S

%

Scientific
Research
Publishing

<
X8

%

Journal of Software Engineering and Applications, 2022, 15, 197-207
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124

ISSN Print: 1945-3116

API Development Increases Access to Shared
Computing Resources at Boston University

George Jones!", Amanda E. Wakefield23* ©, Jeff Triplett?, Kojo Idrissa% James Goebels,
Dima Kozakov! ©, Sandor Vajdaz3#

1Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, USA
2Department of Chemistry, Boston University, Boston, USA

3Department of Biomedical Engineering, Boston University, Boston, USA

“Revolution Systems, LLC., Lawrance, USA

*College of Engineering, Boston University, Boston, USA

Email: ”vajda@bu.edu

How to cite this paper: Jones, G., Wake-
field, A.E., Triplett, J., Idrissa, K., Goebel,
J., Kozakov, D. and Vajda, S. (2022) API
Development Increases Access to Shared
Computing Resources at Boston University.
Journal of Software Engineering and Ap-
plications, 15, 197-207.
https://doi.org/10.4236/jsea.2022.156011

Received: May 2, 2022
Accepted: June 26, 2022
Published: June 29, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.

This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

Within the last few decades, increases in computational resources have con-
tributed enormously to the progress of science and engineering (S & E). To
continue making rapid advancements, the S & E community must be able to
access computing resources. One way to provide such resources is through
High-Performance Computing (HPC) centers. Many academic research in-
stitutions offer their own HPC Centers but struggle to make the computing
resources easily accessible and user-friendly. Here we present SHABU, a
RESTful Web API framework that enables S & E communities to access re-
sources from Boston University’s Shared Computing Center (SCC). The
SHABU requirements are derived from the use cases described in this work.

Keywords

API Framework, Open Source, High-Performance Computing, Software
Architecture, Science and Engineering

(OMom

1.

Introduction

Increases in computational resources have contributed enormously to the

progress of science and engineering through the ability to generate, interpret,

utilize, and share data quickly and cost-effectively. Over the last two decades, the

development of High-Performance Computing (HPC) capabilities has been dri-

ven by the need for more powerful systems and applications. Significant im-

provements in technology have pushed the limits of HPC and have brought

*George Jones and Amanda Wakefield are co-first authors and contributed equally to the project.

*Corresponding author.

DOI: 10.4236/jsea.2022.156011 Jun. 29, 2022 197 Journal of Software Engineering and Applications

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2022.156011
https://www.scirp.org/
https://orcid.org/0000-0001-7962-2686
https://orcid.org/0000-0003-0464-4500
https://orcid.org/0000-0003-1540-8220
https://doi.org/10.4236/jsea.2022.156011
http://creativecommons.org/licenses/by/4.0/

G. Jones et al.

about large changes in scientific discovery. Specifically, it is now standard prac-
tice to include large-scale computational studies to assess if a theory is consistent
with experimental results, question a large collection of data, or understand me-
chanisms through high precision simulations.

With the constant development of new algorithms and applications, it be-
comes imperative that users and applications can easily access computing re-
sources, especially HPC resources. Many academic institutions, including Boston
University (BU), provide HPC resources in the form of Shared Computing Cen-
ters (SCC) that enable students, staff, and faculty to run resource-intensive calcu-
lations vital for S & E. Increases in the types of users, including individuals and
webservers, necessitate improved access to SCC resources. Before this work,
access to the SCC at BU was limited to SSH/SCP protocols and required
two-factor authentication of users. This created challenges for developing and
maintaining S & E web servers that utilize the SCC computing resources.

Web Application Programming Interfaces (Web API) [1], a set of rules for
how applications connect and communicate, provides developers with frame-
works for building HTTP-based services accessible by software applications.
Current Web API development tends towards the Representational State Trans-
fer (REST) [2] [3] [4] [5] [6] architectural style, which provides a high level of
flexibility. RESTful API is a software design pattern that specifies a uniform and
predefined collection of stateless operations. RESTful Web APIs have become a
building block of web-based software development due to their interoperability
between applications and systems over the web.

This work describes the SHared API at Boston University (SHABU) frame-
work for creating REST-ful web APIs for high-performance computing (HPC)
centers. The API generated by the SHABU framework provides an interface
through which web servers can access HPC resources on the SCC. We set out to
create a framework to meet the growing demands without causing delays for
servers relying on the BU SCC for computing, interrupting normal user activi-
ties, or compromising security. Scientists and engineers require broadly accessi-
ble computational resources for effective work and collaborations. Therefore,
computing system must be able to accommodate various inputs and perform
necessary calculations. We have developed a customizable framework that can
be deployed at HPC centers to enable access to various backend resources and
services through a common web API. This effort aims to create an easily ex-

tendable service that can be plugged into multiple backend resources.

2. Design and Development

The recent addition of several servers using SCC resources combined with in-
creases in the usage of existing servers has led to some problems. Historically,
communications between servers and the SCC, including submissions, file
transfers, and monitoring, were handled with SSH/SCP protocols. Increases in

the number and usage of servers have led to substantial growth in the number of

DOI: 10.4236/jsea.2022.156011

198 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011

G. Jonesetal.

queries submitted to the SCC, which has created slowdown issues and connec-
tion issues. As a result, jobs consistently fail due to timeouts and longer than
normal run times. In addition, recently improved security protocols for SCC us-
ers, including the introduction of two-factor authentication, hamper the func-
tions of the servers. Currently, this is worked around by reducing security meas-
ures from specific IP addresses; however, this undermines the security efforts.
To comply with the new regulations and ensure proper server functioning, we
decided to introduce an API for submission, management, and monitoring of
computing jobs from servers utilizing SCC resources.

We decided that an API would be the best option for enhancing access to
computing resources on the SCC by servers at BU. To start this project, we
searched existing open-source projects and code to find an API compatible with
the software and architecture of the SCC. Despite the availability of several re-
source-sharing platforms [7] [8] [9] [10], there are no out-of-the-box solutions
that meet the needs of the servers reliant upon the SCC. Therefore, we designed
a framework, SHABU, for a centralized method for communicating with the
SCC, which many servers can use hosted from any number of locations. SHABU
must meet the following requirements:

1) Receive a job workflow and submit it to the queue, monitor the status until
completion, and return the results to the server.

2) Easily incorporate additional servers and job workflows.

3) Handle multi-part workflows.

4) Allow for testing and development.

5) Maintain the security of the SCC.

Django, a Python-based web framework, was selected because it supports all
required functionalities [11]. The connection between the API and the SCC was
developed as a Docker volume to provide seamless security and access to re-
sources [12]. Celery was used as an asynchronous job handler because it works
well with Django in a Docker environment, and it can accommodate variability

in the size and number of jobs [13].

3. Architecture

SHABU provides users with web-based API endpoints, shown in Table 1, to
access resources on the SCC. To achieve this, SHABU converts HTTP requests
into workflows on the SCC. In the process of doing so, it requires data move-
ment, user authentication, job management, and additional operations. The job
object is core to SHABU’s functioning, and most of the architecture revolves
around the management of proper resources, authentication, and handling of
the jobs submitted. The job management system is outlined in Figure 1. SHABU
is built using multiple open-source tools such as Django, Redis, Celery, Caddy,
and Postgres [14] [15] [16] [17] [18]. The following subsections will present the
SHABU/SCC connection, identity access management, API, job management,

maintenance, and job execution.

DOI: 10.4236/jsea.2022.156011

199 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011

G. Jones et al.

PostgresSQL

Worker 1

Worker 2
.
.
.

\
1
1
1
1
1
1
1
e 1
, 1
i 1
Worker n ' :
T > N o N
1 Django Celery worker 1
APl response REST processes !
i |
! 1
: Celery " :
1 Beat B 1
1 = 1
1 1
: Redis :
1 Task queue 1
! 1
N e e e e e e e e e e e e e Vi
Figure 1. Information flow generated by the user.
Table 1. Endpoints provided by the APL
Endpoints Description/Summary
|apis| users Retrieve a list of all the users
|apisl jobs Add a new Job instance to the task queue
apis| jobs/<job_id> Update or Delete a Job instance
| apis| jobs| stats/ Get a list of all the jobs and their current statuses

3.1. SHABU/SCC Connection

SHABU accesses the SCC through an NFS Docker volume mounted inside the
server’s Docker container. To facilitate communication between the GPES file
system, which SCC uses, and the NFS docker volume, the working directory was
first made NFS accessible. The volume contained the SCC user authentication

and was designed to provide a stable connection to SCC resources.

3.2. Identity Access Management

Identity access management (IAM) protocols have been set up to ensure the
proper users have access to running commands on SCC. SHABU is designed to
be an interface used for open access servers. The user setup and API restrictions
put into place are designed to allow designated servers access. Restrictions fall
into two main categories: user-based and SCC-based.

User restrictions are based on user accounts created on the SHABU site. An-
yone on the SHABU site can create an account; however, to submit jobs to the
API, a request must be made to add the user into an access group. Entry into the
access group will allow the user to create an access token. These tokens are
created using the rest_framework.authtoken module for Django. Once a token is
created for a user, they can register an IP address where the server will be lo-

cated. The IP address and token combination will allow users to access the server

DOI: 10.4236/jsea.2022.156011

200 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011

G. Jonesetal.

from the registered IP address.

SCC-based restrictions are based on SCC user accessibility. SHABU runs all
SCC-based code through a single user with limited access. If a specific workflow
requires libraries or executables to be made available, the user can contact the

administrator. Environments can be created which cater to specific workflows.

3.3. API

SHABU provides a secure way to interface with job management services via an
API. The API is hosted in a web-facing Docker container. Interactions with the
API are verified using tokens and IP information. Once this verification process
is complete, the request information is processed to ensure valid requests. A ve-
rified request is then passed to the corresponding service. The API is built using

Django REST Framework. Swagger provides documentation for the API.

3.4. Job Management

SHABU’s job management interactions, as outlined in Figure 2, include job

submission, deletion, status check, and modification.

3.4.1. Job Submission

When a user submits a job request to the API, the user is verified via their token
and IP address. Verified requests generate an asynchronous task that completes
the processing of the request. This task is submitted to the Celery worker queue
and subsequently executed using Celery workers. The task creates a unique di-
rectory on the SCC using the NFS volume mount and unpacks the request me-
thodology and supporting files into this directory. The request methodology is
submitted to the SCC SGE queue to be run. The asynchronous task captures the
SGE associated job id number and records it in the database.

Web

R N N TS

SHABU API
[allocate H Job] { Delete] { Poll] [capture]

£ X
Jobs | \
_ directory ‘ ’ gsub ‘ qdel ‘ l qgstat ‘

NSF Sun Grid Engine

Shared Computing Center

Figure 2. Workflow of user interactions. All users interact with the API (blue) to run
commands based on API input (light blue). These commands generate tasks to run using
celery (green) which interacts with the SCC (yellow), specifically the jobs directory and
the SGE.

DOI: 10.4236/jsea.2022.156011

201 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011

G. Jones et al.

3.4.2.]Job Deletion

When a user deletes a job, the API request is verified via the token and IP ad-
dress of the user. Verified requests result in an asynchronous task submitted to
the Celery queue. The deletion task removes the job folder on the SCC and re-
moves any jobs from the SGE queue. The status of the job will also be modified
to “Deleted.”

3.4.3.]Job Status

The request is first verified when a user sends a job status query to the API. Ve-
rified requests return a JSON package that contains details of the job. These de-
tails include the status of the job on the SHABU queue, the job status on the SGE
queue, and the SGE id.

3.4.4. Job Modification

When a user sends a job modification query to the API, it is first verified. A re-
quest will include the job SHABU id and modifications to the job parameters.
Once the request is verified, the job’s details will be updated using the supplied

information.

3.5. Maintenance

The job submission task is complete once the job is submitted to the SGE queue.
The task of updating jobs relies on periodic tasks, which can be classified under

maintenance. The maintenance tasks are run using Celery Beats.

3.5.1. Allocating Jobs

This task queries the database to see if there are any jobs in the SHABU queue
and how many jobs are active. If there are jobs in the queue and the number of
jobs active is less than the set maximum number of jobs, this task will activate
jobs in the queue. This activation starts the asynchronous task, which runs the
job methodology outlined in job management.

3.5.2. Poll Job

This task periodically queries the SGE queue to get the status of jobs running on
the SCC. The SGE queue is queried using gstat for user-specific jobs. The task
iterates through the jobs in the SHABU queue; if the sge_id is in the SGE query
results, the SGE status of the job is updated. If a job is no longer found in the
SGE queue, the status in the SHABU queue is updated to complete.

3.5.3. Capture Job Output

This task periodically checks the jobs on SHABU to see if jobs have been com-
pleted or failed. This task creates an output file package using tar for jobs that
meet this criterion. Each of the webserver API users has a webhook address that
is used to send the output files to the corresponding server. This task will create
an output tar file; once the output file is created, the working files on the SCC
are deleted. A webhook is then sent to the specified address to send the output

files to the server.

DOI: 10.4236/jsea.2022.156011

202 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011

G. Jonesetal.

3.5.4. Cleaning

This task will remove jobs that are older than the specified retention date. This
task sets the database status to DELETED for each expired job and removes all
job-related files from the SCC NFS.

4. Deployment

The final step in software development is deployment. Effortless and accurate
deployment is imperative for the usefulness of the software. Deployment in-
volves provisioning the production environment with the required operating
system, packages, libraries, and configuration files and brings all these compo-
nents together to work as one unified system.

We have chosen to deploy SHABU with Docker. Docker enables the packag-
ing of required dependencies, including configuration files and libraries in clean,
redistributable Docker containers. The execution of these containers reproduces
the exact production environment on a user’s machine. We provide four sepa-
rate docker containers for the RESTful API, Redis, Celery, and Celery Beats. This
allows us to isolate the components and choose the appropriate software stack
for each component.

The API documentation is provided via the Swagger API documentation tool.
The Swagger user interface (UI) allows users to explore the API and run test
queries. For example, as seen in Figure 3, the UI can be used to look up a job by
its id. Figure 4 shows the JSON response code and headers returned by the

server.

GET /apis/jobs/{id}/ 8

Aviewset for viewing and editing Job instances.

Name Description

jd * reauired

string
(path)

Responses ‘

Code Description Links

200 No links
Media typs

Controls Accept header.

Example Value | Schema
"uuid": "3faB85f64-5717-4562-b3fc-2c963f66afab",
"status™: "active”,

": "string",
"string”,

"user_email”: "string”

Figure 3. Looking up a job with the swagger UI documentation for the “/apis/jobs/<id>/"
endpoint. The Swagger UI provides a webpage for users to explore the API interactively.

DOI: 10.4236/jsea.2022.156011 203 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011

G. Jones et al.

Response body

{

output_file
scc_user” - 77,
callback job_id” -
job_state” : mull,
job_data” - {}.

Response headers

—4565-866e—d7bab602acc9b” ,

input_file” : p://vajda—dashboard. bu. edu/media bs_input/example. tar. gz”
da—dashboard. bu. edu/medi output/example. tar. gz~

user_email” : “ftplus@ftplus. bu. edu”

allow: GET,PUT,PATCH,DELETE,HEAD,OPTIONS

content-length: 356

content-type: application/json
date: Thu,26 May 2022 13:16:00 GMT

referrer-policy: same-crigin
strict-transport-security: max-age=31536000;
vary: Accept,Cookie
x-content-type-options: nosniff
x-frame-options: DENY

Figure 4. Result of looking up a job using the swagger UL The results were obtained after querying the “/apis/jobs/<id>/” API
endpoint. The response body section shows the JSON response received from the API, and the response headers section shows the

HTTP headers from the received request.

5. Use Cases
5.1. Predicting Protein-Protein Binding Poses

ClusPro is a web server that uses rigid-body docking to find energetically favor-
able poses for submitted proteins [19]. Protein-protein interactions (PPI) allow
for the basic functioning of cells, and they are also essential in larger biological
systems. X-ray crystallography is the gold standard for understanding and con-
firming PPIs; however, the method is complicated and time-consuming [20].
Protein docking is a computational tool that provides a low-cost method of ge-
nerating potential poses for PPIs that can be validated experimentally [21]. Clu-
sPro provides a means to dock submitted proteins.

The main utility of ClusPro is to dock two user-defined protein structures.
The main workflow involves taking in the user-defined structures, preparing and
docking the structures, and generating the results for the user. These steps can
be modified and must be flexible to fit the desired needs. To provide flexibility,
ClusPro creates a workflow based on user input. This workflow was previously
run using SSH/SCP protocols to transfer files to and from the SCC and check on
the status of the job. Before SHABU, each job required periodic queries to the
SCC to check the status. This system did not scale well as the jobs were moni-
tored on an individual basis and became more problematic as the number of
submitted jobs continued to increase. This system led to slowdowns on both the
ClusPro server and the SCC. Switching the ClusPro server from using the
SSH/SCP protocols to using the API provided by the SHABU framework has
drastically reduced the slowdowns on the server and the SCC.

ClusPro packages a workflow and the necessary support files and sends the file
via a POST request to the API. The API receives the package and submits the

DOI: 10.4236/jsea.2022.156011

204 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011

G. Jonesetal.

workflow to the SCC queue. ClusPro can query SHABU to inform the user of the
status of the job; however, SHABU asynchronous tasks monitor the status of all
jobs and update the ClusPro database when there are changes to the status. Once
a job has been completed, the resulting files are compressed and sent to the

ClusPro server to be made available to the ClusPro user.

5.2. Identifying Hot Spots on Proteins

Protein-small molecule interactions are central to biological processes; therefore,
understanding these interactions is an important research topic [22]. It is well
established that regions of proteins that are capable of binding multiple, frag-
ment-sized molecules, often referred to as hot spots, are the regions that contri-
bute most significantly to protein-ligand binding energetics. Therefore, detec-
tion of binding sites on proteins allows for insight into which interactions con-
tribute the most favorably to binding [23]. Computational hot spot detection
methods such as FTMove, identify protein hot spots via the docking of molecu-
lar fragments to the protein [24].

FTMove is a web server that identifies protein hot spots by utilizing structural
information gained from homology models of a submitted structure [25]. This
allows for identifying dynamic sites, such as allosteric or cryptic, that can be
overlooked if only a single structure is analyzed. Prior to accessing the SCC re-
sources via an API, FTMove jobs were run by submitting individual jobs to the
SCC for each docking process, followed by post-processing on the FTMove
server; job monitoring was also done individually. The individual submission
and monitoring of jobs are problematic. Besides the problems previously men-
tioned with the ClusPro server, FTMove has to transfer significantly more files
to and from the SCC. Post-processing is therefore completed locally on the
FTMove server. However, using the API allows for an array job to be submitted
which runs all the docking jobs, compiles the results, and returns a single results
file regardless of the number of homology models provided by the user. This
helps keep the FTMove server independent of the FTMove algorithm, as is best

practice.

6. Conclusions and Future Work

In this work, we present SHABU, a RESTful Web API framework that allows
access to High-Performance Computing resources and services available from
the Shared Computing Center at Boston University. We intend to use SHABU
with the use cases presented in this paper. As new use cases emerge, new re-
quirements will be requested for SHABU. There are plans to expand the frame-
work to work across many High-Performance computing platforms, including
Stony Brook University’s SeaWulf center and cloud-based services such as
Amazon Web Services (AWS).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

DOI: 10.4236/jsea.2022.156011

205 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011

G. Jones et al.

References

(1]
(2]

(3]

(4]

(8]

(9]

(10]

(11]
(12]
(13]
(14]

(15]

(16]
(17]
(18]
(19]

(20]

Massé, M. (2011) REST API Design Rulebook. O’Reilly Media, Inc., Sevastopol.

Khare, R. and Taylor, RN. (2004) Extending the Representational State Transfer
(REST) Architectural Style for Decentralized Systems. Proceedings of the 26th In-
ternational Conference on Software Engineering, Edinburgh, 26 July 2004, 428-437.
https://doi.org/10.1109/ICSE.2004.1317465

Pautasso, C., Zimmermann, O. and Leymann, F. (2008) Restful Web Services vs.
“Big” Web Services: Making the Right Architectural Decision. Proceedings of the
17th International Conference on World Wide Web, Beijing, 21-25 April 2008,
805-814. https://doi.org/10.1145/1367497.1367606

Vinoski, S. (2007) REST Eye for the SOA Guy. IEEE Internet Computing, 11, 82-84.
https://doi.org/10.1109/MIC.2007.22

Webber, J., Robinson, I. and Parastatidis, S. (2010) REST in Practice: Hypermedia
and Systems Architecture. O'Reilly Media, Inc., Sevastopol.

Zuzak, I. and Schreier, S. (2012) ArRESTed Development: Guidelines for Designing
REST Frameworks. /EEE Internet Computing, 16, 26-35.
https://doi.org/10.1109/MIC.2012.60

Cruz, F.A., et al (2020) FirecREST: A RESTful API to HPC Systems. 2020
IEEE|ACM International Workshop on Interoperability of Supercomputing and
Cloud Technologies (SuperCompCloud), Atlanta, 11 November 2020, 21-26.
https://doi.org/10.1109/SuperCompCloud51944.2020.00009

Cholia, S. and Sun, T. (2015) The NEWT Platform: An Extensible Plugin Frame-
work for Creating ReSTful HPC APIs. Concurrency and Computation: Practice and
Experience, 27, 4304-4317. https://doi.org/10.1002/cpe.3517

Dooley, R., et al (2012) Software-as-a-Service: The iPlant Foundation API. 5th IEEE
Workshop on Many-Task Computing on Grids and Supercomputers, Salt Lake
City, 12 November 2012.

Al Qadami, S.F.H. (2018) Research and Development of Shared Restaurant Plat-
form Based on Cloud Computing. American Journal of Industrial and Business
Management, 8, 2321-2333. https://doi.org/10.4236/ajibm.2018.812155

Django. https://www.djangoproject.com

Docker. https://www.docker.com

Celery. https://github.com/celery/celery

Rubio, D. (2017) Django Application Management. In: Rubio, D., Ed., Beginning
Django, Apress, Berkeley, 163-216.
https://doi.org/10.1007/978-1-4842-2787-9_5

Hochrein, A. (2019) Designing Microservices with Django: An Overview of Tools
and Practices, Apress, Berkeley.

Redis. https://redis.io
PostgresSQL. https://www.postgresgl.org

Caddy. https://caddyserver.com

Kozakov, D., et al (2017) The ClusPro Web Server for Protein-Protein Docking.
Nature Protocols, 12, 255-278. https://doi.org/10.1038/nprot.2016.169

Gavin, A.C,, et al. (2002) Functional Organization of the Yeast Proteome by Syste-
matic Analysis of Protein Complexes. Nature, 415, 141-147.
https://doi.org/10.1038/415141a

DOI: 10.4236/jsea.2022.156011

206 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011
https://doi.org/10.1109/ICSE.2004.1317465
https://doi.org/10.1145/1367497.1367606
https://doi.org/10.1109/MIC.2007.22
https://doi.org/10.1109/MIC.2012.60
https://doi.org/10.1109/SuperCompCloud51944.2020.00009
https://doi.org/10.1002/cpe.3517
https://doi.org/10.4236/ajibm.2018.812155
https://www.djangoproject.com/
https://www.docker.com/
https://github.com/celery/celery
https://doi.org/10.1007/978-1-4842-2787-9_5
https://redis.io/
https://www.postgresql.org/
https://caddyserver.com/
https://doi.org/10.1038/nprot.2016.169
https://doi.org/10.1038/415141a

G. Jonesetal.

(21]

(22]

(23]

(24]

(25]

Smith, G.R. and Sternberg, M.J.E. (2002) Prediction of Protein-Protein Interactions
by Docking Methods. Current Opinion in Structural Biology, 12, 28-35.
https://doi.org/10.1016/S0959-440X(02)00285-3

Allen, K.N., et al (1996) An Experimental Approach to Mapping the Binding Sur-
faces of Crystalline Proteins. Journal of Physical Chemistry, 100, 2605-2611.
https://doi.org/10.1021/jp9525160

Wakefield, A.E., et al. (2020) Benchmark Sets for Binding Hot Spot Identification in
Fragment-Based Ligand Discovery. Journal of Chemical Information and Modeling,
60, 6612-6623. https://doi.org/10.1021/acs.jcim.0c00877

Wakefield, A.E., et al (2022). Mapping the Binding Sites of Challenging Drug Tar-
gets. Current Opinion in Structural Biology, 75, Article ID: 102396.

Egbert, M., et al. (2022) FTMove: A Web Server for Detection and Analysis of Cryp-
tic and Allosteric Binding Sites by Mapping Multiple Protein Structures. Journal of
Molecular Biology, 434, Article ID: 167587.
https://doi.org/10.1016/j.jmb.2022.167587

DOI: 10.4236/jsea.2022.156011

207 Journal of Software Engineering and Applications

https://doi.org/10.4236/jsea.2022.156011
https://doi.org/10.1016/S0959-440X(02)00285-3
https://doi.org/10.1021/jp952516o
https://doi.org/10.1021/acs.jcim.0c00877
https://doi.org/10.1016/j.jmb.2022.167587

	API Development Increases Access to Shared Computing Resources at Boston University
	Abstract
	Keywords
	1. Introduction
	2. Design and Development
	3. Architecture
	3.1. SHABU/SCC Connection
	3.2. Identity Access Management
	3.3. API
	3.4. Job Management
	3.4.1. Job Submission
	3.4.2. Job Deletion
	3.4.3. Job Status
	3.4.4. Job Modification

	3.5. Maintenance
	3.5.1. Allocating Jobs
	3.5.2. Poll Job
	3.5.3. Capture Job Output
	3.5.4. Cleaning

	4. Deployment
	5. Use Cases
	5.1. Predicting Protein-Protein Binding Poses
	5.2. Identifying Hot Spots on Proteins

	6. Conclusions and Future Work
	Conflicts of Interest
	References

