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Abstract— While conventional reinforcement learning focuses
on designing agents that can perform one task, meta-learning
aims, instead, to solve the problem of designing agents that
can generalize to different tasks (e.g., environments, obstacles,
and goals) that were not considered during the design or the
training of these agents. In this paper, we consider the problem
of training a provably safe Neural Network (NN) controller
for uncertain nonlinear dynamical systems that can generalize
to new tasks that were not present in the training data while
preserving strong safety guarantees. Our approach is to learn
a set of NNs during the training phase. When the task becomes
available at runtime, our framework will carefully select a
subset of NNs and compose them to form the final NN controller.
Critical to our approach is the ability to compute a finite-state
abstraction of the nonlinear dynamical system. This abstract
model captures the behavior of the closed-loop system under all
possible NN weights, and is used to train the NNs and compose
them when the task becomes available. We provide theoretical
guarantees on the correctness of the resulting NN controller
and show the efficacy of our approach via simulations.

I. INTRODUCTION
Meta Reinforcement Learning (meta-RL) refers to algo-

rithms that can leverage experience from previous learning
experience to learn how to adapt to new tasks quickly.
In other words, while contemporary reinforcement learning
focuses on designing agents that can perform one task, meta-
RL aims to solve the problem of designing agents that can
generalize to different tasks that were not considered during
the design or the training of these agents. To achieve such
aim, and without loss of generality, meta-training can be seen
as a bi-level optimization problem where one optimization
contains another optimization as a constraint [1], [2]. The
inner optimization corresponds to the classical training of a
policy to achieve a particular task while the outer optimiza-
tion focuses instead on optimizing the meta-representation
that generalizes to different tasks [3], [4], [5], [6], [7]. For a
review on the current achievements in the field of Meta-RL,
we refer the reader to this survey [3].

While the current successes of meta-RL are undeniable,
significant drawbacks of meta-RL in its current form are (i)
the lack of formal guarantees on its ability to generalize to
unforeseen tasks and (ii) the lack of formal guarantees with
regards to its safety.

In this paper, we confine our attention to reach-avoid
tasks (i.e., a robot that needs to reach a goal without hitting
obstacles) and propose a framework for meta-RL that can
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generalize to tasks (e.g., different environments, obstacles,
and goals) that were not present in the training data. The
proposed framework results into NN controllers that are
provably safe with regards to any reach-avoid task, which
could be unseen during the design of these neural networks.

Recently, the authors proposed a framework for provably-
correct training of neural networks [8]. Given an error-free
nonlinear dynamical system, the framework in [8] computes
a finite-state abstract model that captures the closed-loop
behavior under all possible NN weights. Using this finite-
state abstract model, the framework identifies the subset of
NN weights guaranteed to satisfy the safety requirements
(i.e., avoiding obstacles). During training, the learning algo-
rithm is augmented with a NN weight projection operator that
enforces the resulting NN to be provably safe. To account
for the liveness properties (i.e., reaching the goal), the frame-
work uses the finite-state abstract model to identify candidate
NN weights that may satisfy the liveness properties and
biases the NN training to achieve the liveness specification.

While the previous results reported in [8] focused on the
case when the task (environment, obstacles, and goal) is
known during the training of the NN controller, we extend
these results in this paper to account for the case when
the task is unknown during training. In particular, instead
of training one neural network, we train a set of neural
networks. To fulfill a set of infinitely many tasks using a finite
set of NN controllers, our approach is to restrict each neural
network to some local behavior, yet the composition of these
neural networks captures all possible behaviors. Moreover,
and unlike the results reported in [8], we consider in this
paper the case when the nonlinear dynamical system is only
partially known. We evaluated our approach on the problem
of steering a wheeled robot and we show that our framework
is capable of generalizing to tasks that were not present in the
training of the NN controller while guaranteeing the safety
of the robot.

II. PROBLEM FORMULATION

A. Notation

Let ||x|| be the Euclidean norm of the vector x ∈ Rn,
||A|| be the induced 2-norm of the matrix A ∈ Rm×n, and
||A||max = max

i,j
|Aij | be the max norm of the matrix A.

Given two vectors x1 ∈ Rn1 and x2 ∈ Rn2 , we denote
by (x1, x2) ∈ Rn1+n2 the column vector [x>1 , x

>
2 ]>. We use

⊕ to denote the Minkowski sum, and Int(S) to denote the
interior of the set S . Any Borel space X is assumed to be
endowed with a Borel σ-algebra, which is denoted by B(X ).
We use 1S to denote the indicator function of a set S .
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B. Dynamical Model, Task, and Specification

We consider discrete-time nonlinear dynamical systems of
the form:

x(k+1) = f(x(k), u(k)) + g(x(k), u(k)), (1)

where x(k) ∈ X ⊂ Rn is the state and u(k) ∈ U is the control
input at time step k ∈ N. The dynamical model consists
of two parts: the priori known nominal model f , and the
unknown model-error g, which is deterministic and captures
unmodeled dynamics. Though the model-error g is unknown,
we assume it is bounded by a compact set D ⊂ Rn, i.e.,
g(x, u) ∈ D for all x ∈ X and u ∈ U . We also assume
both functions f and g are locally Lipschitz continuous. As a
well-studied technique to learn unknown functions from data,
we assume the model-error g can be learned using Gaussian
Process (GP) regression [9]. We use GP(µg, σ

2
g) to denote a

GP regression model with the posterior mean and variance
functions be µg and σ2

g , respectively1. Given a feedback
control law Ψ : X → U , we use ξx0,Ψ : N → X to denote
the closed-loop trajectory of (1) that starts from the state
x0 ∈ X and evolves under the control law Ψ. In this paper,
our primary focus is on controlling the nonlinear system (1)
with a state-feedback NN controller NN : X → U .

We use W = {Xgoal,O1, . . . ,Oo} to denote a task where
Xgoal ⊂ X is the goal and {O1, . . . ,Oo} with Oi ⊂ X is
the set of obstacles. More formally, given a task W , a safety
specification φsafety requires avoiding all the obstacles and
a liveness specification φliveness requires reaching the goal
in a bounded time horizon H . We use ξx0,Ψ |= φsafety and
ξx0,Ψ |= φliveness to denote a trajectory ξx0,Ψ satisfies the
safety and liveness specifications, respectively, i.e.,

ξx0,Ψ |= φsafety ⇐⇒ ∀k ∈ N, ∀i ∈ {O1, . . . ,Oo}, ξx0,Ψ(k) 6∈ Oi,

ξx0,Ψ |= φliveness ⇐⇒ ∃k ∈ {1, . . . H}, ξx0,Ψ(k) ∈ Xgoal.

Given a set of initial states Xinit, a control law Ψ : X → U
satisfies a specification φ (denoted by Ψ,Xinit |= φ) if all
trajectories starting from the set Xinit satisfy the specification,
i.e., ξx,Ψ |= φ, ∀x ∈ Xinit. Since the specifications and
the satisfying set of initial states depend on the task, we
explicitly add W as a superscript whenever need emphasize
the dependency, such as φWsafety, φWliveness, and XWinit .

While conventional reinforcement learning focuses on
training a neural network that works for one specific task,
meta-RL focuses, instead, on training controllers that can
work for a multitude of tasks. To formally capture this, we
use WX to denote the set of all the tasks (corresponding to
configurations of the goal and obstacles) with the goals and
the obstacles be defined over the state space X .

C. Main Problem

We consider the problem of designing provably correct NN
controllers for unseen tasks. Specifically, the task W ∈WX
is unknown during the training of the NN controller, and
will be known only at runtime. Therefore, our objective is to
train a set (or a collection) of different ReLU NNs along with
a selection algorithm that can select the correct NNs once

1In the case of a multiple output function g, i.e., m > 1, we model each
output dimension with an independent GP. We keep the notations unchanged
for simplicity.

the task W becomes available at runtime. Before presenting
the problem under consideration, we introduce the following
notion of NN composition.

Definition 2.1: Given a set of neural networks NN =
{NN 1,NN 2, . . . ,NNm} along with an activation map Γ :
X → {1, . . . ,m}, the composed neural network NN [NN,Γ]

is defined as:

NN [NN,Γ](x) = NN Γ(x)(x)
In other words, the activation map Γ selects the index of the
NN that need to be activated at a particular state x ∈ X .
Now, we can define the problem of interest as follows.

Problem 2.2: Given the nonlinear dynamical system (1).
Design a NN controller NN consists of two parts: a set
of ReLU NNs NN = {NN 1,NN 2, . . . ,NNm} and a
selection algorithm SEL, such that for any task W ∈ WX ,
the selection algorithm SEL(W ,NN) returns a set of initial
states XWinit ⊆ X and an activation map ΓW satisfying:

NN [NN,ΓW ],XWinit |= φWsafety ∧ φWliveness.

III. FRAMEWORK
A. Overview

Before describing our approach to solve Problems 2.2,
we start by recalling that every ReLU NN represents a
Continuous Piece-Wise Affine (CPWA) function [10]. Let
ΨCPWA : X → Rm denote a CPWA function of the form:

ΨCPWA(x) = Kix+ bi if x ∈ Ri, i = 1, . . . , L, (2)

where the polytopic sets {R1, . . . ,RL} is a partition of the
set X . In this paper, we confine our attention to CPWA
controllers (and hence neural network controllers) that are
selected from a bounded polytopic set PK ×Pb ⊂ Rm×n×
Rm, i.e., we assume that Ki ∈ PK and bi ∈ Pb.

To fulfill a set of infinitely many tasks WX using a finite
set of ReLU NNs NN, our approach is to restrict each NN in
the set NN to some local behavior, yet the set NN captures
all possible behavior of the system. We use the mathematical
model of the physical system (1) to guide training of the
NNs, as well as selecting NNs from the set NN at runtime.

During training, without knowing the tasks, we train a set
of ReLU NNs NN using the following two steps:
• Capture the closed-loop behavior of the system under all

CPWA controllers using a finite-state Markov decision
process (MDP). To define the action space of this MDP,
we partition the space of all CPWA controllers into a
finite number of partitions. Each partition corresponds
to a family of CPWA controllers. Hence, each transition
in the MDP is labeled by a symbol that corresponds
to a particular family of CPWA functions. The tran-
sition probabilities can then be computed using the
knowledge of the model (1) and the Gaussian Process
GP(µg, σ

2
g).We refer to this finite-state MDP as the

abstract model of the system.
• Train one NN corresponds to each transition in the

MDP. We refer to each of these NNs as a local NN.
Let NN be the set of all such local NNs. The training
enforces each local NN to represent a CPWA function
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that belongs to the family of CPWA controllers associ-
ated with this transition. This is achieved by using the
NN weight projection operator introduced in [8].

At runtime, given an arbitrary task W ∈ WX , the
algorithm SEL(W ,NN) selects NNs from the set NN to
satisfy φWsafety ∧ φWliveness:
• To satisfy the safety specification φWsafety, the algorithm
SEL identifies the partitions of CPWA controllers that
are safe at each abstract state in the MDP. The selected
NNs from the set NN must correspond to the safe
CPWA partitions.

• For the liveness specification φWliveness, the algorithm
SEL first searches for the optimal policy of the MDP
using dynamic programming (DP), where the allowed
transitions in the MDP are limited to those have been
identified to be safe. Based on the optimal policy of the
MDP, it decides which local NN in the set NN should
be used at each state.

We highlight that the proposed framework above always
guarantees that the resulting NN controller satisfies the safety
specification φWsafety for any task W ∈ WX , regardless the
accuracy of the learned model-error using GP regression. For
the liveness specification φWliveness, due to the learned model-
error is probabilistic, we relax Problem 2.2 to maximize the
probability of satisfying the liveness specification φWliveness.
We also provide a quantified bound on the probability for
the NN controller to satisfy φWliveness.

Figure 1 conceptualizes our framework. In Figure 1 (left),
we partition the state space X into a set of abstract states
X = {q1, q2, q3, q4} and the controller space PK × Pb into
a set of controller partitions P = {P1,P2}. Figure 1 (right)
shows the resulting MDP, with transition probabilities labeled
by the side of the transitions. Then, the set NN contains 9
local NNs corresponding to the 9 transitions in the MDP.

Consider two different tasks given at runtime. Task W1

specifies that the goal Xgoal is represented by the abstract
state q4 and the only obstacle is q2. At state q1, our selection
algorithm decides to use the local network NN(q1,P2,q4),
which corresponds to the transition from state q1 to q4 under
partition P2. In taskW2, state q4 is still the goal, but there is
no obstacle. For this task, our selection algorithm decides to
use NN(q1,P1,q2) at state q1 and use NN(q2,P1,q4) at state q2.
Notice that with this choice the probability of reaching the
goal is 1, which is higher than the probability 0.1 by using
NN(q1,P2,q4) at state q1.

In the above procedure, the set NN may contain a large
number of local NNs. To accelerate the training process, we
employ ideas from transfer learning and provide the same
correctness guarantees. We refer readers to Section VII in
the extended version [11] for the details on transfer learning.

Fig. 1: (left) Partition the state space into four abstract states;
(right) MDP labeled with transition probabilities (red).

IV. PROVABLY-CORRECT TRAINING OF THE SET
OF NEURAL NETWORKS NN

A. Abstract Model
In this section, we extend the abstract model proposed

in [8] by taking into account the unknown model-error g.
Unlike the results reported in [8] where the system was
assume to be error-free and deterministic (and hence can
be abstracted by a finite-state machine), in this paper, the
dynamical model (1) is stochastic due to the use of GP
regression to capture the error in the model. This necessitates
the use of finite-state MDP to abstract the dynamics in (1).
State and Controller Space Partitioning: We partition the
state space X ⊂ Rn into a set of abstract states, denoted
by X = {q1, . . . , qN}. Each qi ∈ X is an infinity-norm ball
in Rn centered around some state xi ∈ X . The partitioning
satisfies X =

⋃
q∈X q, and Int(qi) ∩ Int(qj) = ∅ if i 6= j.

With an abuse of notation, q denotes both an abstract state,
i.e., q ∈ X, and a subset of states, i.e., q ⊂ X . Since we
construct the abstract model before knowing the tasks, the
state space X does not contain any obstacle or goal.

Similarly, we partition the controller space into polytopic
subsets. For simplicity of notation, we define the set of
parameters PK×b ⊂ Rm×(n+1) be a polytope that combines
PK ⊂ Rm×n and Pb ⊂ Rm. With some abuse of notation,
we use Ki(x) with a single parameter Ki ∈ PK×b to denote
K ′ixi + b′i with the pair (K ′i, b

′
i) = Ki. The controller space

PK×b is discretized into a collection of polytopic subsets in
Rm×(n+1), denoted by P = {P1, . . . ,PM}. Each Pi is an
infinity-norm ball centered around some Ki ∈ PK×b such
that PK×b =

⋃
P∈P P , and Int(Pi) ∩ Int(Pj) = ∅ if i 6= j.

We call each of the subsets Pi ∈ P a controller partition.
Each controller partition P ∈ P represents a subset of CPWA
functions, by restricting parameters Ki in a CPWA function
to take values from P .
MDP Transitions: Next, we compute the set of all allowable
transitions in the MDP. To that end, we define the posterior
of an abstract state q under a controller partition P be the set
of states that can be reached in one step from states x ∈ q
by using affine state feedback controllers with parameters
K ∈ P under the dynamical model (1) as follows:

Post(q,P) , {h(x,K(x)) ∈ Rn | x ∈ q,K ∈ P}⊕D, (3)

where D ⊂ Rn is defined in Section II-B as the bound of
the model-error g. Since calculating the exact posterior of
a nonlinear system is computationally daunting, we rely on
over-approximation P̂ost(q,P). Furthermore, we define the
Next operator as follows:

Next(q,P) , {q′ ∈ X | q′ ∩ P̂ost(q,P) 6= ∅}. (4)

Then, a transition from state q to state q′ with label P is
allowed in the MDP if and only if q′ ∈ Next(q,P).
Transition Probability: The final step is to compute the
transition probabilities associated with each of the transitions
constructed in the previous step. We define transition proba-
bilities based on representative points in abstract states and
controller partitions. Specifically, we choose the representa-
tive points to be the centers (recall that both q and P are
infinity-norm balls and hence their centers are well defined).
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Let ctX : X → X map an abstract state q ∈ X to its center
and ctP : P → PK×b map a controller partition P ∈ P
to the matrix ctP(P) ∈ PK×b, which is the center of P .
Furthermore, we use absX : X → X to denote the map
from a state x ∈ X to the abstract state that contains x, i.e.,
x ∈ absX(x) ∈ X, and similarly, the map absP : PK×b → P
satisfies K ∈ absP(K) ∈ P for any K ∈ PK×b.

Given the dynamical system (1) with the model-error g
learned by a GP regression model GP(µg, σ

2
g), let t : X ×

X × U → [0, 1] be the corresponding conditional stochastic
kernel. Specifically, given the current state x ∈ X and input
u ∈ U , the distribution t(·|x, u) is given by the Gaussian
distributionN (f(x, u)+µg(x, u), σ2

g(x, u)). For any set A ∈
B(X ) and any k ∈ N, the probability of reaching the set A
in one step from state x(k) with input u(k) is given by:

Pr(x(k+1) ∈ A|x(k), u(k)) =

∫
A
T (dx(k+1)|x(k), u(k)) (5)

where we use the notation T (dx′|x, u) , t(x′|x, u)µ(dx′).
This integral can be easily computed since t(·|x, u) is a
Gaussian distribution. With above notations, we define our
abstract model as follows:

Definition 4.1: The abstract model of (1) is a finite MDP
Σ̂ defined as a tuple Σ̂ = (X,P, T̂ ), where:
• The state space is the set of abstract states X;
• The set of controls at each state is given by the set of

controller partitions P;
• The transition probability from state q ∈ X to q′ ∈ X

with label P ∈ P is given by:

T̂ (q′|q,P) =

{∫
q′
t(dx′|z, κ(z)) if q′ ∈ Next(q,P)

0 else

where z = ctX(q), κ = ctP(P).

B. Train Local NNs with Weight Projection
Once the abstract model is computed, the next step is to

train the set of local networks NN without the knowledge
of the tasks. In order to capture the closed-loop behavior of
the system under all possible CPWA controllers, we train
one local network corresponding to each transition (with
non-zero transition probability) in the MDP Σ̂. Algorithm 1
outlines training of all the local NNs. We use NN (q,P,q′) to
denote the local NN corresponding to the transition in the
MDP Σ̂ from state q ∈ X to q′ ∈ X under partition P ∈ P.

We train each local network NN (q,P,q′) using Proximal
Policy Optimization (PPO) [12] (line 5 in Algorithm 1).
While choosing the reward function in reinforcement learn-
ing is often challenging, our algorithm enjoys a straightfor-
ward yet efficient formulation of reward functions. To be
specific, for a local network NN (q,P,q′), let κ = ctP(P) and
w1, w2 ∈ R be pre-specified weights, our reward function
encourages moving towards the state q′ with controllers
chosen from the partition P:

r(x, u) =
−w2||u− κ(x)||, if h(x, u) + µg(x, u) ∈ q′

−w1||f(x, u) + µg(x, u)− ctX(q′)|| − w2||u− κ(x)||
otherwise

where µg is the posterior mean function from the GP
regression. With this dynamical model, PPO can efficiently
explore the workspace without running the real agent.

The training of local networks NN (q,P,q′) is followed
by applying a NN weight projection operator Project
introduced in [8]. Given a neural network NN and a
controller partition P , this projection operator ensures that:

Project(NN ,P) ∈ P .

In other words, this projection operator forces that NN can
only give rise to one of the CPWA functions that belong
to the controller partition P . We refer readers to [8] for
more details on the NN weight projection. Algorithm 1
summarizes the discussion in this subsection.

Algorithm 1 TRAIN-LOCAL-NNS (Σ̂)
1: NN = {}
2: for q ∈ X do
3: for P ∈ P do
4: for q′ ∈ Next(q,P) do
5: NN (q,P,q′) = PPO(q,P, q′, h, µg)
6: NN (q,P,q′) = Project(NN (q,P,q′),P)
7: NN = NN ∪ {NN (q,P,q′)}
8: Return NN

V. THE SELECTION ALGORITHM SEL(W ,NN)

In this section, we present our selection algorithm
SEL(W ,NN) which is used at runtime when an arbitrary
taskW ∈WX is given. The SEL(W ,NN) algorithm assigns
one local NN in the set NN to each abstract state in order
to satisfy the reach-avoid specification φsafety ∧ φliveness. Our
approach is to first exclude all transitions in the MDP that can
lead to violation of φsafety, followed by selecting the optimal
solution from the remaining transitions in the MDP.

A. Exclude Unsafe Transitions using Backtracking

Given a task W ∈ WX that specifies a set of obstacles
{O1, . . . ,Oo} and a goal Xgoal, we use Xobst to denote
the subset of abstract states that intersect the obstacles, i.e.,
Xobst = {q ∈ X|∃i ∈ {1, . . . , o}, q

⋂
Oi 6= ∅}, and use Xgoal

to denote the subset of abstract states contained in the goal,
i.e., Xgoal = {q ∈ X|q ⊆ Xgoal}.

Algorithm 2 computes the set of safe states and safe
controller partitions using an iterative backward procedure
introduced in [8]. With the set of unsafe states initialized
to be the obstacles (line 1 in Algorithm 2), the algorithm
backtracks unsafe states until a fixed point is reached, i.e., it
can not find new unsafe states (line 2-4 in Algorithm 2). The
set of safe initial states XWinit is the union of all the abstract
states that are identified to be safe (line 6 in Algorithm 2).
Furthermore, it computes the function PWsafe : XWsafe → 2P,
which assigns a subset of safe controller partitions PWsafe(q) ⊆
P at each abstract state q ∈ XWsafe. Again, we use the
superscript W to emphasize the dependency of XWinit , XWsafe

and PWsafe on the task W .
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Algorithm 2 BACKTRACK-SAFETY (Σ̂, W)

1: X0
unsafe = ∅, X1

unsafe = Xobst, k = 1
2: while Xk

unsafe 6= Xk−1
unsafe do

3: Xk+1
unsafe ={q ∈ X|∀P ∈ P : Next(q,P)∩Xk

unsafe 6= ∅}∪Xk
unsafe

4: k = k + 1
5: XWsafe = XW \ Xk

unsafe
6: XWinit =

⋃
q∈XW

safe
q

7: for q ∈ XWsafe do
8: PWsafe(q) = {P ∈ P | Next(q,P) ∩ Xk

unsafe = ∅}
9: Return XWinit , XWsafe, {PWsafe(q)}q∈XWsafe

B. Assign Controller Partition by Solving MDP
Once the set of safe controller partitions PWsafe(q) is

computed, the next step is to assign one controller partition in
PWsafe(q) to each abstract state q. In particular, we consider the
problem of solving the optimal policy for the MDP Σ̂ with
states and controls limited to the set of safe abstract states
XWsafe and the set of safe controller partitions PWsafe(q) at q ∈
XWsafe, respectively. Since we are interested in maximizing the
probability of satisfying the liveness specification φliveness, let
the optimal value function V̂ ∗k : XWsafe → [0, 1] map an ab-
stract state q ∈ XWsafe to the maximum probability of reaching
the goal in H − k steps from q. Using this notation, V̂ ∗0 (q)
is then the maximum probability of satisfying the liveness
specification φliveness. The optimal value functions can be
solved by the Dynamic Programming (DP) recursion [13]:

V̂k(q,P) =1Xgoal (q)+1Xsafe\Xgoal (q)
∑

q′∈XW
safe

V̂ ∗k+1(q′)T̂ (q′|q,P)

(6)

V̂ ∗k (q) = max
P∈PW

safe
(q)
V̂k(q,P) (7)

with the initial condition V̂ ∗H = 1Xgoal , where k = H, . . . , 0.
Algorithm 3 solves the optimal policy for the MDP Σ̂

using the Dynamic Programming (DP) recursion (6)-(7). At
time step k, the optimal controller partition P∗ at state q is
given by the maximizer of V̂k(q,P) (line 8 in Algorithm 3).
The last step is to assign a corresponding neural network to
be used at all the states x ∈ q for each q ∈ Xsafe. To that
end, the activation map ΓWk,abs assigns the neural network
indexed by (q,P∗, q′∗) to the abstract state q, where q′∗

maximizes the transition probability T̂ (q′|q,P∗) (line 9-10
in Algorithm 3). While the activation map ΓWk,abs assigns a
neural network index to the abstract state q, we can directly
get the activation map to the actual state x ∈ X as:

ΓWk (x) = ΓWk,abs(absX(x)).

In other words, given the state of the system x, we first
compute the corresponding abstract state absX(x), and use
the corresponding neural network assigned to this abstract
state to control the system. Note that, unlike the definition
of the activation map ΓW in Problem 2.2, the activation map
obtained here is time-varying as captured by the subscript
k, k = 0, . . . ,H . This reflects the nature of the optimal
solution computed by the DP regression (6)-(7).

The XWinit computed by Algorithm 2 along with the se-
lection map ΓWk,abs returned by Algorithm 3 constitutes the
SEL(W ,NN) algorithm.

Algorithm 3 DP-LIVENESS (Σ̂, XWsafe, {PWsafe(q)}q∈XWsafe
)

1: for q ∈ XWsafe do
2: V̂ ∗H(q) = 1Xgoal (q)
3: k = H − 1
4: while k ≥ 0 do
5: for q ∈ XWsafe do
6: V̂k(q,P) = 1Xgoal (q) +

1Xsafe\Xgoal (q)
∑

q′∈XW
safe

V̂ ∗k+1(q′)T̂ (q′|q,P)

7: V̂ ∗k (q) = max
P∈PW

safe
(q)
V̂k(q,P)

8: P∗ = argmax
P∈PW

safe
(q)

V̂k(q,P)

9: q′∗ = argmax
q′∈XW

safe

T̂ (q′|q,P∗)

10: ΓWk,abs(q) = (q,P∗, q′∗)
11: k = k − 1
12: Return ΓWk,abs

VI. THEORETICAL GUARANTEES

In this section, we study the theoretical guarantees of the
proposed solution. We analyze the guarantees of satisfying
φsafety and φliveness separately.

A. Safety Guarantee

The following theorem summarizes the safety guarantees
for our solution.

Theorem 6.1: Consider the dynamical model (1). Let the
NN controller NN consists of two parts: the set of local
neural networks NN trained by Algorithm 1 and the selection
algorithm SEL defined by Algorithm 2 and Algorithm 3. For
any taskW ∈WX , consider the set of initial conditions XWinit
and the activation map ΓWk computed by SEL(W ,NN), the
following holds: NN [NN,ΓWk ],XWinit |= φWsafe.
The proof of Theorem 6.1 follows the same argument of
the error-free case presented in [8] and hence is omitted for
brevity. To take into account the model-error g, the posterior
in (3) is inflated with the error bound D. With the NN
weight projection in the training of local NNs (line 6 in
Algorithm 1), the resulting NN controller is guaranteed to
be safe for any taskW ∈WX regardless the accuracy of the
learned model-error by GP regression.

B. Probabilistic Optimality Guarantee

Due to the unknown model-error g, which is learned by
GP regression, the liveness specification φliveness may not be
always satisfied. However, in this subsection, we provide a
bound on the probability for the trained NN controller to
satisfy φliveness. Intuitively, this bound tells how close is the
NN controller to the optimal controller, which maximizes the
probability of satisfying φliveness.

Let value functions V NNk : Xsafe → [0, 1] and V ∗k :
Xsafe → [0, 1] map a state x ∈ Xsafe to the maximum prob-
ability of reaching the goal in H −k steps from x under the
NN controller NN and some unknown optimal controller,
respectively. These value functions V NNk and V ∗k can be
solved using Dynamic Programming (DP) recursion similar
to (6)-(7). The difference between V NNk and V ∗k measures
the optimality of the NN controller NN by comparing it
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with the optimal controller. The following theorem upper
bounds this difference.

Theorem 6.2: For any x ∈ Xsafe, the difference between
V NNk and V ∗k is upper bounded as follows:

|V NNk (x)− V ∗k (x)| ≤ (H − k)(∆NN + ∆∗) (8)

where

∆NN = max
1≤i≤N ′

(Λiδq + ΓiLiδq +
√
m(n+ 1)LXΓiδP)

∆∗ = max
1≤i≤N ′

(Λiδq + ΓiLPδq + 2
√
m(n+ 1)LXΓiδP).

In the above theorem, N ′ = |Xsafe| is the number of safe
abstract states, δq and δP are the discretization parameters
of the state and controller space, respectively. Let λi(y) and
γi(y) be the Lipschitz constants of the stochastic kernel t :
X × X × U → [0, 1] at abstract state qi ∈ X, i.e., ∀y ∈ X :

|t(y|x′, u)− t(y|x, u)| ≤ λi(y)||x′ − x||, ∀x, x′ ∈ qi, u ∈ U
|t(y|x, u′)− t(y|x, u)| ≤ γi(y)||u′ − u||, ∀u, u′ ∈ U , x ∈ qi.

Let Li be the Lipschitz constant of an arbitrary local NN
corresponding to a transition leaving qi ∈ Xsafe, i,e.:

∀x, x′ ∈ qi, ||NN (qi,P,q′)(x)−NN (qi,P,q′)(x
′)|| ≤ Li||x− x′||

for any P ∈ Psafe(qi) and q′ ∈ Next(qi,P). Further-
more, let Λi =

∫
Xsafe

λi(y)µ(dy), Γi =
∫
Xsafe

γi(y)µ(dy),
sup

x∈Xsafe

||x|| ≤ LX , and sup
K∈PK×b

||K|| ≤ LP .

Notice that the upper bound in Theorem 6.2 can be
arbitrarily small when the grid size δX and δP approach zero.
Due to the space limit, we present the proof of Theorem 6.2
in the extended version [11].

VII. RESULTS

Consider a wheeled robot with the state vector x =
[ζx, ζy, θ]

> ∈ X ⊂ R3, where ζx, ζy denote the coordinates
of the robot, and θ is the heading direction. In the form
of (1), the priori known nominal model f is given by:

ζ(t+∆t)
x = ζ(t)

x + ∆t v cos(θ(t))

ζ(t+∆t)
y = ζ(t)

y + ∆t v sin(θ(t)) (9)

θ(t+∆t) = θ(t) + ∆t u(t)

where the velocity v = 3 and discrete time step size ∆t =
0.1. We also consider an unknown model-error g, which is
bounded by [0, 0.1] in x and y dimensions. The system is
controlled by NN controllers trained by our algorithms, i.e.,
u(t) = NN(x(t)), NN ∈ PK×b ⊂ R1×4 with the controller
space PK×b considered to be a hyperrectangle.

As the first step of our algorithm, we discretized the state
space X ⊂ R3 and the controller space PK×b ⊂ R1×4

as described in Section IV-A. Specifically, we partitioned
the range of heading direction θ ∈ [0, 2π) uniformly into 8
intervals, and the partitions in the x, y dimensions are shown
as the dashed lines in Figure 2. We uniformly partitioned
the controller space PK×b into 240 hyperrectangles, and
computed the reachable sets using TIRA [14].

During the offline training, we trained a subset of local
networks NNpart ⊂ NN (Algorithm 4 in [11]). Specifically,
the local NNs are trained for Task W1 (the first subfigure

in the upper row of Figure 2), and the set NNpart consists
of 658 local NNs. The total time for training and projecting
weights of the 658 local networks in NNpart is 2368 seconds.
At runtime, we tested the trained NN controller in five unseen
tasksWi, i = 2, . . . , 6, and the corresponding trajectories are
shown in Figure 2. In case a local NN has not been trained
offline, we employ transfer learning to fast learn the missing
NNs at runtime (Algorithm 5 in [11]).
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Fig. 2: The upper row shows trajectories for Task W1, W3,
W5, and the lower row corresponds to Task W2, W4, W6.
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