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ABSTRACT

Four drivers of global change are acting in concert to speed up the ecology of our coastal and open ocean ecosystems. Ocean warming, nutrient pollution, disturbance,
and species additions increase biological and ecological rates, favoring weedy communities and causing pervasive human impacts. Ocean warming via greenhouse
gas emissions is accelerating metabolic processes, with effects scaling up to populations and ecosystems. Likewise, supercharging primary production via increased
resources (e.g., nutrients and light) is leading to faster, weedier communities in estuarine and coastal ecosystems. Disturbances like ocean heat waves are becoming
more frequent, resetting succession, and creating permanently young assemblages, while species additions are transporting the quick-growing and the fecund. The
speeding up of marine ecosystems will necessitate changes in the ways we do science, attempt conservation, and use ecosystem services.

Introduction

Human activities are causing countless changes to ocean and coastal
ecosystems. Fishing has depleted predator populations [1], pollution has
reduced local biodiversity [2], and ocean warming is shifting species
poleward [3] and decimating populations of foundation species, such as
kelps [4]. These dramatic changes are increasingly documented across
great swathes of the ocean, yet they represent only the tip of the ice-
berg. Beneath the surface lies increased ecological process rates; driven
by human activities and causing a pervasive ‘speeding up’ of marine
ecosystems. This ecological acceleration requires a rapid shift in our
scientific approach to understanding marine ecosystems, the reprioriti-
zation of our conservation strategies, and a transformation of the way
we use the services of the sea.

Here we argue that the growing industrialization of the global econ-
omy is increasing many of the fundamental rates of marine ecosystems,
such as how fast organisms grow, move, die, and consume each other,
and how quickly energy transfers between trophic levels. We describe
empirical evidence that four major drivers of global ecological change
(warming, nutrient pollution, disturbance, and species additions) act in
unison to increase the fundamental rates of organisms, populations, and
communities (Fig. 1). The drivers collectively select for species of small
size, short life-span, fast growth, and high recruitment ability [5-8] —
all r-selected traits typical of weedy species. Species with these traits
would also benefit from anthropogenically increased disturbance fre-
quency and nutrients [8], reinforcing their presence in a community. We
argue that these factors combined should move communities towards an
ongoing state of early succession, comprised of predominantly weedy
species suited to high disturbance environments. In principle, this con-
cept may apply to any system where the balance of r- and k- selected
species is regulated by heat, nutrients, or disturbance, or is susceptible to
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the introduction of weedy species. Any one of these factors may produce
this effect, but together their synergies may create a self-reinforcing cy-
cle of weediness (Fig. 2).

Heat

Ocean heating has the potential to act as a global-scale metabolic
accelerator, almost universally increasing the metabolism of marine
organisms [9]. Most marine organisms are ectotherms, meaning their
metabolism is strongly influenced by temperature and should increase
up to a point as the ocean warms (Fig. 2) [9-11]. The majority of ma-
rine research in this area is aimed at the effects of warming on fitness
and survival (e.g. [12]), rather than on the downstream consequences of
increased metabolisms for populations and food webs. Yet before warm-
ing exceeds the optimum environmental temperature of ectotherms, it
increases countless physiological rates potentially with broad ecosystem
consequences.

Sub-lethal metabolic rate increases may result in faster growth and
shorter generation times, increased caloric demand, and even reductions
in organism size [13]. The temperature change required to directly af-
fect metabolism will, however, depend upon the species and environ-
mental context [12]. While it is difficult to make community-level pre-
dictions, increased metabolism could lead to greater consumption and
top-down control of prey populations [14]. Additionally, the carrying
capacity of producer and consumer populations should shrink as tem-
perature, metabolism, and caloric demand increase. If every individual
needs more energy just to survive, the intensity of intra-specific com-
petition will also increase due to fewer resources [15], until mortality
or another event increases resource availability. This would also nega-
tively affect homeothermic marine birds and mammals when their prey
become food-limited and less abundant [16].
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Fig. 1. Conceptual depiction of four drivers (external cogs) that are increasing
biological process rates (internal rings) in the ocean.

By reducing population sizes, warming could interact with other rate
drivers since smaller populations are at greater risk of local extinction
[17]. Additionally, the availability of some resources is declining, just as
metabolic acceleration is increasing demand for them. Oxygen levels, for
example, are declining in the ocean due to ocean heating (via decreased
oxygen solubility) and increased stratification that slows ocean mixing
[18]. Warming is predicted to increase the susceptibility of coastal and
ocean ecosystems to hypoxic disturbance events [18, 19]. Reduced oxy-
gen environments will also generally lead to increasing metabolisms,
reduced sizes, and changed ecological functions of numerous organisms
[20, 21]. Such synergisms could amplify the negative effect of acceler-
ating metabolisms on species- and functional-group standing biomass
levels [22].

Via the acceleration of growth, ocean warming could also reduce ge-
netic and demographic population connectivity, which has wide rang-
ing implications for adaptation and stock management. Most marine fish
and invertebrates have a life history stage in which small larvae are dis-
persed by ocean currents. Since larval developmental rates increase with
temperature, warming should reduce the duration of the larval stage,
such that larvae will settle more quickly and closer to home [23]. In
some cases, regional management plans are taking these dispersal func-
tions into account, such as in the design of networks of marine reserves
[24].

Finally, ocean warming has the potential to increase rates of speci-
ation and adaptive evolution. The ’evolutionary speed’ hypothesis ar-
gues that warmer climates support greater mutation rates and reduced
generation times of individuals, which in turn causes faster rates of ge-
netic divergence among populations, higher rates of speciation, and/or
lower rates of extinction [25, 26]. There is evidence for higher specia-
tion rates in tropical climates [27] and Rohde [26] proposed that biodi-
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versity peaks at the equator due to the kinetic effects of environmental
temperature on rates of biological processes.

Nutrients and other resources

Growing human populations with increasing per capita consumption
have accelerated agricultural and industrial activities that release nutri-
ents such as nitrogen, phosphorus, and carbon to our waterways [28].
Much of the increase in nutrient discharges to coastal waters has re-
sulted from the global 10-fold increase in synthetic fertilizer use since
the 1950s, although sewage disposal, fossil fuel combustion, and organic
enrichment from terrestrial runoff have also contributed [29]. Such en-
richment has effectively “fertilized” coastal seas, leading in many cases
to increased rates of primary productivity and oxygen consumption. In-
deed, nutrient addition is so effective at increasing productivity it has
been promoted as a means of geoengineering climate [30].

Although nutrient addition often creates stark headlines of eutrophic
events such as “Dead Zones” and “Fish Kills”, we contend that most
coastal areas are not yet enriched to the point of ecosystem collapse.
Nutrient addition can quickly lead to eutrophication in lakes and slow-
moving rivers, but along coasts greater circulation and flushing can
rapidly dilute effluents and run-off. What is rarely acknowledged, is that
within these systems, nutrient addition often increases primary produc-
tivity, thereby fueling the acceleration of coastal food webs. As a result,
even heavily enriched estuaries may only suffer algal blooms under a
restricted set of environmental conditions. This can lead to counterin-
tuitive relationships between nutrient pollution and biodiversity, as re-
ported in our coastal research on fishes [31] and invertebrates [32-34].
Where oxygen “dead zones” do occur they tend to lead to a “smaller-
faster” ecosystem, in which a greater proportion of energy is tied up in
microorganisms, small fishes, and adjusted respiration rates [18]. And
as with warming, there are feedbacks between nutrient addition and
deoxygenation: nutrient addition itself can cause deoxygenation (or hy-
poxic conditions), but low oxygen conditions can directly influence nu-
trient cycling in a manner that further increases primary productivity
and reinforces hypoxic conditions, even when anthropogenic inputs of
nutrients have been reduced [18, 19].

While nutrient addition has been by far the most widespread re-
source addition to marine ecosystems in the 20th century, energy is
also being added to some areas in the form of light [35]. At higher lati-
tudes, polar coasts are typically covered by sea-ice for most of the year,
such that their nearshore marine communities are light-limited. In areas
where climate change is causing sea-ice to break out earlier in summer,
much more light is entering the water column per year, thereby pro-
moting primary production of algae and phytoplankton [36, 37]. This
may cause slow-growing invertebrate-dominated communities to be re-
placed by fast-growing algal communities, speeding up production and
subsequent ecological processes (e.g., herbivory, decomposition) across
vast areas of polar marine habitat [36, 38].

Disturbance

The increasing frequency of human disturbances is shifting ma-
rine communities towards younger, early successional states, creating
ecosystems dominated by fast-growing “weedy” species. Human use of
the coastal zone introduces a plethora of local and regional scale distur-
bances including pollution [39], resource extraction [40], physical dis-
turbance such as construction [41], and eutrophic or hypoxic episodes
resulting in mass mortality events when nutrient concentrations exceed
organismal or ecosystem thresholds [18]. The most frequent and im-
pactful human use of the ocean is fishing, which disturbs benthic habi-
tats via trawling and selectively removes larger species and those from
higher trophic levels. This leads to “younger” assemblages dominated
by smaller individuals with faster metabolisms and growth rates, and
greater mass normalized energetic demands [40].
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Fig. 2. The self-reinforcing cycles of weediness.

Anthropogenic heat waves are now adding to the mix at regional
and global scales, in some cases inflicting unprecedented impacts on
coastal and marine ecosystems [42, 43]. Global warming may increase
metabolism and primary productivity (as described above), but past the
temperature optimum for an organism it becomes a source of physiolog-
ical stress. Eventually, past a threshold when thermal stress is lethal, it
becomes a disturbance at the population- and community-levels (Fig. 2).
Recent marine heat waves have increased short-term (weeks to months)
temperatures in some regions by nearly 6 °C above seasonal norms. For
example, in Australia, a marine heatwave in 2011 decimated kelp forests
in Western Australia [44]. In 2016 and 2017, elevated ocean tempera-
ture caused mass coral bleaching on the Great Barrier Reef [45] and a
heat wave combined with a drought in the Gulf of Carpentaria killed
approximately 10% of Australia’s mangroves [46]. High temperature
anomalies have also been linked with numerous disease-driven rapid de-
clines of keystone species such as sea stars [47], and foundation species
including corals and sea grasses [48, 49].

Disturbances typically cause mortality and release resources, effec-
tively re-setting or winding-back successional processes of community
assembly [50]. Increasing the frequency or severity of disturbances
therefore promotes early successional states, and, if frequent, can keep
communities in long-term states of ongoing recolonization by weedy r-
selected species (Fig. 2) [5, 6]. While this scenario can occur naturally
in some high-energy environments, such as in polar coasts frequently
disturbed by ice scour [51], we hypothesize that human disturbances
are pushing an unnaturally high proportion of communities into early
successional states.

Species invasions

The introduction of r-selected weedy species into systems that are
high in disturbance, nutrients, and energy creates a self-reinforcing eco-
logical feedback loop of weedy communities (Fig. 2). Humans continue
to introduce new species into modified marine systems that are more
connected than ever via shipping. Shipping accounts for 60-90% of ma-
rine bioinvasions and shipping trade is predicted to grow anywhere from
3 to 20 fold by 2050 [52]. A majority of invasive species are “weedy” or
r-selected, characterized by relatively fast growth rates, short life spans,
and the prolific production of poorly provisioned but environmentally-
tolerant propagules [7]. There are, of course, exceptions, and it is often

the highly competitive invaders that have the greatest impact and are
therefore most well-known (e.g., lionfish). Nonetheless, meta-analyses
indicate that most introduced marine species are macroplanktivores, de-
posit feeders, and detritivores [53], which generally exhibit r-selected
weedy traits. By creating more weedy communities, we are inadver-
tently engineering communities that are more resilient to the challenges
of the Anthropocene. Weedy communities should be more resilient to fu-
ture disturbances, since their recovery rates are quicker and more likely
to exceed the disturbance frequency [8]. For example, communities with
high turnover and short lifespans, such as microbes, are capable of rapid
and ongoing recovery [54].

Implications for conservation, management, and people

Widespread rate changes will result in novel species assemblages
with unique biological traits and ecological characteristics. Adapting to
these fast-paced communities will necessitate changes to the way we: (1)
do science, namely what we pay attention to, (2) manage fisheries, and
(3) obtain services from the ocean. Below, we provide recommendations
for each required change.

1 Ecologists and managers need to be thinking more about rates, and how
the relative rates of processes alter emergent patterns.

Ecology has traditionally focused on pattern and scale, produc-
ing theories that assume steady rates in ecological processes. Now,
in the Anthropocene, by exacerbating drivers that increase rates of
metabolism, productivity, disturbance and community re-assembly,
species addition and evolution, we are changing how various ecological
processes and their interactions play out. The relative rates of ecological
processes affect both the theoretical predictions of pure ecology, such
as mechanisms of coexistence [55], and the suitability of various man-
agement and conservation strategies. Numerous subdisciplines, such as
pelagic ecology and biological oceanography, have long focused on rates
but with little reference to ecosystem structure or biodiversity [56], and
some community ecologists do measure rates of basic processes includ-
ing primary production, herbivory, and per capita predation intensity
[57]. Yet we believe a re-emphasis on rates — and importantly their
cross-scale, functional interdependencies — could increase the applied
relevance of much of marine ecological science.
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Fig. 3. Implication of the great speeding up for science, conservation, and ecosystem services.

Luckily, new technologies are increasing our ability to measure such
rate changes. In addition to revealing responses to multiple interacting
disturbances (e.g. [58]), next generation molecular tools can also de-
tect real-time expression of genes for multiple metabolic functions [59].
Likewise, remote sensing can help establish historical disturbance fre-
quencies (at least for the past 30 years) and allow us to monitor proxies
of ocean surface water quality and productivity in real time at global
scales [60, 61]). Such new sources of data on rates and processes will
complement traditional physiological studies and help researchers de-
velop more sophisticated ecological theory and models.

2 Marine conservation has for decades focused on spatial management,
restoration, and stressor mitigation. As ecological systems speed up we
need to become more dynamic, adaptive, and interventionist in our ap-
proach to conservation.

Marine conservation is often focused on reducing the impact of lo-
cal drivers such as pollution and extractive industries. Spatial manage-
ment tools have frequently been used to manage impacts; such as the
point-source control of pollution, and the licensing or zoning of areas
for fishing and mining. Most spatial management has assumed a static
approach with fixed barriers while temporally dynamic (or adaptive)
management has been less common. An exception is fisheries manage-
ment which commonly uses seasonal closures and annual quotas.

The effect of any intervention is relative to the basal rate of recruit-
ment, growth, resource acquisition, life histories, and community as-
sembly. Since these are rapidly changing, our sense of “what works”
needs to be constantly recalibrated. Moreover, managers will be faced

with new categories of problems, such as mismatches in phenologies
as species differ in their response to changing rate drivers. The scal-
ing of rates such as metabolism and caloric demand with temperature
varies considerably among species [62, 63], so metabolic acceleration
and other aspects of speeding up can alter the outcomes of species inter-
actions. In the future, to manage marine systems for multiple objectives
(e.g., biodiversity and ecosystem function), we will need to employ dy-
namic conservation approaches and be looking to the effectiveness of
interventions practiced at different latitudes [64]. Interventions have
traditionally been avoided due to fear of unforeseen consequences, but
if environmental change exceeds the potential for adaptation and range
expansion, we may need to consider assisted migration [65] and other
interventions to maintain ecosystem functions.

Overall, managers will have to adapt their targets, approaches, and
mitigations to the accelerating dynamics of the system they conserve.
This means some increased uncertainty — which managers understand-
ably dislike. And although some of the specifics are unpredictable, the
general rate changes we describe are theoretically based and quite
widely empirically validated. What is more difficult to manage is the
increasing uncertainty caused by an increasing frequency of extreme
events that create unprecedented disturbances of both scale and type
[66]. More work is needed to develop socio-ecological models and ap-
proaches to decision science that embrace this uncertainty within con-
servation and environmental management [67].

3 Changing so many essential rates will have strong effects on the services
people derive from the ocean.
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With so many variables changing so quickly, humans will need to
be increasingly dynamic in their utilization of ecosystem services. For
example, all things being equal, ocean warming will result in reduced
productivity of the populations we have traditionally harvested for food
and other resources. This will require changes in fisheries management
(e.g., reduced MSY for some species in warming regions) and develop-
ing other food provisioning systems. In some cases, we can take advan-
tage of many aspects of speeding up (e.g., faster growth and turnover
of basal species) by harvesting at lower trophic levels and beginning to
emphasize gathering rather than hunting. We can also exploit increased
primary production in response to nutrient addition by actively farming
fast growing filter feeders (e.g., bivalves and jellyfish) for direct con-
sumption, but also for the service they provide in the form of water
filtration that reduces the potential for eutrophication [68].

Conclusions

Multiple drivers are acting in concert to accelerate ecological dy-
namics in the ocean. Adding heat is accelerating the metabolism of ec-
totherms, nutrients are providing the limiting factor in primary produc-
tion, disturbances are resetting systems, and species additions are dis-
tributing the fast and the fertile. These factors work together to create
positive feedback loops of increasing speed and weediness.

As the ecology of the ocean speeds up, so too must ecologists. We
need to determine what degree of warming is sufficient to cause ecolog-
ically meaningful metabolic acceleration and its many knock-on conse-
quences. We must rapidly adopt new technologies (e.g., metatranscrip-
tomics and remote sensing) that allow for the simultaneous monitoring
of rate processes and the patterns they influence. And we need to create
and test meaningful interventions to counter the loss of critical services
such as food production and coastal protection. The great speeding up of
our coasts and ocean demands that we change our approach to ecology
and conservation and transform the way we use the ocean (Fig. 3).
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