves indicates that they pro-
vide a good representation for the EDIP functional form near the
equilibrium state.

6. Summary and outlook

In this paper, we introduce the KIM-based learning-integrated
fitting framework (KLIFF) for developing IPs. KLIFF provides a uni-
form Python user interface to train both physics-based and ma-
chine learning potentials. It is flexible and easily extended to sup-
port new atomic environment descriptors, models, loss functions,
minimizers, and analyzers. KLIFF integrates closely with the KIM
framework. An IP trained using KLIFF can be readily deployed in
a format consistent with the KIM API, which enables it to be used
directly in major simulation codes such as LAMMPS [35,44,45], ASE
[38,39], DL_POLY [40,41], GULP [42,43] and ASAP [115] among oth-
ers. The package is distributed under an open-source license and
is available at https://github .com /openkim /kliff along with a com-
prehensive user manual with several tutorials.

KLIFF (version 0.3.0) is fully functional as demonstrated in this
paper by training the SW, NN, and DUNN potentials for silicon.
Development continues with an emphasis on incorporating new
features, including (1) supporting more machine learning models
and descriptors; (2) integration with KIM tests to train on mate-
rial properties beyond energy, forces, and stress; and (3) creation
of tools for automatic selection of hyperparameters for machine
learning potentials (e.g. optimal number of terms to retain for a

https://github.com/openkim/kliff

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
descriptor and optimal number of layers and nodes in each layer
for an NN potential). We encourage other researchers to contribute
to the development, and provide full and detailed documentation
of the KLIFF API (see the Package Reference section in the docu-
mentation https://github .com /openkim /kliff).

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

This research was partly supported by the Army Research Office
(W911NF-14-1-0247) under the MURI program, the National Sci-
ence Foundation (NSF) under grants DMR-1834251, DMR-1834332
and OAC-2039575, and through the University of Minnesota MR-
SEC under Award Number DMR-1420013. The authors wish to ac-
knowledge the Minnesota Supercomputing Institute (MSI) at the
University of Minnesota for providing resources that contributed
to the results reported in this paper. MW thanks the University of
Minnesota Doctoral Dissertation Fellowship for supporting his re-
search.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2021.108218.

References

[1] E.B. Tadmor, R.E. Miller, Modeling Materials: Continuum, Atomistic and Mul-
tiscale Techniques, Cambridge University Press, 2011.

[2] R.Z. Khaliullin, H. Eshet, T.D. Kühne, J. Behler, M. Parrinello, Nat. Mater. 10 (9)
(2011) 693, https://doi .org /10 .1038 /nmat3078.

[3] S. Piana, K. Lindorff-Larsen, D.E. Shaw, Proc. Natl. Acad. Sci. 109 (44) (2012)
17845–17850, https://doi .org /10 .1073 /pnas .1201811109.

[4] M. Wen, S.N. Shirodkar, P. Plecháč, E. Kaxiras, R.S. Elliott, E.B. Tadmor, J. Appl.
Phys. 122 (24) (2017) 244301, https://doi .org /10 .1063 /1.5007842.

[5] M. Wen, E.B. Tadmor, Phys. Rev. B 100 (19) (2019) 195419, https://doi .org /10 .
1103 /physrevb .100 .195419.

[6] M. Born, R. Oppenheimer, Ann. Phys. 389 (20) (1927) 457–484, https://doi .
org /10 .1002 /andp .19273892002.

[7] Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 59
(1999) 3393–3407, https://doi .org /10 .1103 /physrevb .59 .3393.

[8] M. Wen, S.M. Whalen, R.S. Elliott, E.B. Tadmor, Model. Simul. Mater. Sci. Eng.
23 (7) (2015) 074008, https://doi .org /10 .1088 /0965 -0393 /23 /7 /074008.

[9] M. Wen, J. Li, P. Brommer, R.S. Elliott, J.P. Sethna, E.B. Tadmor, Model. Simul.
Mater. Sci. Eng. 25 (1) (2017) 014001, https://doi .org /10 .1088 /0965 -0393 /25 /
1 /014001.

[10] F. Ercolessi, J.B. Adams, Europhys. Lett. 26 (8) (1994) 583–588, https://doi .org /
10 .1209 /0295 -5075 /26 /8 /005.

[11] P. Zhang, D.R. Trinkle, Model. Simul. Mater. Sci. Eng. 23 (2015) 065011, https://
doi .org /10 .1088 /0965 -0393 /23 /6 /065011.

[12] J.E. Jones, Proc. R. Soc. A 106 (738) (1924) 441–462, https://doi .org /10 .1098 /
rspa .1924 .0081.

[13] J.E. Jones, Proc. R. Soc. A 106 (738) (1924) 463–477, https://doi .org /10 .1098 /
rspa .1924 .0082.

[14] J.E. Lennard-Jones, Proc. Phys. Soc. 43 (5) (1931) 461–482, https://doi .org /10 .
1088 /0959 -5309 /43 /5 /301.

[15] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A
105 (41) (2001) 9396–9409, https://doi .org /10 .1021 /jp004368u.

[16] D.W. Brenner, Phys. Status Solidi (b) 217 (2000) 23–40, https://doi .org /10 .
1002 /3527603107.ch2.

[17] J. Behler, M. Parrinello, Phys. Rev. Lett. 98 (14) (2007) 146401, https://doi .org /
10 .1103 /physrevlett .98 .146401.

[18] A.P. Bartók, M.C. Payne, R. Kondor, G. Csányi, Phys. Rev. Lett. 104 (13) (2010)
136403, https://doi .org /10 .1103 /physrevlett .104 .136403.

[19] M. Rupp, A. Tkatchenko, K.-R. Müller, O.A. Von Lilienfeld, Phys. Rev. Lett.
108 (5) (2012) 058301, https://doi .org /10 .1103 /physrevlett .108 .058301.

[20] A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, G.J. Tucker, J. Comput. Phys.
285 (2015) 316–330, https://doi .org /10 .1016 /j .jcp .2014 .12 .018.
12
[21] A.V. Shapeev, Multiscale Model. Simul. 14 (3) (2016) 1153–1173, https://doi .
org /10 .1137 /15m1054183.

[22] S. Hajinazar, J. Shao, A.N. Kolmogorov, Phys. Rev. B 95 (1) (2017) 014114,
https://doi .org /10 .1103 /physrevb .95 .014114.

[23] J.J. Waterfall, F.P. Casey, R.N. Gutenkunst, K.S. Brown, C.R. Myers, P.W. Brouwer,
V. Elser, J.P. Sethna, Phys. Rev. Lett. 97 (2006) 150601, https://doi .org /10 .1103 /
PhysRevLett .97.150601.

[24] Y. Kurniawan, C.L. Petrie, K.J. Williams, M.K. Transtrum, E.B. Tadmor, R.S. El-
liott, D.S. Karls, M. Wen, Bayesian, frequentist, and information geometry
approaches to parametric uncertainty quantification of classical empirical po-
tentials, submitted for publication, 2021.

[25] M.K. Transtrum, B.B. Machta, J.P. Sethna, Phys. Rev. E 83 (3) (2011) 036701,
https://doi .org /10 .1103 /PhysRevE .83 .036701.

[26] M.K. Transtrum, J.P. Sethna, Geodesic acceleration and the small-curvature
approximation for nonlinear least squares, arXiv preprint, arXiv:1207.4999,
2012.

[27] M.K. Transtrum, J.P. Sethna, Improvements to the Levenberg–Marquardt al-
gorithm for nonlinear least-squares minimization, arXiv preprint, arXiv:1201.
5885, 2012.

[28] The Minerals, Metals & Materials Society (TMS), Verification & Validation
of Computational Models Associated with the Mechanics of Materials, TMS,
Pittsburgh, PA, 2019.

[29] E.B. Tadmor, R.S. Elliott, J.P. Sethna, R.E. Miller, C.A. Becker, JOM 63 (7) (2011)
17, https://doi .org /10 .1007 /s11837 -011 -0102 -6.

[30] E.B. Tadmor, R.S. Elliott, S.R. Phillpot, S.B. Sinnott, Curr. Opin. Solid State Mater.
Sci. 17 (6) (2013) 298–304, https://doi .org /10 .1016 /j .cossms .2013 .10 .004.

[31] D.S. Karls, M. Bierbaum, A.A. Alemi, R.S. Elliott, J.P. Sethna, E.B. Tadmor, J.
Chem. Phys. 153 (2020) 064104, https://doi .org /10 .1063 /5 .0014267.

[32] Open knowledgebase of interatomic models (OpenKIM), https://openkim .org,
2021. (Accessed 30 May 2021).

[33] C. de Tomas, I. Suarez-Martinez, N.A. Marks, Carbon 109 (2016) 681–693,
https://doi .org /10 .1016 /j .carbon .2016 .08 .024.

[34] D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J.
Phys. Condens. Matter 14 (4) (2002) 783–802, https://doi .org /10 .1088 /0953 -
8984 /14 /4 /312.

[35] Large-scale atomic/molecular massively parallel simulator (LAMMPS), https://
www.lammps .org, 2021. (Accessed 30 May 2021).

[36] S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112 (14) (2000)
6472–6486, https://doi .org /10 .1063 /1.481208.

[37] R.S. Elliott, E.B. Tadmor, Knowledgebase of Interatomic Models (KIM) applica-
tion programming interface (API), https://doi .org /10 .25950 /ff8f563a, 2011.

[38] A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak,
J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P.B.
Jensen, J. Kermode, J.R. Kitchin, E.L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S.
Lysgaard, J.B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Ros-
tgaard, J. Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen,
M. Walter, Z. Zeng, K.W. Jacobsen, J. Phys. Condens. Matter 29 (27) (2017)
273002, https://doi .org /10 .1088 /1361 -648x /aa680e.

[39] ASE: the atomic simulation environment—a Python library for working with
atoms, https://wiki .fysik.dtu .dk /ase/, 2021. (Accessed 30 May 2021).

[40] W. Smith, T.R. Forester, J. Mol. Graph. 14 (1996) 136–141, https://doi .org /10 .
1016 /S0263 -7855(96)00043 -4.

[41] DL_POLY classic molecular simulation package, https://www.scd .stfc .ac .uk /
Pages /DL _POLY.aspx, 2021. (Accessed 30 May 2021).

[42] J.D. Gale, J. Chem. Soc. Faraday Trans. 93 (4) (1997) 629–637, https://doi .org /
10 .1039 /a606455h.

[43] General utility lattice program (GULP), https://gulp .curtin .edu .au /gulp, 2021.
(Accessed 30 May 2021).

[44] S. Plimpton, J. Comput. Phys. 117 (1) (1995) 1–19, https://doi .org /10 .1006 /
jcph .1995 .1039.

[45] A.P. Thompson, H.M. Aktulga, R. Berger, D.S. Bolintineanu, W. Michael Brown,
P.S. Crozier, P.J. in ’t Veld, A. Kohlmeyer, S.G. Moore, T.D. Nguyen, R. Shan, M.
Stevens, J. Tranchida, C. Trott, S.J. Plimpton, Comput. Phys. Commun. (2021)
108171, https://doi .org /10 .1016 /j .cpc .2021.108171.

[46] E.B. Tadmor, M. Ortiz, R. Phillips, Philos. Mag. A 73 (6) (1996) 1529–1563,
https://doi .org /10 .1080 /01418619608243000.

[47] Quasicontinuum method website, https://openkim .org, 2009.
[48] F.H. Stillinger, T.A. Weber, Phys. Rev. B 31 (8) (1985) 5262, https://doi .org /10 .

1103 /physrevb .31.5262.
[49] M. Wen, Stillinger-Weber (SW) Model Driver v005, Online, https://doi .org /10 .

25950 /934dca3e, 2018. (Accessed 30 May 2021).
[50] A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87 (18) (2013) 184115, https://

doi .org /10 .1103 /physrevb .87.184115.
[51] J. Behler, J. Chem. Phys. 134 (7) (2011) 074106, https://doi .org /10 .1063 /1.

3553717.
[52] H. Huo, M. Rupp, Unified representation of molecules and crystals for machine

learning, arXiv preprint, arXiv:1704 .06439, 2017.
[53] M.F. Langer, A. Goeßmann, M. Rupp, Representations of molecules and mate-

rials for interpolation of quantum-mechanical simulations via machine learn-
ing, arXiv preprint, arXiv:2003 .12081, 2020.

https://github.com/openkim/kliff
https://doi.org/10.1016/j.cpc.2021.108218
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibF911C2C7B188E7862C933C716DFCDB65s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibF911C2C7B188E7862C933C716DFCDB65s1
https://doi.org/10.1038/nmat3078
https://doi.org/10.1073/pnas.1201811109
https://doi.org/10.1063/1.5007842
https://doi.org/10.1103/physrevb.100.195419
https://doi.org/10.1103/physrevb.100.195419
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1103/physrevb.59.3393
https://doi.org/10.1088/0965-0393/23/7/074008
https://doi.org/10.1088/0965-0393/25/1/014001
https://doi.org/10.1088/0965-0393/25/1/014001
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1209/0295-5075/26/8/005
https://doi.org/10.1088/0965-0393/23/6/065011
https://doi.org/10.1088/0965-0393/23/6/065011
https://doi.org/10.1098/rspa.1924.0081
https://doi.org/10.1098/rspa.1924.0081
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1088/0959-5309/43/5/301
https://doi.org/10.1088/0959-5309/43/5/301
https://doi.org/10.1021/jp004368u
https://doi.org/10.1002/3527603107.ch2
https://doi.org/10.1002/3527603107.ch2
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1103/physrevlett.98.146401
https://doi.org/10.1103/physrevlett.104.136403
https://doi.org/10.1103/physrevlett.108.058301
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1137/15m1054183
https://doi.org/10.1137/15m1054183
https://doi.org/10.1103/physrevb.95.014114
https://doi.org/10.1103/PhysRevLett.97.150601
https://doi.org/10.1103/PhysRevLett.97.150601
https://doi.org/10.1103/PhysRevE.83.036701
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibEF85895319901AA908D9755CBCF15C73s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibEF85895319901AA908D9755CBCF15C73s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibEF85895319901AA908D9755CBCF15C73s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib8C6E1DDD96A788A8DBEA71E4E7BFEB39s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib8C6E1DDD96A788A8DBEA71E4E7BFEB39s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib8C6E1DDD96A788A8DBEA71E4E7BFEB39s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibDC35300C4B1DC8B61FE1147D60CA9408s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibDC35300C4B1DC8B61FE1147D60CA9408s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibDC35300C4B1DC8B61FE1147D60CA9408s1
https://doi.org/10.1007/s11837-011-0102-6
https://doi.org/10.1016/j.cossms.2013.10.004
https://doi.org/10.1063/5.0014267
https://openkim.org
https://doi.org/10.1016/j.carbon.2016.08.024
https://doi.org/10.1088/0953-8984/14/4/312
https://doi.org/10.1088/0953-8984/14/4/312
https://www.lammps.org
https://www.lammps.org
https://doi.org/10.1063/1.481208
https://doi.org/10.25950/ff8f563a
https://doi.org/10.1088/1361-648x/aa680e
https://wiki.fysik.dtu.dk/ase/
https://doi.org/10.1016/S0263-7855(96)00043-4
https://doi.org/10.1016/S0263-7855(96)00043-4
https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx
https://www.scd.stfc.ac.uk/Pages/DL_POLY.aspx
https://doi.org/10.1039/a606455h
https://doi.org/10.1039/a606455h
https://gulp.curtin.edu.au/gulp
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1080/01418619608243000
https://openkim.org
https://doi.org/10.1103/physrevb.31.5262
https://doi.org/10.1103/physrevb.31.5262
https://doi.org/10.25950/934dca3e
https://doi.org/10.25950/934dca3e
https://doi.org/10.1103/physrevb.87.184115
https://doi.org/10.1103/physrevb.87.184115
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibFBCF98818C7420DE0EC29EE92EB3970Fs1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibFBCF98818C7420DE0EC29EE92EB3970Fs1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib6C561E3C7485B69FE10959D8FEADD430s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib6C561E3C7485B69FE10959D8FEADD430s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib6C561E3C7485B69FE10959D8FEADD430s1

M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
[54] M. Wen, Development of interatomic potentials with uncertainty quantifica-
tion: applications to two-dimensional materials, Ph.D. thesis, University of
Minnesota, 2019, https://hdl .handle .net /11299 /206694.

[55] L. Prechelt, Neural Netw. 11 (4) (1998) 761–767, https://doi .org /10 .1016 /
S0893 -6080(98)00010 -0.

[56] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R.R. Salakhutdinov, Im-
proving neural networks by preventing co-adaptation of feature detectors,
arXiv preprint, arXiv:1207.0580, 2012.

[57] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach.
Learn. Res. 15 (1) (2014) 1929–1958.

[58] P. Brommer, F. Gähler, Model. Simul. Mater. Sci. Eng. 15 (3) (2007) 295,
https://doi .org /10 .1088 /0965 -0393 /15 /3 /008.

[59] P. Brommer, A. Kiselev, D. Schopf, P. Beck, J. Roth, H.-R. Trebin, Model. Simul.
Mater. Sci. Eng. 23 (7) (2015) 074002, https://doi .org /10 .1088 /0965 -0393 /23 /
7 /074002.

[60] N. Artrith, A. Urban, Comput. Mater. Sci. 114 (2016) 135–150, https://doi .org /
10 .1016 /j .commatsci .2015 .11.047.

[61] A. Khorshidi, A.A. Peterson, Comput. Phys. Commun. 207 (2016) 310–324,
https://doi .org /10 .1016 /j .cpc .2016 .05 .010.

[62] A.E. Allen, G. Dusson, C. Ortner, G. Csányi, Mach. Learn. Sci. Technol. 2 (2)
(2021) 025017, https://doi .org /10 .1088 /2632 -2153 /abd51e.

[63] A. Stukowski, E. Fransson, M. Mock, P. Erhart, Model. Simul. Mater. Sci. Eng.
25 (5) (2017) 055003, https://doi .org /10 .1088 /1361 -651x /aa6ecf.

[64] H. Wang, L. Zhang, J. Han, E. Weinan, Comput. Phys. Commun. 228 (2018)
178–184, https://doi .org /10 .1016 /j .cpc .2018 .03 .016.

[65] GAP and SOAP documentation, https://libatoms .github .io /GAP/, 2021. (Ac-
cessed 16 September 2021).

[66] S. Hajinazar, A. Thorn, E.D. Sandoval, S. Kharabadze, A.N. Kolmogorov, Comput.
Phys. Commun. 259 (2021) 107679, https://doi .org /10 .1016 /j .cpc .2020 .107679.

[67] I.S. Novikov, K. Gubaev, E.V. Podryabinkin, A.V. Shapeev, Mach. Learn. Sci.
Technol. 2 (2) (2020) 025002, https://doi .org /10 .1088 /2632 -2153 /abc9fe.

[68] Y. Lysogorskiy, C. van der Oord, A. Bochkarev, S. Menon, M. Rinaldi, T. Ham-
merschmidt, M. Mrovec, A. Thompson, G. Csányi, C. Ortner, et al., npj Comput.
Mater. 7 (97) (2021), https://doi .org /10 .5281 /zenodo .4734036.

[69] R. Lot, F. Pellegrini, Y. Shaidu, E. Küçükbenli, Comput. Phys. Commun. 256
(2020) 107402, https://doi .org /10 .1016 /j .cpc .2020 .107402.

[70] H. Yanxon, D. Zagaceta, B. Tang, D.S. Matteson, Q. Zhu, Mach. Learn. Sci. Tech-
nol. 2 (2) (2020) 027001, https://doi .org /10 .1088 /2632 -2153 /abc940.

[71] The RuNNer code, https://www.uni -goettingen .de /de /560580 .html, 2021. (Ac-
cessed 16 September 2021).

[72] K. Lee, D. Yoo, W. Jeong, S. Han, Comput. Phys. Commun. 242 (2019) 95–103,
https://doi .org /10 .1016 /j .cpc .2019 .04 .014.

[73] E. Tadmor, Verification Check for Memory Leaks using Valgrind v001, Online,
https://doi .org /10 .25950 /ba474f45, 2018. (Accessed 30 May 2021).

[74] E. Tadmor, Verification Check of Invariance with respect to the Inver-
sion Operation (Inversion Symmetry) v001, Online, https://doi .org /10 .25950 /
63a96579, 2018. (Accessed 30 May 2021).

[75] E. Tadmor, Verification Check of Invariance with respect to Atom Per-
mutations (Permutation Symmetry) v001, Online, https://doi .org /10 .25950 /
dfbf8222, 2018. (Accessed 30 May 2021).

[76] E. Tadmor, Verification Check of Forces via Numerical Differentiation
(Richardson Extrapolation Technique) v002, Online, https://doi .org /10 .25950 /
9be59b8d, 2018. (Accessed 30 May 2021).

[77] S. Pattamatta, Stacking and twinning fault energies of an fcc lattice at zero
temperature and pressure v001, Online, https://doi .org /10 .25950 /d6ffade7,
2018. (Accessed 30 May 2021).

[78] J. Li, E. Tadmor, Elastic constants for cubic crystals at zero temperature and
pressure v005, Online, https://doi .org /10 .25950 /49c5c255, 2019. (Accessed 30
May 2021).

[79] M. Wen, Linear thermal expansion coefficient of a cubic crystal structure
at a given temperature and pressure v001, Online, https://doi .org /10 .25950 /
fc69d82d, 2016. (Accessed 30 May 2021).

[80] R.A. Messerly, T.A. Knotts, W.V. Wilding, J. Chem. Phys. 146 (19) (2017)
194110, https://doi .org /10 .1063 /1.4983406.

[81] H. Cramér, Mathematical Methods of Statistics, Princeton University Press,
Princeton, 1999.

[82] S.L. Frederiksen, K.W. Jacobsen, K.S. Brown, J.P. Sethna, Phys. Rev. Lett. 93 (16)
(2004) 165501, https://doi .org /10 .1103 /PhysRevLett .93 .165501.

[83] S. Longbottom, P. Brommer, Model. Simul. Mater. Sci. Eng. 27 (4) (2019)
044001, https://doi .org /10 .1088 /1361 -651x /ab0d75.

[84] N. Artrith, J. Behler, Phys. Rev. B 85 (4) (2012) 045439, https://doi .org /10 .
1103 /PhysRevB .85 .045439.

[85] A.A. Peterson, R. Christensen, A. Khorshidi, Phys. Chem. Chem. Phys. 19 (18)
(2017) 10978–10985, https://doi .org /10 .1039 /C7CP00375G.

[86] L. Zhang, D.-Y. Lin, H. Wang, R. Car, E. Weinan, Phys. Rev. Mater. 3 (2) (2019)
023804.

[87] W. Jeong, D. Yoo, K. Lee, J. Jung, S. Han, J. Phys. Chem. Lett. 11 (15) (2020)
6090–6096, https://doi .org /10 .1021 /acs .jpclett .0c01614.

[88] M. Wen, E.B. Tadmor, npj Comput. Mater. 6 (1) (2020) 124, https://doi .org /10 .
1038 /s41524 -020 -00390 -8.

[89] Y. Gal, Z. Ghahramani, in: M.F. Balcan, K.Q. Weinberger (Eds.), Proceedings of
the 33rd International Conference on Machine Learning, in: Proceedings of
Machine Learning Research, vol. 48, PMLR, New York, New York, USA, 2016,
pp. 1050–1059, https://proceedings .mlr.press /v48 /gal16 .html.

[90] Y. Gal, Uncertainty in deep learning, Ph.D. thesis, University of Cambridge,
2016.

[91] M. Wen, A dropout uncertainty neural network (DUNN) model driver v000,
OpenKIM, https://doi .org /10 .25950 /9573ca43, 2019.

[92] T. Brink, Model driver for Tersoff-style potentials ported from LAMMPS v003,
Online, https://doi .org /10 .25950 /55b7b34e, 2019. (Accessed 30 May 2021).

[93] J. Tersoff, Phys. Rev. B 37 (12) (1988) 6991–7000, https://doi .org /10 .1103 /
PhysRevB .37.6991.

[94] J. Tersoff, Phys. Rev. B 39 (1989) 5566–5568, https://doi .org /10 .1103 /PhysRevB .
39 .5566.

[95] J. Nord, K. Albe, P. Erhart, K. Nordlund, J. Phys. Condens. Matter 15 (2003)
5649, https://doi .org /10 .1088 /0953 -8984 /15 /32 /324.

[96] D.S. Karls, Environment-Dependent Interatomic Potential (EDIP) model driver
v002, Online, https://doi .org /10 .25950 /75c4686e, 2018. (Accessed 30 May
2021).

[97] M.Z. Bazant, E. Kaxiras, Phys. Rev. Lett. 77 (1996) 4370–4373, https://doi .org /
10 .1103 /PhysRevLett .77.4370.

[98] M.Z. Bazant, E. Kaxiras, J.F. Justo, Phys. Rev. B 56 (1997) 8542–8552, https://
doi .org /10 .1103 /PhysRevB .56 .8542.

[99] J.a.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, S. Yip, Phys. Rev. B 58 (1998)
2539–2550, https://doi .org /10 .1103 /PhysRevB .58 .2539.

[100] R.S. Elliott, EAM Model Driver for tabulated potentials with cubic Hermite
spline interpolation as used in LAMMPS v005, Online, https://doi .org /10 .
25950 /68defa36, 2018. (Accessed 30 May 2021).

[101] M.S. Daw, M.I. Baskes, Phys. Rev. B 29 (12) (1984) 6443, https://doi .org /10 .
1103 /physrevb .29 .6443.

[102] M.S. Daw, S.M. Foiles, M.I. Baskes, Mater. Sci. Rep. 9 (7) (1993) 251–310,
https://doi .org /10 .1016 /0920 -2307(93)90001 -u.

[103] L. Himanen, M.O. Jäger, E.V. Morooka, F.F. Canova, Y.S. Ranawat, D.Z. Gao, P.
Rinke, A.S. Foster, Comput. Phys. Commun. 247 (2020) 106949, https://doi .
org /10 .1016 /j .cpc .2019 .106949.

[104] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, in: Advances in
Neural Information Processing Systems, vol. 32, Curran Associates, Inc., 2019,
pp. 8024–8035.

[105] C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, ACM Trans. Math. Softw. 23 (4) (1997)
550–560, https://doi .org /10 .1145 /279232 .279236.

[106] SciPy: a Python-based ecosystem of open-source software for mathemat-
ics, science, and engineering, https://www.scipy.org, 2021. (Accessed 30 May
2021).

[107] H. Robbins, S. Monro, Ann. Math. Stat. (1951) 400–407, https://doi .org /10 .
1007 /978 -1 -4612 -5110 -1 _9.

[108] J. Kiefer, J. Wolfowitz, et al., Ann. Math. Stat. 23 (3) (1952) 462–466, https://
doi .org /10 .1007 /978 -1 -4613 -8505 -9 _4.

[109] D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, arXiv preprint,
arXiv:1412 .6980, 2014.

[110] K. He, X. Zhang, S. Ren, J. Sun, in: 2015 IEEE International Conference on Com-
puter Vision (ICCV), 2015.

[111] M. Wen, S. Carr, S. Fang, E. Kaxiras, E.B. Tadmor, Phys. Rev. B 98 (23) (2018)
235404, https://doi .org /10 .1103 /physrevb .98 .235404.

[112] X. Zhou, D. Ward, J. Martin, F. Van Swol, J. Cruz-Campa, D. Zubia, Phys. Rev. B
88 (8) (2013) 085309, https://doi .org /10 .1103 /physrevb .88 .085309.

[113] M. Li, T. Zhang, Y. Chen, A.J. Smola, in: Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ACM,
2014, pp. 661–670.

[114] A. Togo, I. Tanaka, Scr. Mater. 108 (2015) 1–5, https://doi .org /10 .1016 /j .
scriptamat .2015 .07.021.

[115] Asap: a calculator for doing large-scale classical molecular dynamics, https://
wiki .fysik.dtu .dk /asap/, 2021. (Accessed 30 May 2021).
13

https://hdl.handle.net/11299/206694
https://doi.org/10.1016/S0893-6080(98)00010-0
https://doi.org/10.1016/S0893-6080(98)00010-0
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib75113B2D1B4B9400FC3A4C1EA2B08C9As1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib75113B2D1B4B9400FC3A4C1EA2B08C9As1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib75113B2D1B4B9400FC3A4C1EA2B08C9As1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib98AC85A9E7207A3C2F7C00E2F58EB236s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib98AC85A9E7207A3C2F7C00E2F58EB236s1
https://doi.org/10.1088/0965-0393/15/3/008
https://doi.org/10.1088/0965-0393/23/7/074002
https://doi.org/10.1088/0965-0393/23/7/074002
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1088/2632-2153/abd51e
https://doi.org/10.1088/1361-651x/aa6ecf
https://doi.org/10.1016/j.cpc.2018.03.016
https://libatoms.github.io/GAP/
https://doi.org/10.1016/j.cpc.2020.107679
https://doi.org/10.1088/2632-2153/abc9fe
https://doi.org/10.5281/zenodo.4734036
https://doi.org/10.1016/j.cpc.2020.107402
https://doi.org/10.1088/2632-2153/abc940
https://www.uni-goettingen.de/de/560580.html
https://doi.org/10.1016/j.cpc.2019.04.014
https://doi.org/10.25950/ba474f45
https://doi.org/10.25950/63a96579
https://doi.org/10.25950/63a96579
https://doi.org/10.25950/dfbf8222
https://doi.org/10.25950/dfbf8222
https://doi.org/10.25950/9be59b8d
https://doi.org/10.25950/9be59b8d
https://doi.org/10.25950/d6ffade7
https://doi.org/10.25950/49c5c255
https://doi.org/10.25950/fc69d82d
https://doi.org/10.25950/fc69d82d
https://doi.org/10.1063/1.4983406
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibD809F0B8F7C3FA158AEC73274ACA0A49s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibD809F0B8F7C3FA158AEC73274ACA0A49s1
https://doi.org/10.1103/PhysRevLett.93.165501
https://doi.org/10.1088/1361-651x/ab0d75
https://doi.org/10.1103/PhysRevB.85.045439
https://doi.org/10.1103/PhysRevB.85.045439
https://doi.org/10.1039/C7CP00375G
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibE3D7BE58ED1EFF83F56BBC66D10A66D1s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibE3D7BE58ED1EFF83F56BBC66D10A66D1s1
https://doi.org/10.1021/acs.jpclett.0c01614
https://doi.org/10.1038/s41524-020-00390-8
https://doi.org/10.1038/s41524-020-00390-8
https://proceedings.mlr.press/v48/gal16.html
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib16F8F6F6E4A07999DC213E6A192303FDs1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib16F8F6F6E4A07999DC213E6A192303FDs1
https://doi.org/10.25950/9573ca43
https://doi.org/10.25950/55b7b34e
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1103/PhysRevB.39.5566
https://doi.org/10.1103/PhysRevB.39.5566
https://doi.org/10.1088/0953-8984/15/32/324
https://doi.org/10.25950/75c4686e
https://doi.org/10.1103/PhysRevLett.77.4370
https://doi.org/10.1103/PhysRevLett.77.4370
https://doi.org/10.1103/PhysRevB.56.8542
https://doi.org/10.1103/PhysRevB.56.8542
https://doi.org/10.1103/PhysRevB.58.2539
https://doi.org/10.25950/68defa36
https://doi.org/10.25950/68defa36
https://doi.org/10.1103/physrevb.29.6443
https://doi.org/10.1103/physrevb.29.6443
https://doi.org/10.1016/0920-2307(93)90001-u
https://doi.org/10.1016/j.cpc.2019.106949
https://doi.org/10.1016/j.cpc.2019.106949
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib1AFA0EDDD6A79D800660A83196A20CF8s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib1AFA0EDDD6A79D800660A83196A20CF8s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib1AFA0EDDD6A79D800660A83196A20CF8s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib1AFA0EDDD6A79D800660A83196A20CF8s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib1AFA0EDDD6A79D800660A83196A20CF8s1
https://doi.org/10.1145/279232.279236
https://www.scipy.org
https://doi.org/10.1007/978-1-4612-5110-1_9
https://doi.org/10.1007/978-1-4612-5110-1_9
https://doi.org/10.1007/978-1-4613-8505-9_4
https://doi.org/10.1007/978-1-4613-8505-9_4
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib1A2FFEAD8BE3590FAA6C139CB6CC6547s1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bib1A2FFEAD8BE3590FAA6C139CB6CC6547s1
https://doi.org/10.1103/physrevb.98.235404
https://doi.org/10.1103/physrevb.88.085309
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibE5184C0E5CE9B3221C08B31ED398EE5Bs1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibE5184C0E5CE9B3221C08B31ED398EE5Bs1
http://refhub.elsevier.com/S0010-4655(21)00330-1/bibE5184C0E5CE9B3221C08B31ED398EE5Bs1
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://doi.org/10.1016/j.scriptamat.2015.07.021
https://wiki.fysik.dtu.dk/asap/
https://wiki.fysik.dtu.dk/asap/

	KLIFF: A framework to develop physics-based and machine learning interatomic potentials
	1 Introduction
	2 Interatomic potentials
	2.1 Physics-based potentials
	2.2 Machine learning potentials
	2.3 Parameterization

	3 Features and capabilities of KLIFF
	3.1 Integration with KIM
	3.2 Uncertainty analysis
	3.3 A wide range of support
	3.4 Uniformity, modularity, and extensibility
	3.5 Data parallelization

	4 Implementation details: the KLIFF code
	4.1 Dataset module
	4.2 Model module
	4.3 Calculator module
	4.4 Loss module
	4.5 Optimizer module
	4.6 Command line tool

	5 Demonstration
	5.1 Parameterization
	5.2 Testing the trained potentials

	6 Summary and outlook
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary material
	References

