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Abstract
We consider the problem of space-efficiently estimating the number of simplices in a hypergraph
stream. This is the most natural hypergraph generalization of the highly-studied problem of
estimating the number of triangles in a graph stream. Our input is a k-uniform hypergraph H with
n vertices and m hyperedges, each hyperedge being a k-sized subset of vertices. A k-simplex in H is
a subhypergraph on k + 1 vertices X such that all k + 1 possible hyperedges among X exist in H.
The goal is to process the hyperedges of H, which arrive in an arbitrary order as a data stream, and
compute a good estimate of Tk(H), the number of k-simplices in H.

We design a suite of algorithms for this problem. As with triangle-counting in graphs (which is
the special case k = 2), sublinear space is achievable but only under a promise of the form Tk(H) ≥ T .
Under such a promise, our algorithms use at most four passes and together imply a space bound of

O

(
ε−2 log δ−1 polylog n · min

{
m1+1/k

T
,

m

T 2/(k+1)

})
for each fixed k ≥ 3, in order to guarantee an estimate within (1 ± ε)Tk(H) with probability ≥ 1 − δ.
We also give a simpler 1-pass algorithm that achieves O

(
ε−2 log δ−1 log n · (m/T )

(
∆E + ∆1−1/k

V

))
space, where ∆E (respectively, ∆V ) denotes the maximum number of k-simplices that share a
hyperedge (respectively, a vertex), which generalizes a previous result for the k = 2 case. We
complement these algorithmic results with space lower bounds of the form Ω(ε−2), Ω(m1+1/k/T ),
Ω(m/T 1−1/k) and Ω(m∆1/k

V /T ) for multi-pass algorithms and Ω(m∆E/T ) for 1-pass algorithms,
which show that some of the dependencies on parameters in our upper bounds are nearly tight. Our
techniques extend and generalize several different ideas previously developed for triangle counting in
graphs, using appropriate innovations to handle the more complicated combinatorics of hypergraphs.
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1 Introduction

Estimating the number of triangles in a massive input graph is a fundamental algorithmic
problem that has attracted over two decades of intense research [1, 3, 22, 8, 40, 41, 28, 35, 6,
36, 21, 7, 32, 5, 13, 25, 20]. It is easy to see why. On the one hand, the problem arises in
applications where a complex real-world network is naturally modeled as a graph and the
number of triangles is a crucial statistic of the network. Such applications are found in many
different domains, such as social networks [11, 29, 33], the web graph [4, 44], and biological
networks [38]; see [41] for a more detailed discussion of such applications. On the other
hand, a triangle is perhaps the most basic nontrivial pattern in a graph and as such, triangle
counting is a problem with a rich theory and connections to many areas within computer
science [1, 15, 18, 34, 14] and combinatorics [31, 17, 27, 37].
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32:2 Counting Simplices in Hypergraph Streams

In this work, we study the natural generalization of this problem to massive hypergraphs.
Just as graphs model pairwise interactions between entities in a network, hypergraphs model
higher arity interactions. For instance, in an academic collaboration network with researchers
being the vertices, it would be natural to model coauthorships on research papers and articles
using hyperedges, each of which can be incident to more than two vertices. Just as we may
use triangle counts to study clustering behaviors in graphs or even in different portions of a
single graph, we may analyze higher-order clustering behaviors in the 3-uniform hypergraph
H formed by all three-way coauthorships by counting 3-simplices in H. A 3-simplex on four
vertices {u, v, w, x} is the structure formed by the hyperedges {uvw, uvx, uwx, vwx}: it is
the natural 3-dimensional analog of a triangle in an ordinary graph.

1.1 Our Results
We design several algorithms for space-efficiently estimating the number of k-simplices in a k-
uniform hypergraph H given as a stream of hyperedges. A k-simplex is a complete k-uniform
hypergraph on k + 1 vertices. The special case k = 2 is the triangle counting problem which,
as noted, is intensely investigated. Indeed, even in this setting of streaming algorithms,
triangle counting is highly studied, with new algorithmic techniques being developed as
recently as 2021 [20]. There is also a body of work on generalizing these results to the
problem of estimating the number of occurrences of patterns (a.k.a. motifs) more complicated
than triangles, e.g., fixed-size cliques and cycles [30, 26, 36, 5, 24, 42]. Our work adds to this
literature by generalizing in a different direction: we generalize the class of inputs from graphs
to hypergraphs and focus on counting the simplest nontrivial symmetric motifs: k-simplices.

Our algorithms provide optimal space bounds (up to log factors) in certain parameter
regimes; we prove this optimality by giving a set of matching lower bounds. In certain other
parameter regimes, there remains a gap between our best upper bounds and lower bounds,
which immediately provides a goal for future work on this problem. Below are informal
statements of our major algorithmic results.

▶ Theorem 1 (Upper bounds; informal). Let H be an n-vertex k-uniform hypergraph, presented
as a stream of m hyperedges, that is promised to contain T or more k-simplices. Suppose
that each hyperedge is contained in at most ∆E such simplices and each vertex is contained
in at most ∆V of them. Then, there are algorithms for (1± ε)-estimating Tk(H), the number
of k-simplices in H, with the following guarantees:
(1.1) a 4-pass algorithm using Õ(m1+1/k/T ) space;
(1.2) a 2-pass algorithm using Õ(m/T 2/(k+1)) space, provided k ≥ 3; and
(1.3) a 1-pass algorithm using Õ(m(∆E + ∆1−1/k

V )/T ) space.
Each of these algorithms is randomized and fails with probability at most δ. 1

Formal versions of these results appear as Theorem 14 in Section 3, Theorem 16 in
Section 4.2, and in the full paper [9], respectively. Along the way, we also obtain some other
algorithmic results that, despite being dominated by the algorithms behind Theorem 1, are
technically interesting and possibly useful in future work. These are briefly described at the
start of Sections 3 and 4 with full details appearing in the full paper [9]. As we shall see, we
take several ideas from triangle-counting algorithms as inspiration, but the “correct” way to
extend these ideas to hypergraphs is far from obvious. Indeed, some of the more “obvious”
extensions lead to the less-than-best algorithms hinted at above.

1 Throughout this paper, the notation Õ(·) hides factors of O(ε−2 log δ−1 polylog n) and, in the context
of k-uniform hypergraphs, treats k as a constant. Also, “log” with an unspecified base means log2.
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Next, we informally state our lower bound results. These are not the main technical
contributions of this paper, but they play the important role of clarifying where our algorithms
are optimal and where there might be room for improvement. As in Theorem 1, we denote
the number of k-simplices in H by Tk(H).

▶ Theorem 2 (Lower bounds; informal). Let k, n, m, H, ∆E , ∆V be as above. Suppose an
algorithm makes p passes over a stream of hyperedges of H, using at most S bits of working
memory, and distinguishes between the cases Tk(H) = 0 and Tk(H) ≥ T with probability at
least 2/3. Then the following lower bounds apply.
(2.1) With T = 1 and p = O(1), sublinear space is impossible: we must have S = Ω(nk).
(2.2) With p = 1, we must have S = Ω(m∆E/T ).
(2.3) With p = O(1), we need S = Ω(min{m1+1/k/T, m/T 1−1/k}), and S = Ω(m∆1/k

V /T ).
[(2.1)] If, instead, the streaming algorithm distinguishes between the cases Tk(H) < (1− ε)T
and Tk(H) > (1 + ε)T , then the following lower bound applies.
(2.4) With p = O(1), we must have S = Ω(ε−2).
The full version of the paper [9] further discusses and proves these lower bounds.

1.2 Closely Related Previous Work
To the best of our knowledge, this is the first work to study the simplex counting problem in
hypergraphs in the setting just described (the work of [23] on counting general hypergraph
patterns is not closely related; see Section 1.3). We now summarize some highlights of
previous work on the triangle counting problem (in graphs), with a focus on streaming
algorithms, so as to provide context for our contributions.

Suppose an n-vertex m-edge graph G is given as a stream of edges and we wish to estimate
the number of triangles, T3(G). It is not hard to show that, absent any promises on the
structure of G, this problem requires Ω(n2) space, even with multiple passes, thus precluding
a sublinear-space solution. Therefore, all work in this area seeks bounds under a promise
that T3(G) ≥ T , for some nontrivial threshold T . Intuitively, the larger this threshold, the
easier the problem, so we expect the space complexity to decrease. The earliest nontrivial
streaming solution [3] reduced triangle counting to a combination of ℓ0, ℓ1, and ℓ2 estimation
and achieved Õ((mn/T )2) space by using suitable linear sketches. Almost all algorithms
developed since then have instead used some sort of sampling to extract a small portion of
G, perform some computation on this sample, and then extrapolate to estimate T3(G).

Over the years, a number of different sampling strategies have been developed, achieving
different, sometimes incomparable, guarantees. Here is a whirlwind tour through this
landscape of strategies. One could sample an edge uniformly at random (using reservoir
sampling), then count common neighbors of its endpoints [22]; or sample an edge uniformly
and sample a vertex not incident to it [8]; or sample a subset of edges by independently
picking each with a carefully adjusted probability p [28, 6]; or choose a random color for each
vertex and collect all monochromatic edges [35]; or sample a subset of vertices at random and
collect all edges incident to the sample [6]. One could collect two random subsets of vertices
at different sampling rates and further sample edges between the two subsets [25]; or, as in a
very recent algorithm, sample a subset of vertices at rate p and further sample edges incident
to this sample at rate q, for well-chosen p and q [20]. Notice that in the just-mentioned
algorithms, the sampling technique is not actively trying to “grow” a triangle around a
sampled edge. Instead, elements of the graph (vertices or edges) are sampled indiscriminately
(typically in one streaming pass) and the triangles seen inside the sample are counted in
another pass. We shall call such sampling strategies oblivious.

ESA 2022



32:4 Counting Simplices in Hypergraph Streams

Besides the above oblivious sampling strategies, another set of works used what we shall
call targeted sampling strategies,2 where information previously stored about the stream
guides what gets sampled subsequently. Here is another quick tour through these. One could
sample wedges (defined as length-2 paths) in the input graph, using a more sophisticated
reservoir sampling approach [21]; or sample an edge uniformly and then sample a second edge
that touches the first [36]; or sample a vertex with probability proportional to its squared
degree, then sample two neighbors of that vertex [32]; or sample an edge uniformly and then
sample a neighbor of the lower-degree endpoint of that edge [5].

There are also a handful of algorithms that add further twists on top of the sample-count-
extrapolate framework. The algorithm of [7] combines the vertex coloring idea of [35] with ℓ2
estimation sketches to obtain a solution that can handle dynamic graph streams, where each
stream update may either insert or delete an edge. The algorithm of [13] combines multiple
runs of [35] with a heavy/light edge partitioning technique: an edge is deemed “heavy” if it
participates in “too many” triangles. A key observation is that the variance of an estimator
constructed by oblivious sampling – which needs to be small in order to guarantee good
results in small space – can be bounded better if no heavy edges are involved. On the other
hand, triangles involving a heavy edge are easier to pick up (because there are many of
them!) by randomly sampling vertices at a low rate. Thus, by carefully picking the threshold
for heaviness, one can combine an algorithm that counts all-light triangles efficiently with
one that counts heavy-edged triangles efficiently for a good overall space bound. In this way,
[13] obtains a space bound of O(ε−2.5 log δ−1 polylog n ·m/

√
T ), while [32] provides a tight

dependence on ε (i.e., ε−2) by achieving Õ(m/
√

T ) space.
Separately, the aforementioned targeted sampling strategies of [32] and [5] provide 4-

pass algorithms for estimating T3(G) using space Õ(m3/2/T ). When T is large enough –
specifically, T = Ω(m) – this space bound is better than the Õ(m/

√
T ) bound obtained via

heavy/light edge partitioning. By picking the better of the two algorithms, one obtains a space
bound of Õ(min{m3/2/T, m/

√
T}). Both portions of this bound are tight, thanks to lower

bounds of Ω(m3/2/T ) and Ω(m/
√

T ) that follow by reducing from the set-disjointness
communication problem [13, 5].

The algorithm of [20] is optimal in a different sense: it runs in a single pass and
Õ((m/T )(∆E +

√
∆V )) space, where ∆E and ∆V are as defined in Theorem 1. Each

term in this bound is tight; reductions from disjointness [5] and the boolean-hidden-
matching problem [25] imply Ω(m

√
∆V /T ) lower bounds and a reduction from the index

communication problem implies an Ω(m∆E/T ) bound for 1-pass algorithms [6]. Note,
however, that this result is incomparable to the multi-pass upper bounds noted above. It
must be so: a lower bound of Ω(m3/T 2) holds for 1-pass algorithms [5].

1.3 Other Related Work
This work is focused on streams that simply list the input hypergraph’s hyperedges. This is
sometimes called the insert-only streaming model, in contrast to the dynamic or turnstile
streaming model where the stream describes a sequence of (hyper)edge insertions or deletions.
A small subset of works mentioned in Section 1.2 do provide results in a turnstile model.
Besides these, there is the recent seminal work [23] that fully settles the complexity of triangle
counting in turnstile streams for constant-degree graphs. This work also considers the very

2 To be perfectly honest, the terms “targeted sampling” and “oblivious sampling” do not have precise
technical definitions, but we hope the conceptual distinction is helpful to the reader as it was to us.
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general problem of counting copies of an arbitrary fixed-size hypergraph motif M inside
a large input hypergraph H, again in a turnstile setting. Because of the way their upper
bound results depend on the structure of M , they cannot obtain sublinear-space solutions
for counting k-simplices without a strong constant-degree assumption on the input H.

A handful of works on triangle counting consider adjacency list streams [8, 28, 32],
where the input stream provides all edges incident to each vertex contiguously. This setting
can somewhat simplify algorithm design, though the basic framework is still sample-count-
extrapolate. We do not consider adjacency list streams in this work.

There are important related algorithms that predate the now-vast literature on streaming
algorithms. In particular, [1] gives the current best run-time for exact triangle counting in
the RAM model and [10] gives time-efficient algorithms for listing all triangles (and more
general motifs). A version of the heavy/light partitioning idea appears in these early works.

More recently, a handful of works [15, 2, 16] have designed sublinear-time algorithms for
approximately counting triangles and other motifs given query access to a large input graph.
Triangle detection, listing, and counting have connections to other important problems in
the area of fine-grained complexity [18, 43]. Triangle counting has also been studied in
distributed, parallel, and high-performance computing models [40, 35, 39, 19].

2 Preliminaries

We now define our key terminology, set up notation, and establish some basic facts that we
shall refer to in the algorithms and analyses to come.

▶ Definition 3 (Hypergraph, degrees, neighborhoods). A hypergraph is a pair H = (V, E)
where V is a nonempty finite set of vertices and E ⊆ 2V is a set of hyperedges. In certain
contexts, this structure is instead called a set system over V . If |e| = k ≥ 1 for all e ∈ E,
then H is said to be k-uniform. For simplicity, we shall often shorten “k-uniform hypergraph”
to k-graph and “hyperedge” to “edge.”

For each S ⊆ V with |S| < k, the joint degree or codegree codeg(S) of S is the number
of edges that strictly extend S. The neighborhood N(S) of S is the set of non-S vertices that
share an edge with S. Formally,

codeg(S) := |{e ∈ E : e ⊋ S}| ; (1)
N(S) := {v ∈ V : v /∈ S and ∃ e ∈ E such that e ⊇ S ∪ {v}} . (2)

For a singleton set S = {u}, we define deg(u) := codeg({u}) and N(u) := N({u}). Further,
given S ⊆ V , we define the S-relative degrees of vertices x ∈ V ∖ S by

deg(x | S) := codeg(S ∪ {x}) . (3)

Note that this is meaningful only when |S| ≤ k − 2. Note, also, that deg(x) = deg(x | ∅).

Throughout the paper, hypergraphs will be k-uniform unless qualified otherwise. We
shall consistently use the notation H = (V, E) for a generic k-graph and define n := |V | and
m := |E|. We shall assume that each vertex v ∈ V has a unique ID, denoted ID(v), which is
an integer in the range [n] := {1, . . . , n}.

In general, there isn’t an equation relating |N(S)| to codeg(S). However, all k-graphs
satisfy the following useful lemmas.

▶ Lemma 4. For S ⊆ V with |S| < k, codeg(S) ≤ |N(S)| ≤ (k − |S|) codeg(S).

Proof. Each edge that extends S adds ≥ 1 and ≤ k − |S| new neighbors to the sum. ◀

ESA 2022



32:6 Counting Simplices in Hypergraph Streams

▶ Lemma 5. For 1 ≤ r < k, we have
∑

S⊆V : |S|=r codeg(S) =
(

k
r

)
m = O(m).

Proof. The sum counts each edge exactly
(

k
r

)
times. ◀

▶ Definition 6 (Simplices). A k-simplex is a k-graph on k + 1 vertices such that all possible
k-sized edges are present. If H = (V, E) is a k-graph and X ⊆ V with |X| = k + 1, we say
that H has a simplex at X if the induced subhypergraph H[X] := (X, {e ∈ E : e ⊆ X}) is a
simplex. Abusing notation, we also use X to denote this simplex.

We use Tk(H) to denote the set of all k-simplices in H and Tk(H) := |Tk(H)| to denote
the number of such simplices. We define ∆E = ∆E(H) and ∆V = ∆V (H) as follows:

∆E := max
e∈E
|{X ∈ Tk(H) : X contains edge e}| ; (4)

∆V := max
v∈V
|{X ∈ Tk(H) : X contains vertex v}| . (5)

Drawing inspiration from the link operation for abstract and simplicial complexes in
topology, we define a couple of operations that derive (k − 1)-graphs from k-graphs.

▶ Definition 7 (Neighborhood and shadow hypergraphs). Let k ≥ 3 and let H = (V, E) be
a k-graph. For each u ∈ V , the neighborhood hypergraph of H at u is the (k − 1)-graph
H ↓ u = (N(u), Eu), where

Eu := {{x1, . . . , xk−1} : {u, x1, . . . , xk−1} ∈ E} = {e ∖ u : e ∈ E and e ∋ u} .

The shadow hypergraph of H is the (k − 1)-graph H ′ = (V ′, E′) =
(⋃

u∈V V ′
u,
⋃

u∈V E′
u

)
,

where

V ′
u :=

{
x⟨u⟩ : x ∈ V

}
is a copy of V “flavored” with u, and

E′
u :=

{{
x

⟨u⟩
1 , . . . , x

⟨u⟩
k−1
}

: {u, x1, . . . , xk−1} ∈ E and ID(u) ≤ ID(xi) ∀ i ∈ [k − 1]
}

.

Note that E′
u is subtly different from Eu in that it is induced by hyperedges incident on u in

which u is the minimum-ID vertex. Observe that, as a result, |E′| = |E|.

We use neighborhood hypergraphs to analyze our first major algorithm, in Section 3. We use
shadow hypergraphs in a crucial way to obtain our second major algorithm, in Section 4.2.

In the literature on triangle counting in graphs, the structure formed by two edges sharing
a common vertex is called a wedge. It will be useful to define an analog of the notion for
hypergraphs.

▶ Definition 8 (Hyperwedge). A k-hyperwedge is the hypergraph obtained by deleting one
hyperedge from a k-simplex. Thus, if its vertex set is X, then |X| = k + 1 and it has k

hyperedges with exactly one common vertex, which we call the apex of the hyperwedge. The
only k-sized subset of X that is not present in the hyperwedge is called the base of the
hyperwedge. Adding this base as a new hyperedge produces a k-simplex.

Fix a k-graph H and a k-simplex X in H. Observe that X contains k + 1 distinct
hyperwedges; each such hyperwedge W corresponds to a (k− 1)-simplex in the neighborhood
hypergraph of H at the apex of W . On the other hand, X corresponds to exactly one
(k − 1)-simplex in the shadow hypergraph H ′, namely the simplex at {u⟨z⟩

1 , . . . , u
⟨z⟩
k }, where

z is the minimum-ID vertex in X and {u1, . . . , uk} = X ∖ {z}.

Our algorithm analyses often use the following standard boosting lemma from the theory
of randomized algorithms. A random variable Q̃ is said to be an (ε, δ)-estimate of a statistic
Q if Pr[Q̃ ∈ (1± ε)Q] ≥ 1− δ.
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▶ Lemma 9 (Median-of-Means improvement). If Q̂ is an unbiased estimator of some statistic,
then one can obtain an (ε, δ)-estimate of that statistic by suitably combining

K := C

ε2 ln 2
δ
· Var[Q̂]
E[Q̂]2

independent samples of Q̂, where C is a universal constant. ⌟

3 An Optimal Algorithm Based on Targeted Sampling

In this section, we establish Subresult (1.1) of Theorem 1 by giving a formal description of
the relevant algorithm (as Algorithm 1) followed by its analysis. This algorithm is based
on “targeted sampling,” as outlined in Section 1.2. It runs in Õ(m1+1/k/T ) space, which is
optimal in view of Subresult (2.3) in Theorem 2. It is the method of choice for the “abundant”
case, when T is large enough: specifically, in view of the guarantees of Algorithm 2 to follow
(see Theorem 16), “large enough” should be defined as T ≥ m(k+1)/(k2−k).

The full version of the paper [9] additionally gives a more straightforward targeted-
sampling algorithm, achieving a suboptimal space bound of Õ(m2−1/k). Although suboptimal,
that algorithm’s analysis contains novel ideas about the structure of hypergraphs that might
be useful in subsequent research, such as the notion of “hyperabroricity.”

3.1 The Algorithm

The basic setup is as in the algorithm of [5] for counting odd cycles in graphs (and an
analogous algorithm of [32]). We use one pass to pick an edge e ∈ E uniformly at random
and, in subsequent passes, use further sampling to estimate the number of suitable apex
vertices z at which there is a hyperwedge with base e, which would complete a simplex
together with e. In order to control the variance of the resulting unbiased estimator, we want
the vertices of a detected simplex e ∪ {z} to respect a certain ordering “by degree.”

We let the sampled edge e determine the ordering, for which we use relative degrees,
relative to certain subsets of e. Moreover, this ordering – which we call the e-relative ordering
– is only partial, as we never need to compare two vertices that both lie outside e. Let
ci(e) be the ith vertex of e according to this ordering that we shall soon define. In our
algorithm, we shall look for a suitable apex z only in the neighborhood N({c1(e), . . . , ck−1(e)}).
Furthermore, we shall require that z have a larger degree than c1(e), a larger {c1(e)}-relative
degree than c2(e), a larger {c1(e), c2(e)}-relative degree than c3(e), and so on. As we shall
see, the analysis of the resulting algorithm uses the recursive structure of k-graphs and
k-simplices through the notion of neighborhood hypergraphs (Definition 7).

These next two, somewhat elaborate, definitions formalize the above ideas.

▶ Definition 10 (e-relative ordering). Fix a hyperedge e ∈ E. The e-relative ordering, ≺e, is
a partial order on V defined as follows. Set S0(e) = ∅ and define the following, iteratively,
for i running from 1 to k.

Let ci(e) be the vertex in e ∖ Si−1(e) that minimizes deg(ci(e) | Si−1(e)), with ties
resolved in favor of the vertex with smallest ID. Set Si(e) := Si−1(e) ∪ {ci(e)} =
{c1(e), . . . , ci(e)}.

ESA 2022



32:8 Counting Simplices in Hypergraph Streams

Then declare c1(e) ≺e · · · ≺e ck(e). Further, for each z ∈ V ∖ e, declare ck(e) ≺e z if the
following two things hold: (a) for 1 ≤ i ≤ k − 1, we have deg(ci(e) | Si−1(e)) ≤ deg(z |
Si−1(e)), and (b) we also have deg(ck(e) | Sk−2(e)) ≤ deg(z | Sk−2(e)). Ties in degree
comparisons are resolved by declaring the vertex with smaller ID to be smaller.3

▶ Definition 11 (Simplex labeling). Suppose that H has a simplex at X, where X ⊆ V .
Number the vertices in X as u1, . . . , uk+1 iteratively, as follows. For i from 1 to k − 1,
let ui be the vertex in X that minimizes deg(ui | {u1, . . . , ui−1}). Let uk be the vertex
among {uk, uk+1} that minimizes deg(uk | {u1, . . . , uk−2}). This automatically determines
uk+1. Based on this, define the label of the simplex at X to be (e(X), z(X)), where e(X) :=
{u1, . . . , uk} and z(X) := uk+1.

Notice that if a simplex is labeled (e, z), then the e-relative ordering satisfies max≺e
(e) ≺e

z. Conversely, if there is a simplex at X and an edge e of this simplex such that X = e∪ {z}
and max≺e

(e) ≺e z, then the label of this simplex is (e, z).
For each e ∈ E, let τe denote the number of simplices that have a label of the form (e, ·).

Thanks to the uniqueness of labels, we immediately have∑
e∈E

τe = Tk(H) . (6)

Our algorithm is described in Algorithm 1. Our analysis will make use of the following
two combinatorial lemmas at key moments. The proofs of these lemmas can be found in the
full paper [9].

▶ Lemma 12. For every edge e ∈ E, we have τe ≤ km1/k.

▶ Lemma 13. If H is k-uniform and k ≥ 3, then
∑

e∈E codeg(Sk−1(e)) = O
(
m1+1/k

)
.

3.2 Analysis of the Algorithm
We begin by proving that the estimator Y computed by Algorithm 1 is unbiased. Let Ee

denote the event that the edge sampled in pass 1 is e. For each j ∈ [R], the vertex xj is
picked uniformly at random from N(Sk−1(e)) and exactly τe choices cause Zj to be set to
the nonzero value codeg(Sk−1(e)). Therefore,

E[Zj | Ee] = τe

|N(Sk−1(e))| · codeg(Sk−1(e)) = τe (7)

because codeg(Sk−1(e)) = |N(Sk−1(e))|, by Lemma 4. By the law of total expectation and
Equation (6),

E[Y ] = m

R

R∑
j=1

∑
e∈E

1
m
E[Zj | Ee] = 1

R

R∑
j=1

∑
e∈E

τe = Tk(H) . (8)

Next, we bound the variance of the estimator. Proceeding along similar lines, we have
E[Z2

j | Ee] = codeg(Sk−1(e)) · τe and E[Zj1Zj2 | Ee] = τ2
e for all j1 ̸= j2, because Zj1 and Zj2

are independent conditioned on Ee. So,

3 This is how ties are resolved from now on, even when not mentioned.
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Algorithm 1 Counting k-simplices in k-uniform hypergraph streams: the “abundant” case.
1: procedure k-Simplex-Count-Abundant(σ : stream of edges of k-graph H = (V, E))
2: pass 1: ▷ O(1) space
3: pick edge e = {u1, u2, . . . , uk} ∈ E u.a.r. using reservoir sampling
4: pass 2: ▷ O(2k) = O(1) space
5: compute codeg(S) for all non-trivial S ⊂ e

6: pass 3: ▷ O(R) space
7: re-arrange (if needed) u1, . . . , uk so that ui = ci(e) for i ∈ [k], using co-degrees

from pass 2
8: R←

⌈
codeg(Sk−1(e)) ·m−1/k

⌉
▷ note that codeg(Sk−1(e)) = |N(Sk−1(e))|

9: for j ← 1 to R, in parallel, do
10: Zj ← 0
11: pick vertex xj ∈ N(Sk−1(e)) u.a.r. using reservoir sampling from relevant

substream of σ

12: pass 4: ▷ O(kR) = O(R) space
13: compute the relative degrees deg(xj | Si−1(e)) for all i ∈ [k − 1] and j ∈ [R]
14: for j ← 1 to R, in parallel, do
15: if e ∪ {xj} determines a simplex with label (e, xj) then
16: Zj ← codeg(Sk−1(e))
17: return Y ← (m/R)

∑R
j=1 Zj ▷ Average out the trials and scale

E[Y 2 | Ee] = E


m

R

R∑
j=1

Zj

2 ∣∣∣∣ Ee

 = m2

R2

R∑
j=1

E[Z2
j | Ee] + m2

R2

∑
j1 ̸=j2

E[Zj1Zj2 | Ee]

≤ m2 · codeg(Sk−1(e)) · τe

R
+ m2R(R− 1)τ2

e

R2 ≤ m2+1/kτe + m2τ2
e ,

since codeg(Sk−1(e)) ≤ m1/kR by the definition of R. Using
∑

e∈E τe = Tk(H), we get

Var[Y ] ≤ E[Y 2] =
∑
e∈E

1
m
E[Y 2 | Ee] ≤ m1+1/k

∑
e∈E

τe + m
∑
e∈E

τ2
e

≤ m1+1/kTk(H) + m · (max
e∈E

τe) ·
∑
e∈E

τe = O
(

m1+1/kTk(H)
)

,

where we invoked Lemma 12 and used Equation (6) twice.
Having bounded the variance, we may apply the median-of-means technique (Lemma 9) to

the basic estimator of Algorithm 1 to obtain a final algorithm that provides an (ε, δ)-estimate.
As noted in the comments within Algorithm 1, the basic estimator uses O(R) space, where R

is a random variable. Therefore, the final algorithm, which still uses four passes, has expected
space complexity Õ(E[R] ·Var[Y ]/E[Y ]2) = E[R] · Õ(m1+1/k/Tk(H)) = E[R] · Õ(m1+1/k/T ),
thanks to the promise that Tk(H) ≥ T .

Finally, we need to bound R in expectation. We find that

E[R] = 1
m

∑
e∈E

E[R | Ee] = 1
m

∑
e∈E

⌈
codeg(Sk−1(e))

m1/k

⌉
≤ 1 + m−1−1/k

∑
e∈E

codeg(Sk−1(e)) .

Invoking Lemma 13, we conclude that E[R] = O(1), giving our first main algorithmic result.
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▶ Theorem 14. There is a 4-pass algorithm that reads a stream of m hyperedges specifying
a k-uniform hypergraph H and produces an (ε, δ)-estimate of Tk(H); under the promise that
Tk(H) ≥ T , the algorithm runs in expected space O(ε−2 log δ−1 log n ·m1+1/k/T ). ⌟

We conclude with two remarks about this algorithm. First, the space bound can easily
be made worst-case, by applying the following modification to the median-of-means boosting
process. Notice that in each instance of the basic estimator, at the end of pass 2, we know
the value of R and thus the actual space that this instance would use. For each batch of
estimators for which we compute a mean, we determine whether this batch would use more
than A times its expected space bound, for some large constant A. If so, we abort this batch
and don’t use it in the median computation. By Markov’s inequality, the probability that we
abort a batch is at most 1/A, which does not affect the rest of the standard analysis of the
quality of the final median-of-means estimator.

Second, while we have not dwelt on time complexity in our exposition, it is not hard to
convince oneself that the algorithm processes each incoming edge in Õ(R) time, which is
Õ(1) in expectation.

4 Algorithms Based on Oblivious Sampling

We now turn to our second family of algorithms, which use “oblivious sampling,” as outlined
in Section 1.2. To recap, whereas the algorithms in the previous section used an initially-
sampled edge to guide their subsequent sampling, an oblivious sampling strategy decides
whether or not to store an edge based only coin tosses specific to that edge and perhaps
its constituent vertices (and not on any edges in store). The main result of this section is
an Õ(m/T 2/(k+1))-space algorithm, given as Algorithm 2, which is the method of choice
for the “meager” case, when T is not too large (specifically, T < m(k+1)/(k2−k)). Simpler
versions of our ideas give algorithms with worse space guarantees: namely, Õ(m/T 1/k) and
Õ(m/T 2/(k+2)). The full version of the paper [9] gives the details.

The full paper additionally describes a 1-pass algorithm – also based on oblivious sampling
– whose space guarantee depends on additional structural parameters of the input hypergraph
H, proving Subresult (1.3) of Theorem 1.

4.1 A Unifying Framework for Oblivious Sampling Strategies

We find it useful to set up a framework for analyzing algorithms based on oblivious sampling
and view our eventual algorithm as an instantiation of the framework. Further, this framework
unifies a number of approaches seen in previous work on triangle counting [32, 20, 25, 6].

Suppose that we are trying to estimate the number, T (H), of copies of a target substructure
(motif) Ξ in a streamed hypergraph H. Suppose we do this by collecting certain edges into a
random sample Q, using some random process parameterized by a quantity p. The sample
Q determines which of the T (H) copies of Ξ get “detected” by the rest of the logic of the
algorithm. Let Ξ1, . . . , ΞT (H) be the copies of Ξ in H (under some arbitrary enumeration
scheme) and let Λi be the indicator random variable for the event that Ξi is detected.

In our framework, we will want to identify parameters α, β, and γ such that the following
conditions hold for all i, j ∈ [T (H)] with i ̸= j and all e ∈ E:

Pr[Λi = 1] = pα ; Pr[Λi = Λj = 1] ≤ pβ ; Pr[e ∈ Q] = pγ . (9)
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In instantiations of the framework, we will of course have β > α and further, we will
have β < 2α, which is natural because for certain pairs i, j, the variables Λi and Λj will
be positively correlated. We shall further require that our detection process satisfy the
separation property, where Ξ ∩ Ξ′ denotes the set of edges common to Ξ and Ξ′ and the
notation “X ⊥ Y ” means that random variables X and Y are independent.

Separation Property: If Ξi ∩ Ξj = ∅, then Λi ⊥ Λj . (10)

The logic of the algorithm will count the number of detected copies of Ξ in an accumulator
A :=

∑T (H)
i=1 Λi. Defining the estimator T̃ := A/pα, we see that E[T̃ ] =

∑T (H)
i=1 p−αE[Λi] =

T (H), which makes it unbiased. To establish concentration, we estimate

Var[A] = Var
T (H)∑
i=1

Λi =
T (H)∑
i=1

Var[Λi] +
∑
i ̸=j

Cov[Λi, Λj ] ≤
T (H)∑
i=1

E[Λ2
i ] +

∑
i ̸=j

Cov[Λi, Λj ]

≤ T (H)pα +
∑

Λi ⊥̸ Λj

E[ΛiΛj ] ≤ T (H)pα +
∑

Λi ⊥̸ Λj

pβ = T (H)pα + pβ ·
∑
e∈E

∑
Ξi∩Ξj={e}

1

︸ ︷︷ ︸
scor

, (11)

where the penultimate step uses (9) and the last step holds because of the separation property
and the reasonable structural assumption (true of simplices) that two distinct copies of the
motif Ξ can intersect in at most one edge.

The term scor captures the amount of correlation in the sampling process. Let us now
specialize the discussion to the problem at hand, where the motif Ξ is a k-simplex and so,
T (H) = Tk(H). Let Me be the number of simplices that share hyperedge e (note that this is
subtly different from τe in Section 3). Recalling the definition of ∆E in Equation (4), we see
that maxe∈E Me = ∆E . We can therefore upper bound scor as follows:

scor ≤
∑
e∈E

(
Me

2

)
≤
∑
e∈E

M2
e

2 ≤ ∆E

2
∑
e∈E

Me = (k + 1)∆ETk(H)
2 . (12)

Plugging this bound into (11) and applying Chebyshev’s inequality gives the following “error
probability” bound, where B > 0 will be chosen later.

P (B)
err
[

T̃
]

:= Pr
[
|T̃ − T (H)| ≥ εB

]
≤ Var[A]

p2αε2B2 ≤
Tk(H)
ε2pαB2 + (k + 1)∆ETk(H)

2ε2p2α−βB2 . (13)

Heavy/Light Edge Partitioning via an Oracle. Using the above estimator T̃ directly on
the input hypergraph H does not give a good bound in general, because the quantity ∆E

appearing in Equation (13) could be as large as Tk(H), making the upper bound on Perr
useless. One remedy is to apply the technique so far to a subgraph of H where ∆E is
guaranteed to be a fractional power of Tk(H) and deal separately with simplices that don’t
get counted in such a subgraph. Such a subgraph can be obtained by taking only the “light”
edges in H, where an edge e is considered to be light if Me = O(Tk(H)θ), for some parameter
γ < 1 that we will soon choose. We remark that this kind of heavy/light partitioning is a
standard technique in this area: it occurs in the triangle counting algorithms of [12, 32] and
in fact in the much earlier triangle listing algorithm of [10].

More precisely, we create an oracle to label each edge as either heavy or light. Thus:

Tk(H) = T L
k (H) + T H

k (H) , (14)
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where T L
k (H) is the number of simplices containing only light edges, and T H

k (H) is the
number of simplices containing at least one heavy edge. The key insight in the partitioning
technique is that we can estimate the two terms in Equation (14) separately, using the
estimator T̃ described above for T L

k (H) and a different estimator for T H
k (H) that we shall

soon describe. In what follows, we allow an additive error of ±εTk(H) in the estimate of
each term, leading to a multiplicative error of 1± 2ε in the estimation of Tk(H).

The oracle is implemented by running the following one-pass randomized streaming
algorithm implementing a function orcl : E → {heavy, light} to label the edges of H. Form
a random subset Z ⊆ V by picking each vertex v ∈ V , independently, with probability

q := ξε−2 ln n · T −θ , (15)

where T is the promised lower bound on Tk(H) given to the algorithm, and ξ ≥ 12k(k + 1)
is a constant. Then, in one pass over the input stream, collect all hyperedges e containing
at least one vertex from Z. Let S denote the random sample of edges thus collected. Note
that this is distinct from (and independent of) the sample Q collected by the oblivious
sampling scheme discussed above. Now, for each hyperedge e = {u1, . . . , uk} ∈ E, let
M̃e := |{z ∈ Z : e∪ {z} ∈ Tk(H)}| be the number of simplices that e completes with respect
to Z. Then we define:

orcl(e) =
{

heavy , if M̃e < qT θ ,

light , otherwise.
(16)

The next lemma (whose proof, via Chernoff bounds, we omit) says that the oracle’s
predictions correspond, with high probability, to our intuitive definition of heavy/light edges,
up to a factor of 2.

▶ Lemma 15. W.h.p., the oracle given by (16) is “correct,” meaning that it satisfies

∀ e ∈ E : orcl(e) = light ⇒ Me < 2T θ ∧ orcl(e) = heavy ⇒ Me > 1
2 T θ .

The space required to implement the oracle is that required to store the sample S. Since

E[|S|] = O

(∑
v∈V

q deg(v)
)

= O(qm) , (17)

the expected space is O(qm log n) = O(ε−2 log2 n · T −θm) = Õ(m/T θ), by Equation (15).

Counting the Light and Heavy Simplices. We can now describe our overall algorithm. We
use two streaming passes. In the first pass, we collect the samples S and Q. At the end of the
pass, we have the information necessary to prepare the heavy/light labeling oracle and using
it, we remove all heavy edges from Q. In the second pass, for each edge e encountered, we
use the oracle to classify it. If e is light, we feed it into the detection logic for the oblivious
sampling scheme (which uses Q). If e is heavy, we use S to estimate Me, the number of
simplices containing e; this requires a little care, as we explain below.

In analyzing the algorithm, we start by assuming that the oracle is correct (which happens
w.h.p., by Lemma 15). Let T̃ L be the estimator for T L

k (H) produced by the oblivious sampling
scheme. We analyze its error probability using Equation (13), noting that ∆E ≤ 2T θ in the
light-edges subgraph and choosing B = Tk(H). This leads to
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Perr[T̃ L] := Pr
[
|T̃ L − T L

k (H)| ≥ εTk(H)
]

≤ T L
k (H)

ε2pαTk(H)2 + (k + 1) · 2T θ · T L
k (H)

2ε2p2α−βTk(H)2 ≤ 1
ε2pαT

+ k + 1
ε2p2α−βT 1−θ

, (18)

where we used the inequalities T L
k (H) ≤ Tk(H) and Tk(H) ≥ T . This bound on the error

probability will inform our choices of parameters p, α, β, and θ, below.
Finally, we estimate T H

k (H). Define a simplex in Tk(H) to be i-heavy if it has exactly i

heavy edges. For each edge e and 1 ≤ i ≤ k + 1, let M i
e be the number of i-heavy simplices

containing e. Notice that

∑
e heavy

M i
e = i · |{Ξ ∈ Tk(H) : Ξ is i-heavy}| , whence T H

k (H) =
∑

e heavy

k+1∑
i=1

M i
e

i
. (19)

During our second streaming pass, we compute unbiased estimators for each M i
e as follows.

Recall that S is the set of all edges incident to some vertex in the set Z of sampled vertices.
Define M̃ i

e to be the number of vertices in Z that combine with e to form an i-heavy simplex;
we consult the oracle to test whether a simplex in question is indeed i-heavy. Notice that
M̃ i

e ∼ Bin(M i
e, q). Therefore, by Equation (19),

T̃ H := 1
q

∑
e heavy

k+1∑
i=1

M̃ i
e

i
(20)

is an unbiased estimator for T H
k (H). To establish concentration, consider the inner sum

corresponding to any particular edge e. The sum can be rewritten as a sum of Me mutually
independent indicator variables scaled by factors in {1, 1/2, . . . , 1/(k + 1)}. Since the oracle
is correct, the heaviness of e implies that Me ≥ 1

2 T θ and then a Chernoff bound gives

Pr
[

k+1∑
i=1

M̃ i
e

i
/∈ (1± ε)q

k+1∑
i=1

M i
e

i

]
≤ 2 exp

(
−1

3ε2q · 1
2T θ · 1

k + 1

)
≤ n−2k ,

where the final step uses ξ ≥ 12k(k + 1). By a union bound over the ≤ nk heavy edges,

Perr[T̃ H ] := Pr
[
|T̃ H − T H

k (H)| ≥ εTk(H)
]
≤ Pr

[
T̃ H /∈ (1± ε)T H

k (H)
]

≤ Pr

 ∨
e heavy

{
k+1∑
i=1

M̃ i
e

i
/∈ (1± ε)q

k+1∑
i=1

M i
e

i

} ≤ n−O(1) . (21)

Determining the Parameters and Establishing a Space Bound. We have now described
the overall logic of a generic algorithm in our framework. To instantiate it, we must plug in
a specific oblivious sampling scheme, whose logic will determine the parameters α, β, and
γ as given by Equation (9). Now we choose p to ensure that Perr[T̃ L] is less than a small
constant. Thanks to Equation (18), it suffices to ensure that

1
ε2pαT

+ k + 1
ε2p2α−βT 1−θ

= o(1) .
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Setting p = (log n/(ε2T ))1/α reduces the first term to 1/ log n. To make the second term
small as well, we set the threshold parameter θ used by the heavy/light partitioning oracle
to θ := β/α− 1; as we remarked after Equation (9), we will have α < β < 2α, which implies
0 < θ < 1. The second term now reduces to

(k + 1)pβ−αT θ

log n
= k + 1

(log n)1−θε2θ
= o(1) ,

for n sufficiently large. We therefore obtain Perr[T̃ L] = o(1) and, putting this together
with Equation (21) and Lemma 15, we conclude that the overall algorithm computes a
(1± 2ε)-approximation to Tk(H) with probability at least 1− o(1).

With these parameters now set, the space complexity analysis is straightforward. The
space usage is dominating by the storing of the samples S and Q. By Equation (17) and
Equation (15), we have E[|S|] = Õ(m/T θ) and by Equation (9), we have

E[|Q|] = pγm =
(

log n

ε2

)γ/α
m

T γ/α
.

It is natural that the probability of detecting a particular simplex is at most the probability
of storing one particular edge, so γ ≤ α. Therefore, E[|Q|] ≤ ε−2 log n ·m/T γ/α. Altogether,
since storing a single edge uses O(log n) bits, the total space usage is Õ(m/T λ), where

λ = min
{γ

α
, θ
}

= min
{

γ

α
,

β

α
− 1
}

. (22)

This completes the description of our framework for designing and analyzing simplex
counting algorithms based on oblivious sampling.

4.2 Instantiation: Oblivious Sampling Using the Shadow Hypergraph
It is time to instantiate our framework with a specific sampling and simplex-detection
strategy. The simplest instantiation samples edges at rate p and detects light simplices
composed of sampled edges, leading to a Õ(m/T 1/k) space bound. We get a better bound of
Õ(m/T 2/(k+2)) algorithm by adapting the vertex-coloring-based graph algorithm of [35]: a
key insight is that we color (k − 1)-sized subsets of V and then pick fully monochromatic
edges in the sample. Coloring single vertices would have run into the technical problem that
the separation property would not hold. Our full paper [9] describes these ideas in detail.

Our best algorithm combines ideas from these initial approaches, eventually achieving a
space complexity of Õ(m/T 2/(k+1)), which is our best bound of the form Õ(m/T λ). It is
therefore our method of choice for the “meager” case. Comparing with Theorem 14, we see
that this bound wins when T < m(k+1)/(k2−k). We continue to use the coloring idea with
two added twists: we color appropriately-sized subsets of vertices, and we do so with vertices
of the shadow hypergraph H ′ = (V ′, E′), defined in Definition 7.

To be more specific, we uniformly and independently color (k−2)-sized subsets of vertices
V ′ of H ′ using N colors. Since each vertex in V ′ is essentially an ordered pair of vertices
in V , we need a coloring function that maps

(
V ×V
k−2

)
to [N ]. Recall that H ′ = (V ′, E′) is a

(k − 1)-uniform hypergraph. During the first pass, when an edge e =
{

u1, . . . , uk

}
arrives in

the stream, it implies the arrival of an edge e′ = E′ which we store in Q iff all (k − 2)-sized
subsets within e′ receive the same color. We call such an edge e′ monochromatic.

We detect simplices using this sample Q as follows. As observed after Definition 8,
each k-simplex in H corresponds to exactly one (k − 1)-simplex in H ′; we try to detect
this “shadow simplex.” In greater detail, let Ξ be a particular simplex in H. Let z be its
minimum-ID vertex, let ez be the edge of Ξ not incident to z and let Wz be the hyperwedge
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of Ξ with apex z. Note that the edges of Wz correspond to edges in H ′ that lie in E′
z (see

Definition 7) and, since Wz is a hyperwedge, these edges form a (k − 1)-simplex in the
z-flavored component of H ′. In the second pass, when ez arrives in the stream, we detect Ξ
iff this entire (k − 1)-simplex has been stored in Q, i.e., iff all its edges are monochromatic.
Algorithmically, when we see an edge e in the second pass, we go over all vertices z ∈ V ,
detecting a simplex whenever this e plays the role of ez for a simplex on the vertices in
e ∪ {z} in the manner just described.

The remaining details are as described in Section 4.1: we apply the heavy/light edge
partitioning technique on top of the above sampling scheme and proceed as in our framework.
We formalize the overall algorithm, with full details, as Algorithm 2. Note that the coloring
function need not be fully random and can be chosen from a d-wise independent hash
family for an appropriate constant d. The update logic for the accumulator AL (Section 4.2)
implements the detection method just described. The update logic for the accumulator
AH (Section 4.2) implements the estimator in Equation (20). Note that the heavy-simplex
estimator does not use the shadow hypergraph.

Algorithm 2 Simplex counting in the “meager” case using Õ
(
m/T 2/(k+1)) bits of space.

1: procedure k-Simplex-Count-Meager(σ : stream of edges of k-graph H = (V, E))
2: d← 2

(
k

k−2
)
; r ←

(
n2

k−2
)
; α←

(
k

k−2
)
− 1; p← (ε−2T −1 log n)1/α; N ← ⌈1/p⌉

3: θ ←
(
2
(

k
2
)
− k
)
/
((

k
2
)
− 1
)
; q ← ξε−2 log n · T −θ

4: ▷ ξ is a suitable constant; see Equation (15)
5: Z ← sample of V , picking each vertex independently with probability q

6: F ⊆ [N ][r] ← d-wise independent family of hash functions of the form h : [r]→ [N ]
7: select a function col( ) uniformly at random from F to color the elements of

(
V ′

k−2
)

8: pass 1:
9: (Q, S)← (∅,∅)

10: for each hyperedge e = {u1, . . . , uk} in the stream do
11: let i ∈ [k] be such that ui is the vertex in e with the smallest ID
12: if all (k − 2)-sized subsets of e ∖ {ui} ∈ Eui

are colored the same then
13: Q← Q ∪

{{
u

⟨ui⟩
1 , . . . , u

⟨ui⟩
i−1 , u

⟨ui⟩
i+1 , . . . , u

⟨ui⟩
k

}}
14: if e ∩ Z ̸= ∅ then
15: S ← S ∪ {e}
16: create heavy/light oracle based on S

17: pass 2:
18: (AL, AH)← (0, 0)
19: let QL be the set of hyperedges in Q corresponding to light hyperedges in E

20: for each hyperedge e = {u1, . . . , uk} in the stream do
21: if orcl(e) = light then
22: AL ← AL +

∣∣∣{z ∈ V :
∧k

i=1

{{
u

⟨z⟩
1 , . . . , u

⟨z⟩
i−1, u

⟨z⟩
(i+1), . . . , u

⟨z⟩
k

}
⊆ QL

}}∣∣∣
23: else
24: Let M̂ i

e :=
∣∣{z ∈ Z : e ∪ {z} a simplex with i heavy edges

}∣∣
25: AH ← AH +

∑k+1
i=1 M̂ i

e/i

26: return AL/pα + AH/q
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Analysis. We proceed in the now-established manner within our framework: we need to
work out the parameters α, β, and γ.

Consider a particular k-simplex Ξ in H and let the (k − 1)-simplex Ξ′ be its “shadow
simplex” in H ′, as in the above discussion. Then, if Ξ is light, it is detected at most once,
when the hyperedge opposite to its lowest-ID vertex arrives in the stream. For this detection
to actually happen, all edges of Ξ′ must be monochromatic, i.e., all

(
k

k−2
)

possible (k−2)-sized
subsets of vertices in Ξ′ must receive the same color. Let p = 1/N . The probability of this
event is pα, where α =

(
k

k−2
)
− 1 =

(
k
2
)
− 1

Next, we observe that for two distinct simplices Ξ1 and Ξ2 in H, the events of their
detection have nonzero correlation iff they have an edge in common. Thus, the separation
property (10) holds. Moreover, when Ξ1 ∩ Ξ2 = {e}, the correlation is in fact nonzero only
if both Ξ1 and Ξ2 have the same minimum-ID vertex and that vertex lies in e. When this
happens, the simultaneous detection event occurs iff all (k − 2)-sized subsets of shadow
vertices arising from vertices of Ξ1 and Ξ2 receive the same color. Counting the number of
such subsets shows that the probability of simultaneous detection is pβ , for

β = 2
(

k

k − 2

)
− (k − 1)− 1 = 2

(
k

2

)
− k

Finally, an edge in E′ is made monochromatic (and thus, stored in Q) with probability
pk−2 because k − 1 different subsets must all be colored identically. This gives γ = k − 2, so

λ = min
{

2
(

k
2
)
− k(

k
2
)
− 1

− 1,
k − 2(
k
2
)
− 1

}
= k − 2(

k
2
)
− 1

= 2
k + 1

for k ≥ 3. Thus, our algorithm runs in Õ(m/T λ) = Õ
(
m/T 2/(k+1)) bits of memory in the

worst case. We have therefore proved the following result.

▶ Theorem 16. There is a 2-pass algorithm that reads a stream of m hyperedges specifying
a k-uniform hypergraph H and produces an (ε, o(1))-estimate of Tk(H); under the promise
that Tk(H) ≥ T , the algorithm runs in expected space O(ε−2 log2 n ·m/T 2/(k+1)). ⌟

5 Concluding Remarks

We initiated a systematic study of the simplex counting problem in a streamed hypergraph,
a natural generalization of the much-studied triangle counting problem. We obtained several
sublinear-space algorithms: which of them is best depends on some combinatorial parameters
of the problem instance. Overall, we learned that established methods for triangle and
substructure counting in graph streams are not by themselves enough and considerable effort
is required to deal with the more intricate structures occurring in hypergraphs.

In some parameter regimes (what we called the “abundant” case), we obtained provably
space-optimal algorithms. However, in the “meager” case, seeking algorithms with space
complexity of the form m/T λ, we established an upper bound with λ = 2/(k + 1) and a lower
bound with λ = 1− 1/k. Closing this gap seems to us to be the most compelling follow-up
research question.

The simplex counting problem has the potential to impact research on pattern detection
and enumeration. As triangle counting has done in the past two decades, simplex counting
may offer new insights on how sampling techniques can exploit the structure of graphs and
hypergraphs to extract meaningful information.
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