PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: December 14, 2021
REVISED: March 14, 2022
ACCEPTED: March 16, 2022
PUBLISHED: April 8, 2022

One-loop matching for quark dipole operators in a
gradient-flow scheme

Emanuele Mereghetti,* Christopher J. Monahan,’* Matthew D. Rizik,?
Andrea Shindler? and Peter Stoffer®:/»9

@ Theoretical Division, Los Alamos National Laboratory,

Los Alamos, NM 87545, U.S.A.

b Department of Physics, The College of William & Mary,
Williamsburg, VA 23187, U.S.A.

¢Theory Center, Thomas Jefferson National Accelerator Facility,
Newport News, VA 23606, U.S.A.

4 Facility for Rare Isotope Beams € Physics Department, Michigan State University,
East Lansing, MI 48824, U.S.A.

¢ Physik-Institut, Universitdt Zirich,
Winterthurerstrasse 190, Ziirich 8057, Switzerland

f Paul Scherrer Institut,
Villigen PSI 5232, Switzerland

9 University of Vienna, Faculty of Physics,

Boltzmanngasse 5, Vienna 1090, Austria

E-mail: emereghetti@lanl.gov, cjmonahan@wm.edu, rizik@nscl.msu.edu,
shindler@frib.msu.edu, stoffer@physik.uzh.ch

ABSTRACT: The quark chromoelectric dipole (qQCEDM) operator is a CP-violating operator
describing, at hadronic energies, beyond-the-standard-model contributions to the electric
dipole moment of particles with nonzero spin. In this paper we define renormalized dipole
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for example to matrix elements relevant to CP-violating and CP-conserving kaon decays.
The calculation provides a basis for future lattice QCD computations of hadronic matrix
elements of the qCEDM and qCMDM operators.
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1 Introduction

The baryon asymmetry of the universe cannot be explained by known sources of charge (C)
and parity (P) violation in the standard model of particle physics [1-4]. CP violation in
the standard model occurs through the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing
matrix, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix, and, po-
tentially, could be generated by the quantum chromodyamics (QCD) 6 term. Electric
dipole moments (EDMs) capture the distribution of positive and negative charge within
different systems, and the existence of a permanent EDM in neutral particles, such as
the neutron, can only occur in the presence of CP-violating interactions. Experimental
constraints on the neutron EDM, d,, = (0.0 £ 1.1ga¢ £ 0.2ys) X 10726 ¢ cm at the 90%
confidence level [5], leave open the possibility of unknown sources of CP violation several
orders of magnitude larger than those generated by the standard model [6-9]. For a full
review of EDM searches in a wide range of systems, see ref. [10].



Under the assumption that these unknown sources of CP violation are due to heavy
physics beyond the standard model (BSM), their indirect low-energy effects can be de-
scribed in terms of effective field theories. Above the electroweak scale, this is the stan-
dard model effective field theory (SMEFT), provided that electroweak symmetry is linearly
realized [11, 12], while below the weak scale one should use the low-energy effective field
theory (LEFT), which is invariant under the SU(3). X U(1)em gauge group. The complete
running and matching in these effective theories up to dimension six has been worked
out to one-loop accuracy [13-19]. At hadronic scales, the CP-violating BSM effects are
described by higher-dimensional operators within the LEFT. The impact of these oper-
ators on the neutron EDM must be disentangled from the standard model contributions
generated by the CKM matrix and the QCD 6 term. One therefore needs to determine
individual contributions to the nucleon EDM and to CP-odd pion-nucleon and nucleon-
nucleon couplings, which determine nuclear EDM and Schiff moments, at hadronic energy
scales. Experimental bounds on the neutron EDM are expected to improve by an order
of magnitude with the next generation of experiments [20]. Current determinations of the
relevant hadronic matrix elements are primarily based on model estimates from QCD sum
rules [21-26] or from chiral perturbation theory [27-31], which have large, O(50%-100%),
uncertainties and preclude rigorous reduction of systematic uncertainties in theoretical
predictions. First-principles calculations of the hadronic matrix elements with controlled
uncertainties are required to exploit fully the improved bounds from upcoming experi-
ments. Lattice QCD, in which QCD is formulated on a Euclidean hypercubic spacetime
lattice, and correlation functions are determined stochastically, provides the best approach
for first-principles calculations of QCD at hadronic energies.

Lattice calculations of the matrix elements relevant to the nucleon EDM are challeng-
ing for two reasons. First, in Euclidean space the QCD 6 term is complex, which prevents
the efficient use of Monte Carlo methods. This difficulty can be circumvented by expand-
ing the Euclidean action in 6, justified by the current experimental bound on the neutron
EDM, which implies § ~ 1070, This approach is theoretically well-defined, but faces a
challenging signal-to-noise problem associated with the insertion of the 6 term in correlation
functions on the lattice. This problem can be mitigated through signal-to-noise-improved
ratios [32]. Second, renormalization of higher-dimensional composite operators on the lat-
tice is difficult. For example, the quark chromoelectric dipole moment (qCEDM) operator
mixes under renormalization with the lower-dimensional pseudoscalar density. On the lat-
tice, this mixing is proportional to an inverse power of the lattice spacing and diverges in
the continuum limit. This power-divergent mixing must be removed nonperturbatively to
extract meaningful results [33]. For a recent review on lattice-QCD results for the nucleon
EDM, see ref. [34].

We proposed applying the gradient flow [35, 36] to renormalize both the QCD 6 term
and the BSM CP-violating operators, such as the qCEDM [37, 38].1 At finite flow time
the qCEDM is multiplicatively renormalizable, but to relate this operator to physical ma-
trix elements, one must perform an operator-product expansion at short flow times [40].

'For a recent proposal to use the gradient flow to smoothen the short-distance behavior of the static
potential and to improve the approach to the continuum limit see ref. [39].



We studied the leading-order short flow-time expansion of the qCEDM and the CP-odd
three-gluon operator at one-loop in perturbation theory in ref. [41] and nonperturbatively
in ref. [42], and our nonperturbative implementation of the hadronic matrix elements re-
quired for this program is ongoing [32, 37, 38, 43-45]. Alternative nonperturbative methods
for higher-dimensional operators are regularization-independent momentum-subtraction
schemes, which have been defined for the qCEDM [46] and the three-gluon operator [47],
as well as coordinate-space methods [48]. The mixing of these operators under renormal-
ization was studied first in [49-51], then calculated at two loops for the qCEDM in [52]
and at two and three loops for the three-gluon operator in [53].

Power-divergent mixing with lower-dimensional operators hampers the renormalization
of the quark chromomagnetic dipole moment (qCMDM) as well [54]. The flavor-changing
qCEDM and qCMDM operators describe low-energy effects of heavy SM and BSM particles
on flavor observables, such as the CP-conserving long-distance contributions to K9 — i’
mixing [55], direct CP-violation in hyperon decays [56], ¢'/e and the Al = 1/2, K —
7 transition [57], or the CP-violating part of the K — 3w decay [55]. Furthermore,
matrix elements of the flavor-conserving qCMDM can be used to extract CP-odd pion-
nucleon couplings [31, 58, 59], which contribute to nuclear Schiff moments. A first lattice
determination of the matrix element relevant to KO — K° mixing has been obtained by
ETMC using twisted mass fermions [60]. Here we propose to use the same strategy adopted
for the qCEDM to renormalize the CMDM operator with the gradient flow.

In [41] we determined at one loop in perturbation theory the leading contributions to
the short flow-time expansion of the qCEDM, which are generated by the dimension-three
pseudoscalar density operator and the dimension-four topological charge density. Here we
extend this calculation to determine the dimension-five contributions to the short flow-time
expansions of the qCEDM and the related qCMDM operator. We include the complete set
of operators up to dimension five that mix with qCEDM and qCMDM operators and extract
the corresponding short flow-time expansion coefficients at one-loop order in perturbation
theory. These coefficients are necessary to relate the hadronic matrix elements of the
qCEDM and qCMDM operators, determined nonperturbatively from lattice QCD, to their
counterparts in the MS scheme, which provide inputs into the phenomenological analysis
of nucleon EDM measurements.

We organize the rest of this paper as follows. In section 2, we introduce the gradient
flow and notation relevant for our discussion of the short flow-time expansion in section 3.
We then determine the matching coefficients to the MS scheme in section 4. In section 5 we
discuss the scale dependence of the matching coefficients, and we summarize our results and
conclusions in section 6. In the appendices A and B we list our conventions and Feynman
rules.

2 Gradient flow

The gradient flow introduces an additional coordinate ¢ of mass dimension [t] = —2, the
so-called flow time (not to be confused with the Minkowski time coordinate — in the
following, ¢ refers to the flow time) [35, 36]. Euclidean QCD (see appendix A and B for our



conventions) can be regarded as the boundary theory of a D + 1-dimensional field theory
at t = 0 [61]. Integrating out suitable Lagrange-multiplier fields in the D + 1-dimensional
action is equivalent to imposing the following gradient-flow equations on gauge fields, By,
and quark fields, x, X, in D dimensions:

8tB,u = DUGV# + aoDu&,By s
x = DyuDux — ao(0uBy)x
9% = XD, D, + a0Xd,B,, (2.1)

where?
Guv = 0,B, — 0,B,, + By, B, , (2.2)

together with the boundary conditions

(2.3)

Here oy is a free (gauge) parameter, required for perturbative calculations.
The (differential) flow equations of (2.1), together with boundary conditions, can be
rewritten as integral equations [61]

By(z;t) = /dDy :KW(Q: —y; )G (y) + /Ot dsK,,(x —y;t — s)Ru(y; 5)] ,

X0 = [ @ [ o) + [ dsate— it — )8 z9)]

Xw0 = [a% [p) T -y + [ st B -yi-0] . @4

where the heat kernels are

de e 42 _ 2
K;uz(fmt) = / (27T)Dp72 [(5uup2 _p,upu)e P + pupve aolp } s

D _z=

- d“p Do —tp? e 4
A AN ip-w L — 2.
Tt = Tty = [ Gpe et = sy, (25)
and the interaction terms are given by

R, =2[B,,0,B,] — [By,0,B,] + (o — 1)[By, 0, B, + [By, [By, B,]]
A" = (1-ap)(0,B,) +2B,0, + B,B,,
—
A= _(1 - Oto)(@,,By) - Q%I/BI/ + B,B, . (2.6)

2We use the same symbol for the flowed field-strength tensor as for the field-strength tensor at zero
flow time.



The flow equations in integral form (2.4) can be solved iteratively, which corresponds to an
expansion in powers of gg upon rescaling the gauge field B,, — goB,. This allows one to
express the flowed (bulk) fields in terms of the fundamental fields at the boundary ¢ = 0.
From the expansion of the kernel, one obtains propagator-like structures called flow lines.
The interaction terms in (2.6) induce interaction vertices with three and four fields, the flow
vertices. Our conventions for the Feynman rules and diagrams are given in appendix B.

3 Short flow-time expansion

In the following, we consider Green’s functions with operator insertions at finite flow time ¢.
The goal is to extract the relation between renormalized flowed operators and MS operators
at zero flow time:

O;j(t) = Z cij(t, 1) 07 (u) - (3.1)
J

This “short flow-time expansion” (SFTE) is an operator-product expansion (OPE) that is
valid at small flow time ¢, where the hard scale is proportional to t~1/2. We will take into
account operators up to dimension five on both sides of the matching equation (3.1).

To extract the flow-time dependent coefficients ¢;;(¢, i), we consider insertions of the
operators OF(t) in off-shell amputated one-particle irreducible (1PI) Green’s functions.
We work in the massless limit and consider the matching to one-loop accuracy.

The relation between amputated Green’s functions of the bare operators and renor-
malized Green’s functions is schematically given by

<(¢(0))"¢ @(0))”@ (GLO))HG 01(0) WO)@(O), G(o)]>‘"‘mp

_ Z —(ny+ny) /2 ZGnG/QZzI\J/IS <(¢)n¢ (¢) 7((;“)”6‘ (’)?/ISW’E, G]>amp
_z —(nytnz)/2 Z(_;HGHZ}\J/ISC] O ( G OF . B]>amp
_ Z}\]-ASC]-_;ZQ"Q <(¢ o))”w @(0) (G( )) 0L, (0)7B(0)]>amp , (3.2)

where we allow a generic number of n, external fermion, g antifermion, and ng gauge
fields at zero flow time.?
1/2

Using standard procedures we renormalize each field with the

corresponding Z~ /< renormalization factor and denote with Z%/»[S the matrix renormalizing

(91(0) in the MS scheme. The renormalization of the bare flowed operators O, is diagonal
and only requires the renormalization of the bare parameters of the QCD theory (coupling
and quark masses) and the flowed quark fields with a factor Z, n/ 2, where n denotes the
total number of fermion and antifermion fields in the operator Of. Since the external states

are at zero flow time, the product of the wave-function renormalization factors cancels in

3In section 4.4 we also use an external photon field to study the mixing of the quark chromo-EDM with
the quark EDM operator, though the photon renormalization constant Z4 does not contribute at leading
order.



the matching equation:*

cis ( ZJMS)_l < (w(m)“w @(@)% (GELO))"G 0O [p©, 5O, G<o>]>amp

— 272 (wO)™ (F0)7 ()" 0l @, x@, O™,

4 Renormalization and matching coefficients

4.1 Dirac algebra

We perform the calculation both in the 't Hooft-Veltman (HV) scheme [62, 63] as well as
in the scheme with anticommuting 75 (NDR). For the CP-odd operators, we define the
following Dirac structures:

- 1 .
051}7 = _§€uua60aﬁ s O'EIZPR =05, (4.1)

where as usual 0, = %[’yu,'yl,]. As the Levi-Civita symbol is a purely four-dimensional
object, in the HV scheme ¢,, only contains four-dimensional components. In order to
compare the HV and NDR schemes, we introduce

1 in the HV scheme,
oy = (4.2)

0 in the NDR scheme.

4.2 Quark-field renormalization

We express the SFTE in terms of operators in the MS scheme. Therefore, we renormalize
the parameters of the boundary theory in the MS scheme and define the renormalized
coupling as

90 = Zggi” - (4.3)

One can easily switch to the MS scheme by replacing the MS scale 1 with the MS scale i
according to

_ eE/2
M - M(4ﬂ')1/2 .

(4.4)

While the flow equations regulate most of the UV singularities, the fermion fields (as
well as the gauge coupling and quark mass) require renormalization. In the MS scheme,
we define renormalized flowed fermion fields according to

XO(zit) = 22 x(z5t), X O(x;t) = ZY2x(@31), (4.5)

4The external-leg amputation happens at zero flow time, which can leave an exponential factor as a
remainder if the external legs connect to a vertex at finite flow time.



where the superscript (0) marks the bare fields and

asCF§

A €

Zy=1- (4.6)
The quark-field renormalization leads to a counterterm contribution to the two-point func-
tion of renormalized quark fields of S (p, s,t) = (Zy 1 _1)S(p, s+1t), where the propagator
is defined in (B.9). Summing tree-level and one-loop diagrams leads to the following finite
result for the two-point function in the massless limit:

Sxro(p, s,t) = /dee_ip'm@((m;t))Z(O;s)>‘NLO (4.7)
~ 2
= S(p,s+1) <1 - ang [5 log <47;5 ) +1—&ye —&log(ao)
+ 3 ;E log(8mu’t) + 3—; log(8mu?s) + (’)(th,p2s)] ) .

Note that the finite part of the two-point function depends on the gauge parameters, while
the flowed quark-field renormalization Z, in (4.6) is independent of £ and «y.

To make contact with lattice calculations, it is necessary to implement a renormaliza-
tion scheme that is regularization independent. This is achieved by imposing the following
regularization-independent renormalization condition on a gauge-invariant composite op-
erator (for one quark flavor) [64, 65]

2N,

O (e:t) D Ui )0) = ~ s

(4.8)

=
where D, = D, — ﬁu‘ In dimensional regularization, this implies an additional finite
renormalization compared to MS. The “ringed fields” are related to the MS renormalized
fields by

X(@;t) = 8mt) 22X (wit),  x(ast) = (8mt) 2/ 2 x(st) (4.9)

The prefactors (87t)5/? are introduced in dimensional regularization because the renor-
malization condition fixes the dimension of the fields x and ¥ to be equal to 3 /2 instead
of (D—1)/2.

The next-to-leading order (NLO) contribution to the vacuum expectation value in (4.8)
is obtained from vacuum two-loop diagrams [65], leading to the following finite renormal-
ization (y:

a,Cr

G=1- (3 log (87T,u2t) - log(432)) . (4.10)

™

We have performed the calculation of ¢, for generic £ and «p, confirming its gauge-
parameter independence.



4.3 Expanding loops

The matching coefficients ¢;;(t, ;1) only depend on the flow-time ¢ and the MS renormal-
ization scale ;. and can be expanded in the renormalized MS coupling as = ¢2/(4r) as

Qs
eit ) = b+ 2B D1, )+ 0. (1)

(1)
ij
mass explicitly in the operators. When solving the matching equation for the coefficients
cz(jl»), the non-analytic dependence on the soft scales cancels between the MS and flowed loop
diagrams. Therefore, one can apply standard techniques for matching calculations [66—68]

The coefficients c¢;;” are independent of the soft scales — we include powers of the quark

and expand the integrands of the loop integrals in all scales apart from the flow time ¢,
before integration: although this alters the analytic structure of the loop integrals and dis-
torts the infrared (IR) structure, these IR modifications drop out in the difference between
MS and flowed loop diagrams. Expanding the loop integrals leads to scaleless integrals for
the operator insertions on the Lh.s. of (3.3), which vanish in dimensional regularization,
hence ultraviolet (UV) and IR singularities of the expanded loops are identical. Insertions
of the flowed operators are free from UV singularities (apart from the renormalization of
the gauge coupling and the quark-field renormalization Z,). The IR singularities of the
expanded loop integrals on the r.h.s. of (3.3) exactly match the UV MS counterterms. The
finite matching coefficients ¢;; can then be most easily obtained from the expanded integrals
of insertions of the flowed operators, which are single-scale integrals and straightforward
to calculate. Even the inclusion of generic gauge parameters £ and o does not lead to
major complications in the calculation of the integrals, hence we perform all calculations
for generic £ and ap, which provides a useful check: the coefficients ¢;; of gauge-invariant
operators in the SFTE need to be independent of ¢ and «p.

When expanding the loop integrands in all soft scales before performing the loop
integrals, one potential pitfall arises in the calculation due to the fact that the ringed fields
are renormalized through the condition (4.8) and not in the MS scheme, as we will explain
in the following.

In the dimensionally regularized theory, we can relate both the renormalized MS and
flowed operators to the bare operators at zero flow time by

0L = ZYS(WONS () = " ZE (1, )OF (), (4.12)

where the relation for the flowed operators involves the short flow-time OPE and hence
an infinite sum and where we assumed for notational simplicity that the operators contain
in total n fermion and antifermion fields. We have introduced an arbitrary mass scale fi,
which compensates the mismatch of mass dimension between the bare operators and the
flowed operators in terms of ringed fields. If we choose i = (87rt)*1/ 2 at one loop the
renormalization factors ZZ-IZ can be written as

ZE(t, (87t)™V?) = 64, + % (Ag’“ + Af;i) + O(ase, a?). (4.13)



For a generic choice of fi, this changes to

Qs (Aik Ajgn

47 £+2

ne
ZE(t, i) = b {1+2log (smt) | +

log (87rﬂ2t) + Aﬁ) +0(e% age,a?),
(4.14)

where we have included the O(a?) evanescent structure linear in . The matching coeffi-
cients follow from (4.12):

OF(t) = " [(Z™);1 (. 2N ()| ONS () = i can(t, 1, OYS (), (4.15)
which is the continuation of (3.1) to D dimensions. The coefficient ¢ (¢, u1, fi) depends on
it through evanescent terms. We are only interested in the limit € — 0:

cin(t,p) = lim can(tpr, 1) = lim | (27)51 ¢, 7) 234 ()|

=1
e—0

_ fp_me 26)] - @ (Ra_ Aun -2 R
= hn% { (% {1 5 log (87ru t)} i ( 5 5 log (87ru t) + A

E—

o Ak 2
<o+ S22+ 01ad)

—k e i2t)| — SEAR 2
= 11_I>I(l) {5zk [1 5 log (871',u t)} 47TAZk} + O(a3)

€

Qg ~2,\n. -
= b — AL+ 0(F) = Srp*t)" et p. 1) (4.16)

which is indeed independent of ji, but only if the linearly evanescent O(a!) term is correctly
taken into account.

Including the finite renormalization and the factor (87t)/? that compensates the mass
dimension of the ringed fields in the dimensionally regularized theory, the matching equa-
tion (3.3) reads

i3 (b 1, i) (Z%S)_l Zinr¢+n;)/ZZgG/2< (w(o))"w (@(0)>”w7: (GLO)>"G OI(CO) [¢(O),@(O),G(O)]>amp
_ (Sﬂﬂ%)—namZi}%*”E)/ngcﬂzgn/z(;nm
()" (B) 7 (60) " o x5O (4.17)
We have kept all renormalization factors in the equation, so that both sides are UV finite.
In particular, the factor (87r/12t)*"5/ 2 multiplies a UV finite quantity. Its evanescent com-

ponent matches the evanescent term in ¢;;(¢, 1, ft). Therefore, the matching equation can
be simplified to

cij(t,,u) (Z%S)*l Zl(pnw+”5)/2zgc/2< (¢(o))”w (@(0))"5 (GI(LO))nG OIEO) [¢(0)7¥(0)’ G(O)]>amp
- Z;"WF”J)/Zch/2Z;n/2gn/2< (¢(0)>"¢ (E(O)y% (GLO))”G O, 5O, B(o)]>amp ‘
(4.18)

At this stage, the integrands on both side of the equation can be expanded in the soft scales
before performing the loop integrals. The loops on the left-hand side are transformed into



scaleless integrals, where UV and IR divergences are identical. The same IR divergences
are generated on both sides of the matching equation, so that they cancel when solving for
cij. However, since after the expansion both sides of the equation contain divergences, it
is important that evanescent terms on both sides are consistently taken into account and
that the factor (8mi?t)™"/2 is cancelled by the evanescent part of c;;(t, 1, i). Indeed, we
have confirmed explicitly that all IR poles do cancel on either side by resumming to all
orders the contributions from the relevant soft scales.

4.4 Chromo-EDM
We define the flowed qCEDM operator in terms of renormalized (ringed) fields as
OB (1) = X(ar )3t ()Gl (7:1). (419)
We want to extract the coefficients of the short flow-time OPE up to dimension five:
O (w; 1) = cp(t, w)OP® (5 1) + Cp2p(t, W) ONPp (5 1) + Cma(t, 1)) O (5 1)
+ cu(t, ) OR® (a5 1) + cop(t, )OSR (w5 ) + ..., (4.20)

where the MS operators are minimally subtracted versions of the following operators:

Gy, (z), (4.21)

in terms of renormalized fields with F),, the field-strength tensor of the external U(1)
gauge field. The dual gluonic field-strength tensor is defined as é/w = %EWMGW. The five
coefficients can be extracted by computing insertions of the flowed operator into suitable
1PI Green’s functions (including wave-function renormalization).

The mixing with the pseudoscalar density is obtained from the 1PI matrix element
with external quark-antiquark states (we can also insert momentum —gq into the operator
in order to obtain the mixing with total-derivative operators):

/dee_’” ) O8 (25 6)[4(0))] np = (21) 767 (0 = & = 0) (W (k)| O&g (0:6) [¢(D))] 1

= (2m) PP (p— k — ) M(p, k). (4.22)
In total, one obtains [41]
asCr 61
CP(tv N) = Ar 7 )
aSCF 1
Cm2p(t,p) = 121og(8mp?t) + 5(29 + 246nv)| , (4.23)

where c¢,,2p is a new result.

~10 -



Figure 1. Feynman diagrams for the matching calculation of the flowed qCEDM operator to the
qEDM operator. The hatched blob denotes the insertion of the flowed qCEDM operator at flow
time ¢.

Due to chiral symmetry (for a discussion of chiral symmetry at finite flow time see
ref. [69]), mixing with the topological charge density requires an insertion of a mass factor,
which we include in the operator O,,9. The SFTE coeflicient can be extracted by calculating
the Green’s function

[ dPaem g (0] 08 w5 )lg(), = (270D~ k= 0)(g(k) OB 05 )] g(P)],

=: (2m)P8P) (p — k — q)el(p)eb (k)" ME (p, k) ,
(4.24)

where momentum —gq is necessarily inserted into the operator [70]. The loop calculation
leads to y5-odd Dirac traces that are not well-defined in NDR. The result in the HV scheme
reads [41]

i

Cme(t’ /‘I’) = 47T2

[1 + log(smﬁt)] . (4.25)

In order to extract the mixing with the gEDM operator, we consider a quark-antiquark
matrix element with an external U(1) field:

[ 4P e (5(0) OB 3 )6 ()1 ()
= (2m)76P) (p+r — k — @) (W (k) Og (05 1) [ (D)7 ("))
= 2m) PP (p+r—k— Qeu(r)Mu(p, k7). (4.26)

Only two diagrams contribute, shown in figure 1. As we are not interested in total derivative
operators, we can send ¢ — 0 and obtain for the diagrams expanded in all soft scales:

a,C 1 .
M) = 25 | (2 dogsmit) ) (©35(b + 1) — 200,0m,)
1 11 .
+ (2 + 65HV> ’)/5(143# —I—p#) — (2 — 2(5HV> ZU/W’I”V] . (4.27)

Up to the contribution of equation-of-motion operators, this results in

.C
cr(t, 1) = 2 WF |410g(8mpt) + 3 + 20uv | . (4.28)

- 11 -



There is no tree-level contribution to this coefficient, so at the one-loop level it is immaterial
whether the flowed fermion fields are renormalized in MS or through the ringed fermion
renormalization condition in eq. (4.8).

Finally, the coefficient of the MS qCEDM operator is obtained from the matrix element
with external quark-antiquark-gluon states:

/ dP e (4 (k)| Of (23 )¢ (D)9 (M) |y

= (2m)76 P (p+r — k — @) (W (k)| Og (0; 1) ()9 (1) 11
= 2m) P8P (p+ 1 — k — @)l ()M (p, k. 7). (4.29)

The list of Feynman diagrams is shown in figure 2. There are 19 additional diagrams,
which follow from crossing the quark- and antiquark legs and inverting the fermion-flow
direction. We also do not show the diagrams needed for the calculation of the quark-field
renormalization. For £ = ag = 1, several diagrams are of second order in the soft scales and
can be discarded, but they contribute in the calculation with generic gauge parameters.

In total, we obtain for ¢ = 0 (i.e., without additional momentum insertion into the
operator)

agt?

47

= w

M (p k7)) = —2i&u,,r,,taZ;1C;1 +

[ —

(i + log(87m2t)) (Ca—8CF)vs(ky+pu)

_l’_

00| =. 0Ol x| .

(i + log(87r,u2t)) (13C4+8CF)6 Ty

((5 + 45HV)CA + (68 — 485Hv)CF) ’}/5(141‘“ —l—p#)

+ ((27 + 365HV)CA — (44 — 165HV)CF) 5’,“,7’1,

(4.30)

Up to the contribution of equation-of-motion operators, this results in the following match-
ing coefficient, including the finite renormalization imposed by (4.8):

Qs

e [Q(CF —Cy) 10g(87r'u2t) — %((4 + 50py)Ca + (3 — 45HV)CF)]

CCE(t7 /.L) = (;1 +

—1+ O‘—Tr (5Cp — 2C4) log (82t

4

— (4 50)Ca + (3~ 40wv)Cr) - 10g(432)04 ‘ (4.31)

The divergences of the expanded flowed diagrams cancel in the matching equations against
the counterterms on the MS side, which are determined by the anomalous dimension of
the qCEDM operator. We have again checked that the result for the matching coefficient
is independent of the gauge parameters £ and «p.
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Figure 2. Feynman diagrams for the matching calculation of the flowed qCEDM operator. We do
not show 19 additional diagrams that follow from crossing and inverting the fermion-flow direction.
The hatched blob denotes the insertion of the flowed qCEDM operator at flow time ¢, while the
open circles are flow vertices. Normal quark and gluon lines denote propagators, while lines with
an adjacent arrow stand for flow lines. The adjacent arrow points into the direction of increasing
flow time.
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t t t

Figure 3. Feynman diagrams for the matching calculation of the flowed qCMDM operator onto
the identity.

4.5 Chromo-MDM

Similarly to the qCEDM operator, we also define the CP-even flowed qCMDM operator in
terms of renormalized (ringed) fields as

OB (s t) = Xl )t (s )Gl (a51) (4.32)
Its short flow-time OPE up to dimension five reads

Obr(w5t) = cm(t, )ONS (1) + s (t, )OS (1) + s (£, 1) O3 (1)
+ es(t, )OS (w3 1) + e (t, 1) OnBs (@5 1) + Cmai (t, 1) O (s 1)
+ enr(t, OV (w5 1) + com(t, 1) Oy (w5 ) + -, (4.33)

where the renormalized MS operators are the minimally subtracted versions of

Go, (). (4.34)

Due to chiral symmetry, mixing with the identity or with the gluon kinetic term requires
an insertion of a mass factor, which we include in the definition of the operators. The mixing
with the identity starts at two loops and is determined by the vacuum diagrams shown in
figure 3: only the first diagram gives a non-vanishing contribution.

The remaining coefficients can be calculated in analogy to the CP-odd case. The
results agree with the CP-odd sector for dgy = 0:

o) = 2iNeasCr 1 (4)
mib ) = (4m)? Am t? t\3)"

24iN. a;Cr 1

1
= = |21 2t) + = +6log(2) — 31
Cm3 (L, 1) an? an t{ og(8mu7t) + 5 +6log(2) —3log(3)] ,
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24iN. asCp 90 9. 3T o T 1 5 21
s(t, ) = ————0 ——= |21log®(8mpt) + — log(8mp*t) + — + = — 4log?(2) + — log(2
Cs (t, 1) am)? i 0g”(8mu"t) + ~= log(8mu"t) + - + 5 — 410g™(2) + - log(2)

— % log(3) + 21og(2) log(3) — Lis <3>] ;

4
OZSCF 61
cs(t,p) = y—
s . 2
CmQS(tv ,u) = a iFZ [1210g(87'r,u2t) + 29} ,
¢ 2
enG(t, 1) = = [1+log(8u?0)] |
sC
en(t ) = = WF {4log(87w2t)+3] :
o 1
com(t, p) = C;l + in (2CF — 2C) log(8mp?t) — 3 (404 + 3CF):|
= 14 52 (30 ~2Ca)logl6mit) = 5 (104 +3Cr) —lon(432)C | . (439

In the case of the qCMDM, flavor off-diagonal components are also of interest [54,
60], because they can mediate BSM contributions to K — nm and &'/e. The matching
coefficients cg(t, p), car(t, u) and copr(t, 1) are the same for flavor diagonal and off-diagonal
components, while only the diagonal components contribute to ¢, (, it), ¢m, ¢;,3 and c¢,,s.
For the flavor-changing components of the qCMDM, the factor m? in O,,2¢ is replaced by
m? — (m? + m%) /2, with ¢ and f the flavors of initial- and final-state quarks. With this
replacement, ¢,,2g is unchanged.

5 Scale dependence of the matching coefficients

5.1 Scale dependence and perturbative uncertainty

The SFTE connects renormalized operators at positive and vanishing flow time ¢. Operators
at positive flow time defined in terms of the flowed gauge field and the ringed quark fields
are independent of the renormalization scale p, which implies that the scale dependence
of the matching coefficients has to be cancelled by the renormalization-scale dependence
of the renormalized MS operator at vanishing flow time, up to higher-order corrections in
the perturbative expansion.

In section 4, we have defined appropriately renormalized flowed operators and deter-
mined the matching coefficients in the SFTE. The matching coefficients depend on the
matching scale and the flow time in the combination log(87u?t). The additional scale de-
pendence of the coupling a; is beyond the accuracy of the one-loop matching calculation.

For illustration, we numerically evaluate the matching coefficient ccg(t, 1). We take
as input the MS coupling at the weak scale as(M2) = 0.1179 [71] and evolve it down to
an MS scale i = 3 GeV using the one-, two-, or three-loop QCD pB-function [72, 73]. This
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Figure 4. Scale dependence of the matching coefficient ccg. The left (right) plot shows the result
in the HV (NDR) scheme. Detailed explanations are given in the main text.

corresponds to an MS scale of

1E/2
fo =3GeV x ———— ~ 1.13GeV.. (5.1)

( 47r)1 /2
In figure 4, we plot the results for the matching coefficient ccg(t, po), evaluated for different
values of the flow-time ¢ around

1

to= ——.
T Smud

(5.2)
The deviation from the tree-level result ccg = 1 illustrates the impact of the one-loop
corrections, which are larger in the HV scheme than in NDR. The blue curves show the
results for oy evaluated at the fixed scale pg, while the red curves show the result for o
evaluated at a MS scale u = (87t)~'/2. In principle, we could resum the leading logarithms
(as log(8mu?t))™ in the matching coefficient by solving the renormalization-group equations.
However, the logarithms in the matching are small — for a matching performed at the flow
time tg, they vanish. We checked that the resummation has a small impact in the range of
t shown in figure 4.

The mild logarithmic ¢-dependence of the blue curves simply reflects the scale depen-
dence of the MS operators as dictated by the one-loop anomalous dimensions. The red
curves lead to a result that differs from the blue curves by

A = Ara (ug) log® (8mpgt) + Azal (ug) log(87pugt) + O(a3) (5.3)

with constant coefficients A; and where the subleading logarithm dominates numerically
and is beyond the accuracy of our calculation. We take the maximal difference between the
blue and red curves in the range t € [ty/4,4ty] as an estimate of genuine O(a?) corrections,
which require a two-loop matching calculation: this points to a relative uncertainty at these
scales of about ~ 10%-20%.
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5.2 Non-perturbative effects and scheme dependence

A comment is in order about perturbative estimates of power divergences in the flow time.
We have calculated the matching coefficients including the ones involving lower-dimensional
operators: the coefficients cp(t, p), ¢m(t, 1), ¢3(t, 1), and cg(t, u) are power divergent for
vanishing flow time. Similarly to what happens with power divergences with the lattice
spacing [33], perturbative estimates of these matching coefficients are not sufficient to
enable a reliable extraction of the matrix elements of the MS dipole operators. Non-
perturbative effects leave unsubtracted divergent or finite terms. In ref. [42], a first non-
perturbative estimate of the power divergent mixing of the qCEDM operator with the
pseudoscalar density has been provided, and a smooth transition, toward small coupling,
to the perturbative result for cp(t,u) ~ ¢! obtained in ref. [41] has been observed. The
perturbative estimates of cp(t, 1), cm(t, 1), ¢m3(t, 1), and cg(t, u) obtained in this work
thus provide a useful guide, at small coupling, for a non-perturbative determination of the
same coefficients.

A possible strategy to determine the renormalized MS dipole operators at vanish-
ing flow time is to define the flowed dipole operators in terms of the ringed fields as in
eq. (4.19) and then to provide a non-perturbative lattice definition of the matching coef-
ficient of the power-divergent term. In this way the matching coefficient will depend on
the scheme defined by the ringed fields, as well as on the renormalization scheme used to
renormalize the lower-dimensional operator at vanishing flow time. However, since this op-
erator renormalizes multiplicatively, the dependence on the scheme at vanishing flow time
cancels in the product of the matching coefficient and operator matrix element. There-
fore, the scheme dependence of the power divergence is only through the renormalization
scheme at finite flow time (e.g., the definition of the ringed fields), which can be chosen
in a regularization-independent way and subtracted non-perturbatively. Once the non-
perturbative subtraction of the power divergence is performed, in the continuum limit, the
subtracted operator

Osub(x; t) = OgE(xa t) - C%(L N)OI§<$7 M) ’ (54)

where the superscript S denotes the non-perturbative scheme at zero flow time (which can
be defined even in a renormalization-group invariant way), will now have a SFTE with
contributions only from operators of the same or higher dimensions. The expansion can
then be studied using standard techniques. In particular the target qCEDM operator at
vanishing flow time needs to be renormalized in the scheme used to determine the matching
coefficients. Similar subtractions can be applied to the CP-even operators.

6 Summary and outlook

The next generation of experimental searches for a permanent nucleon electric dipole mo-
ment (EDM) are expected to improve the precision of current constraints by an order of
magnitude or more. The neutron EDM offers a unique window into new sources of charge
and parity (CP) violation generated by phenomena beyond the standard model of particle
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physics. The effects of heavy BSM particles on measurements at hadronic scales can be
parametrized by effective, higher-dimensional CP-violating operators. In order to constrain
the coefficients of these effective operators from data and ultimately obtain constraints on
BSM theories, one needs to know the nonperturbative hadronic matrix elements of the
effective operators.

We have calculated the short flow-time expansion coefficients for the quark chromo-
EDM and the quark chromo-MDM operators. We have determined the complete set of
one-loop matching coefficients up to dimension five, extending the work on the leading
coefficients in ref. [41]. These finite one-loop matching corrections enter at next-to-leading-
log accuracy. For the qCMDM operator, we also included the two-loop matching to the
identity operator.

This work is part of ongoing efforts to calculate the hadronic matrix elements of CP-
violating operators with lattice QCD by the SymLat collaboration [32, 37, 43, 45] and
others [74-80]. Our calculation provides the matching relations necessary to relate results
extracted from lattice QCD to the MS (or MS) scheme, which is the one used in perturbative
effective-field theory calculations. They are important to obtain robust constraints on BSM
operator coefficients from the phenomenological analysis of experimental data. In addition,
the perturbative calculation of the short flow-time coefficients will help to constrain the
nonperturbative determination of the matching coefficient, first carried out in [42], by
constraining it in the weak-coupling regime.
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A Conventions

A1l SU(3)

We use traceless and anti-Hermitian SU(3) generators t¢,

0= i (A.1)
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where \* are the Gell-Mann matrices. The generators fulfill

1

1
[t2,4°] = fabere, {1 1) = —55“" —id®ete,  tr[ti’] = —56‘“’, t = —Cp. (A.2)

A.2 Dirac algebra and dimensional regularization
We use the Dirac algebra in D = 4 — 2¢ Euclidean dimensions either in the HV or NDR

scheme:

{’Y}n ’YV} = 25uu . (Ag)

The Dirac matrices are Hermitian, 7L = v, and fulfill

YV = Opp =D (A.4)

In the HV scheme, we decompose the metric tensor into a part projecting onto 4 and
—2¢ dimensions, respectively,

= O + guu , (A5)

satisfying

Suvdup = Oup s Ouwdup = Oup,  Ouwdup =0, Oubyy =4, Oudyu=—-2¢.  (A.6)
The projections of gamma matrices (or four-vectors in general) are defined as

Vo = &LV’YV s Y= S/W’VV . (A7)

The fifth gamma matrix is defined as

1
Cpvpo Vp VT Yp Yo = V17277374 » (A.8)

7521

with the purely four-dimensional antisymmetric Levi-Civita tensor, €1034 = +1. The fifth
gamma matrix is Hermitian, fyg = 5, it anticommutes with the four-dimensional gamma

matrices, and it commutes with the gamma matrices in the D — 4-dimensional subspace:

{75} =[5, 9u] = 0. (A.9)

The HV scheme is algebraically consistent, and since QCD is a vector theory, spurious
anomalies that arise in chiral gauge theories are absent in the present context (as long as
we only consider single-operator insertions).

In the NDR scheme, 5 is assumed to anticommute with all Dirac matrices in D
dimensions.

In four dimensions, the Dirac matrices fulfill the Chisholm identity

’_Ya’_yﬂ'_y'y = '_Yagﬁw + '_Y'ygaﬁ - '_Y,Bgory - ’_YM’YSGQBWL . (AlO)
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B Feynman rules

We start from QCD in Euclidean space in D = 4 — 2¢ dimensions. We absorb the gauge
couplings into the gauge fields and treat the electromagnetic field as an external static field.
The Euclidean QCD Lagrangian is given by
1 _
LQCD+GF+gh = TQQGZVGZV + (D +m)Y + Lar + Lgn
0

1

Lap = ——(0,G%)?
Lo = (GMEG)DZCCC, (B.1)
where the covariant derivative is
D,=0,+G,+A,, G, :taGZ, (B.2)

when acting on fields which take values in the fundamental representation of SU(N), or
‘DM() = 8#() + [Gl“ ] , DZC — au(sllc + fa,chrz7 (B3)

when acting on objects in the adjoint representation. The field-strength tensors are related
to the commutator of the covariant derivative by

[D,ule/] = Guu + F,uu )
G = 0,Gy — 0,G, + |G, G,
Fly = 0,4, — 0,A,. (B.4)

The Feynman rules are obtained from the generating functional
ZglJ] = / DG Dy Dip De Dee el (B.5)
where the Euclidean action including sources J = {J, , ¢,N® N%} is defined as
Sg[J] = /dDLU (Lqcptarigh — JiGh — ¢ — (i — &N — N%*). (B.6)

The standard QCD interaction vertices are

f1,a
= _f)/,Uta )

p, b
C
v

g. .\p, a = ipuf“bc, (for p outgoing),
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p1, 1, a . prabe
if
= —?(5#1,(171 - p2)p + 5up(p2 - ps)# =+ 5up(p3 _Pl)u) )
0
p2, v, b D3, P, C

, (all momenta outgoing),
p1, s G b2, v,

1
— _;8 (fadefbce (6;“/6/)0' . 5upéua)
p3,p, € P4, 0, d =+ facefbde (dul/doa - 6ua(sup)

+ fobe pede (OupOua — Opadup) ) : (B.7)
The leading-order flowed propagators are given by:

p
5.1.5\Q000000 . 1.0 = Db (p.s-+1) = [ dPne™ By t) BL(0:5)

1 v | Z—
- 5@9 [(5W _ Pup ) ~(s+? gp;p a0 (s+0)p?

p2
(B.8)
p ~ . 1
5.8 ta =5 (ps ) = [ d%e I (@i )n (05)
— 5aﬁﬂ€*(8+t)p2 ) (B.9)

P2 + m2

At second and third order, instead of contracting the fundamental fields, one can reinsert
the leading-order solution of the flow equation into the flow equation itself and replace
the gauge field by second- and third-order expressions in the fields. The kernels of the
flow equations then act as another type of “propagator”, and the interaction terms in (2.6)
generate interaction vertices with three and four fields. The same results are obtained
by considering the D + 1-dimensional field theory and calculating contractions with the
Lagrange-multiplier fields [81]. We regard the flow-time integrals as part of the vertices
and keep Heaviside step functions in the flow lines:

b
5,0, 0\QQQQQQO/ 1, 1,0 = 66t /d CTPTR  (2t — )

1 —(t—s —ag(t—s
=00 = 5) 5 [(Gp? = pup)e ™= 4 ppyeolt=o]

(B.10)

where the adjacent arrow points into the direction of increasing flow time.® For the quarks,

Different diagrammatic notations can be found in the literature: in [41, 65], flow lines are denoted by
double lines. Here, we largely follow the convention of [81].
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one obtains

p
ﬂ_’_t a =50t /d T Tzt —s) = 6P0(t — S)e*(tfs)p2 ,
p
5,8 ——=*——t,a =3t /d 0w J(3;t — 5) = 59t — 5)e (=W

(B.11)

The gauge flow-vertices are easily obtained by considering Green’s functions of three and
four fields and replacing one field by the leading-order solution of the flow equation. The
contractions of the fields then lead to one flow line and two or three flowed propagators,
times the interaction vertex. The vertex rules are given by

p2,V, b
< t p17 ,ua a b [0.9]
= —if¢ C/O dt <5Vp(p2 - p3)u + 25,upp3u - 25,uup2p
< b
/ + (@0 = 1) (ups, — Supp2,))
p3,p,C
(all momenta outgoing) , (B.12)
p2,V, b

p3, p,C t pi,p,a o0 be red
== [t (5 Gy = Duti)

+ facefbde (5NV590' o 6ua5yp)
+ fadefbce((sul/(spff — (Supdya')) s (B13)

where the dashed adjacent arrows indicate that the line either is a propagator or a flow

pa,0,d

line, since in more complicated diagrams the leading-order solution of the flow equation

can be reinserted iteratively. The fermionic interaction vertices are
p17 ILI’7 a

—_ __s4Q > —
= —it A dt (1 ao)plu+2p2# )

(p1, p2 outgoing), (B.14)

= it Oodt((l—a) +2
- 0 Oplu p2;4 )

(p1, p2 outgoing) (B.15)
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:auy{t“,tb}/ dt, (B.16)
0

:5W{t“,tb}/ dt . (B.17)
0

The conventions for the vertex rules are chosen so that symmetry factors of loop diagrams
match the ones of standard perturbation theory. Flow lines and propagators need to be
distinguished when determining the symmetry factor of a given topology. E.g., comparing
the two diagrams

| , (B.18)

the first one, as a usual QCD diagram, comes with a symmetry factor 1/5 = 1/2, while
the second diagram involving one flow line and one propagator has a symmetry factor 1.

Finally, we give the vertex rules for insertions of the effective operators. (Including
an operator in the Euclidean Lagrangian Leg = £ + coO would result in —co times our
vertex rules.) For the qCEDM, we obtain:

p?l’L?a

= 2it*G,p,, (for p outgoing), (B.19)

= 25, f1° (B.20)

while the vertex rules for the qCMDM are obtained by replacing &,, + o0.,. In the
matching equation, we also require the tree-level matrix elements of the MS operators.
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The vertex rule for the gEDM operator reads:

b,

= 2i6,,py, (for p outgoing), (B.21)

while the qMDM vertex rules is obtained by replacing 6., + 0,,. The two-gluon vertex
rule for the QCD 6 term O, reads

DL a o pavb —2m6®e,xoP12P25, (OUtgoing momenta) (B.22)

while for the gluon kinetic operator O,,¢ we obtain

oo pib = 2md? (6,“,1)1 o —pQMPh/) , (outgoing momenta) . (B.23)

The rule for quark bilinear operators t(x)I'(z) (scalar or pseudoscalar density) simply
reads

———>— =T. (B.24)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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