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A framework for integrating transfer matrices with particle-in-cell simulations is developed for TeV
staging of plasma wakefield accelerators. Using nonlinear transfer matrices in terms up to ninth order
in normalized energy spread

√
〈δγ2〉 and deriving a compact expression for the chromatic emittance

growth in terms of the nonlinear matrix, plasma wakefield accelerating stages simulated using the
three-dimensional particle-in-cell framework OSIRIS 4.0 were combined to model acceleration of
an electron beam from 10 GeV to 1 TeV in 85 plasma stages of meter scale-length with long
density ramps and connected by simple focusing lenses. In this calculation, we find that for initial
relative energy spreads below 10−3, energy-spread growth below 10−5 of the energy gain per stage
and normalized emittance below mm-mrad, the chromatic emittance growth can be minimal. The
technique developed here may be useful for plasma collider design, and potentially could be expanded
to encompass non-linear wake structures and include other degrees of freedom such as lepton spin.

I. INTRODUCTION

Laser and beam driven plasma wakefield acceleration are promising approaches for accelerating leptons to high
energy [1] and plans for a plasma based accelerator facility are at a mature stage [2]. For collider applications,
energies in excess of 100 GeV will be required and it is likely that multiple plasma stages are required [3]. There has
been a lot of work in understanding transport between stages, through experiments [4] and simulations/theory [5–8].
In particular, significant attention has been paid to chromatic emittance growth through mismatched beams [9] and
misalignment [10–12]. To improve the matching, adiabatic matching using density ramps has been studied [13–17] as
well as other beam transport components based on plasma elements [18–21].

In conventional accelerators beam transport is a mature subject [22, 23], in particular the use of transfer matrices to
describe the particle dynamics. There is interest in finding fast particle tracing methods for plasma accelerators [24].
Analytic solutions for wakefields have been used as the basis for developing transfer matrices for studying staging of
plasma accelerators [10, 11]. In this paper, we show how transfer matrices for plasma accelerators can be constructed
from the fields calculated in self-consistent particle-in-cell simulations. Having such a framework allows integration
of plasma elements simulated with particle-in-cell codes with conventional accelerator design codes/techniques. This
method is not a replacement for full-scale simulations, as feedback of the beam on the wakefields cannot be included.
But full scale particle-in-cell simulations of a multi-stage plasma accelerator are computationally expensive, so having
an approach that may allow rapid design of complex lattices involving plasma accelerating stages and other elements,
such as plasma optics, should prove useful.

Analytic solutions can also be used to model the particle transport, i.e. Wentzel-Kramers-Brillouin (WKB) solutions
for the betatron oscillations, but there are limitations. First, the density ramps at the beginning and end of the
accelerator have been determined to be crucial for staging [7, 8] but, especially at high energies, the ramp length can
become comparable to the betatron wavelength and so the WKB approximation breaks down at the plasma-vacuum
interface. Further, particularly in laser driven wakefields, the evolution of the pulse and wakefield could be complex for
efficient acceleration in the nonlinear regime and hard to capture without resorting to full scale simulation. With the
approach described here, a full scale simulation is required to be performed, but once performed, the same simulation
may be used to study different beam phasespaces rapidly and combined with different elements to build an accelerating
lattice.

The paper proceeds in the following manner. Section II lays out the framework for transfer matrices M that are
nonlinear in the beam energy (spread). Section III derives the chromatic emittance growth from the nonlinear transfer
matrix by defining an extended beam matrix Σ, such that the emittance growth can be calculated using the expression

εN =
√

det (PTMΣMTP) , (1)
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FIG. 1: Schematic showing N stage plasma accelerator, with (chromatic) focusing lenses between plasma accelerating stages
with 2f focusing throughout. fs is the plasma stage focal length and fLs is the beam focusing optic focal-length (at the design
energy) of the sth accelerating stage. FPPs and SPPs are the primary and secondary principal planes of the accelerating stage
respectively.

where P is a projector. Section IV calculates the nonlinear transfer matrices for other simple elements, i.e. drift space
and simple focusing lens, for demonstration of combining the plasma accelerator simulations with other elements.
Section V describes a three-dimensional particle-in-cell simulation of a meter-scale beam-driven plasma-wakefield
accelerator and the construction of a set of transfer matrices through the stages. Finally, Section VI outlines a
design for a simple lattice comprising ‘cells’ of a plasma accelerating stage, two drift spaces and a simple (thin) lens
accelerating a beam of particles from 10 GeV to 1 TeV — as shown in the schematic in Fig. 1 — and calculates the
resulting chromatic emittance growth as a function of initial transverse emittance and beam energy spread.

II. LINEAR TRANSFER MATRICES FOR PLASMA ACCELERATORS

Assuming a coordinate system x, y, z, we can build transfer matrices from particle-in-cell simulations performed in a
window moving at the speed of light in the z direction, as is typical, by assuming that the beam is ultrarelativistic, 1−
βz ≪ 1, where its normalized velocity is βz = vz/c. This assumption means that the beam remains at approximately
constant phase, z − ct, and therefore experiences fields at a fixed grid position in the simulation box, i.e. time
dependent fields only. By making use of a paraxial approximation, the field gradients on the axis at that fixed grid
position integrated over time are the only information required to build the matrix describing the transport of a beam
with a given energy (the “design energy”) through the full plasma accelerator.

A. Basic transfer matrix

We start with the equations of motion for a charged particle with charge q and mass m in external fields ~E and ~B,

dx

dt
=
ux
γ
,

dy

dt
=
uy
γ
, (2)

dux
dt
' q

m
(Ex − cBy) ,

duy
dt
' q

m
(Ey + cBx) , (3)

and

dγ

dt
=
qEz
mc

, (4)

where ul = γvl is the proper velocity, with l a Cartesian component (l = x, y).
Under the paraxial approximation, we may expand the Ex, Ey, Bx and By fields as a Taylor series in x and y about

the axis;

Fl(x, y, z) = Fl(0, 0, z) + x
∂Fl
∂x

(0, 0, z) + y
∂Fl
∂y

(0, 0, z) + . . . (5)

Where F is a field (F = E,B). Hence, Eqns. (3) can be expressed as

dux
dt
' −α2

xxx− α2
xyy ,

duy
dt
' −α2

yxx− α2
yyy , (6)



3

where

α2
kl = − q

m

∂

∂k
(El − εlpcBp)

∣∣∣∣
x=0,y=0

, (7)

with εlp the Levi-Civita symbol and using Einstein summation convention.
We want to solve the equation of motion piece-wise in the form of a series of matrix solutions for each timestep in

the simulation that may be combined to form a single matrix for propagation of a charged particle beam through a
whole simulated plasma component (accelerating stage, lens etc.). The matrices will need to be sufficiently accurate
in betatron phase to consider a large number of oscillations and it should be symplectic to conserve beam emittance,
for a beam with all particles having the same energy.

We further make the following assumptions/approximations;

• The beam energy γmc2 slowly varies compared to the time step size. This means that in the transverse equation
of motion it is assumed constant over a timestep, but the beam energy is increased each step by qEz∆t/mc, i.e.

γn ' γ0 +
n∑

n′=0

qEz
n′∆t

mc
,

where the superscript n denotes the time step.

• The timestep is small compared to the plasma (laser) period, and is therefore extremely small compared to the
betatron frequency. It is therefore not necessary to use the usual accelerator physics, e.g. Cx = cos(αxx∆t/

√
γ)

and Sx = sin(αxx∆t/
√
γ)/αxx

√
γ, solutions to the harmonic oscillator equation. This simplifies expanding the

transfer matrix to arbitrarily higher order perturbations.

• The force is curl free, i.e. conservative. This means that α2
xy = α2

yx.

We can write the equations of motion in matrix form as

dw

dt
= Anw ,

where, as before, the superscript n denotes the time step,

An =




0 1
γn 0 0

−[α2
xx]n 0 −[α2

xy]n 0
0 0 0 1

γn

−[α2
yx]n 0 −[α2

yy]n 0


 and w =



xn

unx
yn

uny


 .

The solution to this equation over a time step ∆t is

wn+1 = eA
n∆twn .

If we truncate the series representing the matrix exponential at e.g. second order, the solution is not symplectic. We
solve this issue by splitting the matrix An into two matrices such that An = An1 +An2 [25], where

An1 =




0 1
γn 0 0

0 0 0 0
0 0 0 1

γn

0 0 0 0


 , An2 =




0 0 0 0
−[α2

xx]n 0 −[α2
xy]n 0

0 0 0 0
−[α2

yx]n 0 −[α2
yy]n 0


 .

From the Baker–Campbell–Hausdorff relation, eA
n
1 ∆teA

n
2 ∆t = e(An

1 +An
2 )∆t+ 1

2 ∆t2[An
1 ,A

n
2 ]+..., i.e. eA

n
1 ∆teA

n
2 ∆t is an

approximation of the exact solution to (at least) second-order accuracy in ∆t.
For a nonsingular, skew-symmetric matrix Ω, it can be shown that for X ∈ {eAn

1 ∆t, eA
n
2 ∆t}, XTΩX = Ω and hence X

is symplectic, provided that [α2
xy]n = [α2

yx]n, which is the case for a conservative force, ∇× ~F = 0. As Ani are nilpotent,
their matrix exponentials can be calculated exactly and combined to give a symplectic, second order accurate solution

to the equations of motion over a timestep wn+1 = Mnwn, using the matrix Mn = eA
n
1 ∆teA

n
2 ∆t = eA

n∆t+O(∆t2), i.e.




xn+1

un+1
x

yn+1

un+1
y


 =




1− [α2
xx]n∆t2

γn
∆t
γn − [α2

xy ]n∆t2

γn 0

−[α2
xx]n∆t 1 −[α2

xy]n∆t 0

− [α2
yx]n∆t2

γn 0 1− [α2
yy ]n∆t2

γn
∆t
γn

−[α2
yx]n∆t 0 −[α2

yy]n∆t 1


 ·



xn

unx
yn

uny


 , (8)
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where, in particular, detMn = 1. We form the full transfer matrix by calculating each matrix corresponding to the
transformation of the coordinates over a time-step and then combining these to form a single matrix describing the
propagation through the plasma element. To obtain ∂Ex/∂x|x=0,y=0 etc. from a simulation, the numerical gradient
can be taken near the axis. We introduce another index j to the matrix, because the equation of motion is solved at
a particular phase ξj = zj − ct corresponding to the position at grid point j, so that wn+1

j = Mn
j w

n
j . We can write

down the transfer matrix through the whole system at a particular phase Mj using the time ordered product

Mj(γ0) =

Nt∏

n=0

Mn
j (γnj ) , (9)

where the dependence on the particle initial energy is explicitly shown, so that the particle coordinates are transformed
through the full plasma element as

w = Mj(γ0) · w0 . (10)

The set of matrices Mj are functions of the initial particle energy, and hence need recalculating for each energy of
particle passing through the plasma. The transfer matrix is therefore calculated for a “design energy” for particles
passing through each plasma element, and then arbitrary transverse distributions may be then studied using the
resulting matrix. The relative phase error is second order, as shown in Appendix A, and therefore negligible when
using the high-resolution fields from particle-in-cell simulations.

B. Energy spread considerations

For plasma accelerators, one consideration of interest is the effect of the beam energy spread. Because of the
requirement to include the beam energy in the calculation of the transfer matrix, we need to find a different way to
approach the effect of particles having different energies without resorting to brute force calculation of Mj for every
value of initial beam energy γ0.

To do this, we consider a perturbation to the initial particle energy, γ = γ0 + δγ. The usual approach in standard
accelerator theory [22], similar to that developed in [26], is to consider the perturbed solution using a Green’s function
approach to the homogeneous equation

G(τ, τ ′) = S(τ)C(τ ′)− S(τ ′)C(τ) ,

and then adding in the resulting terms into a new nonlinear matrix. However, for the transfer matrix given in Eqn. (8),
derivatives of M are proportional to successive powers of 1/γ, which simplifies the approach and allows us to easily
expand to arbitrary order in the perturbation δγ.

For compactness of notation in this section, we drop the j and n indices on the quantities Mn
j etc. in this section.

For a particle with energy δγ from the design energy, its transfer matrix is

M(γ + δγ) = e
γ

γ+δγ A1∆t
eA2∆t .

Using γ
γ+δγ = 1− δγ

γ+δγ , we can express

M(γ + δγ) = M(γ)− δγ

γ + δγ
MD(γ) (11)

where

MD = A1∆teA2∆t .

For the specific case of the 4× 4 transfer matrix given in Eqn. (8),

MD =




−α
2
xx∆t2

γ
∆t
γ −α

2
xy∆t2

γ 0

0 0 0 0

−α
2
yx∆t2

γ 0 −α
2
yy∆t2

γ
∆t
γ

0 0 0 0


 . (12)



5

The second term on the right-hand-side of Eqn. (11) can be expanded as a Taylor series in δγ/γ;

M(γ + δγ) = M(γ) +
∞∑

p=1

(
−δγ
γ

)p
MD(γ) (13)

We may use series to expand the transfer matrix into a nonlinear transfer matrix that includes perturbation terms
in δγx, δγ2x, . . . , δγux, δγ2ux, . . . , δγy, δγ2y etc., resulting in a matrix equation of the form

wδ =Mwδ0 ,

where M is the nonlinear transfer matrix and

wδ =




1
δγ
δγ2

δγ3

δγ4

δγ5

δγ6

...




⊗ w , (14)

where ⊗ denotes the Kronecker matrix product. The matrix can be expanded to arbitrarily high terms in δγ (Note
that we expand in powers of δγ rather than δ = δγ/γ because even though the equations would be more compact, δ is
not a constant as the particle is in general accelerated in energy.) For staged plasma accelerators we may wish to go
to a high number of orders because of the relatively large energy spread and acceleration over many betatron periods
(see Appendix B). We may generate the elements in the expanded matrix using Eqn. (13) through the relation

δγpw = M(γ + δγ)δγpw0 . (15)

Including up to m terms in the expansion, each row p of the resulting n(m + 1) × n(m + 1) transfer matrix (where
n = 2 or n = 4 depending on whether w is the 2 × 1 or 4 × 1 vector describing the x, ux or x, ux, y, uy phasespace
coordinates for the particle respectively) corresponding to the transformation of δγpw will comprise the series of terms
in the expansion of M(γ + δγ) up to m′ = m− p. The resulting matrix can be expressed as

M = Im+1 ⊗M + Γ⊗MD , (16)

where Im+1 is the (m+ 1)× (m+ 1) identity matrix and Γ is the (m+ 1)× (m+ 1) strictly upper triangular matrix
with elements at row a and column b, (where a, b = 0, 1, . . . ,m) defined as

Γa,b =





(
− 1
γ

)b−a
b > a

0 otherwise
(17)

Explicit forms of this matrix and verification of this approach are given in Appendix B. As shown in this Appendix,
the number of terms required for an accurate solution may be estimated from the requirement that

∣∣∣∣∣
δγ

2

∫ ψ0

0

dψ

γ

∣∣∣∣∣

m

� m! (18)

for the highest order m in the expansion, where dψ = αkldt/
√
γ is the differential (betatron) phase.

As before, we may compose the transfer matrix for propagation through the whole plasma accelerator section at a
particular wake phase Mj using the time ordered product

Mj(γ0) =

Nt∏

n=0

Mn
j (γnj ) , (19)
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FIG. 2: Phase space coordinates of 100,000 particles for an initial beam matrix shown in blue. Red indicates particle coordinates
having propagated through a transfer matrix and green show the coordinates for the corresponding nonlinear matrix with
randomly sampled δγ.

III. CHROMATIC EMITTANCE GROWTH

As is customary in accelerator physics [22], we may consider the n-dimensional phase-space ellipse defined in terms
of a n× n dimensional beam matrix σ that obeys

wTσ−1w = 1 , (20)

with the volume of the n-dimensional phase-space ellipse being proportional to the product of the beam transverse
normalized emittances. Assuming that at each phase ξj the beam matrix is initially given by σ0j , the beam matrix
transforms through the plasma element according to

σj = Mjσ0j(Mj)
T . (21)

The transformation of phase space ellipse can therefore be easily calculated from the transfer matrix Mj . It is well
known that one of the challenges with plasma accelerators is that energy spread can lead to normalized emittance
growth through betatron phase mixing [9]. For illustrative purposes, in Fig. 2, the normalized emittance growth due
to this phase mixing is shown for propagation of a large number of particles through a (nonlinear) matrix. The figure

shows the phase-space coordinates of 100,000 particles sampled from an initial beam matrix σ0 =

[
0.01 0

0 5

]
, shown in

blue. Red indicates particle coordinates having propagated through a transfer matrix M =

[
1.1225 0.0680
19.9648 2.1000

]
(which

is the matrix corresponding to the first accelerating stage calculated in the later section) and green show the tracks
for the corresponding nonlinear matrix (not explicitly given for brevity), with energy displacements δγ randomly

sampled from a normal distribution with width
√
〈δγ2〉 = 1560. The normalized emittances calculated from the

particle distribution, using the expression

εN =
√
〈x2〉〈u2〉 − 〈xu〉2 , (22)

(in contrast to the often used εN = γβε, where ε is the trace-space emittance, which are equivalent for certain
distributions [27]) are initially εN = 0.22315 and then after passing through the matrix, εN = 0.22315 for the
distribution represented by the red dots corresponding to no energy spread, and εN = 0.59663 for the distribution
represented by the green dots, corresponding to a distribution with energy spread

√
〈δγ2〉 = 1560.

We now derive the chromatic emittance growth from the nonlinear matrix M. For brevity, we drop the j index in
the following, but note that this growth is calculated for a distribution at a given (discretized) wake phase ξj with
finite (slice) energy spread. From Eqn. (21), after passing through transfer matrix M , the beam matrix σ for a particle
with energy γ + δγ will transform as

σ = M(γ + δγ)σ0(γ + δγ)[M(γ + δγ)]T . (23)

We can calculate this transformation using the perturbative method by noting that the first two rows of the matrix
M multiplied by successive powers of δγ is equivalent to the expansion given in Eqn. (13) — up to the highest order
term included in the matrix — and so we may express

M(γ + δγ) ' PTMG , (24)
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where

P =




1
0
0
0
...



⊗ In

is a projector from the wδ to the w subspace, i.e. it can be used to extract the first n columns (or rows if transposed)
of the matrix M,

G =




1
δγ
δγ2

δγ3

...



⊗ In , (25)

and In is the n× n (i.e. 2× 2 or 4× 4) identity matrix. (Using the definition in Eqn. (25), we can express wδ = Gw).
Hence, defining Mδ ≡M(γ + δγ) ≡ PTMG, for a beam of energy γ + δγ, the beam matrix σ transforms as

σ(δγ) = Mδσ0[Mδ]
T , (26)

assuming that the initial beam matrix is identical for all particle energies, σ0.
The emittance growth due to the energy spread δγ can therefore be calculated from the chromatic variation in the

beam matrix. Assuming the beam energy distribution about the mean energy γ, ρ(δγ), is described by a normal

distribution with energy spread
√
〈δγ2〉 defined as

ρ(δγ) = C exp

(
− δγ2

2〈δγ2〉

)
, (27)

where C is a normalizing constant, then the beam matrix averaged over δγ is

〈σ〉 =

∫ ∞

−∞
ρ(δγ)σ(δγ)d(δγ) =

∫ ∞

−∞
ρ(δγ)Mδσ0[Mδ]

T d(δγ) . (28)

Technically, the distribution in energy cannot be gaussian since γ ± δγ ≥ 1, hence the lower limit in the δγ integral
cannot be −∞. However, the corresponding longitudinal momentum distribution can be defined in the range (−∞,∞)

with a gaussian distribution. To within the paraxial approximation and provided
√
〈δγ2〉/γ0 � 1, these distributions

are equivalent.
σ(δγ) can be expressed as a power series in δγ up to order 2m (since Mδ is applied left and right to σ0), where m

is the maximum order in the expansion Mδ,

σ(δγ) =
2m∑

p=0

apδγ
p ,

where ap is the pth term in the power series. For example,

a1 = − 1

γ

(
MDσ0M

T +Mσ0M
T
D

)
.

In this case, Eqn. (28) becomes

〈σ〉 =

p=2m∑

p=0

ap

∫ ∞

−∞
ρ(δγ)δγpd(δγ) . (29)

For the normal distribution given in Eqn. (27) the odd terms in (δγ)p integrate to zero and the even terms yield

〈σ〉 =

p=2m∑

p=0,even

2p/2√
π

Γ

(
p+ 1

2

)
〈δγ2〉p/2ap , (30)
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where Γ(z) is the gamma function, which can be simplified to

〈σ〉 =
m∑

p=0

(2p− 1)!! 〈δγ2〉p a2p , (31)

where x!! indicates the double factorial of x.
To calculate 〈σ〉 in a convenient way, we return to Eqn. (26), which may be written in terms of the nonlinear matrix

M as σ = PTMGσ0GTMTP so that

〈σ〉 = PTM
[∫ ∞

−∞
f(δγ)(Gσ0GT )d(δγ)

]
MTP (32)

since δγ only appears in the G matrix. (Gσ0GT ) is a n(m + 1) × n(m + 1) matrix comprising an (m + 1) × (m + 1)
block matrix of n × n sub-matrices that are each σ0δγ

q, where q = i + j, with i the row and j the column indices
(starting at 0) of the (m+ 1)× (m+ 1) block matrix, i.e. for m = 3,

(Gσ0GT ) =




σ0 σ0δγ σ0δγ
2 σ0δγ

3

σ0δγ σ0δγ
2 σ0δγ

3 σ0δγ
4

σ0δγ
2 σ0δγ

3 σ0δγ
4 σ0δγ

5

σ0δγ
3 σ0δγ

4 σ0δγ
5 σ0δγ

6


 . (33)

When integrated over δγ for the normal distribution given in Eqn. (27), we can express the elements of the resulting
block matrix, Σ as

Σij =

{
〈δγ2〉 i+j

2 σ0(i+ j − 1)!! i+ j even

0 i+ j odd
, (34)

i.e. for m = 3,

Σ =




σ0 0 σ0〈δγ2〉 0
0 σ0〈δγ2〉 0 3σ0〈δγ2〉2

σ0〈δγ2〉 0 3σ0〈δγ2〉2 0
0 3σ0〈δγ2〉2 0 15σ0〈δγ2〉3


 . (35)

The new beam normalized emittance, defined as εN =
√

detσ is, therefore,

εN =
√

det (PTMΣMTP) . (36)

To verify this expression, Fig. 3 shows the change in normalized emittance (i.e. subtracting the initial emittance)
for a beam of particles with a mean energy γ0 = 19500 for a range of values in the gaussian width of the energy
distribution,

√
〈δγ2〉. The red curve shows the calculation of Eqn. (36) using the nonlinear transfer matrix expanded

to m = 9 orders (the matrix is that of first accelerating stage calculated in the next section) M. This agrees with
the data indicated by the blue curve, which shows the normalized emittance calculated using Eqn. (22) for 100,000
individual particles with energy offsets δγ randomly sampled from a normal distribution. The small fluctuations in
the blue curve are due to particle statistics.

Eqn. (36) represents the growth in transverse emittance of a beam slice of width ∆ξ at a particular wake phase ξj .
The chromatic emittance growth of a whole beam with longitudinal density profile b(ξ), discretized as bj will be

εN =

√√√√√det


PT


∑

j

wjMjΣjMT
j


P


 . (37)

where the weights wj are the terms in the discrete integral of the beam profile, e.g. for Riemann summation wj =
bj∆ξ.
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FIG. 3: Normalized emittance growth through a nonlinear matrix calculated by summing over a large number of particle tracks
(blue) compared the calculation using Eqn. (36) (red), as a function of

√
〈δγ2〉.

IV. OTHER TRANSPORT ELEMENTS

The main advantage of using a transfer matrix approach for the plasma elements is to be able to combine it with
other elements. For a drift space of length L, the vector w is transformed by the matrix

d = exp(A1L/c) = In +A1
L

c
.

For the nonlinear vector wδ, the corresponding drift space matrix can be found using the same process as before,
by expanding d in a Taylor series up to highest term m in δγ around design energy γ. As d only contains terms in
1/γ and constant with respect to γ, as with the plasma accelerator transfer matrix, the nonlinear transfer matrix for
a drift space is

D = Im+1 ⊗ d+ Γ⊗A1
L

c
. (38)

For introducing focusing optics to the system, in the context of plasma accelerators these may be conventional
optics, i.e. quadrupole triplets, or plasma optics. Given a transfer matrix through the optic, a nonlinear matrix up
to order m can always be derived through the process outlined previously. For simplicity, here we consider a general
optic using the thin lens approximation, which is valid provided the effective focal length is very large compared to
the beam size. Whether the optic is a quadrupole triplet or some sort of plasma lens, however, it will be chromatic.
We assume that the lens focal length f has a f ∝ γ relationship. Therefore, given the transfer matrix

F = In/2⊗
[

1 0
− c
f? 1

]
(39)

where f? = f(γ)/γ is the focal length divided by γ and is therefore a constant, the nonlinear focusing matrix is trivial,
as it has no explicit γ dependence,

F = Im+1 ⊗ F . (40)

Note that using the coordinates we choose here, (x, ux) instead of (x, x′), the chromatic effects of focusing manifest
themselves in the drift-space matrix rather than the lens matrix.

V. PARTICLE-IN-CELL SIMULATION OF A 10 GEV STAGE

For demonstrating the nonlinear transfer matrix approach outlined in this paper, we use the 3D relativistic particle-
in-cell framework OSIRIS 4.0 [28] to simulate a beam driven plasma wakefield accelerator. A beam driven plasma
wakefield was chosen for clarity in this paper, but this technique would be more interesting for a laser driven wakefield,
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in which the wake evolves as the laser pulse propagates due to self-phase modulation etc. There is no limitation on
the complexity of the laser evolution, as the particle beam is at fixed phase relative to the moving box, so the laser
may fall back due to dispersion or modulate in a complex way, but the fields at the particle position will be accurately
captured (provided the particle beam is ultrarelatistic, γ > 1000 from the beginning, which means that an injection
stage of a plasma accelerator cannot be modelled accurately using this technique).

A. Simulation description

A simulation was run on an z × x × y mesh of 128 × 150 × 150 grid points with spatial limits from −10c/ωp0
to 10c/ωp0 in the transverse dimensions and −14c/ωp0 to 2c/ωp0 in the z direction with a time-step ωp0∆t = 0.06.
Standard 5-pass smoothing algorithms were applied to the electromagnetic fields and currents. A 2nd order dual type
electromagnetic solver [29] and open (perfectly matched layer and open particle bounds) boundary conditions were
used. Two species were included; a driver beam species of electrons with 4 particles-per-cell and γ = 80, 000 with a
gaussian shape in all directions having a peak density of 150 n0 and widths σz = 0.7c/ωp0 and σx, σy = 0.2c/ωp0,
and a plasma species of electrons with 4 particles-per-cell, a peak density of n0 and a profile given by the function
n(z) = exp(−[(z − 8000c/ωp0)2/(7000c/ωp0)2]10). For a density n0 = 1016 cm−3, this corresponds to an 80 cm long
plasma channel with approximately 8 cm long ramps in density from vacuum. Long ramps have been shown to help
with adiabatic matching of the beam [7]. The drive beam was started in vacuum with zero charge and momentum,
and was both accelerated in z and ramped up in charge at the start of the simulation, with the equations of motion
otherwise fixed, to establish the correct vacuum fields before entering the plasma.

Fig. 4 shows the electric fields taken from the 3D simulation at ωp0t = 9000 in the z-x plane at y = 0. (left) the
accelerating (Ez) field and (right) the focusing (Ex) field. The cyan and yellow colors are because the colormap is
saturated, due to the strong fields where the drive beam is located.
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Ex

FIG. 4: Fields taken from the 3D simulation at ωp0t = 9000 in the z-x plane at y = 0. (left) Accelerating (Ez) field and (right)
focusing (Ex) field.

Line diagnostics extracted the Ez, Ex, and By fields along z direction on the mesh points either side of the beam
center to obtain the field gradients. These were extracted every 10 timesteps, i.e. 0.6/ωp0. The Ex and By fields were
used to calculate the field gradient along the axis in the x direction by subtracting the values either side of the center
line and dividing by 2∆x, i.e. the center differenced finite difference gradient

[
α2
xx

]n
j

= − ∂

∂x
(Ex − cBy)

∣∣∣∣
n

x=0,j

(41)

' −
(Ex − cBy)nj,k+1,l − (Ex − cBy)nj,k−1,l

2∆x
,

where the indices j, k, l are the grid indices expressed relative to the center line and n is the time step. The
accelerating field Ez and focusing force gradient as a function of time throughout the whole simulation are shown
in Fig. 5. These can be used to generate nonlinear matrix M for propagation of a beam with initial beam energy
γ0mc

2 through the whole simulation by using the methods described in the previous section. In principle this could
be performed for every wake phase. Here, we choose only the wake phase indicated by the black dashed line in Fig. 5.
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FIG. 5: (left) The axial accelerating field Ez and (right) focusing gradient on an ultrarelativistic particle propagating in the
z direction, (e/mcωp0)∂(Ex − cBy)/∂x|x=0 both extracted as a lineout in the z direction along the axis and plotted as a time
series. The black dashed line indicates the wake phase chosen for the beam transport.

B. Transport through 10 GeV stages

Using the transverse field gradient and longitudinal field time histories obtained from the particle-in-cell simulation,
we can construct the matrix Mn(γn), at every time step and then calculate the composite matrix M(γ0) comprising
transport through an entire plasma accelerating stage for a given initial energy γ0. Fig. 6 shows a representative
trajectory through the fields. The red and black lines show repeated application of Mn(γn) to initial extended
coordinates wδ0, for either δγ = 0 or δγ = 1950 for an initial beam energy γ = 19500, i.e. δγ/γ = 0.1. The blue curve
shows the particle energy as a function of propagation time, up to γ = 42891, i.e. just over 10 GeV acceleration in
the stage. Although it is obvious has to be the case, we also explicitly show the result of M(γ0)wδ0 as a red and black
circle, showing the transformation of the particle coordinates using the single M(γ0).

We may now proceed to designing an accelerating lattice by using the final energy γi for each stage and using it as
the initial energy for the next stage. Through this iterative process, we end up with a set of nonlinear matrices Ms,
where s is the stage index, i.e. stage 0 is M0 =M(γ0) etc. This matrix set can then be used to integrate with other
transport elements.

VI. DESIGN OF A SIMPLE 1 TEV LATTICE

To illustrate the use of these plasma accelerator transfer matrices, we introduce a simple lattice design, as illustrated
in Fig. 1. Each accelerator stage has a focusing optic after it. A thin lens is assumed for this focusing optic, with focal
length at the sth stage given by fLs = 1/(ksLs) where Ls is the lens thickness and ks represents the lens strength.
Since for the thin lens to be valid, Ls � fLs, we must have Ls = εfLs, where ε is a small number. Therefore, we scale
the focal length using fLs = 1/(ksεfLs). Assuming a fixed field gradient, the lens strength is inversely proportional to
γ, ks ∝ 1/γ, and so the focal length should scale as fLs ∝ √γ to maintain the thin lens approximation for all stages.
We start with a first stage focal length at the design energy of fL1 = 8000c/ωp0, corresponding to approximately 40 cm

for a plasma density of 1016 cm−3. The focal lengths of the optics in subsequent stages scale as fLs = fL1

√
γfs/γf1,

where γfs is the energy after the sth stage.
Each plasma accelerating stage has its own focusing characteristics, and may act as either a positive or negative

lens, depending on the betatron phase. It would be possible to tune the betatron phase through each acceleration by
adjusting the plasma length, but here we simply use an adjustable drift distance between lenses / accelerating stages
to have “2f” re-imaging of the beam to each stage. The focal length of the thin lenses is sufficiently long that the
distance between the lens and accelerating stage remains positive even if the accelerating stage acts as a negative lens
(i.e. having a negative drift to the virtual focus).
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FIG. 6: Representative particle track through fields taken from the 3D simulation. The design (normalized) energy is initially
γ = 19500, and it is accelerated to γ = 42891, as indicated by the blue curve. The particle undergoes betatron oscillations
indicated by the red and black dashed curves. The red curve shows the track for a beam δγ from the design energy, with
δγ = 1950. The black and red circled dots at the end show the result of a calculation from the initial coordinates using the
combined matrix M. Colorscale is the accelerating field (see Fig. 5).

The distances between each accelerating stage and lens are calculated in the following way.

1. The accelerating stage acts like a thick lens, so the distances to the primary (FPP) and secondary (SPP)
principal planes are calculated through

dFPPs
=

1−Ms
2,2

Ms
2,1

γs−1

and

dSPPs
=

1−Ms
1,1

Ms
2,1

γs ,

where γs is the final beam energy after acceleration through the sth stage.

2. This allows correction of Ms to act as a thin lens through

M?s = DSPPsMsDFPPs ,

where DFPPs
is the nonlinear matrix for the drift space for distance dFPPs

and similar for SPP .

3. The effective focal length of the accelerating stage is fs = −γs/Ms
2,1. We express the drift space with length

2fs as D2fs .

4. The thin lens focusing optic with focal length fL has a matrix FsL, and we express the drift space with length
2fL as Ds2fL . These need an s index because they depend on the beam energy γs.

5. The matrix describing a “cell” of the lattice, comprising the sth accelerating stage and focusing optic separated
by “2f” distances is therefore

Cs = Ds2fLFsLDs2fLD2fsM?sD2fs−1 .

The Cs matrices can then be combined to form

C =

Nstages∏

s=0

Cs , (42)

which is the matrix that describes transport through the full accelerating structure.
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VII. CHROMATIC EMITTANCE GROWTH THROUGH 85 STAGE PLASMA ACCELERATING
LATTICE

The matrix C was calculated for the plasma accelerating stage simulated in Section V for 85 stages / focusing lenses
in the arrangement described in Section VI, each accelerating the beam by 11.95 GeV to a maximum energy of 1.03

TeV. The particle distribution is initialized using a beam matrix σ0 =

[
εN0

2 0
0 1

]
, which corresponds to an input beam

with θ ∼ 1/γ convergence angle focused at 2f0 before the start of the first accelerating section.

FIG. 7: Relative emittance growth ∆εN/εN0 through 85 accelerating stages as a function of initial relative energy spread√
〈δγ2〉/γ0 and initial normalized emittance εN0. The colormap / contours show the base-10 logarithm of ∆εN/εN0.

A. Chromatic slice-emittance growth

Fig. 7 shows the relative (slice) emittance growth ∆εN/εN0 through this lattice at the phase indicated in Fig. 5 as a

function of initial relative energy spread
√
〈δγ2〉/γ0 and initial normalized emittance εN0, calculated using Eqn. (36).

The colormap / contours show the base-10 logarithm of εN/εN0 − 1 = ∆εN/εN0. The normalized emittance εN is
normalized to the length unit c/ωp0, which means that for a baseline plasma density of 1016 cm−3, a normalized
emittance of εN ∼mm-mrad (µm) corresponds to εNωp0/c = 0.019. This parameter search indicates that for initial

relative energy spread below
√
〈δγ2〉/γ0 . 10−3 and initial normalized emittance below εNωp0/c . 10−2 (i.e. εN .

mm-mrad), the chromatic emittance growth is relatively small (∆εN/εN0 . εN0).

B. Energy spread growth of a finite length beam

The example before calculated the evolution of the transverse phase space for an ensemble of particles at a partic-
ular wake phase, which therefore experiences no energy-spread growth as the particles all interact with an identical
longitudinal electric field. The effect of a finite duration beam, which experiences different accelerating fields at dif-
ferent phases in general, can be taken into account by calculating the transport for different phases ξ and combining
the resulting beam matrices, as in Eqn. (37). One very important consideration is loading of the wake [30, 31],
which requires a specially shaped bunch. The effect is to flatten the electric field experienced by the witness bunch
such that in the ideal case all particles experience the same acceleration and therefore no energy-spread growth as in
the previous example. This effect can be included using our method by the addition of an ultrarelativistic witness
beam in the simulation, as in the ultrarelativistic limit its fields do not depend on the beam energy and cancel for
co-propagating particles of the same charge.
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In practice, however, perfect loading will not be possible and, in general, some energy-spread growth will be
expected. We leave detailed studies of beam loading, beam shape and duration using calculations of the beam matrix
over a range of phases for future work, but it is instructive to redo the calculation from the previous section to include
energy-spread growth effects and estimate how good the beam-loading must be. We do this using the following simple
model:

Assuming a finite-duration beam, with width
√
〈δξ2〉 in ξ, that has initially zero slice energy-spread (in practice,

it just needs to be much smaller than the overall beam energy spread) and gains energy spread at each step because
particles at different phases experience different accelerating fields. The normalized charge-density profile of the beam
is b(δξ), where δξ = ξ − ξ0 and ξ0 is the phase of the beam having reference energy γ0. We assume that the energy
of the beam at (relative) phase δξ is given by an arbitrary function g(δξ). Hence, the δγ-δξ phase-space distribution
of the beam is described by the distribution

f(δγ, δξ) = b(δξ)δ(δγ − g(δξ)) , (43)

where δ(x) is the Dirac delta distribution. The energy distribution of the full beam is ρ(δγ) =
∫∞
−∞ fd(δξ), which can

be written as

ρ(δγ) =

∫ ∞

−∞

b(δξ)

|g′(g−1)|δ(δξ − g
−1)d(δξ) , (44)

where g−1(δγ) is the inverse of the function g(δξ), i.e. g−1(δγ) = δξ and the prime ′ indicates the derivative with
respect to δξ. Hence,

ρ(δγ) =
b(g−1(δγ))

|g′(g−1(δγ))| . (45)

In the blowout regime, the transverse fields are uniform in ξ and the longitudinal field is linear in the interior. We
therefore assume that over a timestep, the function is given by g(δξ) = αδξ, where α is a constant, i.e. a linear chirp,
and the bunch shape is gaussian, i.e.

b(δξ) = B exp

(
− δξ2

2〈δξ2〉

)
, (46)

where B is a normalizing constant and
√
〈δξ2〉 is the bunch longitudinal width. The energy distribution of the whole

beam is therefore

ρ(δγ) =
B

|α| exp

(
− δγ2

2α2〈δξ2〉

)
. (47)

This distribution is identical to that used in Eqn. (27), with an energy spread
√
〈δγ2〉 = α

√
〈δξ2〉 and therefore the

same expanded beam matrix can be used, under the assumption that the transverse fields do not vary over the beam
(i.e. either it is ultrashort or in the fully blown out regime. The important difference is, however, that the beam
energy-spread changes every timestep, because of the variation in accelerating field throughout the beam.

Under the assumption that the field is linear, the increase (or decrease [32]) in the beam energy spread at each
time-step will be because of a change in the beam chirp, i.e.

√
〈δγ2〉(t) = q

√
〈δξ2〉

∫ t

0

∂Ez
∂ξ

∣∣∣∣
ξ=ξ0

(t′)dt′ , (48)

The gradient in Ez does not in general have to follow the same temporal evolution as Ez. Here, for simplicity, we
assume that the gradient of the longitudinal field evolves identically to the field, i.e. ∂Ez/∂ξ ∝ Ez, which implies

that the ratio of the beam energy-spread to the beam energy,
√
〈δγ2〉/γ0, is a constant.

By removing the γ factors in Γ, Eqn. (17), and replacing the δγ factors in Σ, Eqn. (34), and the extended system
vector wδ, Eqn. (14), etc. with δγ/γ, the transfer matrix approach with an expansion in (constant) δγ/γ instead of
(constant) δγ can be used to calculate the chromatic emittance growth of a finite duration gaussian beam on a field
gradient that results in energy spread growth through the development of a linear chirp in the beam. For the same
85 stage lattice used in the previous example, the parameter space of the emittance growth is shown in Fig. 8. These
data indicate that for a growth in the energy spread owing to beam chirp below 10−5 of the energy gain per stage,
i.e.

√
〈δγ2〉 . 10−5γ0 and initial normalized emittance below εNωp0/c . 10−2, i.e. εN . mm-mrad, the chromatic

emittance growth is relatively small (∆εN/εN0 . εN0). This requires either a short beam or flattened fields through
beam loading such that the variation in the accelerating field over the bunch is of order 10−5 of the field strength.
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FIG. 8: Relative emittance growth ∆εN/εN0 through 85 accelerating stages as a function of constant relative energy spread√
〈δγ2〉/γ0 and initial normalized emittance εN0. The colormap / contours show the base-10 logarithm of ∆εN/εN0.

VIII. CONCLUSIONS

In this work we have calculated the transport of an electron beam through an 85 stage beam driven plasma
accelerator using simple lenses for beam transport. No effort was made to optimize this (by for example paying
attention to the betatron phase at the exit of each stage by tuning the plasma accelerator length), but nevertheless
negligible chromatic emittance growth can be achieved for likely collider parameters even for this simple design. In
particular, we have shown that limiting the energy spread growth due to beam chirp from non-uniform fields is an
important consideration, and beamloading to flatten the fields alone may be challenging. The use of a plasma dechirper
[20, 32] is one way to meet this challenge, by correcting for energy spread growth as the bunch is accelerated. As has
been previously shown, the effects of beam misalignment need consideration [12], which could be studied through a
realistic design using the linear transfer matrix approach outlined here and a large number of particles. The choice
not to model e.g. real quadrupoles was because it is not clear what the optics will be for a plasma collider design.
If they are plasma optics, then these could be simulated and modeled using the approach described here with the
nonlinear matrices.

Note that a beam driven accelerator was chosen here, as it is a clearer example for demonstration purposes, but the
real usefulness of this technique will be for laser-pulse driven wakes where the laser can have a complex interaction
with the plasma leading to a relatively highly dynamically evolving wakefield. This is no problem for the transfer
matrices here as the full evolution will be captured. Indeed, for lepton beams sufficiently energetic that their phase
slippage would be small compared to the wavelength of the drive beam — e.g. for 1 µm lasers, over a meter length
stage this is already a reasonable approximation for only a 1 GeV electron beam — then even the interaction of the
particle with the oscillating laser fields themselves would be correctly modeled.

It is worth briefly reviewing the approximations of this transfer matrix approach compared with a full scale simu-
lation to understand its limitations. The main approximations can be summarized as follows:

• The constant speed of light phase approximation. This is generally a good approximation. For particles with
energies exceeding a GeV, the phase advance owing to this approximation over a meter propagation (a typical
plasma stage length) is a fraction of a tenth of a micron, and at 10 GeV it is already at the nanometer range.
This means that even interaction with the fast oscillating laser fields should be accurate in most cases.

• The paraxial approximation. This is also generally a good approximation for scenarios of interest. This means
that the beam is primarily traveling in the forward direction and also that the transverse forces are linear. While
the fields in a plasma accelerator can be nonlinear in general, they will be linear near the axis. The beam will be
required to be small compared to the wake diameter for any reasonable staged design to work. If non-linearities
were necessary to consider, they could be included as a perturbation using a nonlinear matrix approach similar
to the one we address earlier in this paper for energy spread (i.e. by including terms in x2, y2 etc. in the matrix).
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• The external fields approximation. This is a limitation of the model in addressing problems such as instabilities
like hosing [33], since the particle’s currents do not feed-back onto the wake fields. Another prominent issue
to address is that of beam loading [31], i.e. that the particle bunch in a plasma wakefield may be designed
to flatten the longitudinal field so that particles at different phases experience the same accelerating gradient.
However, this approximation does avoid fictitious numerical feedback between the beam and the fields [34].

For properly modeling instabilities involving the interaction of the beam with the wake, the only solution is to run a
full self-consistent simulation. In the case of beam loading, the transfer matrix approach is still useful because first,
the leading particle sheet of the bunch can be modeled accurately, and understanding its behavior should still be
useful in design before running a full scale simulation. Second, the fields of an ultrarelativistic beam don’t change
much with γ, and the beam loading affects the longitudinal field. The transverse force due to the bunch itself is
effectively cancelled for co-moving particles. Moreover, for an ultrarelativistic beam, the lack of dispersion means the
bunch shape will stay the same as it is accelerated. This means a single simulation could be run with a witness beam
of a given energy (for γ ≫ 1), and then the fields used to understand the beam transport for stages with different
energies / beam profiles under the assumption that the witness beam is injected into the same phase in each stage.
Nevertheless, the external field approximation is the most significant limitation of the model.
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Appendix A: Betatron phase error

To estimate the phase error from the symplectic second order scheme for betatron oscillations, we consider the 2×2
submatrix representing motion in the x direction only:

Mx =

[
1− α2

xx∆t2

γ
∆t
γ

−α2
xx∆t 1

]
, (A1)

where we have dropped indices for timestep etc. for clarity. This can be compared with the usual transfer matrix
solution [22];

M̃x = exp[A∆t] ≡
[
Cx Sx
C ′x S′x

]
(A2)

where

Cx = cos

(
αxx∆t√

γ

)
,

Sx =
1

αxx
√
γ

sin

(
αxx∆t√

γ

)

and the prime ′ denotes the derivative with proper time τ , since M̃x represents solutions to the oscillator equation

d2x

dτ2
= −γα2

xxx . (A3)

As both matrices have a determinant of 1, the eigenvalues λ of Y ∈ {Mx, M̃x} are given by

λ =
TrY

2
± i
√

1−
(

TrY

2

)2

.
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Hence, the exact solution has eigenvalues λ± = exp(±iαxx∆t/
√
γ) with phase angle θ = αxx∆t/

√
γ, as expected,

whereas the second order solution has eigenvalues

λ± = 1− α2
xx∆t2

2γ
± i
√

1−
(

1− α2
xx∆t2

2γ

)2

with phase angle

θ = arctan




√
1−

(
1− α2

xx∆t2

2γ

)2

1− α2
xx∆t2

2γ


 .

Expanded for small αxx∆t/
√
γ, this can be expressed as

θ =
αxx∆t√

γ
+

1

24

(
αxx∆t√

γ

)3

+ . . .

Hence, the betatron frequency is larger by a factor of 1 + α2
xx∆t2/(24γ) using the symplectic second order scheme

compared with the analytic solution. Since in numerical simulations to resolve the plasma dynamics α2
xx∆t2 . 1, i.e.

α2
xx∆t2/(24γ) ≪ 1, this is generally a negligible error.

Appendix B: Nonlinear transfer matrix: Explicit forms, validation and accuracy of solutions

In this appendix we give explicitly forms of the matrix M for the purposes of clarity. For the simpler system in
phasespace coordinates x, ux only, the transfer matrices are

M =

[
1− α2

xx∆t2

γ
∆t
γ

−α2
xx∆t 1

]
, MD =

[
−α

2
xx∆t2

γ
∆t
γ

0 0

]
, (B1)

but it is straightforward to extend this analysis to the 4 × 4 transfer matrix. First, we expand to first order in δγ
only. The particle coordinates including the nonlinear terms are

wδ =

[
1
δγ

]
⊗ w =




x
ux
δγx
δγux


 (B2)

and the corresponding transfer matrix is, in block matrix and explicit forms respectively,

M =

[
M − 1

γMD

0 M

]
=




1− α2
xx∆t2

γ
∆t
γ

α2
xx∆t2

γ2 −∆t
γ2

−α2
xx∆t 1 0 0

0 0 1− α2
xx∆t
γ

∆t
γ

0 0 −α2
xx∆t 1


 . (B3)

We may extend this process to any order in δγ, for example for expansion in a series beyond 6th order, the matrix
in block matrix form is

M =




M − 1
γMD

1
γ2MD − 1

γ3MD
1
γ4MD − 1

γ5MD
1
γ6MD . . .

0 M − 1
γMD

1
γ2MD − 1

γ3MD
1
γ4MD − 1

γ5MD . . .

0 0 M − 1
γMD

1
γ2MD − 1

γ3MD
1
γ4MD . . .

0 0 0 M − 1
γMD

1
γ2MD − 1

γ3MD

0 0 0 0 M − 1
γMD

1
γ2MD . . .

0 0 0 0 0 M − 1
γMD . . .

0 0 0 0 0 0 M . . .
...

...
...

...
...

...
...




. (B4)
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The reason for expanding to high order is to allow a large phase difference due to energy spread to accumulate
without error. The expansion means that the transfer matrix is no longer symplectic. We need a way of calculating
how many terms are needed in this expansion for a given situation. Although there may be in general a complicated
field variation, we can estimate the betatron phase accumulated for a given situation and use this to estimate the
number of terms needed in the expansion.

For the nonlinear matrix expanded in δγm described above, the maximum term required in δγm can be estimated
through expansion of the eigenmodes. Assuming the time-step is small, ∆t→ 0, the eigenvalues of M approach

exp

(
±i
∫ t

0

αxx(t′)dt′√
γ(t′)

)

(for discussion on the finite difference phase error, refer to section A). For a particle with (normalized) energy γ+ δγ,

the eigenvalues will be exp(±i
∫ t

0
αxx(t′)dt′/

√
γ(t′) + δγ). Writing the phase for δγ = 0 as ψ0 =

∫ t
0
αxx(t′)dt′/

√
γ(t′),

consider first that the phase for a particle with an energy deviating by δγ can be expanded as

exp

[
±iψ0 ± i

∫ ψ0

0

dψ

(
−1

2

δγ

γ
+

3

4

δγ2

γ2
+ . . .

)]
,

where dψ ≡ αxx(t′)dt′/
√
γ(t′). After factoring out exp(iψ0), expanding the remaining exponential term will result

in many terms in higher powers of δγ/γ. Since we are interested in considering large phase ψ0 (i.e., many betatron

oscillations), however, the magnitude of the largest term at any order m in δγ/γ will in general be |
∫ ψ0

0
dψδγ/γ|m/2m!

and hence, to determine how many orders are needed for an accurate solution, we require

∣∣∣∣∣
δγ

2

∫ ψ0

0

dψ

γ

∣∣∣∣∣

m

� m! (B5)

for the highest order m in the expansion.
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FIG. 9: Betatron oscillations modelled using the expanded nonlinear transfer matrix in Eqn. (B4). (a) Oscillations with an
increasing γ factor from γ0 = 100 to γ0 = 500 corresponding to linear acceleration. The dashed lines correspond to analytic
(WKB) solutions for betatron oscillations for the design γ = γ0 (blue) and γ = γ0 + δγ (black), for a energy deviation δγ = 10.
The colored solid lines indicate solutions using the nonlinear matrix with different orders in δ = δγ/γ up to the δ9th term,
i.e. m = 9. (b) The error in the solution for oscillations with fixed γ = 100, defined as |xnδm − x|2, where x is the analytic

solution and xnδm is the matrix solution including terms up to m. The black dashed lines show the thresholds
∣∣∣ψ0

2
δγ
γ

∣∣∣m /m! = 1

corresponding to Eqn. (B5).

Fig. 9 shows betatron oscillations modelled using the expanded nonlinear transfer matrix in Eqn. (B4). Fig. 9a shows
oscillations with an increasing γ factor from γ0 = 100 to γ0 = 500 corresponding to linear acceleration. The dashed
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lines correspond to analytic (WKB) solutions for betatron oscillations for the design γ = γ0 (blue) and γ = γ0 + δγ
(black), for a energy deviation δγ = 10. This corresponds to δγ/γ = 0.1 initially, which is far larger than any real
design, but is chosen to stretch the limits of the approximation. The colored solid lines indicate solutions using the
nonlinear matrix with different orders in δ = δγ/γ up to the δ9th term, i.e. m = 9. (b) The error in the solution for
oscillations with fixed γ = 100, defined as |xnδm−x|2, where x is the analytic solution and xnδm is the matrix solution

including terms up to m. The black dashed lines show the thresholds
∣∣∣ψ0

2
δγ
γ

∣∣∣
m

/m! = 1 corresponding to Eqn. (B5).

These indicate that for betatron phases less than the threshold phase given by this condition, the error in the matrix
solution remains small.
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FIG. 10: Demonstration of method accuracy; Betatron oscillations for particle linearly accelerated with design energy γ = 1000
to 2 × 106 over a total time of ωt = 107, where the betatron frequency is ω/

√
γ, with a deviation from the design energy of

δγ = 20, i.e. corresponding to an initial relative energy spread δγ/γ = 2%. The main panel shows the (unresolvable) oscillations
for a WKB solution compared with the nonlinear matrix solution including terms up to m = 9 over the full range. The inset
panels show expanded regions at the beginning, middle and end.

Fig. 10 shows betatron oscillations for particle linearly accelerated with a design energy from γ = 1000 to 2× 106

over a total time of ωt = 107, where the betatron frequency is ω/
√
γ and ω is a constant. The particle has a deviation

from the design energy of δγ = 20. These parameters roughly correspond to a particle being accelerated from 500
MeV to 1 TeV in a 100 m long plasma accelerator, for a particle with normalized energy γ+ δγ in a beam that has an
initial relative energy spread δγ/γ = 2%. The main panel shows the (unresolvable) oscillations for a WKB solution
compared with the nonlinear matrix solution including terms up to m = 9 over the full range. The inset panels show
expanded regions at the beginning, middle and end. These show that the methods described in this manuscript of the
nonlinear matrix expanded to 9 orders in δγ/γ can accurately capture the betatron oscillations with negligible phase
and zero amplitude error over the full range of acceleration.

Appendix C: Scaling in the number of operations for the different methods discussed

Here, we discuss the number of operations required in the linear and nonlinear transfer matrix methods compared
with an imagined generic second-order particle tracking code. M is the basic transfer matrix and w is the system vector.
An imagined tracking code would involve a numerical scheme that would be equivalent to the repeated application of
M to w. For M being represented by an n × n matrix, at most n2 multiplication and addition operations would be
needed per time-step, equivalent to the matrix multiplication Mw. For a calculation of Nt timesteps, the number of
operations required to calculate the particle trajectory in a tracking code would scale as O(Ntn

2). Using the linear
transfer matrix for a single particle, the number of operations would scale as, at most, O(Ntn

3), with the extra factor
of n because it involves repeated matrix multiplication MM rather than Mw.

For a large number of particles, Np, being tracked through the same field structure and with the same energy, the
number of operations needed for calculating the end state of the particles scales as O(NpNtn

2) for a tracking code,
but O(Nmax(t,p)n

3), where Nmax(t,p) = max(Np, Nt), for the transfer matrix method as the full transfer matrix only
needs calculating once. Hence, O(Np/n) more operations are required for a particle tracing code to calculate the final
phase-space positions of Np particles. For Np � n, this is evidently a substantial computational saving (n is either
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2 or 4, but Np may be 104 or more for good statistics). Moreover, the matrix method can be used to transform the
beam phase space rather than individual particle tracks.

For the (m + 1)n × (m + 1)n nonlinear matrix, M, the number of operations in the calculation MM scales as
(at most) O(m3n3), which means that the method is (at most) O(m3n) times more expensive than using a simple
particle tracing code for a single trajectory. This appears to be undesirable as for m = 9, there are O(103) more
operations required, which even for a very large number of particle tracks is not a favorable scaling. However, if the
phase-spaces of particles with a number of different energies, Nγ , are of interest, as in the study in this manuscript,
then even the linear matrix method would need to be calculated for each energy, so the number of operations would be
O(NγNmax(t,p)n

3). Whereas, for the nonlinear matrix, the number of operations required would be O(Nmax(t,p)m
3n3)

(as Nγ ≤ Np). This means that the linear matrix method would require O(Nγ/m
3) more operations than the nonlinear

method. For random sampling of energies to generate a gaussian distribution, Nγ = Np, as each particle requires
a randomly sampled energy. Therefore this can be a significant saving if Np � m3, as in our study (Np = 105,
m3 ∼ 103).

For the N = 200× 200 point parameter space of particle phase spaces we investigated in Figs. 7 and 8, the number
of operations required for a generic tracking code would scale as O(NNpNtn

2) compared with O(Ntm
3n3) for the

nonlinear matrix method (Nt � Np in our studies), i.e., the full calculation of Np particles needs repeating N times
for the tracing code, but once the nonlinear matrix for the lattice is generated, the parameter space is investigated
with N operations of size m3n3 only (this assumes that N < Nmax(t,p)). Hence, the ratio of the number of operations
required for a generic tracking code compared to the nonlinear matrix method for the parameter space investigated
here scales as O(NNp/m

3n). With N = 4× 104, Np = 105, n = 2 and m = 9, this ratio is O(106), which would have
made the total calculation for this paper that ran in 143 seconds (on a 4 GHz Intel Core i7 Macintosh computer, not
including the particle-in-cell calculation of the field structure, vectorized code written in MATLAB 2020a) unfeasible
without making use of a large computing cluster.
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