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Abstract

Worked examples can help novice learners develop early schemata from an expert’s
solution to a problem. Nonetheless, the worked examples themselves are no guaran-
tee that students will explore these experts’ solutions effectively. This study explores
two different approaches to supporting engineering technology students’ learning in
an undergraduate introductory programming course: debugging and in-code com-
menting worked examples. In a Fall semester, students self-explained worked ex-
amples using in-code comments (n=120), while in a Spring semester, students de-
bugged worked examples (spring n=101). Performance data included the midterm
and final exams. Prior exposure to programming courses was taken from a survey
at the beginning of each semester. Findings suggest that both the debugging and
explaining forms of engagement with worked examples helped students with no
prior programming experience to succeed in the course. For the worked examples
to be effective, those need to be provided with some explicit form of engagement
(i.e., debugging or self-explaining). Combining both strategies following explaining
first and debugging second may result in a more effective approach.

Keywords Programming - Novice - Learning - Strategies - Commenting -
Debugging - Worked examples - Schemata - Models - Cognitive load

1 Introduction

Jobs in computer science and Information Technology (I.T.) related fields represent
a growing sector. According to the Southern Regional Education Board (SREB), by
2020, 4.6 million out of 9.2 million jobs in STEM fields (Science, Technology, Engi-
neering, and Math) in the U.S. will be computer-related, and 3.8 million jobs will be
in computer science ([SREB], 2016; Kaczmarczyk & Dopplick, 2014). Furthermore,
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The U.S. Bureau of Labor Statistics ([BLS], 2015) estimates that by 2024 nearly
4.6 million high-wage jobs will be in computing and related fields. However, most
countries are not on track to meet the labor market demand in computing fields.
Meeting the demand in these innovation-intensive fields requires the governments
to greatly expand and diversify their computing workforce ([SREB], 2016). Several
efforts have been conducted to increase the coverage of Computer Science in K-12
education, but these kinds of policies are only starting to be implemented country-
wide in some specific nations. There are some initial efforts to increase the number
of hours that students are exposed to computing ([SREB], 2016), but such efforts
are still lacking concrete ways to provide a thriving environment to succeed at the
college level within computing coursework in engineering programs. Hence, engi-
neering students may not be well prepared to do so — they may not have the compu-
tational or mathematical thinking preparation to succeed in college-level coursework
(desJardins, 2015).

One of the challenges to fostering a proper learning environment for program-
ming skills at the college level is the inability to address students’ differences in prior
exposure to computing skills. Therefore, a good approach is to create a combina-
tion of instruction by shifting from teaching to learning: “as one moves along the
behaviorist—cognitivist— constructivist continuum, the focus of instruction shifts
from teaching to learning, from the passive transfer of facts and routines to the active
application of ideas to problems” (Ertmer & Newby, 2013, p. 58). Addressing this
challenge is particularly important for three reasons: (1) students come from different
backgrounds with different levels of the skills required to succeed in this environment
([SREB], 2016); (2) programming skills require high levels of cognitive processing;
and (3) the development of the required mental structures is not easily attainable by
students with low exposure to the topics (Robins et al., 2003). Therefore, identifying
effective strategies that address the diversity in student experiences and the cognitive
challenges of learning computer programming is crucial. In this context, existing
strategies that get the students actively involved in their learning process include
debugging and self-explaining. Debugging is a common practice in programming, a
skill that is difficult to teach and learn (McCauley et al., 2008); but it is also a learning
activity where students need to actively monitor their understanding of the code to
identify and fix a bug. Self-explaining is an important strategy to engage students in
an active exploration of worked examples instead of just superficially reading them.
By self-explaining, students make sense of the learning material using what they
already know. This study aims to identify the effect of scaffolding methods on sup-
porting novice learners to attain learning outcomes in introductory programming.
Specifically, this study aims to identify the effect of two chosen scaffolding methods,
one being worked examples, and the other being debugging, on student academic
performance. The research questions that guide this study are:

RQI1. What is the effect of engaging students with previous heterogeneous pro-

gramming experiences in self-explaining or debugging on their learning of pro-
gramming skills?
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RQ2. What are the effects of worked examples with different engagement strat-
egies, such as debugging examples or commenting examples, on students’ pro-
gramming performance within an introductory programming course?

2 Challenges to learning computer programming

As the demand for engineers with computing skills and students’ interest in cod-
ing have increased in recent years, introductory programming courses have become
more popular (Ullah et al., 2018). However learning to program is difficult (Magana
et al., 2017; Mselle & Twaakyondo, 2012), and introductory programming courses
have been demonstrated to be quite challenging for novice students (Robins et al.,
2003; Ullah et al., 2018). Moreover, since there are no standard K-12 CS curricula,
students arrive with different experiences and expertise in the college-level comput-
ing courses in engineering programs. Novice programmers may be overwhelmed by
all the interacting elements they need to learn at once (Sweller, 2011). They may try
to understand the programming code line by line, while experts are able to identify
an overall abstract explanation of the program (Whalley & Lister, 2009). On the
other hand, expert programmers (a) have specialized schemata; (b) organize their
knowledge according to functional characteristics such as the nature of the underly-
ing algorithm; (c) use general problem solving strategies and specialized strategies
when required; (d) efficiently decompose and understand programs; and (¢) are flex-
ible in their approach to program comprehension (Von Mayrhauser & Vans, 1995).
Thus, the more experienced students may begin programming courses with some of
the aforementioned schemata.

Another challenge comprises the difference between declarative knowledge (e.g.,
being able to state how a loop works) and programming strategies (the way knowl-
edge is used and applied, e.g., using a loop appropriately in a program) (Davies, 1993;
Robins et al., 2003). There is a critical difference between programming knowledge
and programming strategies. When most of the introductory programming courses
focus on specific programming knowledge, which is still essential to learning a
programming language, there should be an approach toward developing program-
ming strategies (Robins et al., 2003). There is considerable evidence suggesting that
programming should be approached as cognitive chunks, putting together pieces of
knowledge together to get an overall better idea of the purpose of a program (Rist,
1995).

Common challenges in learning computer programming have primarily been
attributed to the improper management of cognitive loads. The Cognitive Load The-
ory describes how we process the information given a cognitive architecture and how
an instructional design may support or hinder student learning (Sweller et al., 2019).
The cognitive architecture comprises a working memory and a long-term memory.
Our working memory is limited in time and space, while long-term memory is vast.
The working memory is loaded by (a) the intrinsic load (i.e., the required information
that needs to be learned), (b) the germane load (i.e., also called germane resources,
represent what we use to connect what we already know in our long-term memory
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to make sense out of novel learning materials), and (c) the extraneous load (i.c.,
unnecessary information in the learning materials). The extraneous load should be
minimized to prevent students from getting overwhelmed when processing relevant
and irrelevant information together.

When learning computer programming, the learners need to understand many dif-
ferent things simultaneously, including the goal of the problem, algorithm design
strategies to achieve that goal from the initial state, the programming language syn-
tax, and semantics, how the computer works, and in some languages such as C, how
to manage memory in the computer. Therefore, instructional materials should not
include irrelevant information (i.e., extraneous loads) and maximize the connection
to existing knowledge in the long-term memory (i.e., germane resources). For exam-
ple, block-based programming languages have emerged as effective languages for
novice learners as they remove syntax errors (i.e., irrelevant for novice learners) and
provide immediate feedback without complex lines of code (e.g., languages such as
Java require complex instructions for implementing a user input or a graphical user
interface). Instructional design approaches that focus on problem-solving without
the required scaffolding may also be overwhelming to novice programming learners.
These learners often lack the required schemata to manage the cognitive loads when
engaged in means-ends analysis for problem solving (Sweller, 1988). They often start
from the initial problem state (i.c., the “givens”) and try to feel the gap to the goal of
the problem. Thus, several studies have used the Cognitive Load Theory (Sweller et
al., 1998) to inform the design of learning environments that support and investigate
student management of cognitive loads (Dahlen et al., 2020; Mason et al., 2016;
Vieira et al., 2019). The next section describes some of these approaches to support
student learning.

3 Engaging students in learning computer programming skills

Several scaffolding methods have been implemented to support novice learn-
ing of computer programming. While pedagogical strategies are teacher-centered
approaches to orchestrate or deliver learning (e.g., Sentance et al., 2019; Xie et
al., 2019), scaffolding methods are more student-centered approaches for support-
ing independent learning (e.g., Mbogo et al., 2013; Restrepo-Calle et al., 2019). For
instance, effective forms of pedagogical strategies include block-based programming
languages to reduce the syntax errors and provide immediate feedback (Weintrop
& Wilensky, 2017), pair programming (Campe et al., 2020; Lewis, 2011), and peer
instruction (Porter & Simon, 2019). Similarly, effective forms of scaffolding methods
include providing worked examples with self-explanation (Vieira et al., 2017), sub-
goal labeling activities (Morrison et al., 2015), and automatic assessment systems for
programming education (Restrepo-Calle et al., 2019; Ullah et al., 2018).

Worked examples have been studied in several fields as an approach to develop
early schemata on novice learners to then engage them in problem solving (Sweller
et al., 2019). A worked example is an expert’s solution to a problem, comprising
a problem statement, a step-by-step solution, and auxiliary representations of the
phenomenon (Atkinson et al., 2000). Novice learners who engage in the study of a
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worked example start identifying the required steps and strategies to solve a prob-
lem, which help them manage cognitive loads in future problem-solving activities.
In order to be effective, the design of worked examples should consider a set of
instructional principles that have demonstrated to be effective (Atkinson et al., 2000).
The intra-example features include highlighting the steps or subgoals that need to be
taken to arrive at the solution of the problem so students can easily identify them. At
the same time, students need to be guided to focus on one step at a time so they do
not need to focus on two different sources of information simultaneously during the
learning process (i.e., the split attention effect) (Renkl, 2005). The inter-example fea-
tures include providing more than one example with similar problem statements but
structural differences so students can compare and contrast the solutions to identify
the key features of the solutions that need to be present. This principle also suggests
pairing examples and practice problems so that students engage in problem solv-
ing using what they learn from the examples. Finally, the environmental settings
also represent an important instructional principle for the implementation of worked
examples. Using self-explanations or explaining-to-each-other activities may engage
students in a constructive exploration of worked examples (Chi, 2009), enhancing the
connection between students prior knowledge and the example, filling the gaps of the
learning materials, and promoting student metacognitive skills (Chiu & Chi, 2014).
Recent studies have explored how to implement these principles for computer
programming (Vieira et al., 2015), and some have suggested a use-modify-create
approach to integrating worked examples (Lee et al., 2011; Lytle et al., 2019). The
learners first use a worked example, engaging in activities such as explaining, vari-
able tracing, or outcome prediction (Lopez et al., 2008). Self-explanation activities
may be integrated into the classroom settings using approaches such as in-code com-
ments (Vieira et al., 2017) or subgoal labeling (Decker et al., 2019). For the next step,
students engage in modifying the example. This approach is similar to providing
incomplete or incorrect worked examples, or fading the worked examples, so the
learners have some scaffolding with a partial solution but need to engage in problem
solving themselves. Only when the learners have developed the required schemata
may they engage in an iterative create, test, and refine processes to provide a com-
plete solution to a problem from scratch. When comparing the use-modify-create
approach to a create-only approach, teachers reported that students in the create-only
condition needed additional scaffolding. The use-modify-create condition helped stu-
dents to develop an appropriate understanding of the program (Lytle et al., 2019).
The examples provided to scaffold student learning do not need to be correct and
complete. Once students start developing a basic understanding of the concepts and
practices, they may prefer to engage in problem-solving. The fading effect suggests
that increasingly removing steps from the correct solution so that students complete
them may support student learning (Sweller et al., 2019). An alternative approach
is to introduce specific bugs within the example, so the students need to debug the
program to identify and fix these bugs (Atkinson et al., 2000). Experts and novices
differ in their approaches to debugging computer programs (McCauley et al., 2008).
Experts spend more time understanding the program than novices do and use the
variable names to guide their understanding. Experts can understand the programs as
chunks of code rather than individual lines of code (Lister, 2011), which allow them
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to design more effective debugging strategies. This may also be related to students
also using different strategies for debugging their own code compared to debugging
someone else’s code (Katz & Anderson, 1987). They already have a mental model of
the program for their own code, so they may use backward reasoning (i.c., starting
from the output). When debugging someone else’s code, students often use forward
reasoning (i.c., starting to read line by line and considering the inputs rather than the
outputs). Experts may be devoting more time to understand the program so that they
can use backward reasoning for debugging.

4 Theoretical framework: complex learning and cognitive load
theory

Computer programming is a form of complex learning (Sweller, 1988). The com-
plexity lies on the high level of interactivity among the different elements that the
learner needs to consider simultaneously (Sweller, 2011). For instance, learners need
to understand the problem, algorithm design strategies, the programming language
syntax, and semantics, and sometimes, even how the computer works and manages
memory. These elements interact with each other and increase the complexity of the
learning process. In order to understand how this interactivity affects learning and
how to effectively support students to overcome this complexity, we can refer to the
Cognitive Load Theory (CLT) (Sweller, 1988; Vieira et al., 2017).

As described in Sect. 2, the CLT describes a cognitive architecture that explains
how we process information and what cognitive loads are involved in this process.
Its basic premise is that human cognitive processing is heavily constrained by our
limited working memory, which can only process a limited number of information
elements at a time (Sweller et al., 2019). When learning occurs, the information in
the working memory is transformed into schemata in the long-term memory, which
is vast (Sweller et al., 1998). These schemata can be retrieved from the long-term
memory as needed by the learner to make sense of new information. The use of these
schemata allows learners to solve problems using approaches they already know to
be effective. Henceforth, the importance of schemata relies on the ability to recog-
nize problem types and the actions to take for approaching each particular situation,
reducing the extraneous cognitive load (Sweller, 2011).

According to the CLT (Sweller et al., 1998), while executing a programming task,
the student is exposed to different types of cognitive loads: intrinsic, extraneous, and
germane loads (Vieira et al., 2017). The intrinsic load refers to the inherent complex-
ity of the task at hand (Sweller, 2011). The only way to reduce this load is by reducing
the task difficulty or the complexity of the concepts encompassed within the task.
The extraneous load is not beneficial to learning and depends on how the information
is presented to the student. This load can be impacted directly by the instructional
approach (Sweller, 2011). The germane load refers to the load required to retrieve
schemata in order to make sense of the intrinsic load (Sweller et al., 2019). Learn-
ing occurs when all the interacting elements (i.e., all the different components of the
learning task that need to be considered simultaneously) have been processed as a
schema in the long-term memory (Sweller, 2011). If these elements can be learned

@ Springer



Education and Information Technologies

independently from each other, their interactivity is low, as well as the complexity of
the learning task. As described above, computer programming requires novice learn-
ers to consider many interacting elements simultaneously (e.g., the purpose of the
program, algorithm design, programming language syntax). Hence, it is important to
support students on managing this interactivity to avoid cognitive overload. Integrat-
ing worked examples into the learning environments has been identified as a strategy
that can help learners manage cognitive loads (Vieira et al., 2017). A worked example
allows novice learners to start developing the required schemata before engaging in
problem solving themselves (Sweller et al., 2019). The development of schemata
through worked examples is achieved by focusing the learners’ attention on problem
states and associated operators (i.c., Solutions steps), enabling them to induce gener-
alized solutions (Sweller et al., 2019).

A potential limitation of the use of worked examples as an instructional strategy is
that students may not necessarily engage in carefully studying them (Sweller et al.,
2019). The active exploration of the examples is crucial because “the use of worked
examples is not equally effective for a learner who just reads them versus one who
actually engages in reflecting and understanding them” (Vieira et al., 2017, p. 5).
Different strategies have been suggested to ensure students actively explore worked
examples (Atkinson et al., 2000). For instance, the use of completion problems (i.e.,
partially worked examples) or incorrect examples have been suggested to effectively
engage students in the field of introductory computer programming (Van Merrien-
boer & Krammer, 1987). Such tasks provide a given state, a goal state, and a partial
solution that must be completed. Thus, these tasks may elicit students to carefully
analyze the example and provide a complete solution for it (Sweller et al., 2019). In
programming, this process involves debugging the code to find the bug and fix it.

Alternatively, the use of self-explanations has been described as a constructive
learning activity that leads to a better understanding of an example as compared to
passive or active overt activities (Chi, 2009). In the context of introductory computer
programming, self-explanation activities have been explored by asking students to
write in-code comments to explain a sample program (Vieira et al., 2015). In this
study, we evaluate two approaches to engage students in the active exploration of the
examples: (1) incorrect examples where students should engage in debugging activi-
ties; (2) written self-explanations in the form of in-code comments. By using self-
explaining or debugging strategies to engage students with the worked examples, we
aim to promote a student-centered approach to learning using scaffolding methods.
We hypothesize that this approach may help the course instructors to manage the het-
erogeneity of programming experiences students arrive to their courses with.

5 Methods

This study used a quasi-experimental design to investigate the effect of two different
forms of engaging with worked examples, herein called Debugging or Explaining, on
student performance in an introductory programming course. The quasi-experimental
design is a common approach in educational research when it takes place in authentic
settings, as it is often unfeasible to randomly assign individuals to different condi-
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tions. Instead, the two groups are already created, each assigned to a given condition.
Performing research studies in classroom settings using quasi-experimental designs
can provide learners with genuine interventions that are seamlessly deployed with
minimal disturbance (Sato & Loewen, 2019). As a result, such interventions allow
the observation of the effects of different forms of instructional interventions without
introducing potential confounding variables and unfamiliar data collection methods
(Sato & Loewen, 2019). In our context, the students enrolled in the course during the
spring semester of 2018 were assigned to the debugging condition, while students
enrolled in the course during the fall semester of 2018 were assigned to the self-
explaining condition.

5.1 Participants and procedures

The research study took place in a first-year introductory programming course called
“Introduction to C programming” on two consecutive academic semesters. The
emphasis of this course is on structured programming principles and understanding
the basic concepts that apply to engineering problems. The topics covered in this
course are problem solving using top-down design, flowcharts to explain the program
logic, selection structure, repetition structure, bitwise operations, arrays, pointers,
strings, passing arguments, and sequential files. The course is typically offered in
Summer, Fall, and Spring semesters for engineering technology students enrolled
in electrical engineering technology, mechanical engineering technology, manufac-
turing engineering technology, or industrial engineering technology majors. In the
spring semester of 2018, 101 students enrolled in this course, while 120 students
enrolled for the fall semester in the same year. The instructor (co-author #4) was the
same for both semesters. In any typical semester, the female population is about 10%
of the entire class.

The course design followed a three-part structure every week: A lecture, a com-
puter lab session, and a homework assignment. These three parts are aimed at address-
ing specific barriers in the programming learning process. First, given the nature of
the C programming language, the instructional design was situated in the procedural
paradigm. This approach was selected in order to help learners (a) not to deal with
the overhead added by the use of the object-oriented programming approach and (b)
generate schemata for the procedural nature of problems reducing the intrinsic cogni-
tive load (Robins et al., 2003; Sweller et al., 2011). The lecture sections focused on
the programming knowledge (i.e., How the different code structures work), while
the laboratory sessions aimed to teach students programming strategies (i.e., the way
knowledge is applied). Finally, the homework assignments focused on individual
practice. The goal of the individual practice was to guide students in the retrieval of
initially developed schemata during the first two parts of the week. Homework was a
mechanism to reinforce the use of these schemata to solve programming challenges.
In other words, the homework assignments were used to promote the automation of
the recently acquired schemata (Sweller et al., 2011).

For each of the homework assignments, students worked on solving programming
challenges. Each assignment included an activity with a worked example. Students
enrolled during the spring semester (i.e., Debugging condition) were asked to debug
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Fig. 1 Sample of debugging

This segment is the introductory comments:

exercise
CNIT 105
Name: your name
Email: ----- @purdue.edu

Debugging Exercise 02
Date: ##/##/##

GOAL: To swap the values stored in two variables.

This exercise includes a few Build errors and a logic error.
********************’k****************************************/

#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <conio.h>

int main()

{
int numl
int num2

// Input first number
printf("Enter a number for numl: ");
scanf("%f", numl);

// Input second number
printf("Enter a number for num2: ");
scanf("%f", num2);

// Swap two numbers:
numl = num2;
num2 = numl;

// Print two numbers after swapping
printf("numl = %f \n", numl);
printf("num2 = %f \n", num2);

_getch();
return 9;

a partially worked example (Van Merrienboer & Krammer, 1987) and submit a func-
tioning version of the code. As shown in Fig. 1, the only instructions that students
received included descriptions of the general goal of the code and the types of mis-
takes that they would find in the code. After identifying and fixing the bugs in the
code, students wrote comments to explain what changes they made to the code and
submitted the final program.

On the other hand, students enrolled in the course for the fall semester (i.e., Self-
Explaining condition) were asked to write in-code comments in a functioning worked
example to describe what it does (i.e., self-explanations, Vieira et al., 2017), with
the goal of promoting an active exploration of the example. As shown in Fig. 2, the
instructions asked students to write in-code comments with the goal of explaining the
purpose of the code. The students enrolled during the spring semester completed nine
debugging exercises in addition to the regular weekly homework assignment. The
students enrolled during the fall semester completed 11 in-code comment exercises
included in the weekly homework assignments.
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e

Fig.2 Sample of in-code comment- j+++veiveiiiTis SRR AT SRR RS AR TR AR
ing exercise Your Full Nam@: =--+=sesssascsssnmconmsnsamnan

Add comments before each group of statements to explain the purpose. You may add

short comments after some of the program statement to explain the code.

Your comments should explain the purpose / rationale for the g)ven tode

e e Y
fine _CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <conio.h>

int get_whole();
int check (int );

int main()

int input;
int even;

input = get_whole();
even = check (input);

if (even == 1)

printf("\n\t The input is an even number. “);
else

printf("\n\t The input is an odd number. “);
_getch();
return 0;

int get_whole()

int n;

printf (“\t Enter whole number > @ : “);
scanf (“%d”, &n);

return n;

int check (int num)

if (num % 2 =
return 1;
else
return 0;

0)

5.2 Data collection method

Table 1 summarizes the data collection methods and procedures followed in this
study. To identify the effect of the two approaches for engaging with worked exam-
ples, we collected performance data that included the midterm and final exams,
which were part of the course. These assessment tasks were oriented to effectively
measure students’ proficiency in programming. The midterm exam took place after
the weekly assignment number five, and the final exam took place at the end of the
semester. The exams consisted primarily of multiple-choice questions. Two or three
questions asked students to write code. These two instruments were used as measure-
ments of students’ ability to transfer what they learn from the examples into problems
in different contexts.

The weekly assignments consisted of code generation tasks (Robins et al., 2003),
which students completed as the last part of the weekly teaching unit. These tasks
were focused on guiding the student through the revision of the mental models con-
structed during the week within the lecture and the laboratory session. As can be seen
in Fig. 3, all the guidance was provided in the form of code snippets, and the students
were required to write the code for each assignment.

Students submitted the corresponding debugging/commenting activity as part of
the required weekly assignments. However, the interventions (i.e., debugging and
commenting) were not graded but only used to support the student learning process.
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Table 1 Summary of the
interventions data collection
methods

Fig. 3 Description of assignment
five

Sources of Data Objective Spring Fall
Collection
Prior Exposure Identify the 74 Students 120 Stu-
Characterization level or prior (41 with no dents (57
exposure to  experience and ~ with no
program- 33 with prior experience
ming experience) and 63
courses with prior
experience)
Debugging Partially 9 Assignments  N/A
Exercises solved
worked
examples
requiring
active explo-
ration and
completion
In-code Comments  Complete N/A 11 Assign-
Exercises worked ments
examples
requir-
ing active
exploration
and self-
explanation
Midterm Exam Performance 100 Students 120
measure Students
Final Exam Performance 99 Students 120
measure Students

Program Description:
Write a C program to compute the average of 5 test score, while dropping the lowest
score in the group. Write the following functions to modularize the program.

1) Function displayMyInfo()
This function requires no input and returns no output. It simply displays your full
name, your email address and “CNIT105 — Functions”, to the screen in a box of stars.

2) Function getScore() — takes no input parameter. It returns a test score (a whole
number). This function prompts the user for a whole number between 0 and 100, and
returns the number as output. This function should be called for each test score from the
main() function.

3) Function calcAverage() — This function take 5 test scores as input. It computes and
returns the average of 4 test scores (dropping the lowest of the 5 scores). This function
should be called from the main() function passing all 5 test scores to it.

4) Function findLowest () — Takes 5 test scores as input and returns the minimum of the 5
numbers as output (Assume that the numbers are distinct). This function should be called
from calcAverage(), which invokes this function to determine the lowest score.

Function main()
- Declare variables with proper data type and meaningful names.
- Invoke the function to display your info to the screen.
- Invoke the function getScore() 5 times to get a value for each test score.
- Invoke the function calcAverage() passing to it all 5 scores.
- Display the average to the screen.

Function Prototypes: Write the function prototypes before the main function in order to
extend their scope to the entire program. Write the function definitions (the code) after
the main() function.

The course instructor and co-author #4 in this study scored all the assignments in

both semesters.
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5.3 Data analysis method

At the beginning of the course, students were asked to report the number of previous
programming courses that they took in the past. Based on this information, students
were initially divided into three groups: (1) No previous experience, (2) previous
exposure to one course, and (3) previous exposure to two or more courses. The size
of the three groups was somewhat uneven since the number of students in the group
with two or more courses was quite small in comparison with the other two. Prelimi-
nary statistical analysis showed that there was no significant difference in any of the
performance measures between the groups with one course and the one with two or
more courses, so they were combined into two groups: (1) No experience and (2)
Prior experience (see Table 1).

We used descriptive statistics to identify the measures of central tendency and dis-
persion in student performance for the midterm and final exams. The course instruc-
tor (author #4) and the teaching assistant for the course graded the exams using a
predetermined rubric. The rubric was validated over the course of multiple semesters.

We used a two-way ANOVA to compare students’ scores for each measure between
the two groups (i.e., No experience and Prior experience) and the two approaches
to study the worked examples (i.e., Debugging and Explaining). The data met the
assumptions for normality and homoscedasticity. When the results were statistically
significant, we computed the effect size eta-square. The values for eta-square may be
interpreted as follows: small effect size - between 0.01 and 0.06; medium effect size
—between 0,06 and 0.14; large effect size — larger than 0.14 (MRC, 2015).

6 Results

6.1 RQ1.What is the effect of engaging students with previous heterogeneous
programming experiences in self-explaining or debugging on their learning of
programming skills?

Table 2 depicts the descriptive statistics for both the midterm and the final exams,
grouped by prior experience (i.e., No experience and Prior experience), and the
approach used to engage in the study of the worked examples (i.e., Debugging or
Explaining). Students with no prior experience showed lower performance in the
midterm compared to experienced students, both in the spring semester (debugging)
and in the fall semester (explaining). These differences faded in the final exam, where
inexperienced students showed similar performance compared to experienced stu-
dents in both the spring semester (debugging) and the fall semester (explaining). The
two-way analysis of variance (ANOVA) for the midterm exam was statistically sig-
nificant with a small effect size for prior experience (F(191,1)=6.39, p-value=0.01,
eta-square=0.024), but not the differences on the final exam based on prior experience
(F(189,1)=0.363, p-value=0.19). A possible explanation for this result is that both
the debugging and the explaining strategies to engage students in actively explor-
ing the worked examples might have helped novice programmers catch up with the
more experienced students at the end of the course. However, additional work that
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Table 2 Midterm and final Performance
performance during Spring and Measure
Fall semesters

Spring Fall
(Debugging)  (Explaining)
Mean SD Mean SD

Midterm No experience 72.65 13.16 78.49 11.89
Prior Experience  76.07 13.00 82.51 9.73
Final No experience 78.72 13.80 78.52 11.83

Prior Experience 84.06 1429 7898 12.37

uses direct measures of learning after the engaging activities is needed to isolate the
potential effect of confounding variables (e.g., discussions during the lectures).

6.2 RQ2.What are the effects of worked examples with different engagement
strategies, such as debugging examples or commenting examples, on students’
programming performance within an introductory programming course?

To identify the different effects of the two engagement strategies (i.c., debugging vs.
explaining), we conducted a two-way analysis of variance (ANOVA). The ANOVA
for the midterm exam was also statistically significant with a small effect size for
the engaging approach (F(191,1)=12.49, p-value<0.01, eta-squared=0.059). These
results suggest that students in the Explaining condition (i.e., fall semester) showed
significantly higher performance in the midterm compared to students in the Debug-
ging condition (i.e., spring semester). Since there was a significant difference in the
average midterm scores, we conducted an analysis of covariance (ANCOVA) for
the final exam with the midterm as a covariate to identify whether the differences
between groups and engaging approaches were statistically significant. The results
suggest that the differences in the average score for the final exam were statistically
significant with a medium effect size for the engaging approach (F(189,1)=25.76,
p-value<0.01, eta-squared=0.068) when controlled for the midterm exam. The inter-
action between the engaging approach and prior experience was not significant when
controlling for the midterm score as a covariate (F(189,1)=3.78, p-value=0.054).

Overall, these results suggest that both engaging methods (i.e., debugging and
explaining) were useful for students with no prior experience to succeed in the
course, as evidenced by the similar performance in the final exam as compared to
students with prior experience in computing. The results also suggest that students in
the debugging condition were able to perform as well as students in the explaining
condition on the final exam, despite performing significantly lower in the midterm
exam.

7 Discussion

This study explored two approaches to engage students in the active exploration of
worked examples: debugging and explaining. When it comes to novice learners under
the scope of Cognitive Load Theory (Sweller et al., 1998) both strategies played an
important role. The use of in-code comments as a self-explanation strategy engaged
students in the active exploration of the worked examples helping them: (1) reflect
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on what they knew and what they did not know and (2) develop early schemata for
problem solving. The debugging strategy engaged students in scaffolded problem
solving. Students needed to reflect on how the partial solution was constructed or
reflect on how they could fix it or complete it. For this reflection on someone else’s
code, novice programmers will often use forward reasoning (i.e., starting to read line
by line and considering the inputs rather than the outputs) (Katz & Anderson, 1987).

The results from this study showed that both debugging and explaining activities
helped students with the no-prior experience to succeed in the course. Novice learn-
ers tended to take advantage of exploring worked examples, while more advanced
students preferred to engage in problem solving (Sweller, 2011). The increase in per-
formance between the midterm and final exam accounts not only for the effective
building of mental models and schemata but for the effective retrieval of these mod-
els (i.e., germane load) (Sweller et al., 2019). Recent work has explored the use of in-
code comments as a self-explaining strategy (Vieira et al., 2015, 2017, 2019). Vieira
and colleagues (2017) found that students with different prior experiences with pro-
gramming saw different affordances for self-explaining using in-code comments. For
instance, novice learners found them useful for better understanding of examples and
practicing algorithm design. More advanced learners with prior experiences in other
languages found these activities useful in getting used to new programming syntax.
Vieira et al., (2019) also found that prior experiences influence how they approach
these explanation activities. While advanced programmers wrote simple explanations
and assumed the code was self-explanatory, novice learners reflect on every line of
code as part of their learning process. For the analysis of the active exploration strate-
gies used in the worked examples, the results have some clear indications in terms
of supporting the novices’ learning process. The use of completion exercises (i.e.,
debugging) (Sweller et al., 2019; Van Merrienboer & Krammer, 1987) also served
as a good strategy for novice learners in terms of understanding basic introductory
concepts in programming and helping them build solid foundations for the required
mental models. Nonetheless, as the complexity of the task at hand increased (i.c.,
Intrinsic load) (Sweller, 2011), debugging exercises also increased the required cog-
nitive processes and, in consequence, the task’s difficulty.

When comparing the debugging condition with the explaining condition, it seems
like it was more effective than the explaining condition. Students in the debugging
condition showed a larger increase between the midterm and the final exams as com-
pared to the explaining condition. However, students in the explaining condition
already had a high performance on the midterm exam, to begin with, so they may
have faced a ceiling effect. Furthermore, the midterm exam did not assess all the
concepts that the final exam did.

As K-12 computing education is turning into a priority globally, the diversity of
experiences that students arrive with into undergraduate courses becomes a challenge
for instructors. Thus, it is important to identify effective scaffolding methods that
work for novice learners while still engaging more advanced students. As discussed
above, existing work has demonstrated that self-explaining in the form of written
comments may provide different affordances for students with different experiences
(e.g., Vieira et al., 2017). Debugging, however, had not been explored as a pedagogi-
cal approach to this goal. The main contribution of this study is the evidence that
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engaging students in active explorations of worked examples using self-explanation
activities or debugging activities may help instructors overcome teaching challenges
associated with students’ previous heterogeneous programming experiences in intro-
ductory programming courses. The implications for teaching and learning relate to
the effectiveness of worked examples in the context of programming, especially for
novice learners. As evidenced from this and other studies that have used worked
examples in the context of learning programming, for worked examples to be effec-
tive, those need to be provided with some explicit form of engagement. Debugging
worked examples or self-explaining worked examples can result in positive learning
outcomes. However, findings from this study also suggest that explaining worked
examples might be more useful at an earlier stage of the learning process for the
purpose of schemata development, while debugging the partially worked examples
might first require the development of some schemata, so then novice learners can
take advantage of the examples by debugging them. Students’ ability to find and fix
bugs in a code depends on the strength of their conceptual understanding, although
existing literature also suggests that students may benefit from instructors training
them on how to debug (McCauley et al., 2008). Combining both strategies following
explaining first and debugging second may result in a more effective approach.

8 Conclusions, limitations, and future work

This study explored the effect of introducing worked examples with different engage-
ment strategies (i.e., debugging or explaining) on students’ programming perfor-
mance within an introductory programming course. Students with no experience in
programming showed lower performance in the midterm exam for both conditions
as compared to students with prior experience. However, this difference faded in the
final exam, suggesting that both the debugging and the explaining conditions helped
students with no experience to succeed in this course. Students in the debugging
condition showed a larger increase from the midterm to the final exam compared to
students in the explaining condition.

There are certain limitations to this study that are worth mentioning. First, this
study focused on using the aforementioned strategies in separate semesters. We con-
sider it pertinent to conduct a future study to analyze the effects of combining both
strategies for novice learners following an experimental approach. Second, the mea-
sures of performance for this study were the midterm and the final exams. As dis-
cussed above, the midterm did not assess all the concepts that the final exam did. And
we did not collect baseline data beyond students’ prior experience in programming
courses. And only one grader (i.e., the course instructor or the teaching assistant) was
used for scoring all the performance measures. Thus, future work should compare
the two conditions with equivalent pretest and posttest measures and a control group.
Furthermore, including qualitative data sources may provide a further understanding
of how different students engage in debugging and explaining practices and what
practices are more effective in taking advantage of the worked examples.
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