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ABSTRACT

Computing a dense subgraph is a fundamental problem in graph
mining, with a diverse set of applications ranging from electronic
commerce to community detection in social networks. In many of
these applications, the underlying context is better modelled as a
weighted hypergraph that keeps evolving with time.

This motivates the problem of maintaining the densest subhy-
pergraph of a weighted hypergraph in a dynamic setting, where
the input keeps changing via a sequence of updates (hyperedge
insertions/deletions). Previously, the only known algorithm for this
problem was due to Hu et al. [19]. This algorithm worked only
on unweighted hypergraphs, and had an approximation ratio of
(1 + €)r? and an update time of O(poly(r,log n)), where r denotes
the maximum rank of the input across all the updates.

We obtain a new algorithm for this problem, which works even
when the input hypergraph is weighted. Our algorithm has a signif-
icantly improved (near-optimal) approximation ratio of (1 + €) that
is independent of r, and a similar update time of O(poly(r, log n)).
It is the first (1 + €)-approximation algorithm even for the special
case of weighted simple graphs.

To complement our theoretical analysis, we perform experiments
with our dynamic algorithm on large-scale, real-world data-sets.
Our algorithm significantly outperforms the state of the art [19]
both in terms of accuracy and efficiency.
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1 INTRODUCTION

In the weighted densest subhypergraph (WDSH) problem, we are
given a weighted hypergraph G = (V,E, w) as input, where w :
E — R* is a weight function. The density of any subset of vertices
U C Vin G is defined as pg(U) := (X eep[u] We)/|Ul, where E[U]
is the set of hyperedges induced by U on G. The goal is to find a
subset of vertices U C V in G with maximum density.

We consider the dynamic WDSH problem, where the input hy-
pergraph G keeps changing via a sequence of updates. Each update
either deletes a hyperedge from G, or inserts a new hyperedge e
into G and specifies its weight we. In this setting, the update time
of an algorithm refers to the time it takes to handle an update in G.
We want to design an algorithm that maintains a (near-optimal)
densest subhypergraph in G with small update time.

The rank of a hyperedge e is the number of vertices incident
on e. The rank of a hypergraph is the maximum rank among all
its hyperedges. Let r denote an upper bound on the rank of of the
input hypergraph throughout the sequence of updates. Let n be
the number of nodes and m be an upper bound on the number
of hyperedges over the sequence of updates. Our main result is
summarized below.

THEOREM 1.1. (Informal) There is a randomized (1 + €)-
approximation algorithm for the dynamic WDSH problem with
O(r? - polylog(n, m)) worst case update time, for every sufficiently
small constant € > 0.

Note that a naive approach for this problem would be to run
a static algorithm from scratch after every update, which leads
to Q(r - (n + m)) update time. As r is a small constant in most
practical applications, the update time of our dynamic algorithm is
exponentially smaller than the update time of this naive approach.

1.1 Perspective and Overview

Computing a dense subgraph is a fundamental primitive in graph
mining [2, 3, 8, 17, 18, 20, 26, 27]. Over the course of past sev-
eral decades, it has been found to be useful in a range of different
contexts, such as community detection [11] and piggybacking on
social networks [16], spam detection in the web [15], graph compres-
sion [13], expert team formation [7], real-time story identification [1],
computational biology [23] and electronic commerce [20]. There are
three features that stand out from this diverse list of applications
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and motivate us to study the more general dynamic WDSH prob-
lem. (I) Real-world networks are often dynamic, in the sense that
they change over time. (II) The underlying real-world context is
often easier to capture by making the graph edges weighted. (III)
It is often more beneficial to model the underlying network as a
hypergraph rather than a standard graph.

In order to appreciate the significance of these three features,
consider two concrete real-world examples.

Example 1: Real-time story identification. The wide popularity
of social media yields overwhelming activity by millions of users
at all times in the form of, say, tweets, status updates, or blog posts.
These are often related to important current events or stories that
one might seek to identify in real time. For instance, consider the
recent Israel-Palestine conflict in May 2021. After the outbreak of
the conflict, multiple incidents occurred in quick succession that
are important to be promptly identified. An efficient technique for
real-time story identification is focusing on certain “entities” asso-
ciated with a story, e.g., famous personalities, places, organizations,
products, etc. They consistently appear together in the numerous
posts on the related story. In the example of the Israel-Palestine
conflict, countless online posts have turned up about the several
events, many of which feature the same small set of entities, e.g., Is-
rael, Palestine, Hamas, Gaza, Sheikh Jarrah, and airstrike, or subsets
thereof. This correlation can be leveraged: the set of all possible
real-world entities (which can be billions) represented by nodes,
with an edge connecting each pair iff they appear together in a post,
define a graph that changes dynamically over time; maintaining
a dense subgraph of this network helps us to identify the group
of most strongly-related entities (in the example above, this group
might be {Hamas, Gaza, Sheikh Jarrah, airstrike}), and in turn, the
trending story [1].

Note the significance of feature (I) here: the number of posts
keeps growing rapidly, thus dynamically modifying the underlying
graph. Further, a large number of posts gets deleted over time. This
is often driven by the proliferation of fake news and its eventual
removal upon detection. Also notice that feature (II) is crucial for
this task. Every minute, millions of entities get mentioned in a small
number of posts. The few entities in the story of interest, however,
collectively appear in a massive number of posts. Therefore, to make
them stand out, we can assign to the graph edges weights propor-
tional to the number of posts they represent. Thus, the densest
subgraph is induced by the union of the entities in the story. Finally,
observe the importance of feature (III) in this context. For a post
mentioning multiple entities, instead of adding an edge between
each pair of them, we can simply include all of them in a single
hyperedge. The standard graph formulation creates a clique among
those nodes, which makes the density of the post proportional to
the number of entities mentioned. This is inaccurate for several
applications. In contrast, having a single hyperedge represent a
post removes this bias. The task of real-time story identification
thus reduces to precisely the dynamic WDSH problem.

Example 2: Trending Topics Identification. Consider the set-
ting where we wish to identify a set of recently trendy topics in
a website like Stack Overflow. We can model this scenario as a
network where each node corresponds to a tag, and there is a
hyperedge containing a set of nodes iff there is a post with the
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corresponding set of tags. The weight of a hyperedge represents
the reach of a post, captured by, say, the number of responses it
generates. The set of recently trendy topics will be given by the set
of tags that form the densest subhypergraph in this network. The
network is dynamic: posts are added very frequently and deletions
are caused not only by their actual removal but also by our interest
in only the ones that appeared (say) within the last few days.

Other applications of the WDSH problem include identifying

a group of researchers with the most impact [19] and analysing
spectral properties of hypergraphs [10].
Previous work. Starting with the work of Angel et al. [1], in recent
years a sequence of papers have dealt with the densest subgraph
problem in the dynamic setting. Epasto et al. [12] considered a
scenario where the input graph undergoes a sequence of adversarial
edge insertions and random edge deletions, and designed a dynamic
(2 + €)-approximation algorithm with O(polylog n) update time. In
the standard (adversarial) fully dynamic setting, Bhattacharya et
al. [6] gave a (4 + €)-approximation algorithm with O(polylog n)
update time. This latter result was recently improved upon by
Sawlani and Wang [24], who obtained a (1 + €)-approximation
algorithm with O(polylog n) update time. All these results, however,
hold only on unweighted simple graphs (i.e., hypergraphs with
rank 2). Our algorithm, in contrast, works for weighted rank-r
hypergraphs and is the first (1 + €)-approximation algorithm with
O(polylog n) update time even for the special case of edge-weighted
simple graphs.

For general rank-r hypergraphs, the only dynamic algorithm
currently known in the literature was designed by Hu et al. [19]:
in the fully dynamic setting, their algorithm has an approximation
ratio of (1+¢)r? and an amortized update time of O(poly(r, log n)). In
direct contrast, as summarized in Theorem 1.1, our approximation
ratio is near-optimal (and independent of r), and our update time
guarantee holds in the worst case. Furthermore, our algorithm works
even when the hyperedges in the input hypergraph have large
weights in [1, poly(r, n)], whereas the algorithm in [19] needs to
assume that the input hypergraph is either unweighted or has very
small weights (in [1, poly(r, log n)]).

Significance of our results. Given this background, let us now
emphasize three aspects of our result as stated in Theorem 1.1.

First, the approximation ratio of our algorithm can be made
arbitrarily close to 1, and in particular, it is independent of the rank
r of the input hypergraph. For example, if r = 3, then [19] can only
guarantee that in the worst case, the objective value of the solution
maintained by their algorithm is at least (100/r%)% =~ 11% of the
optimal objective value. In contrast, for anyr, we can guarantee that
the objective value of the solution maintained by our algorithm
is always within =~ 99% of the optimal objective value. In fact,
since r can be, in theory, as large as n, the improvement over the
approximation ratio is massive.

Second, the update time of our algorithm is O(r? - polylog(n, m)).
Note that any dynamic algorithm for this problem will necessar-
ily have an update time of Q(r), since it takes ©(r) time to even
specify an update. It is not surprising, therefore, that the update
time of [19] also had a polynomial dependency on r. Since r is a
small constant in most practical applications, our update time is
essentially O(polylog(n, m)) in these settings.
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Third, our dynamic algorithm works for weighted graphs, which,

as noted above, are crucial for applications. Throughout the rest
of this paper, we assume that the weight of every hyperedge is a
positive integer. This is without loss of generality: if the weights
are positive real numbers, then we can scale them appropriately
and round them to integers without affecting the approximation
factor (see full version [5] for details). Finally, if the weights of the
hyperedges are known to be integers in the range [1, W], then a
naive approach would be to make w, copies of every hyperedge e
when it gets inserted, and maintain a near-optimal solution in the
resulting unweighted hypergraph. This, however, leads to an update
time of ®(W). This is prohibitive when W is large. In contrast, our
algorithm has polylogarithmic update time for any W.
Overview of Techniques. We obtain the result stated in Theorem
1.1 in two major steps. First, we use random weight scaling to reduce
the weighted version of the problem to the unweighted case, while
incurring only a small polylogarithmic overhead in update time
(Section 3). Next, to solve the unweighted version, we extend the
techniques of [24] to handle any general hypergraph (Section 4).
Our analysis shows that the approximation factor achieved is 1 + ¢
for hypergraphs of any rank r and in particular, does not grow with r.
See Section 1.2 of the full version of our paper [5] for a detailed
overview of our techniques.

Overview of Experimental Evaluations. We conduct extensive
experiments to demonstrate the effectiveness of our algorithm in
both fully dynamic and insertion-only settings with weighted and
unweighted hypergraphs. We test our algorithm on several real-
world temporal hypergraph datasets. For the unweighted case, in
both the insertion-only and fully dynamic settings, our algorithm
significantly outperforms the state of the art of [19] both in terms
of accuracy and efficiency. In comparison against an LP solver for
computing the exact solution, our algorithm shows massive speed-
up while incurring less than a few percentage points of relative
error. See Section 5 of this paper (and Sections 1.3 and 5 of the full
version [5]) for a detailed account of our experimental results.

2 PRELIMINARIES AND NOTATIONS

Let us fix the notations that we use throughout the paper. Our input
weighted hypergraph is always a rank-r hypergraph denoted by
G = (V,E,w), where w : E — N is a weight function. We denote the
number of vertices |V| and hyperedges |E| (or an upper bound on
it) by n and m respectively. The maximum weight of a hyperedge in
G is given by wnax(G) := maxecg we. The multiplicity of an edge
in a multi-hypergraph is its number of copies in the hypergraph.
For a subset of nodes U C V, denote its density in G by pg(U) :=
(Zeer[u) we)/|U|, where E[U] is the set of hyperedges induced by
U on G. If the hypergraph is unweighted, then the density of U is
simply pg(U) = |E[U]|/|U|. We denote the maximum density of G
by p*(G) := maxycy pg(U). We drop the argument G from each
of the above when the hypergraph is clear from the context.

We use the shorthands WDSH and UDSH for weighted and
unweighted densest subhypergraph respectively. For the dynamic
WDSH and UDSH problems, we get two types of queries: (a) max-
density query, which asks the value of the maximum density over
all subsets of nodes of the hypergraph, and (b) densest-subset query,
which asks for a subset of nodes with the maximum density. We
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say an algorithm maintains an a-approximation (a > 1) to either of
these problems if it answers every max-density query with a value
that lies in [p*/a, p*] and every densest-subset query with a subset
of nodes whose density lies in [p*/a, p*].

Given any weighted hypergraph G, we denote its unweighted
multi-hypergraph version by GV, which is obtained by replacing
each edge e having weight w, by we many unweighted copies of e.
Note that G and G*™V are equivalent in terms of subset densities.

We say that a statement holds whp (with high probability) if it
holds with probability at least 1 — 1/poly(n).

We use the following version of the Chernoff bound.

Fact 2.1. (Chernoff bound) Let X be a sum of mutually indepen-
dent indicator random variables. Let j and § be real numbers such that
E[X] < pand 0 < § < 1. Then, Pr[|X — p| > 6p] < exp (—pd?/3).

3 REDUCTION TO UNWEIGHTED CASE

In this section, we show that we can use an algorithm for the
dynamic UDSH problem to obtain one for the dynamic WDSH
problem while incurring only a small increase in the update and
query times.

3.1 Weight Scaling

Given a weighted hypergraph, we want to scale down the weights
to make the max-weight small and simultaneously scale down the
max-density by a known factor so that we can retrieve the original
density value from the scaled one. Since we want to reduce the
problem to the unweighted case, we work with the unweighted
multi-hypergraph versions (see Section 2) of the weighted hyper-
graphs in question. Thus, the maximum edge-weight would corre-
spond to the max-multiplicity of an edge in the unweighted version.
Informally, given a weighted hypergraph G on n vertices, we want
to obtain an unweighted multi-hypergraph H such that (a) maxi-
mum multiplicity of an egde in H is roughly O(log n) and (b) given
p*(H), we can easily obtain an approximate value of p*(G). We
achieve these in Lemmas 3.1 and 3.2 respectively.

Given any weighted hypergraph G, we define G4 as the random
hypergraph obtained by independently sampling each hyperedge
of G"™V with probability q.
logn

5

For a parameter p, define ¢(p) := min {ce_z . , 1} for some
large constant ¢ and an error parameter € > 0.

Our desired multi-hypergraph H will be given by G () for some
appropriate p. The following lemma (proof in the full version [5])
shows that the max-multiplicity of H is indeed small.

LEMMA 3.1. For p > wmax(G)/r, let H = Gq(/;). Then, maximum
multiplicity of an edge in H is O(re~2 log n) whp.

At the same time, we also need to ensure that we can retrieve
the max-density and a densest subset of G from that of H. The next
lemma, which follows directly from Theorem 4 of [21], handles
this.

LEMMA 3.2. Given a weighted hypergraph G = (V,E,w), let H =
Ggy(p) for a parameter p. Then, following hold simultaneously whp:
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YU CV:pgU)= (1+e)p= pu(U)=ce?logn
(i) VU C V : pg(U) < (1 - 2€)p = pr(U) < (1 - €)ce % logn

It follows from the above lemma that p*(H) ~ ce 2 logn iff p
is very close to p*(G). We can now make parallel guesses p for
p*(G) and find the correct one by identifying the guess that gives
the desired value of p*(H). We explain this in detail and prove it
formally in the next section.

3.2 Fully Dynamic Algorithm for WDSH using
UDSH

We handle the unweighted case UDSH and obtain the following
theorem in Section 4.

THEOREM 3.3. Given an unweighted rank-r (multi-)hypergraph
H on n vertices and at most m edges with max-multiplicity
at least w*, there exists a fully dynamic data structure UDSHP
that deterministically maintains a (1 + €)-approximation to the
densest subhypergraph problem. The worst-case update time is
O(max{(64re~2logn)/w*, 1} - re"*log? nlog m) per edge insertion
or deletion. The worst-case query times for max-density and densest-
subset queries are O(1) and O(f + log n) respectively, where 5 is the
output-size.

Here, we describe a way to use the above theorem as a subroutine
to efficiently solve the dynamic WDSH problem. For the input
weighted hypergraph G, assume that we know the value of wpax (G)
and an upper bound m on the number of hyperedges (across all
updates) in advance.! First, we observe the following.

OBSERVATION 3.4. In a rank-r weighted hypergraph G with at
most m edges, we have wnax(G)/r < p*(G) £ mwpax(G).

Our algorithm for the dynamic WDSH problem is as follows.

Preprocessing. We keep guesses p; = (wmax/r)(1 + €)* for i =
0,1,...,[log; . (rm)]. Note that by Observation 3.4, these are valid
guesses for p*(G). For each guess p; and each j € [log; . Wmax],
we construct a data structure SAMPLE(], j) that, when queried,
generates independent samples from the probability distribution
Bin(L(1 + €], g(p;)).? Each such data structure can be constructed
in O(Wpmax) time so that each query is answered in O(1) time ([9],
Theorem 1.2). Parallel to this, for each i, we have a copy of the data
structure for the UDSH problem, given by UpsHp(i). The value of
w* that we set for UpsHP(i) is Wmax(G) - q(p;)/2.

Update processing. On insertion of the edge e with weight we,
for each guess p;, query SAMPLE(, [log; . we]) to get a number s,
and insert s copies of the unweighted edge e using the data structure
UpsHr(i). Similarly, on deletion of edge e, for each i, use UpsHpP(i)
to delete all copies of the edge added during its insertion.

Query processing. Denote the value of maximum density re-
turned by Upsur(i) as p;. Let i* be the largest i such that p; >
(1 — €)ce~? log n. On a max-density query for the WDSH problem,
we output 1112: - pi+. For the densest-subset query, we output the
densest subset returned by Upsup(i*).

! These assumptions can be removed with very small increase in update time while
preserving the approximation ratio (details in the full version [5])
Bin(n, p) is the Binomial distribution with parameters n and p.
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Correctness. Observe that the hypergraph we feed to Upsup(i) is
G(’] A where G’ is the hypergraph obtained by rounding up each

edge weight of G to the nearest power of (1 + ¢€). Thus, p*(G) <
p*(G') < (1+€)p*(G).

For simplicity, we write G; )
provided to each UpsHp(i) satisfies the condition in Theorem 3.3
whp (by the Chernoff bound (Fact 2.1)) since the expected value of
max-multiplicity of G} is Wmax(G) - ¢(p;). By Theorem 3.3, Upsue(i)
returns value p; such that

(1-e)p"(G)) < pi < p*(G)).

By the definition of i*, we have p; > (1 — €)ce™2 log n. This
means p*(G.) > (1 - €)ce % log n. Then, by Lemma 3.2 (ii), we get
p*(G") = (1 — 2€)p;=. Therefore, we have

Sk 7’
ﬁi* < /ﬁ < i .
1-2¢e 1-2¢e

as G;. Note that the value of w*

P (G). 1)

Again, note that pj+41 < (1 — €)ce™2 log m. Hence, p*(Glyy) <
pi=+1/(1 — €) < ce % log m. Then, by Lemma 3.2 (i), it follows that
p*(G") < (1+ €)pi41 = (1 + €)?p;=. Hence, we have

= PG PG

. . 2
P a+e? T (1+e) @
Thus, from egs. (1) and (2), we get
% 1-2¢ _ 1-2¢e «
p"(G) = P = p(G). 3)

1+e P Uvep

Again, let U* be the densest subset returned by Upsup(i*). By
Lemma 3.2 (ii), we see that

1-2¢

(U*) > (1-2€)p;» > —— - p*(G

pc(UY) = (1 - 2€)p; Tro? P (G)
Therefore, by the definition of G’, we have

pe(UT)  1-2€
1+e — (1+e)

p*(G) = pg(U*) = p*(G) (4)

Given any 0 < § < 1, we set € = ©(J) small enough so that
(:i; > ﬁ Therefore, by egs. (3) and (4), the value and the
subset that we return on the max-density and densest-subset queries

respectively are (1 + §)-approximations to p*(G).

Runtime. As noted before, we feed G] to Upsmur(i). Fix an i.
Let w; be the max-multiplicity of an edge in G]. When a hy-
peredge of G is inserted/deleted, we insert/delete at most w; un-
weighted copies of that edge to Upsup(i). Therefore, by The-
orem 3.3, the worst case update time for Upsur(i) is O(w; -
max{(64re 2 logn)/w*, 1} - re"*log? nlog m). Using the Chernoff
bound (Fact 2.1), we have w; < 2wmax(G) - q(p;) = 4w* whp.
Also, since p; > Wmax(G)/r for each i, we can apply Lemma 3.1
to get that w; = O(re~2logn). Hence, the expression simplifies
to O(re 2 logn - re *log? nlog m) = O(r2¢ % log® nlog m). Finally,
accounting for all the O(log; . rm) = O(e~'log m) values of i, the
total update time is O(r2677 log® nlog? m) (recall that § = O(e)).
The max-density query for WDSH is answered by binary-searching
on the O(¢~!logm) copies of Upsup, which gives a query time
of O(log 5~ + loglog m) by Theorem 3.3. Note that the densest-
subset query is made only on the relevant copy i* after we find
it, and hence, by Theorem 3.3, it takes O(f + log n) time, where
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is solution-size. Therefore, we obtain the following theorem that
captures our main result.

THEOREM 3.5. (Formal version of Theorem 1.1) Given a weighted
rank-r hypergraph on n vertices and at most m edges, for any
0 < 8 < 1, there exists a randomized fully dynamic algorithm
that maintains a (1 + §)-approximation to the densest subhypergraph
problem. The worst-case update time is O(r>5~7 log® nlog?® m) per
hyperedge insertion or deletion. The worst-case query times for max-
density and densest-subset queries are O(log 5~ + loglogm) and
O(p +log n) respectively, where  is the output-size. The preprocessing
time is O(wmax6 2 log m1og Wmax), where wmax is the max-weight
of a hyperedge.

Now all it remains is to solve the unweighted case and prove
Theorem 3.3. We do this in Section 4.

4 FULLY DYNAMIC ALGORITHM FOR UDSH

Here, due to limited space, we give a sketch of our algorithm and
analysis for the dynamic UDSH problem and provide the complete
details in the full version [5].

Our Algorithm and Analysis. We extend the techniques of [24]
for the densest subgraph problem and take the primal-dual approach
to solve the UDSH problem. Recall that the input is an unweighted
multi-hypergraph H = (V, E) and we want to find the approximate
max-density as well as an approximately densest subset of H. As
is standard, we associate a variable x,, € {0, 1} with each vertex
v and ye € {0,1} with each hyperedge e such that x;, = 1 and
Ye = 1 respectively denote that we include v and e in the solution
subset. Relaxing the variables, the primal LP for UDSH (Primal(H))
is given below. Following notations similar to [24], for each vertex
u and edge e, let fe(u) and D be the dual variables corresponding to
constraints (5) and (6) respectively. Then, the dual program Dual(H)
is as follows.

Primal(H) :

max Z Ye

ecE
st.ye <x, VYueceVee€E

©)

vas1 )

veV
Xv,Ye 20 VYoeV,e€E
7)
Dual(H) :
min D

s.t. Z fe(u) =1 VeeE (8)

uece

Zfe(v)SD YoeV

es3v (9)

fe(u) >0 VYueceVecE
(10)

Think of fe(u) as a “load” that edge e puts on node u. We can
thus interpret Dual(H) as a load balancing problem: each hyperedge
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needs to distribute a unit load among its vertices such that the
maximum total load on a vertex due to all its incident edges is
minimized. For each v € V, define £(v) := ) .5, fe(v). Note that if
for some feasible solution, some edge e assigns fe(v) > 0 to some
v € e and £(v) > {(u) for some u € e \ {v}, then we can “transfer”
some positive load from f,(v) to fe(u) while maintaining constraint
(8) and without exceeding the objective value. Therefore, we can
always find an optimal solution to Dual(H) satisfying the following

“local” property.

Ve € E: fe(v) > 0= £(v) < l(u)Vu e e\ {v} (11)

We can verify that property (11) is also sufficient to get a global
optimal solution to Dual(H) (see full version [5]). Next, we show in
Theorem 4.1 (proof deferred to Appendix A) that “approximately”
maintaining property (11) (see const. (14)) gives us a near-optimal
solution to Dual(H), i.e., an approximate value of p*(H). In this
regard, we define a system of equations Dual(H, ) as follows.

{(v) = Z fov) Voev (12)
es3v

> few =1 Ve € E (13)

{(v) < Ll(u)+n Vuee\{v}, Ve€E: fe(v) >0 (14)

fe(w) =20 YueceVe€eE (15)

THEOREM 4.1. Given a feasible solution (f, ) to Dual(H, n), we
have p*(1 — ¢) < ﬁ(l — &) < p*, where D = max, {(v) and ¢ =

8nlogn
‘[—f) .

By Theorem 4.1, we see that if we can find D, ie., a feasible
solution to Dual(H, 17), then we can get a (1 + €)-approximation to

p*, where e = ,/ WTOgn, This means that given €, we initially need

tosetn = . But we do not know the value of D initially, and

321 g
in fact, that’s what we are looking for. However, we shall initially

~ ~ ~ N g 2
have an estimate D of D such that D < D < 2D. We set 17 := %.

Since D < D, we get 8'71% < £, which, by Theorem 4.1, implies
a (1 + €)-approximation to UDSH. To see how we can identify an
approximate densest subset (not just the value of its density), see

the proof of Theorem 4.1 (Appendix A).
Thus ‘we focus on finding a feasible solution to Dual(H, ), where

n= 3210g for a given estimate D satisfying D < D < 2D. Note
that if we have n > 1, then we can maintain constraint (14) with
some positive slack while having integer loads on the vertices. This
means that we are allowed to simply assign the unit load of an
edge e entirely on some vertex u € e. Assume that we know a
lower bound w* on the max-multiplicity of a hyperedge in the
graph. If w* > 64re~2logn, then it already 1mphes thatn > 1
since D > p* > 64 %logn and hence, D > D/2 > 32¢~2logn.
Otherwise, we duplicate each hyperedge [(64re~2 log n)/w*] times
(hence, this factor appears in the update time of Theorem 3.3), so
that we are ensured that p* > 64€~2 log n, implying 7 > 1 as before.
Once we have n > 1 and are allowed to assign the entire load of an
edge on a single node in it, our problem reduces to the following
hypergraph “orientation” problem.
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Problem (Hypergraph Orientation). Given an unweighted multi-
hypergraph H = (V, E) and a parameter n > 1, for each edge e € E,
assign a vertex v € e as its head h(e), such that

Ve € E: h(e) =v = din(v) < din(u) +nVu e\ {v} (16)
wheredin(v) := |{e € E : h(e) = v}|.

Given a parameter D, we construct a data structure HOP(5)
that maintains the “oriented” hypergraph satisfying (16) with n =
e2D
32logn
detail in Data Structure 1. The following lemmas (see full version

for proofs) give the correctness and runtime guarantees of the data
structure.

and in turn, solves the UDSH problem. We describe it in

LEMMA 4.2. After each insertion/deletion, the data structure

— =
HOP(D) maintains constraint (16) withn = 32610271'

LEMMA 4.3. Ifﬁ < D, then the operations querysubset and query-
density of HOP(D) return a (1+€)-approximation to the densest-subset
and max-density queries respectively.

LEmMA 4.4. IfD < 2D, then the operations insert and delete of
HOP(D) take O(re™4 log? n) and O(re~2 log n) time respectively. The
operation querydensity takes O(1) time and querysubset takes O(f +
log n) time, where 8 is the solution-size.

Completing the Algorithm. The above lemmas prove Theo-
rem 3.3 as long as we have an estimate Dsuchthat D < D < 2D. For
this, we keep parallel data structures HOP(D) for O(log m) guesses
of Din powers of 2. Then, we show that we can maintain an “active”
copy of HOP corresponding to the correct guess, from which the
solution is extracted. Thus, we incur only an O(log m) overhead on
the total update time for an edge insertion/deletion. This part is
very similar to Algorithm 3 of [24] and we discuss this in detail in
the full version [5] and formally prove Theorem 3.3.

5 EXPERIMENTS

In this section, we present extensive experimental evaluations of
our algorithms. We consider weighted and unweighted hypergraphs
in both insertion-only and fully dynamic settings, leading to a total
of four combinations. However, due to space limitations, we discuss
only the fully dynamic setting here and defer the incremental set-
ting to Appendix B. We call our algorithms Upsup and WpsHp for
the unweighted and weighted settings respectively and we compare
their accuracy and efficiency to that of the baseline algorithms. Fur-
thermore, we study the trade-off between accuracy and efficiency
for Upsup and WpsHP.
Datasets. We collect real-world temporal hypergraphs, as de-
scribed below. Table 1 presents a summary of these hypergraphs.
Publication datasets. We consider two publication datasets:
DBLP [14] and Microsoft Academic Graph (MAG) with the ge-
ology tag [4, 25]3. We encode each author as a vertex and each
publication as a hyperedge with the publication year serving as
the timestamp. In the fully dynamic case, we maintain a sliding
window of 10 years, by removing hyperedges that are older than
10 years. We treat multiple papers by the same set of authors as a

3Source: https://www.cs.cornell.edu/~arb/data/
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Table 1: Description of our dataset with the key parameters,
#vertices(n), #hyperedges(m), maximum size (#hyperedges) in the
dynamic setting (m,), #rank(r).

Dataset n m mp r
dblp-all 256M  3.16M 1.99M 449

tag-math-sx 16K 558K 213K 5

tag-ask-ubuntu 3K 219K 104K 5
tag-stack-overflow 50K  12.7M  50.6K 5
dawn 2.5K 834K 11.5K 16

coauth-MAG-geology 1.25M 960K 216.3K 25

single hyperedge and report densest subgraph at the end of each
year.

Tag datasets. We consider 3 tag datasets: math exchange [4]3,
stack-overflow [4]3, and ask-ubuntu [4]3. In each of these datasets,
a vertex corresponds to a tag, and a hyperedge corresponds to a
set of tags on a post or a question in the respective website. In the
fully dynamic model, we maintain a sliding window of 3 months.
In both insertion only and dynamic settings, we report the densest
subgraph at an interval of 3 months.

Drug Abuse Warning Network(DAWN) dataset. This dataset?
is generated from the national health surveillance system that
records drug abuse related events leading to an emergency hospital
visit across USA [4]. We construct a hypergraph where the vertices
are the drugs and a hyperedge corresponds to a combination of
drugs taken together at the time of abuse. We maintain the most re-
cent 3 months records in fully dynamic and insertion only settings
and report the maximum density at an interval of 3 months.

Weighted Datasets. Each of the datasets described above are un-
weighted. We are not aware of any publicly available weighted
temporal hypergraphs. For our weighted settings, we transform
the unweighted temporal hypergraph into a weighted temporal
hypergraph by the following process. For each edge, we assign it
an integer weight sampled uniformly at random from [1, 100].

Implementation Details. The implementation details of our algo-
rithm are given in Data Structure 1.* In implementing Algorithm 8,
we consider all potential subsets B by ignoring the condition on
line 3, and report the subset with the largest density among these
choices. We implement all algorithms in C++ and all experiments
are run on a workstation with 256 GB memory and Intel Xeon(R)
2.20 GHz processor running Ubuntu 20 operating system.

Baseline Algorithms. We consider two main baselines algorithms.

(1) The first one is an exact algorithm, denoted as EXAcT, that
computes the exact value of the densest subhypergraph at ev-
ery reporting interval of the dataset. We use google OR-Tools
to implement an LP based solver for the densest subhyper-
graph [19, 22].

(2) The second one is the dynamic algorithm for maintaining
densest subhypergraph by Hu et al. [19]; we call it HWC.
It takes ey as an input accuracy parameter and produces
a (1 + eg)r and (1 + ez)r2-approximate densest subhyper-
graph in the insertion only and fully dynamic models respec-
tively. For the weighted hypergraphs we modify the HWC

40ur code is available (anonymously): Link to Code Repo
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Figure 1: Accuracy and Efficiency Comparison for Unweighted Dynamic Hypergraphs: The top row shows the relative error in the reported
maximum density by UpsHp and HWC with respect to Exact when run with the specified parameters. The bottom row plots the average
update time taken by Upsap, HWC, and ExacT for each reporting intervals. For each dataset (column), the parameter settings are identical.
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Figure 2: Accuracy and Efficiency Comparison for Weighted Dynamic Hypergraphs: The top row shows the relative error in the reported
maximum density by Wpsap and HWC with respect to Exact when run with the specified parameters. The bottom row plots the average
update time taken by Wpsup, HWC, and Exact for each reporting intervals. For each dataset (column), the parameter settings are identical.
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Figure 3: Average Accuracy and Efficiency Comparison: In Figure 3a, on the left, we plot the average relative error of Upsap and HWC over
all the reporting intervals for each dataset, and on the right, we compare the average update time of Upsup, HWC, and ExacT over the entire
duration. In Figure 3b, we give analogous plots comparing Wpsup with HWC and ExacrT.

implementation - each edge with weight we is processed by
creating we many copies of that edge.

Parameter Settings. Both HWC and our algorithms Upsup and
WosHP take an accuracy parameter € as an input. However, it is
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important to note that the accuracy parameter € for both the algo-
rithms are not directly comparable. Upsup or WDSHP guarantees
to maintain a (1 + €)-approximate solution in both insertion only
and fully dynamic settings, whereas HWC maintains (1 + ¢)r and
(1 + €)r? approximate solutions for insertion and fully dynamic
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Figure 4: Accuracy vs Efficiency Trade-off: In Figure 4a, we give trade-offs for UpsHP for Unweighted Dynamic Hypergraphs: On the left, we
plot the average update time for different settings of €. In the middle and right, we show the effect of ¢ on the average relative error and
maximum relative error (over the reporting intervals). In Figure 4b, we give analogous trade-off plots for WpsHP.

settings respectively. Thus, for a fair comparison between the algo- consistently more than 10x faster than HWC. In fact, HWC is several
rithms, we run UpsHP (or WpsHP) and HWC with different values times slower compared to ExacT. On the other hand, Upssp is 3x-5x
of € such that their accuracy is comparable. We use eg to denote times faster compared to ExacT. As the sizes of the hypergraphs
the parameter for HWC to make this distinction clear. For various increase, EXAcT gets much slower compared to Upsup and HWC
settings and datasets, we use different parameters and specify them as LP solvers are known to have scaling issues.? For larger datasets,
in the corresponding plots. We emphasize here that the motivation UbsHP maintains a clear edge in terms of accuracy over HWC even
behind the choices of the parameters is to compare the update time when their update times are almost identical or better for Unsup, as
of UpsaP and WpsHP to that of HWC while ensuring that Upsup demonstrated by the last three columns. To quantify the gain further,
and WpsHP has better accuracy than that of HWC. We restrict our in Figure 3a, we compare the performance of Ubsup against HWC
focus to the small approximation error regime. and EXACT in terms of average relative error and average update

Accuracy and Efficiency Metrics. To measure the accuracy of time, where the average is taken over all the reporting intervals.

Ubsup, Wpsap, and HWC, we use relative error percentage with We make several interesting observations. (1) UDsHP is 3x-5x faster
|p(ArG, t)—p(ExacT, B)] 4 00%. where than ExacTt for small hypergraphs; the gain is massive (10x-15x)

. ) : pExact,t)  — ° for larger graphs. (2) Compared against HWC, the avg. update time
p(X, t) is the density estimate by algorithm X at time interval ¢. We for Upsip can be 10x-12x smaller (DAWN and tag-math-sx) while

also compute the avergge relative error of an algc?rlt}}m by taking maintaining almost the same average relative error of less than 1%.
the average of the relative errors over all the reporting intervals. For (3) At the other end of the spectrum, for almost the same average
measuring efficiency we compare the average wall-clock time taken update time, UpsHp can offer 55%-90% improvement in accuracy

over the qperations during each repc?rtin'g interval and also oxlzerall over HWC (Coauth-MAG and DBLP-A11). (4) HWC performs worse
average time (taken over all reporting intervals) as an efficiency than Exact for smaller datasets, being slower by 3x-5x factors

respect to EXACT. It is defined as

comparison metric. (DAWN and tag-math-sx).
Accuracy vs Efficiency trade offs for Upsup. In Figure 4a we
5.1 Fully Dynamic Case plot average update time, and average and max relative error for Up-

sHP for different values of €. The max relative error is the maximum
of the relative error over all the reporting intervals. As expected,
when € decreases, the update time increases and the average and
maximum relative error incurred by UpnsHp decreases.

In this section, we consider the fully dynamic setting where the
hyperedges can be both inserted and deleted. We perform experi-
ments for hypergraphs with unweighted as well as weighted edges.
For both the cases, we first compare the accuracy and the efficiency
of our algorithm against the baselines. And then we analyze the
accuracy vs efficiency trade-off of Upsup and WpsHP.

We observe that for the hypergraphs with high density values
(Q(logn)), e.g., DAWN, tag-math-sx, tag-stack-overflow, the av-
erage and maximum relative errors are quite low (< 2 — 5%). Thus,
we recommend using Upsup with larger values of € (like € = 1) for
them. Note that reduction in update time is quite dramatic (~8x)
when increasing e from 0.5 to 1.0 for these graphs. For the hyper-
graphs with low density values (o(log n)) the relative errors can go
well above 30% — 40% for larger values of €. Thus, we recommend
using UpsHP with smaller values of € (like € = 0.3) for more ac-
curate solutions, as for hypergraphs like Coauth-MAG, reducing €
from 1.0 to 0.5 reduces the average relative error from 70% to 30%
(albeit at the cost of a 3-fold increase in average update time).

UNWEIGHTED HYPERGRAPHS: We first discuss our findings for the
unweighted case.

Accuracy and Efficiency Comparison. In Figure 1, we compare
the accuracy and efficiency of UpsHp against the baselines for the
unweighted hypergraphs. In the top row, we compare the accuracy
of Upsup and HWC in terms of relative error percentage with
respect to ExAcT. In the bottom row, we plot the average time taken
per operation by ExacT, Upsup, and HWC during each reporting
interval. For each dataset, the parameters are identical for the top
row and bottom row plots. We reiterate that the input parameters
for Upsup and HWC are chosen to compare Upsap and HWC in the

low relative error regime. We highlight our main findings below. —_—
Note that, although tag-stack-overflow hypergraph has overall more edges than
We observe that for smaller hypergraphs (DAWN’ tag—math—sx), Coauth-MAG, the reporting interval for the latter is much longer than the former. Thus

Upsup and HWC achieve impressive accuracy, however UDsHP is at any given interval, the latter contains more edges leading to larger update times.
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WEIGHTED HYPERGRAPHS: For the weighted case in Figure 2, we
consider similar settings as in Figure 1. In the top row, we compare
the relative error percentage of Wpsup and HWC, and the bottom
row, shows the average update times of Wpsup, HWC, and ExacT
with same parameters (for each hypergraph). For a detailed dis-
cussion on the accuracy and efficiency comparison and tradeofts,
please refer to the full version [5].
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Data Structure 1: The algorithms for HOP(D) that solves the hypergraph orientation problem

Input: Unweighted hypergraph H = (V, E), parameters €, D

n«— |V| Each vertex v maintains the following data structures:
. €D e d;(v): Number of hyperedges e such that h(e) = v
U 32logn

o In(v): List of hyperedges (labels only) where v is the head
e Out(v): Max-priority queue of {e € E : h(e) # v}, indexed

L . . . b 49 (h(e))
Each hyperedge e maintains a list of vertices that it contains and y in
has a pointer h(e) to the head vertex. . dEZ)(u) (Ve € Out(v) Yu € e): din(u) from v’s perspective

Indegrees « Balanced binary search tree for {din(v) : v € V}

Algorithm 1 ROTATE(e, v) Algorithm 4 INCREMENT(v) Algorithm 7 DECREMENT(v)

1: z « h(e) 1: dip(v) « din(v) +1 1: din(v) « din(v) -1

2: remove e from In(z) 2: Update d;,(v) in Indegrees 2: Update d;,(v) in Indegrees

3: remove e from Out(u) foreachu € e\ {z} 3: for e € {next 4d;,(v)/n edges in In(v)} do 3: for e € {next 4d;,(v)/n edges in In(v)} do
4; 4; 4;

5 5 5

: h(e) « v; add e toIn(v) foru € e do foru € e do
: add e to Out(u) for each u € e \ {v} d“(v) — din(0) d“(v) — din(0)

Algorithm 2 TIGHTINEDGE(v) Algorithm 5 TIGHTOUTEDGE(v) Algorithm 8 DENSESTSUBSET(y)

Suman K. Bera, Sayan Bhattacharya, Jayesh Choudhari, and Prantar Ghosh

1: for e € {next 4d;,(v)/n edges in In(v)} do 1: e « Out(v).max

2 u— argminzee din(2) 2 if d'2)(h(e)) > din(v) + n/2 then
3: if din(u) < din(v) — n/2 then 3: rle’t'u(rn(e) > dim®)enl

4 return e 4: return null

5: return null

1:De Indegreesmax; A — {v:din(v) > D}
2 B {v:din(v) 2D -n}

3: while |B|/|A| > 1+ y do

4: f)<—ﬁ—r]; A< B

5 B {v:din(v) 2 D -1}

6: return B

Algorithm 3 INSERT(e)

Algorithm 6 DELETE(e)

Algorithm 9 QUERYSUBSET()

1: v « argmingee din(z) 1: v « h(e)

2: h(e) « v 2: remove e from In(v)

3: add e to In(v) 3: remove e from Out(u) foreachu € e\ {v}
4: add e to Out(u) for each u € e \ {v} 4: while tightoutedge(v) # null do

5: while tightinedge(v) # null do 5 f « tightoutedge(v);

6:  f « tightinedge(v) 6 rotate(f, v); vz

7 v« argminger din(2); rotate(f, v) 7: decrement(v)

8: increment(v)

1: D « Indegrees.max; y « ~/2n7logn/D

2: return densestsubset(y)

z — h(f)

Algorithm 10 QUERYDENSITY()

1: return (Indegrees.max)-(1 — )

A MISSING PROOF

ProOF OF THEOREM 4.1. Since ( f ,f) is a feasible solution to
Dual(H, 1), we see that f ,D) is a feasible solution to Dual(H).
Since p* is an optimal solution to Dual(H), we have D > p* and
the left inequality follows.

Define S; := {v: {(v) = D - ni} for i > 0. For some parameter
0 < y < 1,let k be the maximal number such that |S;| > (1+y)|Si-1]
for all i € [k]. Thus, |Sg41] < (1 + y)|Sk|-

For an edge e incident on v € Sg, consider u € e \ {v}. We have

U ¢S = bw)<D-nlk+1) <) -n= fo(v) =0

where the last implication is by (14). Hence, we get the following.

OBSERVATION A.l. For v € Sk, we have )5, fe(v)

Z edv: fe(v).

€CSk+1
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We try to get a lower bound on p(Si1). We see that

D-nk)Isel < Dty =Y Y fe@ =, > fe@)

VESK VES) e3v VES, €3U:

eC Skt
< 2
VESk+1

D fewy= > felw) = Bkl

edu: eCSyy VEE
€CSk+1 "

The second equality follows by Obs. A.1 and the last one by (13).
Therefore, by definition of k, we get

|E(Sk+1)| >

ﬁ—qk S ﬁ—r]k N
( )l kl >(D—I]k)(1—y).
|Sk+1|

1Sk 41l 1+y

P(Sk41) =

Again, since |Sg| > (1 + y)k|So| > (1+ y)k, we have k <
logy,, ISkl < logy,, n < 2logn/y. Therefore, we have

P(Sk41) > (ﬁ—m)(l—yhf)(I—M)(l—y%
Y yD
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Figure 5: Accuracy and Efficiency Comparison for Unweighted Insertion-only Hypergraphs: The top row shows the relative error in the
maximum density by Upsap and HWC with respect to ExacTt when run with the specified parameters. The bottom row plots the average
update time taken by Upsap, HWC, and Exact for each reporting intervals. For each dataset (column), the parameter settings are identical.

We set y so as to maximize the RHS. Clearly, it is maximized
when y = 2'71%, and so, we set y := ,[2'71%. Hence, we get
14

. . R 8n 1
p* = p(Sgs1) > D(1—y)? > D1 - 2y) = D|1 - %g”

B EXPERIMENTS: INSERT-ONLY CASE

Here, we give an account of our experiments for the insert-only
setting with unweighted hyperedges. We defer the discussion on
the weighted incremental setting to the full version [5].
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Figure 6: Avg. Accuracy and Efficiency Comparison for Unweighted
Incremental Setting: On the left, we plot avg. relative err. of UpsHP
and HWC, and on the right, we compare the avg. update time of Up-

sHP, HWC, and ExacT. (Average is taken over the entire duration)
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Figure 7: Accuracy vs Efficiency Trade-off for Unweighted Incre-
mental Hypergraphs (Upsup): We plot the avg. update time (left),
avg. relative err. (middle), and max. relative err. (right) over the re-
porting intervals for different settings of €.

Accuracy and Efficiency Comparison. In Figure 5 top row we
compare the accuracy of Upsap and HWC with respect to EXAcT.
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And in the bottom row, we plot the average time taken per operation
by Exact, Upsup, and HWC during each reporting interval. To
further quantify the gain of UbpsHp, in Figure 6, we compare the
performance of UpsuP against HWC and ExAcT in terms of average
relative error and average update time. We highlight some of our
main findings below.

(1) Performance of HWC fluctuates quite a lot over time as
evident from the saw-tooth behaviour in the relative error and
the update time curves for HWC in Figure 5. Thus, even if the
average case update time for HWC is low, the worst-case update
time could be very high. In contrast, Upsup exhibits a much more
stable behavior over time, making it more suitable for practical
use. Note that this is consistent with the theoretical results for the
respective algorithms since HWC only guarantees small amortized
update time while UpsHp guarantees small worst-case update time.

(2) For the first four datasets, on average UpsHP has 70% better
accuracy while being 2x-4x faster (on average) compared to HWC
( Figure 6). For the largest dataset Coauth-MAG, HWC indeed has
an edge over UDsHP in terms of average update time while both
incurring comparable loss in accuracy ( Figure 6). However, as we
noted before, the saw-tooth behavior of HWC implies a higher
worst-case update time for HWC compared to Upsup ( Figure 5).

(3) ExacT performs extremely poorly in the incremental set-
tings, as one would expect. The sizes of the hypergraphs are much
larger compared to the dynamic settings, making EXAcT extremely
unsuitable for any practical purpose.

Accuracy vs Efficiency trade offs. As similar to that in the dy-
namic setting, in Figure 7, we analyze the change in the average
update time and the average and max relative error for Upsup for dif-
ferent values of € € {1.0,0.7,0.5}. We observe that even if the
update time is sensitive to change in €, the average and maxi-
mum relative error for all the high density (Q(log n)) hypergraphs
(DAWN, tag-ask-ubuntu, tag-math-sx, tag-stack-overflow) is
low (< 10%). And thus we recommend, using Upsup with high
value of € (like € = 1) for these hypergraphs. On the other hand
for the low density (o(log n)) hypergraphs (like Coauth-MAG), we
recommend using Upsup with low value of € (like € = 0.5 or 0.3).
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