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Interactive Reinforcement Learning for Feature
Selection with Decision Tree in the Loop
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Abstract—We study the problem of balancing effectiveness and efficiency in automated feature selection. Feature selection is to find
an optimal feature subset from large feature space. After exploring many feature selection methods, we observe a computational
dilemma: 1) traditional feature selection (e.g., mRMR) is mostly efficient, but difficult to identify the best subset; 2) the emerging
reinforced feature selection automatically navigates feature space to search the best subset, but is usually inefficient. Are automation
and efficiency always apart from each other? Can we bridge the gap between effectiveness and efficiency under automation?
Motivated by this dilemma, we aim to develop a novel feature space navigation method. In our preliminary work, we leveraged
interactive reinforcement learning to accelerate feature selection by external trainer-agent interaction. Our preliminary work can be
significantly improved by modeling the structured knowledge of its downstream task (e.g., decision tree) as learning feedback. In this
journal version, we propose a novel interactive and closed-loop architecture to simultaneously model interactive reinforcement learning
(IRL) and decision tree feedback (DTF). Specifically, IRL is to create an interactive feature selection loop and DTF is to feed structured
feature knowledge back to the loop. The DTF improves IRL from two aspects. First, the tree-structured feature hierarchy generated by
decision tree is leveraged to improve state representation. In particular, we represent the selected feature subset as an undirected
graph of feature-feature correlations and a directed tree of decision features. We propose a new embedding method capable of
empowering Graph Convolutional Network (GCN) to jointly learn state representation from both the graph and the tree. Second, the
tree-structured feature hierarchy is exploited to develop a new reward scheme. In particular, we personalize reward assignment of
agents based on decision tree feature importance. In addition, observing agents’ actions can also be a feedback, we devise another
new reward scheme, to weigh and assign reward based on the selected frequency ratio of each agent in historical action records.
Finally, we present extensive experiments with real-world datasets to demonstrate the improved performances of our method.

Index Terms—Reinforcement Learning, Interaction Mechanism, Decision Tree in the Loop, Feature Selection

F

1 INTRODUCTION

We aim to study the problem of balancing effectiveness
and efficiency in automated feature selection. Feature selec-
tion is to find the optimal feature subset from large feature
space, which is essential for lots of machine learning tasks.

Classic feature selection methods include: filter methods
(e.g., univariate selection [1], correlation based selection
[2]), wrapper methods (e.g., branch and bound algorithms
[3]), and embedded methods (e.g., LASSO [4]). Recently,
the emerging reinforced feature selection methods [5]–[7]
formulate feature selection into a Reinforcement Learn-
ing (RL) task, in order to automate the selection process.
Our preliminary study [8] has observed a computational
dilemma in feature selection: (1) classic selection methods
are mostly efficient, but difficult to identify the best subset;
2) the emerging reinforced selection methods automatically
navigate feature space to explore the best subset, but are
usually inefficient. Are automation and efficiency always
apart from each other? Can we strive for a balance between
effectiveness and efficiency under automation?
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Fig. 1: Interactive reinforced feature selection via interaction
with external trainers and downstream tasks (decision tree).

Motivated by the above dilemma, our preliminary
work [8] integrates self-exploration experience of regular
RL and external skilled trainers via interaction to address
the problem. We developed a diversity-aware interactive
reinforcement learning (IRL) approach. In this approach, we
formulated feature selection as a multi-agent reinforcement
learning task, where an agent is a feature selector that selects
or deselects its corresponding feature. We integrated the in-
teractive learning into multi-agent RL, in order to introduce
prior knowledge of external trainers. Note that the interac-
tive mechanism here is interaction between reinforcement
learning and external algorithms, different from human-
computer-interaction. In this interaction we identified an
interesting property of interaction: diversity matters.

As a result, we diversified the set of external trainers by
adopting two traditional feature selection methods: KBest
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and Decision Tree as external trainers. We diversified advice
for agents by dynamically selecting a group of agents to
participate in feature selection, which we call participated
agents. We ensured different participated agents to receive
personalized and tailored advice. In particular, we catego-
rized the participated agents into: assertive and hesitant
agents (features). The assertive agents are more confident
about their selection decisions, and thus don’t need advice
from trainers. The hesitant agents are less confident about
their decisions, and thus need advice from trainers. Also,
to diversify the teaching process, we propose a Hybrid
Teaching strategy, to iteratively let various trainers take the
teacher role at different stages (e.g., early, middle, late). Such
strategy can fuse the experience of the trainers and thus
provide better advice.

The preliminary study [8] addressed the interaction be-
tween external trainers and agents. This paper will address
another important research question: Can the interaction
between downstream predictive tasks and RL, further im-
prove feature selection? How does a downstream predictive
task, for example, a decision tree, provide feature structured
knowledge to create a feedback-improvement loop?

To fill the gap, we develop a framework (Figure 1)
that unifies both interactions between external trainers and
agents, and interaction between downstream tasks and
RL into a joint and interactive architecture. Indeed, many
downstream predictive tasks, such as decision tree, random
forest, LASSO, not just output predictive targets, but also
produce structured knowledge of features. We propose to
feed such structured feature knowledge back to reinforced
feature selection. Taking decision tree as an example down-
stream task. The feedback-improvement loop of decision
tree will improve the effectiveness of reinforced feature
selection from three perspectives. First, in our preliminary
study, we analogize a feature as a node to create a feature-
feature similarity graph, and then exploit the Graph Con-
volutional Network (GCN) model to learn the graph em-
bedding as the state representation of environment. While
the GCN over feature-feature graph has achieved relatively
good performances, we are particularly interested in: when
we use the decision tree as the downstream task, what role
does the tree-structured feedback play in the feature-feature
graph based GCN? The tree-structured feature importance
hierarchy of the decision tree reflects the latent feature
correlations in the selected feature subspace. Based on this
insight, we propose to jointly learn the state representa-
tion of the feature subset (environment) from not just an
undirected graph of feature-feature correlations, but also a
directed tree graph of decision features. Second, we observe
that a decision feature importance tree is a subgraph of the
feature-feature graph. We develop an improved version of
graph convolutional network (GCN) to empower GCN to
pay specific attention to the tree when preserving the struc-
ture information of the graph. Third, unlike equally sharing
of reward, we devise a new personalized reward scheme
to better measure agent reward assignment, based on the
feature importance from the decision tree. In particular, the
feature importance feedback from decision tree describes
how good the action is for an agent to select a specific
feature. Thus, an action that selects a more important feature
should receive higher reward. In addition, we propose an-

TABLE 1: Notations.
Notations Definition
| · | The cardinality of a set
dxe The greatest integer less than or equal to x
x The complement of set x
N The number of features
fi The i-th feature
agti The i-th agent
πi The policy network of the i-th agent
ai The action performed by the i-th agent
ri The reward assigned to the i-th agent

other reward scheme based on the historical action records.
In particular, this scheme weighs and assigns reward based
on the selected frequency ratio of each feature. Generally,
agents are more likely to choose advantageous actions for
long-term reward maximization; as a result, features’ se-
lected frequency ratio is another feedback to reflect feature
importance and thus can be used to assign reward.

In summary, in this paper, we develop a joint and inter-
active architecture for reinforced feature selection. Specifi-
cally, our contributions are as follows: 1) We formulate the
feature selection problem into an interactive reinforcement
learning framework. 2) We develop a joint and interactive
architecture to unify both interaction between feature agents
and external trainers, and the interaction between down-
stream task and reinforcement learning 3) To model the in-
teraction between agents and external trainers, we devise a
new diversity-aware mechanism that let agents interact with
external trainers (a) diversifying the external trainers; (b)
diversifying the advice that agents will receive; (c) diversify-
ing the set of agents that will receive advice; (d) diversifying
the teaching process. 4) To model the interaction between
downstream task and reinforcement learning, we develop
an improved GCN to jointly learn precise state representa-
tion from both feature-feature similarity graph and feature
importance tree, and design two new reward schemes that
personalize assigned rewards to multiple agents. 5) We
conduct extensive experiments on real-world datasets, and
the results demonstrate the advantage of our methods.

2 PRELIMINARY

We introduce definitions and the problem statement of
reinforced feature selection when Interactive Reinforcement
Learning (IRL) is applied. Then, we show the overview of
our framework with decision tree in the loop. Table 1 shows
some commonly used notations.

2.1 Definitions and Problem Statement
Definition 2.1. Agents. Each feature fi is associated with
an agent agti. After observing a state of the environment,
agents use their policy networks to make decisions on the
selection of their corresponding features.
Definition 2.2. Actions. Multiple agents corporately make
decisions to select a feature subset. For a single agent, its
action space ai contains two actions, i.e., select and deselect.
Definition 2.3. State. The state s is defined as the representa-
tion of the environment, which is the selected feature subset.
More details of state representation are in Section 3.2.
Definition 2.4. Reward. The reward is to inspire the feature
subspace exploration process. We firstly derive the overall
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Fig. 2: Framework Overview. Agents select/deselect their corresponding features based on their policy networks and
trainers’ advice. Action, reward and state are stored in memory unit to train policy networks. The structure feedback of
decision tree feeds to improve state representation. Decision tree hierarchy and action records help reward measurement.

reward from the selective feature subset. Then we assign the
overall reward to multiple agents using different strategies.
More details of reward scheme are in Section 3.3.
Definition 2.5. Trainer. In the apprenticeship of reinforcement
learning, the actions of agents are immature, and thus it is
important to give some advice to the agents. We define the
source of the advice as trainers.
Definition 2.6. Advice. Trainers give multiple agents advice
on their actions; agents follow the advice to take actions.
Definition 2.7. Problem Statement. In this paper, we study
the feature selection problem with interactive reinforce-
ment learning. Formally, given a set of features F =
{f1, f2, ..., fN} where N is the number of features, our aim
is to find an optimal feature subset F ′ ⊆ F which is most
appropriate for the downstream task.

In this paper, considering the existence of N features,
we create N agents {agt1, agt2, ..., agtN} correspondingly
for feature {f1, f2, ..., fN}. Each agent uses its own policy
network {π1, π2, ..., πN} to make decisions to select or dese-
lect its corresponding feature, where the actions are denoted
by {a1, a2, ..., aN}. For i ∈ [1, N ], ai = 1 means agent agti
decides to select feature fi; ai = 0 means agent agti decides
to deselect feature fi. Whenever actions are issued in a step,
the selected feature subset changes, and then we can derive
the changed state s. Finally, the reward {r1, r2, ..., rN} is
assigned to the agents based on their actions.

2.2 Framework Overview
Before the framework illustration, we first introduce some
basic components of our framework.
1) Participated/Non-participated Features (Agents). We
propose to use classical feature selection methods as train-
ers. However, the trainers only provide similar or the same
advice to agents every time. To solve the problem and
diversify the advice, we dynamically change the input to
the trainer by selecting a set of features, which we call
participated features. We define the participated features
as those features that were selected by agents in last step,
e.g., if at step t − 1 agents select f2, f3, f5, the participated

features at step t are f2, f3, f5. The corresponding agents of
participated features are participated agents; other agents
are non-participated agents which select/deselect their cor-
responding non-participated features.
2) Assertive/Hesitant Features (Agents). We dynamically
divide the participated features into assertive features and
hesitant features, whose corresponding agents are accord-
ingly called assertive agents and hesitant agents. Specif-
ically, at step t, the participated features are divided into:
assertive features, defined as the features decided to be
selected by the policies, and hesitant features, defined as the
features decided to be deselected by the policies. For exam-
ple, at step t participated features are f2, f3, f5, and policy
networks π2, π3, π5 decide to select f2 and deselect f3, f5.
Then, assertive features are f2; assertive agents are agt2;
hesitant features are f3, f5; hesitant agents are agt3, agt5.
3) Initial/Advised Actions. In each step, agents use their
policy networks to firstly make action decisions, which we
call initial actions. Then, agents take advice from external
trainers and update their actions; the actions advised by
trainers are called advised actions. In this framework, only
hesitant agents need to follow the advice to take actions.
4) Decision Tree. In the automated feature selection, the
downstream task is to evaluate whether the selected fea-
tures are good or not. When we use decision tree as the
downstream task, the rich structure information of the tree
can provide much feedback to the upstream feature selec-
tion process. Thus, we make full use of the tree structure
feedback to improve the reinforced feature selection.

Figure 2 shows an overview of our framework. There
are multiple agents, each of which has its own Deep Q-
Network (DQN) [9], [10] as policy. At the beginning of each
step, each agent makes an initial action decision, from which
we can divide all the agents into assertive agents, hesitant
agents and non-participated agents. Then, the trainers come
to provide action advice, and the hesitant agents change
their initial actions to take advised actions. After agents
take actions, we derive a selected feature subset, whose
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Fig. 3: General process of trainer guiding agents. Our frame-
work firstly identifies assertive agents (labeled by ‘A’) and
hesitant agents (labeled by ‘H’). Then, the trainer offers
advice to hesitant agents.

representation is the state. We can train a decision tree on the
selected features and use its structure feedback to improve
the state representation. Then, a tuple of four components
is stored into the memory unit, including last state, current
state, actions and the reward. In the training process, for
agent agti at step t, we select mini-batches from memory
unit to train the policy networks, in order to maximize the
long-term reward based on Bellman Equation [11].

Q(sti, a
t
i|θt) = rti + γ max Q(st+1

i , at+1
i |θt+1) (1)

where s is the state, a is the action, r is the reward, θ is the
parameter set of Q network and γ is the discount.

3 METHOD

We first present details of the design of our interactive
reinforced feature selection (IRFS) framework. Then, we
introduce our proposed state representation methods based
on the decision tree structure feedback. Finally, we present
the detailed design of two personalized reward schemes.

3.1 Interactive Reinforced Feature Selection
Our design of our interactive reinforced feature selection
(IRFS) includes three parts: (1) IRFS with KBest based
trainer; (2) IRFS with Decision Tree based Trainer; (3) IRFS
with Hybrid Teaching strategy. We illustrate the details of
such design along this line.

3.1.1 Interactive Reinforced Feature Selection with KBest
Based Trainer
We propose to formulate the feature selection problem into
an interactive reinforcement learning framework called in-
teractive reinforced feature selection (IRFS). Figure 3 illus-
trates the general process of how agents are advised by

Algorithm 1: IRFS with KBest based trainer
Input: number of features: N , set of features:
{f1, f2, ..., fN}, agent actions taken at step (t-1):
{at−1

1 , at−1
2 , ..., at−1

N }, policy networks at step t:
{πt

1, π
t
2, ..., π

t
N}, state at step t: s, K-Best Algorithm:

SelectK(input features, input k)
Output: advised actions at step t: {at1, at2, ..., atN}
initialize participated feature set Fp, assertive feature set
Fa, hesitant feature set Fh

1: for i = 1 to N do
2: ati

′ ← the highest-valued action in πi
t(s)

3: if at−1
i = 1 do

4: add fi into Fp

5: if ati
′
= 1 & at−1

i = 1 do
6: add fi into Fa

7: elseif ati
′
= 0 & at−1

i = 1 do
8: add fi into Fh

9: integer m← |Fa|, integer n← |Fh|
10: integer k = dm/2 + ne
11: FKBest ← SelectK(Fp, k)
12: for i = 1 to N do
13: if fi ∈ Fh & fi ∈ FKBest do
14: ati ← ati

′

13: else do
14: ati ← ati

′

15: return {at1, at2, ..., atN}

the trainer. In this formulation, we propose an advanced
trainer based on a filter feature selection method, namely
KBest based trainer. In our framework, KBest based trainer
advises hesitant agents by comparing hesitant features with
assertive features. We show how the trainer gives advice
step by step as follows:
1) Identifying Assertive/Hesitant Agents. Given the policy
networks {π1t, π2t, ..., πNt} of multiple agents at step t,
each agent makes an initial decision to select or deselect
its corresponding feature; thus, we get an initial action
list at step t, denoted by {a1t

′
, a2

t′, ..., aN
t′}. We record

actions that agents have already taken at step t− 1, denoted
by {at−11 , at−12 , ..., at−1N }. Then, we can find participated
features at step t by Fp = { fi | i ∈ [1, N ], at−1i = 1}.
Also, we can identify assertive features as well as assertive
agents. Assertive features are Fa = { fi | i ∈ [1, N ], fi ∈
Fp & ati

′
= 1}; assertive agents are Ha = { agti | i ∈

[1, N ], fi ∈ Fp & ati
′
= 1}. Similarly, we can identify hesi-

tant features and hesitant agents. i.e., hesitant features are
Fh = { fi | i ∈ [1, N ], fi ∈ Fp & ati

′
= 0}; hesitant agents are

Hh = { agti | i ∈ [1, N ], fi ∈ Fp & ati
′
= 0}.

2) Acquiring Advice from KBest Based Trainer. After iden-
tifying assertive/hesitant agents, we propose a KBest based
trainer, which can advise hesitant agents to update their
initial actions. Our perspective is: if the trainer thinks a
hesitant feature is even better than half of the assertive
features, its corresponding agent should change the action
from deselection to selection.

Step1: (Warm-up) We obtain the number of assertive
features by m = |Fa|, and the number of hesitant features
by n = |Fh|. We set the integer k = dm/2+ne. Then, we use
K-Best algorithm to select top k features in Fp. We denote
these k features by FKBest.

Step2: (Advise) The indices of agents which need to
change actions are selected by Iadvised = { i | i ∈ [1, N ], fi ∈
Fh and fi ∈ FKBest}. Finally, we can get the advised action
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Algorithm 2: IRFS with Decision Tree based trainer
Input: number of features: N , set of features:
{f1, f2, ..., fN}, agent actions taken at step (t − 1):
{at−1

1 , at−1
2 , ..., at−1

N }, policy networks at step t:
{πt

1, π
t
2, ..., π

t
N}, state at step t: s, Decision Tree Classifier:

DecisionTree(input features)
Output: advised actions at step t: {at1, at2, ..., atN}
initialize hesitant feature set Fh, assertive feature set Fa

1: for i = 1 to N do
2: ati

′ ← the highest-valued action in πt
i(s)

3: if at−1
i = 1 do

4: add fi into Fp

5: if ati
′
= 1 & at−1

i = 1 do
6: add fi into Fa

7: elseif ati
′
= 0 & at−1

i = 1 do
8: add fi into Fh

9: T ← DecisionTree(Fp)
10: {impfp1 , ..., impfpt } ← T.feature importances
11: IMPa ← { impfpj | fpj ∈ Fa}, g ←Median(IMPa)

12: IMPh ← { impfpj | fpj ∈ Fh}
13: for i = 1 to N do
14: if fi ∈ Fh & impfi > g do
15: ati ← ati

′

16: else do
17: ati ← ati

′

18: return {at1, at2, ..., atN}

that agti will finally take at step t, denoted by

ati =

{
ati
′
, i ∈ Iadvised

ati
′
, i /∈ Iadvised

(2)

3.1.2 Interactive Reinforced Feature Selection with Deci-
sion Tree Based Trainer
In our IRFS framework, we propose another trainer based
on a wrapper feature selection method, namely Decision
Tree based trainer. The Decision Tree based trainer is similar
to the KBest based trainer, both of which use trainer’s eval-
uation on participated features to advise hesitant agents.
However, the evaluation criteria of these two trainers are
different. Decision Tree based trainer utilizes feature impor-
tance of a decision tree to give advice. Specifically, if the
feature importance of any hesitant feature is larger than
half of assertive features, this hesitant feature is considered
comparatively important and thus should be selected.

The pipeline of IRFS with Decision Tree based trainer
guiding agents can also be demonstrated in a two-phase
process: (1) Identifying Assertive/Hesitant Agents; (2) Ac-
quiring Advice from Decision Tree Based Trainer. The first
phase is the same as phase one in Section 3.1.1, and the
second phase is detailed as follows:

Step1: (Warm-up) We denote the participated feature
set as Fp = {fp1

, fp2
, ..., fpt

}. We train a decision tree
on Fp, and then get the feature importance for each fea-
ture, denoted by {impfp1 , impfp2 , ..., impfpt }. For hesitant
features Fh, their importance IMPh = {impfpj | fpj

∈
Fh}; for assertive features Fa, their importance IMPa =
{impfpj | fpj ∈ Fa}. We denote the median of IMPa by g.

Step2: (Advise) The indices of agents which need to
change actions are selected by Iadvised = { pj | fpj

∈
Fh and impfpj > g}. Finally, we can get the advised action
that agti will finally take at step t, denoted by:

Actions

Steps

Actions

Transfer T

Self-study

Agents

Trainer1

ActionsAgents

2T

Actions

Actions

Agents

Trainer2

0

Fig. 4: General process of Hybrid Teaching strategy. One
trainer gives advice firstly; then, another trainer gives ad-
vice. Finally, agents explore and learn by themselves.

Sequa   makes   and   repairs   jet   engines.

makes

Sequa and engines

repairs jet

f2      f1      f8       f4      f6       f3      f7     f5

SBJ COORD CONJ

OBJ

NMOD

An example sentence with syntactic dependencies
Syntactic Dependency Tree

An example: dependencies among features

Decision Tree

I����
WKUHKROG�

I����
WKUHKROG�

I����
WKUHKROG�

I����
WKUHKROG�

I����
WKUHKROG�

I����
WKUHKROG�

I����
WKUHKROG�

I����
WKUHKROG�

I����
WKUHKROG�

I����
WKUHKROG��

7UXH )DOVH

7UXH )DOVH 7UXH )DOVH

7UXH )DOVH 7UXH

Fig. 5: In NLP, syntax dependencies and syntactic depen-
dency tree. In our framework, dependencies among features
and the decision tree.

ati =

{
ati
′
, i ∈ Iadvised

ati
′
, i /∈ Iadvised

(3)

3.1.3 Interactive Reinforced Feature Selection with Hybrid
Teaching Strategy
In the scenario of human being learning, teaching is com-
monly divided into several stages, such as elementary
school, middle school, and university. For human students,
in different stages, they are always taught by different teach-
ers who have different teaching styles and different expert
knowledge. Inspired by the human’s learning process, we
propose a Hybrid Teaching strategy, which makes agents
learn from different trainers in different periods. Figure
4 shows the general process of Hybrid Teaching strategy.
Specifically, from step 0 to step T , agents are guided by one
trainer. From step T to step 2T , agents are offered advice
with the help of another trainer. Finally, after step 2T , agents
explore and learn all by themselves without the trainer.

The Hybrid Teaching strategy diversifies the teaching
process and thus improves the exploration. In the explo-
ration, the randomness could lead to the similar partici-
pated features. Thus, for a single trainer, it gives similar
advice when taking similar participated features as input.
Our strategy encourages more diversified exploration by
introducing different trainers with different advice though
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Fig. 6: General process of state representation with decision tree structure feedback.

the input is similar. The advice given by one trainer is
likely to under-perform, making agents suffer from unwise
guidance. Our strategy can provide a trade-off between
advice from two trainers thus decrease the influence of bad
advice. Also, agents will lose self-study ability if they always
depend on trainers’ advice. Considering this, agents finally
explore and learn without trainers.

3.2 State Representation with Decision Tree Structure
Feedback
We propose a Graph Convolutional Network (GCN) based
state representation method, which integrates structure
feedback from the decision tree into a feature-feature cor-
relation graph, aiming for better state representation.

Inspired by the syntactic GCN [12], [13] in natural lan-
guage processing (NLP), we propose to apply GCN over
the decision tree to represent the state in IRFS, which is
similar to the GCN over the syntactic dependency tree in
semantic role labeling [14]. Figure 5 shows the analogy: In
linguistics, the syntactic dependency tree reflects syntax de-
pendencies in a sentence, which is suited to model semantic-
role structures [15] to produce latent feature representations
of words; similarly, the decision tree reflects the dependency
relationship in a selected feature subset, which is suitable
to model correlations among features. Figure 6 shows the
general process of state representation with tree structure
feedback. We illustrate the process step by step:

Step1: Following previous work [7], we first convert
the selected features’ data matrix S into a fully-connected
graph G(V ), where V is the set of nodes, and every feature
is represented by a node. For any node nu, nv ∈ V , we
quantify the weight of edge nunv with Pearson correlation
coefficient [16], denoted by Wu,v :

Wu,v = ρfu,fv =
cov(fu, fv)

σfuσfv
(4)

where fu, fv are features represented by node nu, nv ; ρ is
Pearson correlation coefficient, σ is standard deviation and
cov is covariance.

Step2: We can get a decision tree T learned on the se-
lected feature subset. We simplify the tree by only extracting
the dependency relationship among features, and then get a
simplified tree T ′.

Step3: For each directed edge in T ′, we identify its corre-
sponding edge in G(V ). Then, we add all the corresponding
edges to G(V ) and get G(V )′. For example, in Figure 6, for
the directed edge f2 → f3 in T ′, its corresponding edge in
G(V ), n2 → n3 is added as a directed edge in G(V )′.

Step4: To update node representation, We apply an en-
hanced convolution operation on G(V )′, which includes
two different parts. One part is based on the indirect edges
from feature-feature fully-connected graph; another part is
based on the added directed edges from the decision tree.
For each node nv ∈ V , we denote its original representation
as hv , which is directly derived from fv . To better represent
the state, for node nv , the updated representation h′v is by:

h′v = λ(
∑

nu∈N(nv)

Wu,vhu) + (1− λ)(
∑

nw∈V
Ww,vhw) (5)

where N(nv) is the set of neighbors of nv , decided by the
directed edges; Wu,v is the weight of edges, in which nu is
the in node and nv is the out node; λ is a tuning parameter.

Step5: We utilize the updated node representation to
generate the representation of the selected feature subset
(state). In this regard, we propose two methods to represent
the state:
Method1. We use the weighted sum of the node represen-
tation based on the feature importance of the decision tree
to represent the state. Formally, the state representation s is
given by:

s =
∑

nv∈V
Ivh
′
v (6)

where Iv is the feature importance of fv in decision tree T ;
V is the set of nodes.
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Method2. We use the average sum of the node representa-
tion to represent the state. Formally, the state representation
s is given by:

s =
∑

nv∈V

1

|V |
h′v (7)

where h′v is the updated representation of nv , and V is the
set of nodes.

3.3 Personalized Reward Schemes

In reinforcement learning, precise reward measurement is
important to exploration and evaluation. To improve the
way to calculate reward, we propose two personalized
reward schemes: (i) to personalize reward based on the
structured feedback from decision tree, and (ii) to person-
alize reward based on the historical action records. These
two schemes consider the predictive accuracy Acc of the
downstream task and the feature correlation R of the se-
lected feature subset for reward measurement.
Predictive Accuracy. We aim to find an optimal feature
subset which gets good performance in the downstream
task. Naturally, we propose to utilize the performance Acc
as part of reward. The higher the performance is, the higher
reward agents should receive.
Feature Correlation. We also propose to use another charac-
teristic of the selected feature subset to measure the reward,
feature correlation. Specifically, a quality feature subset is
usually of low average correlation; high average correlation
of features is unfavorable for an optimal feature subset.

3.3.1 Measuring Reward with Decision Tree Structured
Feedback

In automated feature selection, reinforcement learning
agents select features into the subset in each step. Intuitively,
different features in the selected subset have different im-
portance, and the action to select more important features
should receive higher reward. The structure of a decision
tree could provide a measurement of the importance of
features. Considering this, we propose to personalize the
reward with the feature importance from the decision tree

Selected Feature Subset

Predictive 
Accuracy

Feature
Correlation

Reward

Record1 ✔ ❌✔ …

Record2 ✔✔ …❌

…

Record K ✔❌ ✔…

Action Records

weight

feature1 feature2 feature N

Fig. 8: General process of measuring reward with historical
action records.

learned on the selected feature subset. Figure 7 shows the
general process. We detail the steps as follows:

Step1: Given agent actions {at1, at2, ..., atN} at step t, we
get a selected feature subset Fs = {fi | ati = 1}. Then, we
calculate predictive accuracyAcc of the downstream task on
the selected features.

Step2: We use Pearson correlation coefficient [16] to
quantify the correlation of selected feature subset. The fea-
ture correlation, denoted by R, is computed as the sum of
pairwise Pearson correlation coefficient. Formally:

R =
1

|Fs|2
∑

fu,fv∈Fs

ρfu,fv (8)

Step3: At step t, we train a decision tree T t on the current
selected feature subset. Then, we can get the importance of
each feature from the decision tree. For feature fi at step t,
its feature importance is denoted by Iti .

Step4: We use the feature importance to weight the
reward assigned to agents which are responsible for the
selection of different features. Formally, for agent agti at
step t, its reward is computed by:

rti =

{
Iti (Acc− β R), ati = 1

0, ati = 0
(9)

where β is a tuning parameter, Acc is predictive accuracy,
and R is feature correlation.

3.3.2 Measuring Reward with Historical Action Records

In reinforcement learning, agents are more likely to choose
advantageous actions for the purpose of maximizing the
long-term reward. Intuitively, if a feature is always selected
by the agent, this feature could be considered important to
the optimal feature subset. Thus, the selection of important
features should receive higher reward. In this regard, we
propose to personalize the reward towards agents based
on the importance of their corresponding features, which
can be quantified by their selected frequency ratio. Figure 8
shows the general process of measuring reward. We intro-
duce the steps of this reward scheme as follows:

Step1: Similar to Section 3.3.1, we firstly calculate predic-
tive accuracy Acc of the downstream task, and quantify the
feature correlation R of the selected feature subset.

Step2: We record actions and denote historical action
records by {mt

1,m
t
2, ...,m

t
N}, where mt

i = (a0i , a
1
i , ..., a

t
i) is

for agti at step t. Next, we use action record to calculate the
importance of every feature, which is used to weight reward
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towards agents. For agent agti at step t, its reward weight
is denoted by W t

i :

W t
i =

∑
mt

i∑N
i=1

∑
mt

i

(10)

Step3:, we measure the reward by combining the predic-
tive accuracy, the feature correlation and the action records.
Formally, for agent agti at step t, its reward is measured by:

rti =

{
W t

i (Acc− β R), ati = 1

0, ati = 0
(11)

where β is a tuning parameter, Acc is predictive accuracy,
and R is feature correlation.

4 EXPERIMENT

We evaluate the proposed methods in feature selection with
different real-world datasets. Table 2 shows the description
of the datasets.

4.1 Data Description
Pen-based Recognition of Digits (PRD) Dataset. This
dataset creates a digit database by collecting samples from
different writers. In the experiments, 10992 samples written
by 30 writers are split for training and cross-validation. All
input attributes are integers in the range from 0 to 100. The
label is from 0 to 9. [17].
Forest Cover (FC) Dataset. We select a publicly available
dataset from Kaggle 1. This dataset includes 15120 samples
and 54 different characteristics of wilderness areas, which
are used to predict forest cover type. The class labels (forest
cover type values) are from 1 to 7.
Spam Dataset. This dataset is a collection of spam emails
that came from the postmaster and individuals who had
filed spam. This dataset includes 4601 samples and 57 dif-
ferent features, most of which indicate whether a particular
word or character was frequently occurring in the email.
The class label is 1 (spam) or 0 (not spam). [17].
Insurance Company Benchmark (ICB) Dataset. This
dataset contains information about customers, which con-
sists of 86 variables and includes product usage data and
socio-demographic data derived from zip area codes [18].
Nomao Dataset. This dataset has 34465 instances and 120
attributes, which consists of 89 continuous attributes and 31
nominal ones (including the attributes ‘label’ and ‘id’) [19].
Musk Dataset. This dataset describes a set of 102 molecules
of which 39 are judged by human experts to be musks and
the remaining 63 are judged to be non-musks. It includes
6598 samples and the aim is to classify the label ‘musk’ and
‘non-musk’ [17].
Epileptic Seizure Recognition (ESR) Dataset. This dataset
contains 178 attributes and 11500 samples, with the class
label ranging from 1 to 5. All subjects falling in classes 2,
3, 4, and 5 are subjects who did not have epileptic seizure.
Only subjects in class 1 have epileptic seizure. [20]
QSAR oral toxicity Dataset . This dataset includes 8992
instances and 1024 attributes, which is used to develop
classification QSAR models for the discrimination of very
toxic/positive (741) and not very toxic/negative (8251)
molecules [21].

1. https://www.kaggle.com/c/forest-cover-type-prediction/data

TABLE 2: Description of the dataset.
Dataset PRD FC Spam ICB
Features 16 54 57 86
Samples 10992 15120 4601 5000
Dataset Nomao Musk ESR QSAR
Features 120 168 178 1024
Samples 34465 6598 11500 8992

4.2 Evaluation Metrics
We use the following metrics for evaluation, in order to
show the performance of our proposed methods.

Best Acc. Accuracy is the ratio of the number of cor-
rect predictions to the number of all predictions. For-
mally, the accuracy is given by Acc = TP+TN

TP+TN+FP+FN ,
where TP, TN,FP, FN are true positive, true negative,
false positive and false negative for all classes. In feature
selection, an important task is to find the optimal feature
subset, which has good performance in the downstream
task. Considering this, we use Best Acc (BA) to stand for
the performance of feature selection, which is given by
BAl = max(Acci, Acci+1, ..., Acci+l), where i is the begin-
ning step and l is the number of exploration steps.

Ave Acc. Due to the randomness of the exploration, the
performance of the selected feature subset in downstream
task may vary significantly from step to step, which makes
it difficult to measure the performance of a certain period of
time. As a result, we calculate the Average Accuracy (Ave
Acc) to show the average performance of the reinforced
feature selection. Formally, the Ave Acc (AA) is given by:
AAl =

Acci+Acci+1+...+Acci+l

l , where i is the beginning step
and l is the number of exploration steps.

4.3 Baseline Algorithm
We compare the feature selection performance of our pro-
posed method with the following five baseline algorithms,
where algorithm (1)–(4) are traditional feature selection
methods, and algorithm (5) is the reinforced feature selec-
tion method.

(1) K-Best Feature Selection. This algorithm [22] ranks
features by their ranking scores with the label vector and
selects the top k highest scoring features. In the experiments,
we set k equals to half of the number of input features.

(2) Decision Tree Recursive Feature Elimination (DT-
RFE). RFE [23] selects features by selecting smaller and
smaller feature subsets until finding the subset with a
certain number of features. DT-RFE first trains a decision
tree on all the features to get feature importance; then it
recursively deselects the least important features. In the
experiments, we set the selected feature number half of the
feature space.

(3) mRMR. The mRMR [24] ranks features by minimizing
feature’s redundancy and maximizing their relevance in the
meantime. Then, it selects the top-k ranked features as the
feature selection result. In experiments, we set k equals to
half of the number of input features.

(4) LASSO. LASSO [4] conducts feature selection and
shrinkage via l1 penalty. In this method, features whose
coefficients are 0 will be dropped. All the parameter settings
are the same as [7].

(5) Multi-agent Reinforcement Learning Feature Selec-
tion (MARLFS). MARLFS [7] is a basic multi-agent rein-
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Fig. 9: Overall Best Acc of different feature selection algorithms.

forced feature selection method, which could be seen as a
variant of our IRFS without any trainer. To compare fairly,
the downstream task is set the same as our framework.

In the experiments, our KBest based trainer uses mutual
information to select features, supported by scikit-learn. Our
Decision Tree based teacher uses decision tree classifier with
default parameters in scikit-learn 2. In state representation,
following previous work [7], we utilize graph convolutional
network (GCN) [25] to update features, where features are
fully connected in a complete feature graph. In the experi-
ence replay [9], [26], each agent has its memory unit. For
agent agti at step t, we store a tuple {sti, rti , st+1

i , ati} to the
memory unit. The deep-Q network of agents is set to two
linear layers of 128 middle states with ReLU as activation
function. In the exploration process, the discount factor γ
is set to 0.9, and we use ε-greedy exploration with ε equals
to 0.9. To train the policy networks, we select mini-batches
with 16 as batch size and use Adam Optimizer with a learn-
ing rate of 0.01. To compare fairly with baseline algorithms,
we fix the downstream task as a decision tree classifier
with default parameters in scikit-learn. We randomly split
the data into train data (80%) and test data (20%). All the
evaluations are performed on Intel E5-1680 3.40GHz CPU in
a x64 machine, whose RAM is 128GB and operation system
is CentOS 7.4.

4.4 Overall Performance

We compare our proposed method with baseline methods in
terms of overall Best Acc on different real-world datasets. In
general, Figure 9 shows our proposed Interactive Reinforced
Feature Selection (IRFS) method achieves the best overall
performance on eight datasets. The basic reinforced feature
selection method (MARLFS) has better performance than
traditional feature selection methods in most cases, because
the reinforced feature selection could globally optimize the
feature subspace exploration. Moreover, our IRFS shows
further improvement compared to MARLFS, which shows
it is more effective in feature selection.

2. https://scikit-learn.org/stable/modules/tree.html

4.5 Study of Interactive Reinforced Feature Selection
We aim to study the impacts of our interactive reinforced
feature selection methods on the efficiency of exploration.
Our main study subjects include KBest based trainer, Deci-
sion Tree based trainer and Hybrid Teaching strategy. Ac-
cordingly, we consider four different methods: (i) MARLFS:
The basic reinforced feature selection method, which could
be seen as a variant of IRFS without any trainer. (ii) IRFS
with KBT (KBest based Trainer): a variant of interactive
reinforced feature selection with only KBT as the trainer.
(iii) IRFS with DTT (Decision Tree based Trainer): a variant
interactive reinforced feature selection with only DTT as
the trainer. (iv) IRFS with HT (Hybrid Teaching strategy):
a variant of interactive reinforced feature selection using
Hybrid Teaching strategy with two proposed trainers.

Figure 10 shows the comparisons of best accuracy over
exploration steps on four datasets. We can observe that both
KBT and DTT could reach higher accuracy than MARLFS in
few steps (2000 steps), which signifies the trainer’s guidance
improves the exploration efficiency by speeding up the pro-
cess of finding optimal subsets. Also, IRFS with HT could
find better subsets in short-term compared to MARLFS,
KBT and DTT. A potential interpretation is Hybrid Teaching
strategy integrates experience from two trainers and takes
advantage of broader range of knowledge, which leads to
further improvement.

4.6 Study of Varaint Methods
In this section, we aim to study the impacts of our proposed
state representation methods as well as our personalized
reward schemes. For this aim, we consider the following five
variant methods: (i) IRFS with SRDT1 (State Representation
with Decision Tree method 1): a variant of IRFS with HT
which uses the state representation method 1 in Section 3.2.
(ii) IRFS with SRDT2 (State Representation with Decision
Tree method 2): a variant of IRFS with HT which uses
the state representation method 2 in Section 3.2. (iii) IRFS
with PRS1 (Personalized Reward Scheme 2): a variant of
IRFS with HT which measures reward with decision tree
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Fig. 10: Exploration efficiency comparison of IRFS methods.
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Fig. 11: Best Acc comparison of variant methods.

structure feedback, detailed in 3.3.1. (iv) IRFS with PRS2
(Personalized Reward Scheme 1): a variant of IRFS with
HT which measures reward with historical action records,
detailed in 3.3.2. (v) IRFS with SRTD+PRS: a variant of
IRFS with HT which uses decision tree structure feedback
for state representation and personalized reward scheme.

We present the performance comparison of these vari-
ant methods in terms of Best Acc and Ave Acc. Figure
11 shows the Best Acc comparison of different methods.
Though the performance differs from method to method,
in all cases we observe an improvement with respect to the
MARLFS baseline. The improved performance reveals that
with the help of our proposed state representation methods
and reward schemes, IRFS could always find better feature
subsets. Moreover, the combination of SRTD and PRS yields
better results, which signifies further improved effectiveness
in feature selection. We also evaluate our methods in terms
of Ave Acc on different datasets. Figure 12 shows the result

of average performance, where we observe all the proposed
methods exceed the basic MARLFS. The improvements of
SRDT and PRS signify precise measurement of state and
reward could help for higher average exploration quality,
which is important to effective exploration process.

4.7 Study of action-changed agents
In each exploration step, we record the number of hesi-
tant agents that take advice and change their actions from
deselection to selection. Figure 13 shows the percentage
of action-changed agents in the exploration, where 0 to 9
denotes the number of action-changed agents. For example,
in Figure 13(e), in 32% of the exploration steps, there are
2 agents that change their actions. We observe in most
steps the number of agents that change actions is non-
zero, which reveals the improved performance is due to
these advised actions that actually work for better explo-
ration. Another observation is ESR and QSAR Dataset are
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Fig. 12: Ave Acc comparison of variant methods.
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Fig. 13: Percentage of action-changed agents in exploration. 0-9 denote the number of action-changed agents.

darker than other datasets, demonstrating there are more
action-changed agents. This is because the input features
of datasets are more than other datasets, and our trainers
would give more advice to agents.

5 RELATED WORK

Traditional feature selection can be grouped into three kinds
of methods: filter methods, wrapper methods, and embed-
ded methods. (1) Filter methods calculate relevance scores,
rank features and then select top-ranking ones. Two classical
methods are univariate feature selection [1], [22] and correla-
tion based feature selection [27]. (2) Wrapper methods make

use of predictors, considering the prediction performance as
objective function [28]. The representative wrapper methods
are branch and bound algorithms [3], [29]. (3) Embedded
methods take more advantages of predictors, incorporation
feature selection as part of predictors. The representative
methods is LASSO [4] and decision tree [30]. Filter methods
are efficient because of the low computational complexity,
but do not consider the correlation among features. Wrap-
per methods search on the whole feature subspace, so it
may have better performance. But they are computationally
expensive because the feature subspace increases exponen-
tially with the increase of number of features. Embedded
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methods could achieve much better performance. However,
their compatibility with many other predictors is limited.

Reinforcement learning [11] has been applied into differ-
ent domains, such as robotics [31], urban computing [32],
and feature selection. Reinforced feature selection applies
reinforcement learning for feature selection [5], [6], [33].
Some existing studies create a single agent to make decisions
[5], [6], [34]. However, this agent has to determine to select
or deselect of all N features, whose action space is 2N and
is too large. Another kind of existing studies create multi-
agents to make decisions and every agent determines the
selection of its corresponding feature [7].

Reinforcement Learning [11] is a good method to address
optimal decision-making problem by developing action
strategies, whose goal is to maximize the collected reward.
In reinforcement learning, the next action is from the highest
state-action pair. An intuitive idea to speed up the learning
process is to include external advice in the apprenticeship
[35]. Actually, interaction mechanism has been studied and
applied [36]; in Interactive Reinforcement Learning (IRL),
an action is interactively encouraged by a trainer with prior
knowledge [37], [38]. Using a trainer to directly advise on
future actions is known as policy shaping [39], [40]. For
advice, they could come from humans and robots in early
studies [31]. Other researchers use an artificial trainer-agent
which was previously trained to provide advice [41].

6 CONCLUSION

In this paper, we study the problem of balancing the effec-
tiveness and efficiency of automated feature selection. We
first formulate feature selection problem into a diversity-
aware interactive reinforcement learning framework, where
we develop a joint and interactive architecture to unify
both interaction between agents and external trainers, and
interaction between downstream task and reinforcement
learning. To measure reward better, we design two new
reward schemes that personalize the reward assignment.
Finally, we present extensive experiments which illustrate
the improved performances.
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