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Interatomic potentials (IPs) are reduced-order models for calculating the potential energy of a system of 
atoms given their positions in space and species. IPs treat atoms as classical particles without explic-
itly modeling electrons and thus are computationally far less expensive than first-principles methods, 
enabling molecular simulations of significantly larger systems over longer times. Developing an IP is 
a complex iterative process involving multiple steps: assembling a training set, designing a functional 
form, optimizing the function parameters, testing model quality, and deployment to molecular simula-
tion packages. This paper introduces the KIM-based learning-integrated fitting framework (KLIFF), a package 
that facilitates the entire IP development process. KLIFF supports both physics-based and machine learn-
ing IPs. It adopts a modular approach whereby various components in the fitting process, such as atomic 
environment descriptors, functional forms, loss functions, optimizers, quality analyzers, and so on, work 
seamlessly with each other. This provides a flexible framework for the rapid design of new IP forms. 
Trained IPs are compatible with the Knowledgebase of Interatomic Models (KIM) application program-
ming interface (API) and can be readily used in major materials simulation packages compatible with 
KIM, including ASE, DL_POLY, GULP, LAMMPS, and QC. KLIFF is written in Python with computationally 
intensive components implemented in C++. It is parallelized over data and supports both shared-memory 
multicore desktop machines and high-performance distributed memory computing clusters. We demon-
strate the use of KLIFF by fitting a physics-based Stillinger–Weber potential and a machine learning neural 
network potential for silicon. The KLIFF package, together with its documentation, is publicly available at: 
https://github .com /openkim /kliff.
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Nature of problem: Development of a model called an interatomic potential (IP) representing the potential 
energy of a system of atoms based on their positions in space and species. This is a complex iterative 
process involving multiple steps: assembling a training set, designing a functional form, optimizing the 
function parameters, testing IP quality, and deployment of the fitted IP to molecular simulation packages.
Solution method: The fitting process is formulated as an optimization problem where a loss function 
characterizing the IP error over a training set is minimized to obtain the optimal fitting parameters. KLIFF 
is designed in a modular fashion providing the user with flexible access to different functional forms, loss 
functions, optimization algorithms, and analyzers for testing the quality of the fitted IP. KLIFF is built on 
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the Knowledgebase of Interatomic Models (KIM) API standard, which enables immediate deployment of 
fitted IPs to major materials simulation packages that are compatible with KIM.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Molecular simulations are a powerful computational technique 
for exploring material behavior and properties based on an under-
standing of the physics of bonding at the atomic scale [1]. This 
approach is used across the sciences with examples such as phase 
transition in crystals [2], protein folding [3], and thermal expan-
sion and conductivity of layered 2D materials [4,5] to name just 
a few. At the core of any molecular simulation lies a descrip-
tion of the interactions between atoms that produces the forces 
governing atomic motion. First-principles approaches (e.g. density 
functional theory (DFT)) that involve solving the Schrödinger equa-
tion of quantum mechanics are most accurate, but due to hardware 
and algorithmic limitations, these approaches are limited to ex-
tremely small system sizes and time scales precluding the study of 
most systems of technological interest. For example, the supercell 
required to simulate a graphene bilayer with a 1.1◦ twist angle has 
more than 10,000 atoms, which is well beyond the capabilities of 
current first-principles approaches [5].

Interatomic potentials (IPs, also known as force fields) provide 
a classical alternative based on the Born–Oppenheimer approxi-
mation (BOA) [6]. Due to the large mass difference between nu-
clei and electrons, the BOA assumes that electrons instantaneously 
adapt to changes in nuclei positions adopting their ground state 
configuration — effectively decoupling nuclei and electron physics. 
This approximation is reasonable for many problems of interest 
in materials science and condensed-matter physics [1]. Consistent 
with the BOA, IPs treat atoms as classical particles without explic-
itly modeling the electrons, but strive to capture their influence 
on atomic nuclei in an effective manner. As such, IPs are compu-
tationally far less expensive than first-principles methods and can 
therefore be used to compute static and dynamic properties that 
are inaccessible to first-principles calculations [7–9]. In essence, an 
IP is a reduced-order model for the quantum-mechanical interac-
tion of electrons and nuclei in a material through a parameterized 
functional form that depends only on the positions of the atomic 
nuclei (atoms hereafter).

Development of an IP is a complex iterative process involving 
multiple steps as shown in Fig. 1. (Refer back to this figure as you 
read the remainder of this section.) First, a dataset of experimental 
and/or first principles reference data must be assembled to which 
the IP will be fitted. When developing machine learning potentials, 
it is common practice to split the dataset into three parts: (1) a 
training set that is used to optimize the model parameters, (2) a 
validation set for fitting hyperparameters and monitor overfitting, 
and (3) a test set to assess the goodness of the fit.

Traditionally, the reference dataset contains material properties 
considered important for a given application, such as the cohesive 
energy, equilibrium lattice constant, and elastic moduli of given 
crystal phases to name a few. In recent years, many IPs adopt a 
force-matching scheme [10], in which the training set is augmented 
with the forces on atoms obtained by first-principles calculations 
for a large set of atomic configurations.2 An advantage of this ap-
proach is that the issue of insufficient training data (particularly 

2 These can be configurations associated with important structures or snapshots 
of the crystal as the atoms oscillate at finite temperature or through random per-
turbations.
2

Fig. 1. Flowchart of the IP development process. Developing an IP involves four ma-
jor steps: (1) assemble a set of reference data and design an IP functional form; 
(2) optimize IP parameters, typically carried out by minimizing a weighted least-
squares loss function of the model predictions and the reference data; (3) assess the 
quality of the optimized model via verification and validation tests; and (4) deploy 
the model to molecular simulation packages. These steps can be iterative. When a 
model fails a verification test (e.g. by not satisfying a universal requirement, such 
as translational and rotational invariance, or by having a low goodness of fit on a 
test set) or fails a validation test (e.g. being unable to reproduce experimental ma-
terial properties), it is necessary to return to earlier steps, make adjustments, and 
redo the fitting.

true for machine learning potentials) can be resolved because as 
many training data as needed can be readily generated.

Construction of a good reference dataset is critical for success. 
The fidelity of the IP for a given application hinges on includ-
ing the appropriate physics in the dataset. It is also important to 
not swamp out rare configurations (such as transition states) that 
can have a disproportionate effect on material behavior. Dataset 
curation remains a difficult open problem and an area of active re-
search [11].

Next an appropriate functional form has to be selected. Tradi-
tionally, the functional form of an IP was devised to represent the 
physics underlying the material system. One of the earliest exam-
ples is the pair potential developed by Lennard-Jones (LJ) in the 
1920s to model van der Waals interactions in noble gases [12–14]. 
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The LJ potential includes an r−6 term (where r is the distance be-
tween atoms) that is based on a theoretical model for London dis-
persion, and an r−12 term meant to model repulsion due to Pauli 
exclusion. In the past century, a large number of physics-based po-
tentials have been developed for a variety of ionic, metallic, and 
covalent systems [1]. A physics-based potential typically adopts a 
closed-form functional expression that is based on known physi-
cal or geometric aspects of bonding in the material. The functional 
forms of these IPs have become increasingly complex with an ever 
growing number of parameters.3

Devising the appropriate functional form to correctly capture 
the physics underlying the material system is arguably the most 
difficult task in developing a physics-based potential. It involves 
a mix of art and science as pointed out by Brenner [16]. This is 
largely alleviated by machine learning potentials [17–21], which 
have emerged in recent years and been shown to be highly ef-
fective for a spectrum of material systems ranging from organic 
molecules [19] to alloys [22]. Different from physics-based poten-
tials, machine learning potentials are constructed by first trans-
forming the atomic environment information in a large training 
set of first-principles results into vector representations (descrip-
tors) and then training general-purpose regression algorithms on 
the atomic environment descriptors. In a machine learning po-
tential, the regression algorithm contains no physics, but instead 
it attempts to “learn” the quantum mechanical Schrödinger equa-
tion directly from the training set of reference data. Properly tuned 
with a sufficiently dense training set, machine learning potentials 
have the advantage that, in principle, they can describe arbitrary 
bonding states and thus can achieve extremely high accuracy.

After the functional form has been selected (either physics-
based or machine learning), the next step is to determine the 
values of the function parameters. This is typically formulated as 
a least-squares minimization problem by first constructing a loss 
function that quantifies the difference between the IP predictions 
and the reference values in the training set and then adjusting 
the parameters to reduce the loss function as much as possible. 
This can be challenging because IPs are nonlinear functions that 
are often “sloppy” in the sense that their predictions are insensi-
tive to certain parameters or certain combinations of parameters 
[23,24]. These soft modes in parameter space can cause the min-
imization algorithms to fail to converge [9]. A solution is to use 
a minimization algorithm that moves along flat regions in param-
eter space more quickly (e.g. the geodesic Levenberg–Marquardt 
algorithm [25–27]), or better yet, to identify soft modes using a 
sensitivity analysis (e.g. a Fisher information based method [4]) 
and then apply a suitable model reduction.

Once an IP is trained, its quality must be assessed. This can 
be approached from a verification & validation (V&V) perspective. 
These terms are defined as [28]:

• Verification: The process of determining that a computa-
tional model accurately represents the underlying mathemati-
cal model and its solution.

• Validation4: The process of determining the degree to which 
a model is an accurate representation of the real world from 
the perspective of the intended uses of the model.

Verification for an IP includes satisfaction of universal require-
ments such as translational and rotational invariance (objectivity), 
permutation symmetry, forces returned by the IP correspond to the 

3 For example, there are only two parameters in the LJ potential [14], whereas the 
ReaxFF [15] model developed for more complex systems has hundreds of adjustable 
parameters.
4 Note that the term validation is used differently in the V&V context than the 

validation set in machine learning mentioned above.
3

negative gradient of the energy, and so on. These are referred to 
as “verification checks” within the Knowledgebase of Interatomic 
Models (KIM) framework [29–32]. In addition, verification includes 
tests that assess the quality of the model in terms of the un-
certainty in parameter determination, and the goodness of the fit 
using a test set as mentioned above.

The V&V notion of validation can be understood within the con-
text of transferability, i.e. the ability of the IP to predict phenomena 
that it was not fit to reproduce. This includes prediction of material 
properties, computed by “KIM Tests” within the KIM framework 
[31], and predictions obtained through large-scale molecular sim-
ulations of real-world behavior. For example, the ability of IPs for 
carbon to reproduce the experimental structure of amorphous car-
bon [33].

As a general rule, physics-based potentials are better placed to 
exhibit transferability than machine learning potentials as long as 
the functional forms capture the requisite physics. For example an 
LJ potential fitted to the properties of an ideal gas provides a good 
approximation (within 10%) for the ground state crystal structure 
obtained by cooling the gas down to 0 K [1]. This is an impres-
sive demonstration of transferability. In contrast, machine learning 
potentials have no physics beyond that in the training set (and 
possibly the descriptors). This means that a machine learning po-
tential can only “transfer” to configurations that are close to what 
already exists in its training set.

Transferability can be included in the IP fitting process through 
a comparison of IP predictions with separate reference data. In 
cases where this fails, either the functional form needs to be ex-
tended for a physics-based potential, and/or the training set needs 
to be expanded for both physics-based and machine learning po-
tentials. The training must then be redone.

Finally, once the IP fitting process is complete, the IP must be 
deployed to one or more molecular simulation packages of choice. 
Traditionally this is done on a code-by-code basis, which can be 
a time consuming and error prone process. If the IP class is al-
ready implemented in the code, then simply providing parameters 
may be enough — although even there things can go wrong. For 
example, for the REBO potential [34] implemented in LAMMPS 
[35], some of the parameters were not the ones presented in the 
original paper by Brenner et al. [34], but rather from the closely re-
lated AIREBO potential [36].5 In situations where an IP class is not 
available in a simulation code, the work involved in implement-
ing it may be prohibitive. For example in the amorphous carbon 
study mentioned above [33] only IPs implemented in LAMMPS 
were tested, leaving out more than half of the possible IPs iden-
tified by the authors. The KIM application programming interface 
(API) [37] was designed to address this by creating a standard that 
allows a conforming IP to work seamlessly with any simulation 
code that supports it. The KIM API is supported by major materials 
simulation platforms including ASE [38,39], DL_POLY [40,41], GULP 
[42,43], LAMMPS [35,44,45], and QC [46,47].

This paper introduces the KIM-based learning-integrated fitting 
framework (KLIFF), a package that facilitates the entire IP devel-
opment process described above. KLIFF provides a unified Python 
interface to train both physics-based and machine learning poten-
tials, and is constructed in modular fashion, making it easy to use 
and extend. It integrates closely with the KIM ecosystem for ac-
cessing IPs to train, testing trained IPs, and deploying trained IPs. 
The paper is structured as follows. Section 2 introduces two ex-
ample IPs (one physics-based and the other machine learning) that 
will be trained later, and discusses the least-squares approach used 
to parameterize IPs. Section 3 presents KLIFF features and capabil-
ities. Implementation details of the code are outlined in Section 4. 

5 This has been corrected in more recent implementations.



M. Wen, Y. Afshar, R.S. Elliott et al. Computer Physics Communications 272 (2022) 108218
Section 5 presents a demonstration of using KLIFF to fit the two 
IPs introduced in Section 2. The paper concludes in Section 6 with 
a summary.

2. Interatomic potentials

An IP is typically formulated as a parametric model that takes 
the positions of the atoms as its arguments and returns the poten-
tial energy,6

V=V(r1, r2, . . . , rN ; θ), (1)

where r1, r2, . . . , rN are the positions of a system of N atoms, and 
θ denotes a set of fitting parameters associated with the IP func-
tional form. An IP must be invariant with respect to rigid-body 
translation and rotation, inversion of space, and permutation of 
chemically equivalent species according to the laws of physics [1]. 
These symmetry requirements are typically intrinsic to the func-
tional form of the IP. For example, if an IP is expressed in terms 
of distances between atoms, it automatically satisfies the require-
ments of translation, rotation and inversion invariance.

2.1. Physics-based potentials

The functional form of a physics-based potential is carefully de-
vised to model the physics underlying the material system. For 
example, as discussed above, the LJ potential [12–14] provides a 
good model for van der Waals interactions in the noble gases, 
whereas for covalent systems more complex forms are required, 
such as bond-order potentials [15,34]. Here, we briefly review the 
three-body Stillinger–Weber (SW) potential for silicon [48] as an 
example.

The SW potential energy V of a system consisting of N atoms 
has the form,

V=
N∑

i=1

N∑
j>i

φ2(ri j) +
N∑

i=1

N∑
j �=i

N∑
k> j
k �=i

φ3(ri j, rik, β jik), (2)

where the two-body interaction takes the form

φ2(ri j) = ε Â

[
B

( ri j
σ

)−p −
( ri j

σ

)−q
]

× exp

(
1

ri j/σ − a

)
, (3)

and the three-body term is

φ3(ri j, rik, β jik) =ελ̂
[
cosβ jik − cosβ0

]2
× exp

(
γ̂

ri j/σ − a
+ γ̂

rik/σ − a

)
, (4)

in which ri j = ‖ri − r j‖ is the bond length between atoms i and j, 
β jik is the bond angle formed by bonds i– j and i–k with the ver-
tex at atom i. The parameters are ε, Â, B, p, q, σ , a, ̂λ, γ̂ , and β0. 
The functional form is based on the lattice structure of bulk silicon 
shown in Fig. 2. The two-body term (Eq. (3)) models bond stretch-
ing and compression, and the three-body term (Eq. (4)) penalizes 
configurations away from the tetrahedral ground state structure of 
silicon.

The cutoff distance in the SW potential is implicitly defined 
as rcut = aσ . This is not ideal from a potential fitting perspec-
tive. When fitting an IP, it is typical to fix the cutoff distance, 

6 In general, IPs also depend on the species of the atoms. For notational simplic-
ity, we limit our discussion to systems of a single atomic species. However, KLIFF 
supports systems with arbitrary species.
4

Fig. 2. Bulk silicon crystallizes in a diamond cubic crystal structure in which each 
atom has four nearest neighbors forming the sp3 hybridized tetrahedral structure.

and then adjust other parameters to minimize a loss function (dis-
cussed later in Section 2.3). For the standard form of SW, both a
and σ must be fixed to set the cutoff. However, this adds an un-
necessary constraint since two parameters are fixed instead of just 
the cutoff. If instead only a or σ are fixed (or neither), then the 
cutoff will vary during the fitting process. This can lead to failure 
of the optimization due to discontinuity in the loss function when 
neighbors enter or leave the cutoff sphere of an atom. In addition 
to the cutoff problem, another issue with the SW form is that ε is 
a redundant parameter that only scales the energy.

To avoid these pitfalls, Eqs. (3) and (4) are recast in a form in 
which all parameters are independent and the dependence on the 
cutoff radius is made explicit [4]. Let A := ε Â, λ := ελ̂, γ := σ γ̂ , 
and rcut := aσ , we have

φ2(ri j) = A

[
B

( ri j
σ

)−p −
( ri j

σ

)−q
]

× exp

(
σ

ri j − rcut

)
, (5a)

φ3(ri j, rik, β jik) =λ
[
cosβ jik − cosβ0

]2
× exp

(
γ

ri j − rcut
+ γ

rik − rcut

)
. (5b)

The new parameters are A, B, p, q, σ , λ, γ along with the cutoff 
radius rcut and the equilibrium bond angles β0. The SW model im-
plemented in KIM [49] takes the form of Eqs. (5a) and (5b) instead 
of Eqs. (3) and (4).

2.2. Machine learning potentials

In contrast to physics-based potentials whose functional forms 
aim to capture the physics underlying the material system, ma-
chine learning potentials employ general-purpose regression mod-
els that interpolate across a dense training set of first principles 
energies and forces. Similar to a physics-based potential, a machine 
learning model returns the energy of an atom based on a finite 
neighborhood of atoms in its vicinity. Directly using the positions 
of an atom and its neighbors as input to the machine learning po-
tential is ill-advised since this would require the model to learn 
the physical invariances of the IP [1,50], significantly increasing 
the complexity of the model and required training data. Instead, 
the atomic environment in terms of positions is transformed to a 
suitable “descriptor” vector representation that identically satisfies 
all invariances. For example two atomic environments that differ 
only by a rigid-body rotation would yield the same descriptor vec-
tor. Various descriptors have been developed to represent atomic 
environments, including the Coulomb matrix [19], symmetry func-
tions [17,51], bispectrum [18,20,50], many-body tensor [52], and 
others [53]. As an example, we briefly review the symmetry func-
tions approach, which is one of the earliest and most intuitive 
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representations. For a more detailed discussion, see for example 
Ref. [54].

The symmetry functions [17,51] are comprised of a set of two-
body radial functions and a set of three-body angular functions. 
Specifically, the environment of atom i is characterized by three 
types of radial functions:

G1
i =

∑
j �=i

fc(ri j), (6)

G2
i =

∑
j �=i

e−α(ri j−Rs)
2
fc(ri j), (7)

G3
i =

∑
j �=i

cos(κri j) fc(ri j), (8)

and two types of angular functions:

G4
i = 21−ζ

∑
j �=i

∑
k> j
k �=i

(1+ λ cosβ jik)
ζ e−η(r2i j+r2ik+r2jk)

× fc(ri j) fc(rik) fc(r jk), (9)

G5
i = 21−ζ

∑
j �=i

∑
k> j
k �=i

(1+ λ cosβ jik)
ζ e−η(r2i j+r2ik) fc(ri j) fc(rik), (10)

where ri j and β jik are distance and angle as defined in Section 2.1, 
and α, Rs, κ, ζ, λ, and η are hyperparameters. The cutoff function 
fc is given by

fc(r) =
{

1
2

[
cos

(
πr
rcut

) + 1
]

for r ≤ rcut

0 for r > rcut
, (11)

where rcut is the cutoff distance beyond which atoms do not con-
tribute to the local environment.

The symmetry functions depend on both distances and an-
gles, however since angles can be expressed in terms of distances 
through the law of cosines, the symmetry functions depend en-
tirely on distances and are therefore invariant with respect to 
translation, rotation, and inversion of space [1]. The symmetry 
functions also satisfy the permutation symmetry requirement, be-
cause they are constructed by summation over all bond lengths 
and bond angles within the cutoff sphere and changing the sum-
mation order does not affect the results. One can select all the 
symmetry functions G1

i . . .G5
i to describe the atomic environment 

or a subset. As an example, we select one radial function and one 
angular function, G2

i and G4
i . The descriptor vector is comprised of 

distinct G2
i and G4

i values obtained for different choices of the hy-
perparameter sets {α, Rs} and {λ, ζ , η}, respectively. The length of 
the descriptor vector is then equal to the total number of hyperpa-
rameter sets, NG2

i
+ NG4

i
. (See the supplementary material for the 

hyperparameter sets for G2
i and G4

i used in Section 5.1.)
Many machine learning regression methods are suitable for 

constructing IPs including parametric linear regression and neural 
network (NN) models, nonparametric kernel ridge regression and 
Gaussian process models, and others [53]. Here, we discuss the NN 
model. In an NN potential, the total potential energy of a configu-
ration consisting of N atoms is decomposed into the contributions 
of individual atoms

V=
N∑

i=1

Ei, (12)

where Ei is the energy of atom i, represented by an NN as shown 
in Fig. 3. The NN returns the energy Ei based on the positions of 
5

Fig. 3. Schematic representation of an NN potential to compute the atomic energy 
Ei . The NN consists of an input layer, two hidden layers and an output layer. The 
local atomic neighborhood information of atom i (all atoms within a sphere of ra-
dius rcut around atom i) is transformed to descriptor vector with components y j

0
( j = 1, 2, . . . ) that serves as the input to the NN. Each arrow connecting two nodes 
between adjacent NN layers represents a weight. The fully-connected NN becomes 
a dropout NN when some connections are cut (e.g. removing the dashed arrows). 
Biases and activation function are not shown in this plot. See text for explanation 
of the variables.

atom i and its neighbors up to a cutoff distance rcut. The values 
y10, y

2
0, . . . in the input layer are the components of the descriptor. 

Between the input layer and the energy output layer are so-called 
“hidden” layers that add complexity to the NN. In a fully-connected 
NN, each node in a hidden layer is connected to all the nodes in 
the previous layer and in the following layer. The value of node n
in layer m is7

ynm = h

(∑
n′

yn
′

m−1w
n′,n
m + bnm

)
, (13)

where wn′,n
m is the weight that connects node n′ in layer m −1 and 

node n in layer m, bnm is the bias applied to node n of layer m, and 
h is an activation function (e.g. hyperbolic tangent) that introduces 
nonlinearity into the NN. In a more compact way, Eq. (13) can be 
written as ym = h(ym−1Wm + bm), where ym is a row vector of 
the node values in layer m, Wm is a weight matrix, and bm is a 
row vector of the biases. For example, y1 and b1 are row vectors 
each with 4 elements and W 1 is a 5 × 4 matrix for the NN shown 
in Fig. 3. Consequently, the atomic energy Ei represented in Fig. 3
can be expressed as

Ei = h[h[y0W 1 + b1]W 2 + b2]W 3 + b3. (14)

The weights and biases are the fitting parameters in an NN poten-
tial: θ = {W 1, W 2, . . . , W L, b1, b2, . . . , bL}, where L is the number 
of layers (hidden and output).

2.3. Parameterization

Once an IP functional form is selected, the parameters must be 
determined. This is typically framed as a least-squares minimiza-
tion problem where the IP parameters are adjusted to best match 
a training set of reference data obtained from experiments and/or 
first-principles calculations. For a training set of M configurations, 
the difference between the predictions of the IP and the reference 
data is quantified by a loss function defined as

7 The input layer and the output layer are indexed as the zeroth layer and third 
layer, respectively.
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L(θ) = 1

2

M∑
m=1

we
m

[
E(Rm; θ) − Êm

]2

+ 1

2

M∑
m=1

w f
m‖ f (Rm; θ) − f̂ m‖2, (15)

where E(Rm; θ) ∈ R and f (Rm; θ) = − (∂E/∂R)|Rm
∈ R3Nm are 

the energy and forces in configuration m obtained from an IP, Êm
and f̂ m are the corresponding reference energy and forces for con-
figuration m in the training set, with Rm ∈ R3Nm the concatenated 
coordinates of all atoms in configuration m and Nm the number of 
atoms in configuration m. The weights we

m and w f
m are typically 

chosen to be inversely proportional to (Nm)2, so that each config-
uration has an equal contribution to the loss function L(θ ). This 
prevents configurations with more atoms from dominating the op-
timization. For energy in units of eV and forces in units of eV/Å, 
these weights have units of eV−2 and (eV/Å)−2, respectively. Here, 
we only use energy and forces to construct the loss function, but 
in principle one can fit any physical property, such as the equilib-
rium lattice constants and elastic moduli of a ground state crystal 
structure. The objective then is to minimize the loss function in 
Eq. (15) with respect to θ to obtain the optimal set of IP parame-
ters.

Simply minimizing Eq. (15) can lead to overfitting and thus low 
transferability of an IP. This is especially true for machine learn-
ing IPs due to the lack of physics in their functional forms and 
the large parameter space. Various techniques have been proposed 
to overcome this problem. One approach is to add regularization 
terms to the loss function to prevent overly complex results, for 
example an L2 term of the form λ‖θ‖2 can be added, where λ is 
a hyperparameter that determines the regularization weight. An-
other widely used approach is early stopping [55], where model 
performance is monitored on a validation set and fitting is termi-
nated when accuracy begins to degrade. There are also regulariza-
tion techniques that are specific to certain types of models. For 
example, the dropout method [56,57] can be applied to NN poten-
tials (see Section 3.2 for more on dropout).

3. Features and capabilities of KLIFF

A variety of software packages have been developed to develop 
IPs, including potfit [58,59], ænet [60], Amp [61], aPIP [62], atom-
icrex [63], DeePMD-kit [64], GAP [18,65], MAISE [66], MLIP [67], 
PACE [68], PANNA [69], PyXtal_FF [70], RuNNer [17,71], SIMPLE-NN 
[72], among others. KLIFF shares many features with these pack-
ages, but is also distinguished by some capabilities described in 
this section that address the problems discussed in Section 1.

3.1. Integration with KIM

As indicated by the name, KLIFF is deeply integrated with the 
KIM ecosystem. (We note that the Potfit IP fitting framework is 
also compatible with KIM [9].)

First, KLIFF supports the training of IPs archived within the 
OpenKIM repository. An IP is called a model in KIM nomenclature, 
and a KIM portable model is an independent computer implemen-
tation of an IP that conforms to the KIM API portable model in-
terface (PMI) standard.8 In practice portable models consist of a 
“model driver,” which implements an IP class (e.g. the embedded 

8 KIM also supports a second type of model called a simulator model. While a 
portable model will work seamlessly with any simulation package that supports the 
KIM API/PMI standard, a simulator model only specifies how to set up and run a 
model that is implemented as an integrated part of a specific simulation package. 
KLIFF supports the fitting of portable models.
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atom method (EAM) form) and a parameter set for a specific set 
of species. All content in the OpenKIM repository is archived sub-
ject to strict versioning and provenance control with digital object 
identifiers (DOIs) assigned. This makes it possible to access the ex-
act IP used in a publication at a later date to reproduce the calcula-
tions or to conduct further fitting. A large number of physics-based 
and machine learning IPs are implemented as portable models and 
archived in the OpenKIM repository. These models are subjected 
to an editorial review process by the KIM Editor on acceptance to 
ensure quality control. Users of KLIFF can employ these models di-
rectly without having to implement them with significant savings 
in time and potential errors.

Second, IPs trained with KLIFF can be easily tested via OpenKIM. 
KLIFF can automatically generate models that are compatible with 
the KIM API, thus allowing a trained IP to run against KIM ver-
ification checks (VCs) and KIM tests [31]. As noted in Section 1, 
KIM VCs are programs that explore the integrity of an IP imple-
mentation. They check for programming errors (e.g. memory leak 
[73]), failures to satisfy required behaviors (e.g. inversion [74] and 
permutation [75] symmetries), and determine general characteris-
tics of the IP functional form (e.g. are the forces returned by the 
model consistent with those obtained through numerical differen-
tiation of the energy [76]). As opposed to KIM VCs, KIM tests check 
the accuracy of an IP by computing a variety of physical proper-
ties of interest to researchers, such as the stacking fault energy 
[77], elastic moduli [78], and linear thermal expansion coefficient 
[79] to name a few. The information provided by KIM VCs and KIM 
tests can save researchers a great deal of time by identifying lim-
itations of an IP that can lead to subtle problems in simulations 
(e.g. poor convergence during energy minimization due to incor-
rect or discontinuous forces), and assisting in the selection of IPs 
by considering its predictions for relevant physical properties.

Third, IPs trained with KLIFF can be deployed via KIM. Tradi-
tionally, most IP development papers only report the functional 
form of the IPs and the associated parameters, without mention-
ing or providing a computer implementation. Recently developed 
machine learning potentials typically do provide computer imple-
mentations, but these are often standalone codes that cannot be 
used in major molecular simulation packages. This creates a signif-
icant barrier for the universal usability of IPs. By providing portable 
implementations, KIM addresses this issue, as well as enabling re-
producibility.9 As mentioned above, KLIFF can automatically create 
IP models that are compatible with the KIM API, which enables the 
IP to work seamlessly with any KIM-compliant simulation pack-
age including ASE [38,39], DL_POLY [40,41], GULP [42,43], LAMMPS 
[35,44,45], and QC [46,47]. The final production IP can also be con-
tributed to the OpenKIM repository for deployment as source and 
binary packages for major Mac, Linux and Windows platforms.

3.2. Uncertainty analysis

Historically, molecular simulation with IPs has been primarily 
viewed as a tool limited to providing qualitative insight. A key 
reason is that such simulations include multiple sources of uncer-
tainty that are difficult to quantify, with the result that predictions 
obtained from the simulation typically lack robust confidence in-
tervals [80]. A major source of uncertainty originates from the IPs 
themselves, since these are empirical functional forms fitted to 
experimental results and/or first-principles calculations. To make 
molecular simulation with IPs more reliable, it is imperative to 
quantify the intrinsic uncertainty of the IP and propagate it to 

9 In some cases the same parameter file can lead to different results when used 
with different implementations of an IP, either in newer versions of the same code, 
or in different simulation packages. For example, see Ref. [8] for a discussion of this 
effect for tabulated EAM potentials.
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Fig. 4. Schematic representation of the cost contours in the vicinity of the optimal 
parameters θ∗ of an IP with two parameters θ1 and θ2. The aspect ratio of the con-
tours is determined by the eigenvalues λ1 and λ2 of the FIM. The diagonal elements 
of the inverse FIM (F−1)11 and (F−1)22 provide a lower bound on the variance of 
the parameters θ1 and θ2, respectively.

the simulation results. This is an area that has not received much 
attention in the past. To address this limitation, KLIFF provides 
functionality that enables uncertainty analysis of IPs.

As mentioned in Section 1, IPs are often “sloppy” [4,23,24] in 
that their predictions are insensitive to certain combinations of the 
parameters. This behavior can be quantified using the notion of a 
Fisher information matrix (FIM). The FIM provides a measure for 
the information in the training set on the parameters, which leads 
to an estimate for the precision with which the parameters can 
be determined [4]. For example, for the case where the loss func-
tion contains only forces (i.e. we

m = 0 in Eq. (15)), the FIM can be 
written as [4,24]:

F (θ) ∝
M∑

m=1

(
∂ f m
∂θ

)T (
∂ f m
∂θ

)
, (16)

where f m ∈R3Nm are the forces on atoms of configuration m (Nm

is the number of atoms in configuration m), M is the number of 
configurations in the training set, and the superscript T denotes 
matrix transpose. The diagonal elements of the inverse FIM provide 
lower bounds on the variance of the parameters, known as the 
Cramér–Rao bound [81],

Var[θi] ≥ (
F−1)

ii . (17)

The larger a diagonal element of the inverse FIM, the larger the 
lower bound on the variance for the corresponding parameter, in-
dicating that the parameter is less well determined. As an illustra-
tive example, we plot in Fig. 4 a schematic representation of the 
contours of the cost function in Eq. (15) for an IP with two pa-
rameters. Here, the two diagonal components of the inverse FIM 
(F−1)11 and (F−1)22 are nearly of the same magnitude, indicat-
ing that the two parameters θ1 and θ2 are equally determined in 
the fitting. If this were not the case and a diagonal component of 
the inverse FIM was much larger (an order of magnitude or more) 
than the others, then the IP parameter associated with this com-
ponent is poorly determined. To address this, one could attempt to 
modify the IP functional form as discussed in Section 1 and shown 
in Fig. 1. The FIM also provides an upper bound on the uncertainty 
in a physical quantity of interest (QOI) due to small variations in 
IP parameters. A detailed discussion of such an analysis for the 
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thickness of monolayer MoS2 can be found in Ref. [4]. The FIM in 
Eq. (16) is implemented in KLIFF as an Analyzer (discussed in 
Section 4) using numerical differentiation.

The FIM analysis is well suited for physics-based potentials, 
which have dozens of parameters and each parameter plays a vi-
tal role. However, machine learning potentials are typically over-
parameterized and the influence of a single parameter on the 
model performance is not large. Instead of parameter uncertainty, 
it is more important and useful to analyze the prediction un-
certainty of a QOI (e.g. elastic moduli). A simple yet powerful 
approach to obtaining the QOI uncertainty is to construct an en-
semble of IPs instead of a single best fit model. This can be done 
by either training different IPs using different initial guesses for 
the parameters or using different subsets of the training data. At 
the prediction stage, each individual model in the ensemble of Np

models is applied to compute the QOI P . The average

P̄ = 1

NP

NP∑
i=1

Pi (18)

is then used as the predictive mean for the QOI, and the standard 
deviation

Std[P ] =
√√√√ 1

NP − 1

NP∑
i=1

(Pi − P̄ )2 (19)

as the uncertainty. The ensemble approach can be applied to any 
type of model, either physics-based [82,83] or machine learning 
potentials [84–87]. Although straightforward to train, it is com-
putationally expensive since multiple models have to be trained 
to form the ensemble. For NN potentials, there is an alternative 
that is computationally less costly and performs equally well to 
the ensemble approach [88]. By removing some connections be-
tween layers (e.g. removing the dashed arrows for the NN shown 
in Fig. 3), a fully-connected NN is changed into a dropout NN 
[56,57]. It has been shown that training an NN with dropout (i.e. 
dropping different connections at each training step) approximates 
a Bayesian NN [89,90]. Consequently, a dropout NN possesses all 
the properties of a probabilistic Bayesian model, from which un-
certainty information can be extracted. For dropout NN potentials 
[88], only one model needs to be trained at the training stage. 
At the prediction stage, it is essentially an ensemble model and 
can be used in a similar fashion: conduct multiple stochastic for-
ward passes through the dropout NN (each time drop different 
connections) to obtain multiple samples of the QOI and then com-
pute the average and standard deviation. KLIFF supports the train-
ing of both ensemble and dropout NN potentials. The associated 
KIM DUNN model driver [91] allows molecular simulation codes 
to work with individual members in the ensemble and perform 
uncertainty quantification.

3.3. A wide range of support

By conforming to the KIM API, KLIFF supports a wide range of 
IPs available through OpenKIM. At the time of this writing, the 
OpenKIM repository contains 35 model drivers, including widely 
used physics-based potentials such as Stillinger–Weber (SW) [48,
49], Tersoff [92–95], EDIP [96–99], and EAM [100–102] potentials 
among others. For machine learning potentials, KLIFF currently 
supports the symmetry functions [17,51] and bispectrum [18,50]
atomic environment descriptors. Interfacing with other descriptor 
libraries, such as DScribe [103], is being explored. For machine 
learning regression algorithms, KLIFF has its own implementation 
of simple algorithms (e.g. linear regression) and takes advantage of 
PyTorch [104] to build and train NN potentials. The NN model in 
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KLIFF wraps PyTorch so that the user interface appears the same as 
other models in KLIFF, but still retains the flexibility of PyTorch to 
create customizable NN structures and train with state-of-the-art 
deep learning techniques available through this package.

KLIFF provides an interface to many widely-used minimization 
algorithms for model training. As discussed in Section 2.3, the 
IP parameters are obtained by minimizing a loss function that 
quantifies the difference between IP predictions and the training 
set. The optimizer directly determines the values of the param-
eters and thus the quality of the IP. It is impossible to make 
a general statement about which optimizer is best, since this is 
problem-dependent, but some optimizers (e.g. the L-BFGS-B algo-
rithm [105]) tend to work well for a wide range of problems. KLIFF 
supports the optimization algorithms in SciPy [106] and PyTorch 
[104]. The minimize module of scipy.optimize provides a 
large number of general-purpose minimization algorithms, and the 
least_squares module of scipy.optimize provides algo-
rithms specific for nonlinear least-squares minimization problems. 
The optimizers in PyTorch are targeted for training NN models, in-
cluding the stochastic gradient descent (SGD) method [107,108]
and its variants such as the Adam method [109]. In addition, KLIFF 
also supports the geodesic Levenberg–Marquardt (LM) algorithm 
[25–27], which has been shown to work well for “sloppy” IPs 
whose predictions are insensitive to certain parameters or certain 
combinations of parameters.

3.4. Uniformity, modularity, and extensibility

KLIFF is designed to be as uniform, modular, and extensible 
as possible. It is implemented using an object-oriented program-
ming (OOP) paradigm and provides a pure Python user interface. 
All the atomic environment descriptors, models, calculators, ana-
lyzers, etc. are subclassed from individual superclasses. A subclass 
only provides or modifies specific implementations of superclass 
methods when necessary, guaranteeing a uniform interface across 
subclasses. As mentioned in Section 3.3, KLIFF takes advantage of 
the optimization algorithms in SciPy [106] and PyTorch [104], as 
well as the geodesic LM algorithm to train models when minimiza-
tion of a loss function is needed. Although vanilla SciPy, PyTorch, 
and LM have different APIs to call the optimization algorithms, 
KLIFF provides a unified interface that wraps them under the hood.

Extending KLIFF is straightforward. New descriptors, models, 
calculators, loss functions, optimization algorithms, analyzers, etc. 
can be seamlessly added to existing modules in KLIFF. For exam-
ple, a new physics-based potential can be easily implemented by 
subclassing the KLIFF “Model” class, specifying the IP parameters, 
and then using Python to code the functional form of the IP. As a 
concrete example, we provide a Python code demonstrating how 
to implement the Lennard-Jones potential in the supplementary 
material. Other parts such as periodic boundary conditions han-
dling are dealt with by KLIFF. The newly created model can then 
be used for training with any loss function and optimization al-
gorithms that are available in KLIFF. To gain the benefits of KIM 
models discussed in Section 3.1, it is currently necessary to imple-
ment the IP as a separate code conforming to the KIM API. Future 
plans include the development of a general KIM model driver that 
will directly work with KLIFF IPs stored in a portable format.

3.5. Data parallelization

Computationally intensive KLIFF components, such as neighbor 
list generation and descriptor calculation, are internally imple-
mented in C++. Even with this, the computational requirements 
can become quite demanding as the size of the training set in-
creases. Fortunately, evaluation of the loss function Eq. (15) can 
be easily divided into independent sub-problems allowing for easy 
8

Fig. 5. Data parallelization scheme used by KLIFF. S is the number of configurations 
assigned to each process, and M is the total number of configurations.

Fig. 6. Flowchart of the procedures of using KLIFF to train an IP.

parallelization. KLIFF adopts the parallelization over data scheme 
illustrated in Fig. 5. Atomic configurations in the dataset are dis-
tributed to different processes. Each process computes the sub-loss 
according to Eq. (15) for the configurations assigned to it, and the 
total loss is then obtained as the sum of the sub-losses from all 
the processes. KLIFF supports both OpenMP-style parallelism for 
shared-memory architectures, and MPI-style parallelism typical of 
high-performance computing clusters composed of multiple stan-
dalone machines connected by a network.

4. Implementation details: the KLIFF code

KLIFF is written primarily in Python with several computa-
tionally intensive components implemented in C++ accessible via 
Python bindings. As such, users interact with KLIFF through a pure 
Python interface. KLIFF is built in a modular fashion, as discussed 
in Section 3.4, with key modules Dataset, Model, Calculator, 
Loss, Optimizer, and Analyzer. A flowchart showing the in-
teraction and information transfer between these modules for IP 
training is displayed in Fig. 6. The modules are described below.
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4.1. Dataset module

A dataset is comprised of a set of atomic configurations, which 
provide the training data to optimize IP parameters or provide the 
test data to test the quality of an IP. An atomic configuration in-
cludes three vectors defining the simulation cell, flags to indicate 
whether periodic boundary conditions (PBCs) are applied along 
the cell vectors, the species and coordinates of all atoms in the 
configuration, and reference outputs. KLIFF reads atomic configura-
tions from extended XYZ files, with each configuration stored in a 
separate file. The reference outputs (energy, forces, and stress) as-
sociated with an atomic configuration are also read in from the ex-
tended XYZ file. The standard XYZ format only stores the number 
of atoms in a configuration and the species and coordinates of the 
atoms. The extended XYZ format allows for additional information 
to be stored, either in the second line via a series of key=value 
pairs (e.g. PBC="T,T,T" and energy=1.2) or in the body sec-
tion by appending values (e.g. forces) to the coordinates. Internally, 
each atomic configuration and the reference outputs are associated 
with a Configuration object and a Dataset is essentially a 
set of Configuration objects.

4.2. Model module

The fitting process begins with the instantiation of a model (IP). 
Depending on the nature of the model, different operations can be 
applied. For KIM models and physics-based KLIFF potentials, KLIFF 
can provide information on what parameters are available for fit-
ting, together with a description of each parameter and the data 
structure and data type of each parameter. Based on this infor-
mation, a user can select the parameters to fit and specify initial 
values or use defaults. Lower and upper bounds on parameter val-
ues can also be provided to restrict it to a range. For an NN model, 
the descriptor representation of an atomic environment, which 
serves as the input to the NN model, must be defined. Then the NN 
can be constructed using an arbitrary number of layers, nodes per 
layer, and activation functions. Unlike physics-based models, KLIFF 
automatically initializes the parameters in the network. For exam-
ple, the He initializer [110] is used to initialize the weights and 
biases in Eq. (13). Other default choices are made by KLIFF based 
on the authors’ physical understanding and experience to make 
it easier for users to develop machine learning potentials with-
out having to master subtle aspects of machine learning training. 
For example, in a standard dropout approach, different NN con-
nections would be removed for each atom in a configuration (see 
Section 3.2). However, KLIFF defaults to a native dropout scheme 
that removes the same NN connections for all atoms in a config-
uration. This ensures that atoms with identical environments (e.g. 
all atoms in an ideal silicon crystal) will have the same atomic 
energy, forces, and other properties. Users can overwrite default 
choices, for example, by selecting the native PyTorch dropout in-
stead of KLIFF’s native implementation.

4.3. Calculator module

The created model is attached to a calculator that computes the 
predictions corresponding to the reference outputs for the atomic 
configurations in the training set. The native KLIFF calculator sup-
ports the evaluation of energy, forces, and stress. If a property 
other than these is to be fitted, a new calculator needs to be imple-
mented. A new calculator can wrap any KIM compliant molecular 
simulation package to compute the property with the given model 
in a similar fashion to ASE calculators [38,39].
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4.4. Loss module

The predictions computed by the calculator and the corre-
sponding reference output values stored in the training set are 
then used to construct a loss function (e.g. Eq. (15)) that quan-
tifies the difference between the model predictions and the ref-
erences. A weight can be assigned to each configuration, so that 
“important” configurations are emphasized more during optimiza-
tion. If the available loss functions in KLIFF do not satisfy a specific 
need, a user-defined loss function can be added.

4.5. Optimizer module

The optimization process involves minimization of the loss 
function with respect to the IP parameters until specified stop-
ping criteria are satisfied, such as reducing the loss function value 
below a tolerance or reaching a maximum allowed number of min-
imization steps.

The optimizers supported by KLIFF can be broadly categorized 
in two classes: batch optimizers and mini-batch optimizers. The for-
mer (e.g. the L-BFGS-B and geodesic LM methods) typically require 
the evaluation of the entire training set at each minimization step, 
whereas the latter (e.g. the SGD and Adam methods) only use 
a subset of the training set at a time. Batch optimizers guaran-
tee a monotonic decrease of the loss throughout the minimiza-
tion process and typically yield smaller final loss values compared 
with mini-batch optimizers. Mini-batch optimizers become advan-
tageous for very large training sets (typical of machine learning 
potentials) where evaluation of the entire training set becomes 
prohibitive due to memory and/or computing constraints. For NN 
models that contain a large number of parameters, SGD-based op-
timizers can typically find a reasonable solution in parameter space 
that minimizes the loss to a certain level. By default, KLIFF uses an 
L-BFGS-B optimizer for physics-based potentials, which typically 
have relatively small numbers of parameters and small training 
sets, and an SGD-based Adam optimizer for NN potentials, which 
have many parameters and very large training sets. The user can 
overwrite this default and select a preferred optimizer.

Once the optimization is completed, the fitted IP can be written 
out as a KIM model that conforms to the KIM API, which can then 
be run against KIM VCs and KIM tests or be used with any KIM-
compliant simulations codes as discussed in Section 3.1. Generated 
KIM models, can be uploaded to https://openkim .org to receive a 
DOI and make the model available to the broader research com-
munity. Also, the model can be attached to an Analyzer to carry 
out post-processing analysis, such as computing the FIM discussed 
in Section 3.2 and computing the root mean square errors of en-
ergy and forces for a test set.

4.6. Command line tool

KLIFF provides a command line tool called kliff that facili-
tates the execution of many common tasks. For example, query a 
physics-based potential for available parameters that can be op-
timized and their associated metadata, print a synopsis of the 
atomic configurations in the dataset, or split a dataset into mul-
tiple subsets. Once installed, executing “kliff --help” in the 
terminal will list the commands, their arguments, and help infor-
mation.

5. Demonstration

KLIFF has been extensively tested through the development 
of multiple IPs, including an SW potential for two-dimensional 
molybdenum disulfide [4], an interlayer potential for multilayer 
graphene [111], a hybrid NN potential for multilayer graphene [5], 

https://openkim.org
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Table 1
Summary of SW parameters obtained by minimizing the loss func-
tion and the preset parameters.

Parameter Value Parameter Value

A 15.46588611 eV B 0.61032816
p 4 q 0
σ 2.05971554 Å λ 65.46736831 eV
γ 2.71009995 Å rcut 3.77118 Å
β0 109.47◦

and a dropout uncertainty NN potential (DUNN) to quantify un-
certainty in molecular simulations [88]. In this section we present 
examples demonstrating the use of KLIFF in training an SW poten-
tial and an NN potential for silicon. The functional forms of the 
two IPs are described in Section 2.

5.1. Parameterization

The training set is comprised of the energies and forces for 
2513 configurations of silicon in the diamond cubic crystal struc-
ture. This includes configurations with compressed and stretched 
cells and random perturbations of atoms, as well as configura-
tions drawn from a molecular dynamics trajectory at a tempera-
ture of 300 K. Since this is only a demonstration, instead of using 
first-principles calculation or experimental data, the configurations 
were generated using the EDIP model [96–99]. The dataset is pro-
vided in the supplementary material.

The SW potential has seven parameters, A, B , p, q, σ , λ, γ , 
along with the cutoff radius rcut and the equilibrium angle β0. 
The cutoff radius is set to rcut = 3.77118 Å, as used by Stillinger 
and Weber [48], and the equilibrium angle is set to the tetrahedral 
angle of the ideal cubic diamond structure, β0 = 109.47◦ . Follow-
ing most SW parameterizations [4,48,112], the parameters p and 
q are set to 4 and 0, respectively. The values of the remaining pa-
rameters are obtained by minimizing the loss function in Eq. (15)
using the geodesic LM algorithm [25–27]. The energy and force 
weights are set to we

m = 1/(Nm)2 and w f
m = 10/(Nm)2. A larger 

force weight is used to better reproduce the phonon dispersions 
discussed in Section 5.2. One exception is that the energy weight 
is set to we

m = 10/(Nm)2 for configurations that have an ideal cu-
bic diamond structure at different lattice parameters. The increased 
weight ensures that these configurations are not underrepresented 
in the fitting since their force terms in Eq. (15) are identically 
zero (regardless of the IP parameters) due to the symmetry of the 
underlying structure. The optimal parameter set identified by this 
process and the preset parameters are listed in Table 1.

For the NN potential, we employ the G2
i and G5

i symmetry 
functions (Eqs. (7) and (10)) as the descriptors for characterizing 
atomic environments. The hyperparameters α and Rs in Eq. (7)
and ζ, λ, and η in Eq. (10) are provided in the supplementary 
material. The cutoff in Eq. (11) is set to rcut = 3.5 Å to include 
only nearest-neighbor interactions. A challenging aspect of train-
ing an NN, which is also a source of the power and flexibility of 
the method, is that it is up to the developer to select the num-
ber of descriptor terms to retain, the number of hidden layers, the 
number of nodes within each hidden layer (which need not be 
the same), and the activation function. It is also possible to cre-
ate different connectivity scenarios between layers. Here we have 
opted for simplicity and adopted a fully-connected network with 
the same number of nodes in each hidden layer. The number of 
hidden layers and the number of nodes in each hidden layers are 
determined through a grid search and are listed in Table 2. The ac-
tivation function h is taken to be the commonly used hyperbolic 
tangent function, tanh(x) = (ex − e−x)/(ex + e−x).

The NN potential parameters are obtained by minimizing the 
loss function Eq. (15). The energy weight we

m and forces weight 
10
Table 2
Summary of parameters in the NN potential and hyperparameters that 
define the NN structure.
number of hidden layers 3
number of nodes in hidden layers 10
cutoff rcut 3.5 Å
activation function h tanh
descriptor hyperparameters see supplementary material

Fig. 7. Potential energy of diamond cubic silicon as a function of the lattice param-
eter predicted by the trained SW and NN potentials along with the EDIP reference 
data.

Table 3
Cohesive energy (absolute value of the mini-
mum of the potential energy versus lattice pa-
rameter curve) and equilibrium lattice constant 
for diamond cubic silicon computed using the 
EDIP potential (taken as the reference) and the 
SW and NN potentials (with errors relative to 
EDIP given in parentheses).
Potential Ecoh [eV/atom] a0 [Å]

EDIP 4.650 5.43
SW 4.647 (0.06%) 5.39 (0.74%)
NN 4.645 (0.1%) 5.42 (0.18%)

w f
m are the same as those used for the SW potential. The min-

imization is carried out using the Adam optimizer [109] with a 
learning rate of 0.001. As discussed in Section 4, to accelerate the 
training process a mini-batch technique [113] is employed with a 
batch size of 100 configurations at each minimization step for a 
total of 2000 epochs.10

The scripts used to train the SW and NN potentials are provided 
in the supplementary material.

5.2. Testing the trained potentials

To test the fitted SW and NN potentials, we applied them to 
study energetic and vibrational properties of silicon in the di-
amond cubic crystal structure. As discussed in Section 3.1, IPs 
trained by KLIFF can be exported in a form compatible with the 
KIM API, which allows them to be used directly with a variety of 
major molecular simulation packages, such as LAMMPS [35,44,45]. 
The tests described in this section were carried out using LAMMPS.

First, we investigate the cohesive energy versus lattice param-
eter for ideal cubic diamond silicon (see structure in Fig. 2). The 
fitted SW and NN potentials are compared with the EDIP refer-
ence data in Fig. 7. Both potentials reproduce the equilibrium state 
well as seen in Table 3, however the NN potential with its flexible 
functional form is able to follow the reference data more closely 

10 An epoch is one complete pass over the dataset. For example, if a dataset in-
cludes 50 configurations and a mini-batch size of 10 configurations is used, then 
one epoch consists of 5 minimization steps.
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Fig. 8. Potential energy of diamond cubic silicon as a function of the lattice param-
eter predicted by the DUNN potential. (a) Predictive mean and uncertainty of the 
energy by DUNN, where the uncertainty band is twice the width of the standard 
deviation in the energy. Also plotted are the reference EDIP energies. (b) DUNN un-
certainty. The uncertainty band is the same as that in panel (a) except that here it 
is centered around 0 instead of the prediction mean in panel (a).

across most of the range except for lattice parameters smaller than 
5 Å and larger than 5.9 Å. The training set contains configurations 
with lattice parameters up to ±10% from the equilibrium value (i.e. 
4.89 ∼ 5.97 Å). Thus configurations with lattice parameters smaller 
than 5 Å and larger than 5.9 Å are at the “edge” of the training 
data where accuracy of the NN potential is clearly reduced. This is 
consistent with the discussion in Section 1. While highly accurate 
within the training set, the NN potential has low transferability 
and thus its ability to extrapolate beyond its training set is limited. 
This is particularly clear on the compressive end of the response 
(lattice constant smaller than 5.0 Å). In contrast, the SW potential 
has a lower accuracy overall since it is constrained by its physical 
functional form, but this leads to a more correct trend outside the 
training set.

It is important to quantify the uncertainty in the predictions 
of machine learning potentials given their low transferability. As 
discussed in Section 3.2, KLIFF supports the training of DUNN po-
tentials [88] that are based on dropout uncertainty estimation. To 
demonstrate this, we train a DUNN potential for the silicon dataset 
and apply it to investigate the same energy versus lattice param-
eter problem discussed above. Since the emphasis is on the un-
certainty in energy, forces are not used in the training. (Details of 
the parameterization procedure are provided in the supplementary 
material.) When a DUNN model is used it provides a mean value, 
which is the average over the dropout ensemble, and an associ-
ated uncertainty estimate. The results for the cohesive energy ver-
sus lattice parameter are compared with the EDIP reference data 
in Fig. 8(a). The mean DUNN values are in excellent agreement 
with the reference data.11 More importantly, the band around the 
mean values shows that the DUNN uncertainty estimate increases 
as the silicon crystal is strained away from its equilibrium state 
(a = 5.43 Å) and that the increase accelerates towards the edges 
of the training set (see Fig. 8(b)). Such uncertainty information can 
help to determine whether a molecular simulation is reliable or 
not.

11 The agreement is better than the NN potential in Fig. 2 since only energies are 
used in training the DUNN potential allowing it to obtain a better fit, whereas the 
NN potential is fit using energies and forces.
11
Fig. 9. Phonon dispersions of diamond cubic silicon along high symmetry points in 
the first Brillouin zone predicted by the trained SW and NN potentials along with 
the reference data by EDIP. (For interpretation of the colors in the figure, the reader 
is referred to the web version of this article.)

As a second example, we consider phonon dispersion. This set 
of curves provides a comprehensive view of the elastic vibrational 
properties of a material, which play a key role in many dynami-
cal properties including thermal transport and stress wave prop-
agation. It is therefore important for IPs to predict phonon dis-
persion correctly. Fig. 9 presents the phonon dispersion curves 
of silicon along high-symmetry points in the first Brillouin zone 
obtained using the phonopy package [114]. The SW potential is 
in better agreement with the reference data for branches with 
larger phonon frequencies, but is less accurate for the two lowest-
frequency branches, which can be seen at the W, K, and U points. 
Despite these small differences, the predictions by both the SW 
and NN potentials are in good agreement with the reference data. 
The training set does not explicitly contain phonon frequency data, 
so the fact that both the SW and NN potentials are able to correctly 
reproduce EDIP’s phonon dispersion curves indicates that they pro-
vide a good representation for the EDIP functional form near the 
equilibrium state.

6. Summary and outlook

In this paper, we introduce the KIM-based learning-integrated 
fitting framework (KLIFF) for developing IPs. KLIFF provides a uni-
form Python user interface to train both physics-based and ma-
chine learning potentials. It is flexible and easily extended to sup-
port new atomic environment descriptors, models, loss functions, 
minimizers, and analyzers. KLIFF integrates closely with the KIM 
framework. An IP trained using KLIFF can be readily deployed in 
a format consistent with the KIM API, which enables it to be used 
directly in major simulation codes such as LAMMPS [35,44,45], ASE 
[38,39], DL_POLY [40,41], GULP [42,43] and ASAP [115] among oth-
ers. The package is distributed under an open-source license and 
is available at https://github .com /openkim /kliff along with a com-
prehensive user manual with several tutorials.

KLIFF (version 0.3.0) is fully functional as demonstrated in this 
paper by training the SW, NN, and DUNN potentials for silicon. 
Development continues with an emphasis on incorporating new 
features, including (1) supporting more machine learning models 
and descriptors; (2) integration with KIM tests to train on mate-
rial properties beyond energy, forces, and stress; and (3) creation 
of tools for automatic selection of hyperparameters for machine 
learning potentials (e.g. optimal number of terms to retain for a 

https://github.com/openkim/kliff
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descriptor and optimal number of layers and nodes in each layer 
for an NN potential). We encourage other researchers to contribute 
to the development, and provide full and detailed documentation 
of the KLIFF API (see the Package Reference section in the docu-
mentation https://github .com /openkim /kliff).
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