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Predicting protein side-chains is important for both protein structure prediction and protein design. 
Modeling approaches to predict side-chains such as SCWRL4 have become one of the most widely 
used tools of its type due to fast and highly accurate predictions. Motivated by the recent success of 
AlphaFold2 in CASP14, our group adapted a 3D equivariant neural network architecture to predict 
protein side-chain conformations, specifically within a protein-protein interface, a problem that has 
not been fully addressed by AlphaFold2. 
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1. Introduction

The protein side-chain packing problem is important for both protein structure prediction (Kaden, 
Koch, and Selbig 1990) and protein design (Dahiyat and Mayo 1997). State-of-the-art approaches 
for predicting protein side-chain conformations, such as SCWRL4 (Krivov, Shapovalov, and 
Dunbrack 2009), deliver fast and highly accurate predictions making it one of the most widely used 
tools of its type. The interest to explore machine learning applications to predict side-chain 
orientations has grown over the last several years, as seen by recent works by Yanover et al. and 
Nagata et al. (Yanover, Schueler-Furman, and Weiss 2008; Nagata, Randall, and Baldi 2012). 
Motivated by the recent success of AlphaFold2 (Jumper et al. 2021) in CASP14, we adapted the 
SE(3)-Transformer neural network architecture (Fuchs et al. 2020) to predict protein side-chain 
conformations, specifically within a protein-protein interface, a problem that has not been fully 
addressed by AlphaFold2. 

The SE(3)-Transformer architecture operates on 3D point clouds, takes advantage of the 
powerful self-attention mechanism, and adheres to equivariance constraints. These constraints 
ensure that network predictions are equivariant with respect to the global roto-translational 
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transformations of the input point cloud, thus improving the robustness and overall performance. In 
our case, the point cloud represents the CA atoms of the protein, and we train the neural network to 
predict the key atom positions of the residue side chains given the positions of the neighboring 
backbone atoms. 

2.  Methods 

The side-chain prediction method explored in this work is schematically represented in Fig. 1 and 
consists of the following steps. First, for each residue, we define a local environment composed of 
its spatial neighbors. Second, these neighboring residues are treated as graph nodes, and the 
corresponding node features embed positional and residue-type information. The resulting graphs 
serve as inputs to the SE(3)-Transformer and are processed by several consecutive SE(3)-
equivariant attention layers. Subsequently, a global pooling over the nodes is used to predict a 
designated sidechain atom position (either the χ-2 distal atom or the functional end-group atom) of 
the central residue. Finally, a full atomic representation of the side-chain orientation is constructed 
by identifying a rotamer from a library having a sidechain atom that is nearest to the prediction(s).  

 
Figure 1. Overall Process Flow for Sidechain Prediction. Green boxes indicate the portions of the process 

which are within the SE(3)-Transformer architecture. Blue boxes indicate upstream and downstream 
processes for the SE(3)-Transformer. 
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2.1.  Neighborhood Graph Representation 

A protein containing 𝑁 residues is represented as a collection of neighborhoods, 𝑁𝑖 ∈ {1, … , 𝑁},  
where each neighborhood 𝑁𝑖 is centered on a residue 𝑖 and is defined based on plausible interactions 
between residue 𝑖 and any residue 𝑗 within a local environment. Specifically, a pair of residues, 𝑖 
and 𝑗, are deemed to have a plausible interaction if any pair of backbone-dependent rotamers of 𝑖 
and 𝑗 result in an interatomic distance of less than 5Å. In the context of the attention mechanism 
described below, considering local neighborhoods allows reducing the computational complexity 
from quadratic to linear in the number of residues. 

2.2.  The SE(3)-Transformer Architecture 

In this work, we rely on the SE(3)-Transformer architecture by Fuchs et al. 2020. Below, we give a 
brief overview of a single layer of the SE(3)-Transformer. 

In a standard self-attention mechanism (Vaswani et al. 2017), three vectors are considered for 
each token: query vector 𝑞𝑖 ∈ 𝑅𝑝,  key vector 𝑘𝑖 ∈ 𝑅𝑝 and value vector 𝑣𝑖 ∈ 𝑅𝑟 for 𝑖 = 1, … , 𝑛, 
where low dimensional embeddings have dimensions 𝑟 and 𝑝. These vectors are the outputs of 
learnable functions of token feature vectors 𝑓𝑖 ∈ 𝑅𝑑:  

                         𝑞𝑖 =  ℎ𝑞(𝑓𝑖),                     𝑘 =  ℎ𝐾(𝑓𝑖),                        𝑣 =  ℎ𝑉(𝑓𝑖)   (1) 
Based on these vectors, we can calculate the attention weights and attention-weighted value 

messages: 
 

 
 

 
(2) 

 
When applied to 3D point cloud data, each token 𝑖 is associated with a geometric coordinate 

𝑥𝑖 ∈ 𝑅3.  
In many practical applications, the outputs of the function being learned do not change or change 

accordingly with translational and rotational transformations of the inputs, that is, the function 
possesses the properties of invariance or equivariance to the  SE(3) group of roto-translational 
transformations. These two properties represent important symmetries of a problem, and while a 
general neural network can learn to respect these symmetries, explicitly incorporating symmetry 
constraints into the neural network can be more efficient with respect to the number of learnable 
parameters and amount of data required for training. One successful example of such symmetry-
aware architecture is the Tensor Field Network (Thomas et al., 2018), which maps point clouds to 
point clouds in 3D while respecting the SE(3)-equivariance.  

Recently, an expansion of this architecture incorporating the attention mechanism was 
implemented in the SE(3)-Transformer. In this architecture, the input is a feature vector field 𝑓 ∶

 𝑅3  → 𝑅𝑑 defined on a discrete set of points in space - point cloud: 
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where δ is the Dirac delta function, {𝑥𝑗} are the 3D point coordinates, and 𝑓𝑗 ∈ 𝑅𝑑 is a concatenation 
of vectors 𝑓𝑗

𝑙 ∈ 𝑅2𝑙+1 of different degrees 𝑙 of SO(3)-group irreducible representations: 𝑓𝑗 =

 ⊕𝑙≥0 𝑓𝑗
𝑙.  

 
A learnable attention-based transformation of this vector field satisfying the SE(3) equivariance can 

be expressed as:  

 
(4) 

Here 𝑤𝑣
𝑙𝑙  is a learnable scalar, 𝑎𝑖𝑗  is a scalar attention weight, and 𝑊𝑉

𝑙𝑘(𝑥𝑗 − 𝑥𝑖): 𝑅3 →  𝑅(2𝑘+1)(2𝑙+1) 

is a learnable weight kernel from degree 𝑘 to degree 𝑙, which can be written as: 

 

 

(5) 

 
Where is a learnable radial neural network,   is 

a non-learnable angular kernel from degree 𝑘 to degree 𝑙,  is a spherical 

harmonic, and 𝑄𝐽𝑚
𝑙𝑘 ∈ 𝑅(2𝑘+1)(2𝑙+1) are Clebsch-Gordon coefficients. 

The equivariance of the transformation is ensured by the fact that the learnable weight kernel 

𝑊𝑙𝑘(𝑥) is expressed as a linear combination of the non-learnable angular kernels with 

the scalar radial function coefficients and thus performs a valid conversion of degree k 

vector to degree l vector. 

Furthermore, invariant attention weights are achieved via a dot-product attention structure, as 

shown below: 

 
(6) 

 Wherein this mechanism consists of a normalized inner product between a query vector q at 

node 𝑖 and a set of key vectors {𝑘𝑖𝑗}𝑗∈𝑁𝑖\𝑖 along each edge 𝑖𝑗 in the neighborhood 𝑁𝑖 of node 𝑖.  

This architecture can be easily generalized by introducing several channels per representation 

degree. 
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2.3.  Node Features 

Our goal was to predict the positions of specific side-chain atoms given the positions of the 
backbone atoms of the neighboring residues, the so-called side chain packing problem In our 
implementation, each point of the 3D cloud represents a single residue, more specifically, the 
coordinate of the CA atom of that residue. We use two 3D vectors (i.e. degree l=1) input feature 
vectors to represent the relative positions of the C and N atoms of the same residue with respect to 
the CA atom. In addition, we use 20 scalar (degree l=0) input features to represent one-hot 
encoding of the residue type. 

2.4.  Final Layer 

The final layer of the SE(3)-Transformer is set to produce one scalar (degree l=0) feature 𝑠𝑖 and one 
3D vector (degree l=1) feature e 𝑣𝑖 per node. The final prediction 𝑝 of the specific side chain atom 
position is made by performing a global pooling over the neighborhood nodes using scalar features 
as weights for the vector features: 𝑝 =  ∑ 𝑠𝑖𝑣𝑖𝑖 + 𝑥𝑖 where 𝑥𝑖  is the coordinate of the CA atom of 
the residue represented by node 𝑖. 

2.5.  Rotamer Selection 

Upon predicting the χ-2 distal atom and the functional end-group atom, we reconstruct the side-
chain conformation by selecting the rotamer with the lowest 2-atom RMSD from a library of 
backbone-dependent rotamers (PyMOL; (Krivov, Shapovalov, and Dunbrack 2009)). 

2.6.  Experiments 

The deep-learning model was trained on a PISCES PDB (Wang and Dunbrack 2003) corpus, 
containing PDB structures with less than 2.0Å resolution, and clustered at an 80% sequence 
similarity. The corpus was modified to exclude any PDB entries which shared up to a 30% 
sequence similarity with the PDB entries used in the test dataset. In this experiment, the focus was 
to determine the accuracy of predicting side-chain conformations within a protein-protein 
interface. Accordingly, the test dataset was based on the ‘easy’ binary protein-protein complexes 
from Protein-Protein Docking Benchmark 5.5 (Vreven et al. 2015), totaling to 72 cases. ‘Easy’ 
protein-protein complexes were used to test the self-attention model, because the training of the 
model relied upon accurate backbone coordinate information, which may not be present in the 
‘harder’ cases from the Protein-Protein Docking Benchmark 5.5. 

 The trained deep-learning model was tested based on four types of experiments for side-chain 
prediction: (1) unbound proteins at a protein-protein interface, (2) bound proteins at a protein-
protein interface, (3) unbound protein at a protein-protein interface without its binding partner, and 
(4) bound protein at a protein-protein interface without its binding partner. For the unbound cases, 
(1) and (3), the unbound proteins were superimposed onto the respective bound cases. 
Furthermore, the trained model was used to predict at least one side-chain coordinate: (1) the distal 
χ-2 atom and (2) the functional end-group atom (Beglov et al. 2012).  
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Subsequent to predicting the above-identified atomic coordinates for each sidechain, the 
sidechain was reconstructed based on a backbone dependent rotamer library (Shapovalov and 
Dunbrack 2011). The rotamer was selected based on an RMSD minimization between the at least 
one predicted atomic coordinate, and the corresponding atomic coordinate of the discrete rotamer.  

Finally, side-chain predictions were carried out for the same four experiments using SCWRL4, 
and are presented in the results section. We trained the SE(3)-Transformer with 7 layers having up 
to 4 representation degrees and a total of 32 channels. 20 epochs at an initial learning rate of 1e-3 
and a batch size of 100 were used. 

3.  Results 

The performance of the trained model on a test set and its comparison with the performance of 
SCWRL is presented in Fig. 2-5. The results of the distal χ-2 atom prediction on the unbound and 
bound datasets are shown in Fig. 2 and Fig. 3, respectively. Similarly, Fig. 4 and Fig. 5 represent 
the results for end-group coordinate prediction on the unbound and bound datasets. While, overall, 
we predict the side-chain conformations with an accuracy comparable to SCWRL4, the performance 
of the two methods is consistently different on the unbound and bound datasets, with SCWRL 
outperforming our approach on the bound dataset, and our approach providing better results on 
unbound structures.  

In all figures, the notation ‘LEARN’ refers to the SE(3)-Transformer results, ‘SCWRL’ refers 
to the SCWRL4 prediction, ‘PROJ’ refers to the projection prediction based on the side-chain 
reconstruction, ‘C2’ refers to the distal χ-2 atom prediction, ‘EG’ refers to the functional end-group 
atom prediction, ‘WP’ refers to the prediction with the protein partner included in as part of the 
input, and ‘NP’ refers the prediction without the protein partner included as part of the input.  
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Figure 4: SCWRL4 vs SE(3)-Transformer Functional End-Group Coordinate Predictions at a Protein-
Protein Interface for Bound Proteins. The RMSD of all predictions are presented. In blue is the SE(3) 
learning prediction for end-group with its protein-partner. In green is the SE(3) learning prediction that is 
mapped to the closest SCWRL rotamer. In red is the SCWRL prediction with its protein-partner. In purple 
is the SE(3) learning prediction for end-group without its protein-partner. In orange is the SE(3) learning 
prediction (without a partner) that is mapped to the closest SCWRL rotamer. In cyan is the SCWRL 
prediction without its protein-partner.  

Figure 2: SCWRL4 vs SE(3)-Transformer Chi-2 Distal Coordinate Predictions at a Protein-
Protein Interface for Bound Proteins. The RMSD for all predictions are presented. In blue is the 

SE(3) learning prediction for Chi-2 with its protein-partner. In green is the SE(3) learning 
prediction that is mapped to the closest SCWRL rotamer. In red is the SCWRL prediction with its 
protein-partner. In purple is the SE(3) learning prediction for Chi-2 without its protein-partner. In 
orange is the SE(3) learning prediction (without a partner) that is mapped to the closest SCWRL 

rotamer. In cyan is the SCWRL prediction without its protein-partner. 
 

Figure 3: SCWRL4 vs SE(3)-Transformer Chi-2 Distal Coordinate Predictions at a Protein-Protein Interface 
for Unbound Proteins.  The RMSD of all predictions are presented. In blue is the SE(3) learning prediction for 
Chi-2 with its protein-partner. In green is the SE(3) learning prediction that is mapped to the closest SCWRL 

rotamer. In red is the SCWRL prediction with its protein-partner. In purple is the SE(3) learning prediction for 
Chi-2 without its protein-partner. In orange is the SE(3) learning prediction (without a partner) that is mapped 

to the closest SCWRL rotamer. In cyan is the SCWRL prediction without its protein-partner. 
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Figure 4: SCWRL4 vs SE(3)-Transformer Functional End-Group Coordinate Predictions at a Protein-
Protein Interface for Bound Proteins. The RMSD of all predictions are presented. In blue is the SE(3) 

learning prediction for end-group with its protein-partner. In green is the SE(3) learning prediction that is 
mapped to the closest SCWRL rotamer. In red is the SCWRL prediction with its protein-partner. In 

purple is the SE(3) learning prediction for end-group without its protein-partner. In orange is the SE(3) 
learning prediction (without a partner) that is mapped to the closest SCWRL rotamer. In cyan is the 

SCWRL prediction without its protein-partner. 

Figure 5: SCWRL4 vs SE(3)-Transformer Functional End-Group Coordinate Predictions at a Protein-
Protein Interface for Unbound Proteins. The RMSD of all predictions are presented. In blue is the SE(3) 
learning prediction for end-group with its protein-partner. In green is the SE(3) learning prediction that is 

mapped to the closest SCWRL rotamer. In red is the SCWRL prediction with its protein-partner. In 
purple is the SE(3) learning prediction for end-group without its protein-partner. In orange is the SE(3) 

learning prediction (without a partner) that is mapped to the closest SCWRL rotamer. In cyan is the 
SCWRL prediction without its protein-partner. 
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4. Conclusion

This manuscript describes our attempt to apply the SE(3)-equivariant transformer architecture to the 
problem of predicting the protein residue side chain orientations. The classical methods attempting 
to solve the same problem usually approach it by performing a combinatorial search over the side-
chain orientation space and trying to find a minimal energy solution. Here, we demonstrate that a 
novel SE(3)-equivariant transformer architecture can be straightforwardly used to learn a solution 
to the same problem given enough training data. We test the approach on a task of reconstructing 
the side-chains in protein interfaces, using both bound and unbound subunit structures. The quality 
of the resulting predictions is comparable to that of the best-in-class classical methods. We suggest 
that this type of approach could be used as a part of larger network architectures dedicated to solving 
problems related to protein structure, in particular those used for prediction and design of protein 
complexes. 
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