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ABSTRACT 19 

The premise of the study:  20 
The true blueberries, (Vaccinium sect. Cyanococcus; Ericaceae), endemic to North 21 
America, have been intensively studied for over a century. However, with species 22 
estimates ranging from 9 to 24 and much confusion regarding species boundaries, this 23 
ecologically and economically valuable group remains inadequately understood at a basic 24 
evolutionary and taxonomic level. As a first step toward understanding the evolutionary 25 
history and taxonomy of this species complex, we present the first phylogenomic 26 
hypothesis of the known diploid blueberries.  27 
Methods: 28 
We used flow cytometry to verify the ploidy of putative diploid taxa and a target-29 
enrichment approach to obtain a genomic dataset for phylogenetic analyses.  30 
Results: 31 
Despite evidence of gene flow, we found that a primary phylogenetic signal is present. 32 
Monophyly for all morphospecies was recovered, with two notable exceptions: one 33 
sample of V. boreale was consistently nested in the V. myrtilloides clade and V. 34 
caesariense was nested in the V. fuscatum clade. One diploid taxon, Vaccinium pallidum, 35 
is implicated as having a homoploid hybrid origin.  36 
Conclusions: 37 
This foundational study represents the first attempt to elucidate evolutionary relationships 38 
of the true blueberries of North America with a phylogenomic approach and sets the stage 39 
for multiple avenues of future study such as a taxonomic revision of the group, the 40 
verification of a homoploid hybrid taxon, and the study of polyploid lineages within the 41 
context of a diploid phylogeny. 42 
 43 
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INTRODUCTION 48 

A ubiquitous component of heathlands and other acidophilic plant communities, 49 

as well as a food source for wildlife and humans, the true blueberries (Vaccinium section 50 

Cyanococcus A. Gray; henceforth “Cyanococcus”) are of immense ecological and 51 

economic value. Commercially cultivated blueberries originate from this group—52 

representing one of only a handful of widely cultivated plants originating in North 53 

America. Despite its economic importance, Cyanococcus has suffered from conflicting 54 

taxonomies with poorly defined species boundaries and little investigation into the 55 

evolutionary history of wild populations. 56 

Cyanococcus is a reticulate species complex of ca. 9–24 species comprising 57 

diploids (2n = 2x = 24), tetraploids, and hexaploids distributed across much of temperate 58 

North America (Fig. 1). The section is easily distinguished from other sections of 59 

Vaccinium L. by several unique or otherwise diagnostic characters, e.g., verrucose 60 

branchlets, articulated pedicels, awnless anthers, and pseudo-10-locular berries (Camp, 61 

1945; Vander Kloet, 1983). In addition to morphological characters, the available 62 

molecular data suggest that the group forms a clade (Kron et al., 2002; Crowl et al., 63 

unpublished), although sufficient sampling has yet to be undertaken to satisfactorily test 64 

monophyly.  65 

Cyanococcus served as a model system during the Modern Synthesis (Huxley, 66 

1942), playing a pivotal role in furthering our understanding of polyploidy and expanding 67 

the scope of the movement to include plants. Toward the goal of crop improvement, 68 

W.H. Camp and colleagues (Camp, 1942, 1945; Camp and  Gilly, 1943; Darrow and  69 

Camp, 1945) used data from morphology, crossing studies, genetics, and cytology to 70 
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propose a complex series of ancestor-descendant polyploid species relationships in 71 

Cyanococcus, some through autopolyploidy, others through allopolyploidy. In some 72 

cases, Camp (1945) documented size differences correlated with ploidy, such as larger 73 

stature and flowers, which has recently been confirmed in one mixed diploid and 74 

tetraploid population (Poster et al., 2017). Finally, by equating artificially produced 75 

hybrid progeny with morphologically similar plants in the wild, Camp concluded that 76 

natural hybrids are rampant among blueberry species, although a strong triploid block, 77 

now well known among plant breeders (e.g., Lyrene et al., 2003), was seen to inhibit the 78 

viability of progeny with odd-numbered sets of chromosomes. 79 

 Subsequently, S.P. Vander Kloet revised Camp’s taxonomy in the context of 80 

morphological phenetics. The most consequential of Vander Kloet’s conclusions from 81 

this work was the supposition that all Cyanococcus species greater than 1 m tall 82 

(“highbush”) have been derived from a genetic amalgamation of mostly diploid species 83 

less than 1 m tall (“lowbush”), thus forming a “compilospecies” (Harlan and de Wet, 84 

1963) of multiple origins and of variable ploidy (Vander Kloet, 1980, 1983, 1988). In this 85 

context, Vander Kloet aggregated 12 of Camp’s species into a single highly variable 86 

highbush blueberry, V. corymbosum L. Although many authors have questioned this 87 

extremely broad concept based on habit, leaf, flower, and stem morphology, phenology, 88 

and ecology (e.g., Uttal, 1987; Weakley, 2020; Fritsch et al., in press), this taxonomic 89 

view of Cyanococcus is currently considered the standard, having been adopted by the 90 

USDA, plant breeders, and many local and regional floras, including the Flora of North 91 

America (Vander Kloet, 2009). 92 
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Much prior research on Cyanococcus has highlighted the challenges involved in 93 

disentangling this group, but more recent research suggests that the prospects are hopeful 94 

for resolving longstanding questions regarding its species composition, patterns of 95 

speciation, and evolutionary history (Fritsch et al., in press). In this respect, the rapid 96 

maturation of genomic approaches to the study of complex groups of organisms affords a 97 

timely opportunity to revisit the evolution of the true blueberries. The multiple ploidy 98 

levels inherent in Cyanococcus, the group’s ecological and economic importance, and the 99 

genomic resources now available make Cyanococcus an ideal system for understanding 100 

polyploidy and cryptic speciation in flowering plants. Surprisingly, however, the 101 

evolution of the group as a whole has yet to be studied with such approaches. This has 102 

left Cyanococcus in an unsatisfactory state to both evolutionary biologists and plant 103 

breeders alike.  104 

Here we provide a first glimpse into the evolutionary history of Cyanococcus with 105 

genomic data by reconstructing a diploid phylogeny with genomic data from hundreds of 106 

nuclear loci, with flow cytometry analyses conducted to verify ploidy of all currently 107 

recognized putative diploid taxa. Our results will be useful for future study of polyploid 108 

Cyanococcus lineages and updating the taxonomy of this important group of plants.  109 

 110 

MATERIALS AND METHODS 111 

Flow cytometry  112 

Ploidy was estimated with flow cytometry at the Mountain Horticultural Crops 113 

Research and Extension Center (North Carolina, USA). Leaf samples were quickly dried 114 

in the field with silica gel. This dried tissue (approximately 1.5 cm2) was finely chopped 115 
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with a razor blade in a Petri dish with 400 mL of nuclei extraction buffer (CyStain UV 116 

Precise P Nuclei Extraction Buffer, Sysmex Partec, Görlitz, Germany). The solution was 117 

incubated for 1 to 2 min at approximately 24°C and then filtered through Partec CellTrics 118 

disposable filters with a pore size of 50 µm to remove tissue debris. Nuclei were stained 119 

with 1.6 mL of 4’,6-Diamidino-2-phenylindole (DAPI) staining buffer (CyStain UV 120 

Precise P Staining Buffer, Sysmex Partec). Stained nuclei were analyzed with a flow 121 

cytometer (Partec PA-II, Partec) to determine relative genome size. Counts exceeded a 122 

minimum of 3000 cells per sample and two subsamples were run for each sample. 123 

Genome sizes were determined by comparing mean relative fluorescence of each sample 124 

with an internal standard, Pisum sativum L. ‘Ctirad,’ with a known genome size of 8.76 125 

pg (Doležel et al., 2007) and calculated as: 2C genome size of sample = 8.76 pg × (mean 126 

fluorescence value of sample/mean fluorescence value of standard). The validity of this 127 

method for estimating ploidy levels in Vaccinium has been previously demonstrated (with 128 

fresh leaf material) by Hummer et al. (2015) and Costich et al. (1993), the latter showing 129 

that an observed increase in nuclear DNA content is concurrent with an equivalent 130 

increase in ploidy. 131 

 132 

Sampling and sequencing 133 

We sampled 36 Cyanococcus individuals, each from different natural populations, 134 

representing eight putative diploid species (Appendix S1; see Supplementary Data with 135 

this article). Species determination followed the morphospecies concepts summarized in 136 

Weakley (2020) in addition to the V. boreale I.V. Hall & Aalders concept of Vander 137 

Kloet (1988). Three additional taxa, V. arboreum Marshall (Vaccinium section 138 
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Batodendron), V. macrocarpon Aiton (Vaccinium sect. Oxycoccus), and V. stamineum L. 139 

(Vaccinium sect. Polycodium) comprised the outgroup.  140 

DNA extractions were carried out with a modified CTAB approach for all 141 

samples (Doyle and Doyle, 1987). The concentration of DNA from extractions was 142 

quantified with a Qubit 2.0 (Invitrogen, Carlsbad, California, USA) and the Qubit dsDNA 143 

Broad Range Assay Kit as per the manufacturer’s recommendations. Samples ranging 144 

from 115 to 3000 ng of DNA were sent to Arbor Biosciences (Ann Arbor, Michigan, 145 

USA) for library preparation and DNA sequencing on a NovaSeq S4 sequencer (Illumina, 146 

San Diego, California, USA) with 2x150 bp chemistry. The Angiosperms353 v1 target 147 

capture kit (Johnson et al., 2019) was used for targeted enrichment of each sample.  148 

 149 

Sequence data processing 150 

Raw sequences were filtered and processed with the Trim Galore wrapper script 151 

(v.0.6.5), which uses Cutadapt (v.2.6; Martin, 2011) and FastQC (v.0.11.9; Andrews, 152 

2010) to trim adapters and low-quality reads based on a given Phred quality score cutoff 153 

(-q 20). Consensus read assembly for target loci was performed with the default settings 154 

in HybPiper v1.3.1 (Johnson et al., 2016). Following the recommendations of McLay et 155 

al. (2021), we included available Ericales sequences in the target reference file in 156 

addition to the standard Angiosperms353 targets to improve the recovery of targeted loci. 157 

Supercontig sequences were then assembled with the intronerate.py script available as a 158 

part of HybPiper. To screen for potential paralogs, we identified loci/samples in which 159 

multiple contigs were generated during the assembly step with the 160 

paralog_investigator.py script. All loci in which a paralog was suspected were removed 161 
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from the dataset. The remaining consensus reads were used as the reference to generate 162 

both IUPAC and allele datasets (see below).  163 

 164 

Allele phasing 165 

HybSeq data is typically processed in a way that results in single consensus 166 

sequences for loci, thus ignoring allelic variation (Andermann et al., 2018; Tiley et al., 167 

2021). However, allelic data may be important in the estimation of species networks 168 

when gene flow among taxa is present (Tiley et al., 2021). To include this variation, we 169 

employed the recently developed bioinformatics pipeline PATÉ (Tiley et al., 2021) to 170 

phase alleles. The pipeline uses consensus loci (in this case, supercontig sequences) 171 

created with HybPiper as reference sequences and Illumina reads are mapped back to 172 

these loci using the BWA-MEM algorithm from BWA (Li and Durbin, 2009). Variant 173 

calling is carried out at the ploidy level determined by flow cytometry for each individual 174 

using the HaplotypeCaller program from GATK (McKenna et al., 2010). Potentially 175 

erroneous variant calls are filtered out based on the following parameters outlined in 176 

DePristo et al. (2011) with the VariantFiltration program in GATK: (1) QD < 2.0, (2) FS 177 

> 60.0, (3) MQ < 40.0, (4) ReadPosRankSum < 8.0. We also remove variants present on 178 

less than 5% or more than 95% of reads (AF < 0.05 || AF > 0.95) and variants with a 179 

depth less than 10 reads (DP < 10). The resulting vcf file for each individual is passed to 180 

H-PoPG (Xie et al., 2016) for allele phasing, which solves for the specified number of 181 

haplotypes that minimizes the number of switch errors among the reads present in the 182 

BAM file using a dynamic programming solution. PATÉ then takes variants from the 183 

largest phase block, combines them with sequences from regions of the locus that could 184 
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not be phased because of insufficient read overlap, and replaces them with ambiguity 185 

codes so that the resulting alleles are the same length as the original consensus loci, 186 

similar to previous phasing strategies exclusive to diploids (Kates et al. 2018). PATÉ 187 

additionally provides full IUPAC sequences in which all heterozygous sites are replaced 188 

by ambiguity codes, which were analyzed alongside individual allele sequences.   189 

 190 

Maximum likelihood analyses 191 

Alignments were carried out with FSA (Bradley et al., 2009). To reduce potential 192 

issues with missing data and poorly aligned ends, we removed alignment columns 193 

containing more than 50% missing data. Individual IUPAC gene trees and allele trees 194 

were constructed with IQ-TREE v.1.6.9 (Nguyen et al., 2015). ModelFinder Plus was 195 

used to first select the best model for each locus. To assess topological support, we 196 

implemented the ultrafast bootstrap approximation UFBoot2 (Hoang et al., 2018) with 197 

1000 replicates in which sites within partitions (loci) were resampled, an approach that is 198 

similar to the standard nonparametric bootstrap.  199 

A concatenated alignment was produced for the IUPAC dataset with the pxcat 200 

command in Phyx (Brown et al., 2017). A partitioned phylogenetic analysis, where 201 

partitions were individual loci, was performed with IQ-TREE. The best-fit partitioning 202 

scheme was chosen with the PartitionFinder algorithm (-m TESTMERGE; Lanfear et al., 203 

2012) implemented in IQ-TREE. A relaxed clustering algorithm (-rcluster 10; Lanfear et 204 

al., 2014) was implemented to only consider the top 10% of partitioning schemes. As 205 

above, 1000 ultrafast bootstrap replicates were performed to assess support. 206 

 207 
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Species tree analyses 208 

Multiple species-tree methods were used to estimate a diploid species tree for 209 

Cyanococcus. Singular value decomposition quartet species-tree estimation 210 

(SVDquartets; Chifman and Kubatko, 2014) implemented in Paup* (v.4a142; Swofford, 211 

2002) was run on the concatenated IUPAC data matrix, all possible quartets were 212 

evaluated, and support was assessed with 100 bootstrap replicates. We also used 213 

ASTRAL-III (v.5.5.6; Zhang et al., 2018) on the individual IUPAC gene trees and allele 214 

trees. Alleles were assigned to individuals or species with the allele mapping (-a) option. 215 

We additionally used STACEY (Jones, 2017), available as part of the BEAST2 package 216 

(Bouckaert et al., 2014), to estimate a species tree from the IUPAC and allele datasets in 217 

a Bayesian framework. Substitution models, clock models, and gene trees were unlinked 218 

for all loci. The birth-death-collapse model was used as a species-tree prior. To enable 219 

ambiguous site processing of the IUPAC dataset, we manually added useAmbiguities 220 

=“true” to the gene tree likelihood priors in the XML file. All analyses were run for 221 

10,000,000 generations, retaining one sample every 10,000 generations, or until 222 

convergence of all parameters (ESS values > 200), as assessed with Tracer v1.7.2 223 

(Rambaut et al., 2018). 224 

 225 

Network analyses 226 

 Hybridization is thought to be common in Cyanococcus (Camp, 1945; Vander 227 

Kloet, 1988). To investigate potential reticulation between diploid taxa, we used a 228 

pseudolikelihood approach as implemented in SNaQ (Solís-Lemus and Ané, 2016). For 229 

each dataset (IUPAC and alleles) we tested models in which we allowed a maximum of 230 
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zero to three hybridization events (hmax = 0–3) and used the log pseudolikelihood profile 231 

of these runs to estimate the best fitting model. Gene trees inferred from IQ-TREE were 232 

used as input. Twenty independent runs were used for each hmax value. The 233 

computational constraints of this method precluded the estimation of a network with 234 

every sample represented as a tip in the tree. Instead, alleles from individual allele trees 235 

were assigned to species, resulting in a network in which tips represented species. The 236 

IUPAC dataset was subsampled such that each species was represented by one to three 237 

samples. To more precisely estimate the placement of the hybrid event suggested by these 238 

analyses (i.e., was a single V. pallidum population involved or did the hybrid event pre-239 

date all sampled V. pallidum populations), we constructed an additional IUPAC dataset 240 

including all eight sampled individuals of V. pallidum. 241 

 242 

Concordance-discordance analyses 243 

Because high bootstrap support can be recovered from phylogenetic analyses 244 

despite a low number of genes supporting the topology (e.g., Minh et al., 2020), we 245 

additionally assessed conflict within our dataset using gene concordance factors (gCF; 246 

percentage of genes supporting a given clade) and site concordance factors (sCF; 247 

percentage of informative sites) as implemented in IQ-TREE. Individual IUPAC gene 248 

trees were used to calculate both gCF and sCF with 1000 random quartets in the sCF 249 

analysis (–scf 1000) for each of the topologies inferred from concatenated and species 250 

tree analyses (see above). 251 

Discordance was additionally assessed with PhyParts v0.0.1 (Smith et al., 2015). 252 

The best individual IUPAC gene trees inferred from IQ-TREE were rooted and outgroup 253 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020907/#B58
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taxa were removed with Phyx. Results from these analyses were visualized with the 254 

PhyPartsPieCharts script. As in the gCF/sCF analyses, we tested each of the topologies 255 

inferred from concatenated and species tree analyses. 256 

 257 

RESULTS 258 

Flow cytometry 259 

Flow cytometry analysis of silica-dried leaf material provided clear genome size 260 

estimation for 33 of 36 Cyanococcus samples (Appendix S1). Average 2C values ranged 261 

from 1.08–1.65 pg, within the range for diploid Vaccinium individuals previously 262 

determined by Hummer et al. (2015) and Redpath et al. (2022). Although we are in the 263 

process of reassessing the morphological characters traditionally used to define species in 264 

Cyanococcus, ploidy estimates mostly conformed to expectations based on 265 

morphological identification and observations of the size and density of stomata on 266 

second-year branchlets (Fritsch et al., in press). The one conspicuous exception is V. 267 

boreale, which was nearly indistinguishable on the basis of morphology from its 268 

tetraploid counterpart, V. angustifolium, although more detailed analysis of stomatal size 269 

and density may facilitate identification (Aalders and Hall, 1962).  270 

 271 

Sequence data 272 

 Of the 353 loci targeted with the Angiosperms353 probe set, we successfully 273 

captured and sequenced 348. Of these, 25 were flagged as potentially containing 274 

paralogs. After removing these loci and all columns containing more than 50% missing 275 

data, the final concatenated IUPAC alignment consisted of 323 loci of alignment length 276 
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672,737 bp (= characters); 22,421 of the characters were parsimony-informative. 277 

Individual supercontig gene (and allele) alignments ranged in length from 272 bp to 7064 278 

bp.  279 

 280 

Maximum likelihood analyses 281 

Concatenated maximum-likelihood (ML) analyses of the IUPAC dataset with IQ-282 

TREE resulted in an overall well-supported topology and maximally supported 283 

Cyanococcus clade (Fig. 2A). A northern lineage of V. boreale and V. myrtilloides was 284 

placed as sister to a large clade composed of the remaining taxa with distributions 285 

extending into the southeastern United States. Within this clade, we found three sister-286 

species relationships: V. elliottii-V. pallidum, V. darrowii-V. tenellum, and V. fuscatum-V. 287 

caesariense. This diploid analysis distinguished six maximally supported terminal 288 

groups. One sample of V. boreale was found to be nested within V. myrtilloides and our 289 

only sample of V. caesariense nested within V. fuscatum.  290 

 291 

Species tree analyses 292 

The SVDquartets analysis (IUPAC dataset) recovered V. elliottii as non-293 

monophyletic, with one sample sister to the V. fuscatum-V. caesariense clade and the 294 

other two in a much deeper position in the tree, albeit with low support (Fig. 2B). The 295 

remaining relationships were consistent with the results from IQ-TREE and ASTRAL-III, 296 

including the non-monophyly of V. boreale and the nested position of V. caesariense 297 

within the V. fuscatum clade (Fig. 2). ASTRAL-III analyses recovered a topology (Fig. 298 

2C and 2D) largely consistent with the concatenated ML results. However, the placement 299 
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of V. elliottii differed between IUPAC (Fig. 2C) and allele analyses (Fig. 2D). This taxon 300 

was recovered as sister to V. pallidum with the IUPAC dataset, whereas it was recovered 301 

as sister to other diploid highbush taxa, V. fuscatum and V. caesariense, with the allele 302 

dataset, again with low support. This conflicting placement was observed regardless of 303 

whether alleles were assigned to individuals (Fig. 2) or species (Fig. 3). Species tree 304 

analyses with STACEY placed V. elliottii sister to the V. fuscatum-V. caesariense clade 305 

and V. pallidum as a stand-alone lineage. This topology was recovered with both the 306 

IUPAC and allele datasets and is consistent with the topology inferred in our ASTRAL 307 

analysis of allele data. A unique topology in which V. pallidum is sister to the V. boreale-308 

V. myrtilloides clade was observed when scrutinizing the posterior distribution of trees 309 

(Fig. 4). This signal, however, is only present in the lowest 5% of the posterior 310 

distribution from the IUPAC analysis.  311 

 312 

Network analyses 313 

 Network analyses of both the IUPAC and allele data with SNaQ suggested a 314 

single hybridization event in our sampling of diploid taxa (Fig. 4; Appendix S2). 315 

Analysis of the allele data in which alleles were assigned to species recover V. pallidum 316 

as a hybrid taxon with parental lineages identified as V. elliottii and the clade comprising 317 

V. boreale and V. myrtilloides (Fig. 4A). Our estimates suggest a nearly equal parental 318 

contribution from these two lineages (gamma = 0.57 from V. elliottii and gamma = 0.43 319 

from V. boreale-V. myrtilloides). Subsequent analysis of the IUPAC data (in which 320 

sequences were assigned to samples rather than species) including eight V. pallidum 321 

individuals confirmed that the hybrid event predates the divergence of all sampled V. 322 
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pallidum populations and a nearly equal genomic contribution from V. elliottii (gamma = 323 

0.56) and an ancestor of V. boreale-V. myrtilloides (gamma = 0.44; Fig. 4C). 324 

 325 

Concordance-discordance analyses 326 

High levels of discordance were found within the IUPAC dataset. Despite high 327 

bootstrap and posterior probability values, we found relatively low gene (gCF) and site 328 

(sCF) concordance factors for the major clades recovered in concatenated and species 329 

tree analyses (Fig. 2). Regarding the inconsistent placement of V. elliottii, 1.9% of genes 330 

(41% of sites) place it sister to V. pallidum whereas 0.6% of loci (36% of sites) support V. 331 

elliottii as sister to V. fuscatum. These results are consistent with those obtained with 332 

PhyParts (Appendix S3).  333 

 334 

DISCUSSION 335 

Despite the reputation of Cyanococcus as taxonomically intractable, results from 336 

this study in addition to recent field experience has led us to agree with Ward (1974) that 337 

Cyanococcus “...is difficult but not in any way an irresolvable tangle of intergrading 338 

populations” (p. 192). Although high levels of gene-tree discordance and topological 339 

differences between concatenated ML and species tree methods were observed, the 340 

overall topology, monophyly of major clades corresponding to various morphospecies 341 

concepts, and placement of these clades were consistent across analyses and datasets. All 342 

analyses resolve a northern lineage of V. boreale and V. myrtilloides sister to the 343 

remaining primarily southeastern taxa. Moreover, the analyses consistently recover a 344 

close association between V. darrowii and V. tenellum and between V. fuscatum and V. 345 
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caesariense. These results are consistent with an early allozyme study of diploid 346 

Cyanococcus populations based on phenetic analysis (Bruederle and Vorsa, 1994). 347 

Observed areas of discordance are primarily from inconsistencies in the 348 

placement of V. pallidum and V. elliottii, suggesting hybridization involving these taxa. 349 

Network estimation specifically implicated V. pallidum as a hybrid taxon. Further 350 

analyses including numerous V. pallidum individuals sampled across a wide geographic 351 

range yielded results showing that the hybrid event predates the divergence of all 352 

sampled populations, suggesting that V. pallidum is a species of homoploid-hybrid origin. 353 

Parental taxa are suggested to be V. elliottii and the lineage giving rise to V. boreale and 354 

V. myrtilloides. A recent study of expressed sequence tag-polymerase chain reaction 355 

markers (Rowland et al., 2021) inferred V. pallidum as a close relative of V. boreale and 356 

V. myrtilloides, consistent with this supposition. Although several of our analyses 357 

inferred a sister relationship of V. pallidum with V. elliottii, none found V. pallidum to be 358 

sister to the V. boreale-myrtilloides clade. This signal does, however, appear to be present 359 

in our dataset when examining the posterior distribution of trees from a Bayesian analysis 360 

in STACEY. Vaccinium pallidum occupies a geographic range largely overlapping those 361 

of its two putative parents (which do not overlap in range), extending further north than 362 

V. elliottii and further south than either V. boreale or V. myrtilloides (Fig. 1).           363 

Morphologically, there are not immediately clear characters consistent with the hybrid 364 

origin of V. pallidum, though this would be expected if the hybrid event was ancient and 365 

V. pallidum has had sufficient evolutionary time to accumulate morphological attributes 366 

distinct from either parent. Moreover, the lack of intermediate morphological characters 367 

does not preclude V. pallidum as a potential hybrid taxon as hybridization is not 368 
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necessarily expected to leave a consistent or predictable phenotypic signature (Anderson, 369 

1948; Rieseberg et al., 1993). 370 

Monophyly for all morphospecies was recovered, with two notable exceptions: V. 371 

boreale and V. fuscatum. One sample of V. boreale consistently nested within V. 372 

myrtilloides and our V. caseariense sample nested within V. fuscatum (see also Bruederle 373 

and Vorsa, 1994). In the case of V. boreale, no evidence of gene flow was detected in our 374 

dataset, although hybrids of V. boreale and V. myrtilloides have been reported (Hall and 375 

Aalders, 1962). Gene flow was detected between V. caesariense and V. fuscatum in a 376 

sub-optimal SNaQ network (not shown), potentially explaining the non-monophyly of V. 377 

fuscatum. Alternatively, the longstanding decision to recognize V. caesariense 378 

(essentially a glabrous version of V. fuscatum occurring on the coastal plain) as an 379 

independent entity may be erroneous and the morphological attributes (i.e., the lack of 380 

pubescence on stems and/or leaves) used to distinguish it from V. fuscatum may merely 381 

be variation within a species. Regarding the V. corymbosum “highbush” concept, this 382 

result and the apparent sister relationship of V. elliottii would appear to at least partially 383 

corroborate Vander Kloet’s decision to combine these taxa into a single species. The 384 

morphologically distinct and phylogenetically cohesive V. elliottii, however, challenges 385 

this broad concept. Unfortunately, without the inclusion of polyploid taxa we cannot yet 386 

satisfactorily address this issue. Furthermore, we have sampled only two populations of 387 

V. boreale and one population of V. caesariense in this study; meaningful conclusions 388 

regarding these taxa must await further sampling and more in-depth analyses. 389 

Although our study of the morphological characters defining species in 390 

Cyanococcus is ongoing, our working morphospecies concepts for diploid Cyanococcus 391 
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taxa appear to be largely verified with molecular data, as is our hypothesis that the true 392 

species composition of this clade likely falls somewhere between the highly divided 393 

concept of Camp (1945) and the highly combined concept of Vander Kloet (1988).  394 

 395 

Alleles -vs- IUPAC data 396 

Recent studies have attempted to address questions as to the necessity of phasing 397 

alleles in phylogenetic reconstruction (e.g., Kamneva et al., 2017; Andermann et al., 398 

2018; Kates et al., 2018; Tiley et al., 2021). We found that in the presence of 399 

hybridization, IUPAC and allele data resulted in different topologies. Analyses of IUPAC 400 

data consistently inferred a close phylogenetic association between V. pallidum and V. 401 

elliottii, often as sister lineages. Conversely, allele data inferred V. pallidum as a lone-402 

lineage, phylogenetically intermediate between its two putative parental lineages. This 403 

pattern of phylogenetic intermediacy of hybrids relative to their parents has been 404 

previously observed across a wide range of time scales and data types, including 405 

morphological data from F1s produced through controlled crosses (McDade, 1990), 406 

RADseq data from putative naturally formed F1 hybrids (Hauser et al., 2017), and target-407 

enrichment data from taxa involved in ancient introgression events (Crowl et al., 2020). 408 

Allele data resolved V. elliottii as sister to other “highbush” taxa, i.e., V. fuscatum and V. 409 

caesariense, consistent with our network analyses. This pattern is recovered regardless of 410 

whether alleles were assigned to individuals or species. These results suggest that phasing 411 

alleles is useful in datasets containing hybrid taxa. 412 

 413 

On homoploid hybrids 414 
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Homoploid hybrid speciation is the process by which a new species is formed 415 

through hybridization of divergent parent lineages, but without an increase in ploidy 416 

(Grant, 1981; Rieseberg, 1997). Although several potential homoploid hybrid species are 417 

known in various plant groups, e.g., Carex (Hodel et al., 2022), Senecio (James and 418 

Abbott, 2005; Brennan et al., 2012), Iris (Arnold, 1993; Taylor et al., 2013; Zalmat et al., 419 

2021), Pinus (Wang and Szmidt, 1994), Penstemon (Wolfe et al., 1998), Paeonia (Pan et 420 

al., 2007), they appear to be somewhat rare in nature (but see Nieto Feliner et al., 2017). 421 

Results from the present study suggest that V. pallidum is an additional example. 422 

Whereas hybridization is well known in Vaccinium, to our knowledge this is the first 423 

report of a naturally formed homoploid hybrid species in the group.  424 

To further test this supposition, we additionally considered an F1 homoploid 425 

(diploid) hybrid resulting from a controlled cross between V. myrtilloides x elliottii. 426 

When included in our dataset, network analyses correctly inferred the parents of this 427 

hybrid plant and an equal genomic contribution from each parent (Appendix S2). 428 

Although far from conclusive, this test case serves as a positive control of sorts and 429 

provides increased confidence that our genomic dataset and analytical approach can 430 

accurately identify a homoploid hybrid taxon. We caution, however, that much work is 431 

needed to verify these findings, including further sampling of putative parental taxa, tests 432 

of reproductive isolation, investigation of niche divergence, and a detailed morphological 433 

study. 434 

 435 

What about polyploids? 436 
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Whereas our efforts have focused on the diploid species of Cyanococcus, the 437 

group contains numerous polyploid lineages. Polyploids, with more than two copies of 438 

each chromosome, remain difficult to analyze in a phylogenetic context. The central 439 

challenge of analyzing sequence data from polyploids, and especially allopolyploids, lies 440 

in identifying divergent homeolog copies from parental taxa. The majority of 441 

bioinformatic tools available for processing next-generation sequence data were 442 

developed for diploid organisms and therefore collapse variable homeolog sequences into 443 

a single consensus sequence for downstream analysis. For polyploids, this creates 444 

chimeric sequences that obscure signals of polyploidy and a polyploid mode of origin. 445 

Conversely, allelic data more accurately capture the complex genomic histories of 446 

polyploids and allow for the incorporation of divergent signals from polyploid loci into 447 

phylogenomic inference, thus distinguishing allopolyploidy from autopolyploidy and 448 

identifying parental taxa. 449 

The diploid phylogenetic estimate presented here in combination with recent 450 

advances in phylogenetic network analysis and a recently developed bioinformatics 451 

approach to phasing alleles for arbitrary ploidy from target enrichment data (Tiley et al., 452 

2021) provide an exciting opportunity to investigate polyploid Cyanococcus taxa and 453 

infer parentage and mode of polyploidization in this challenging group.   454 
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Figure Legends 679 
 680 
Figure 1. Geographic distribution maps for diploid Cyanococcus morphospecies. Black 681 
symbols indicate populations included in our broad survey of ploidy and morphology. 682 
Yellow symbols indicate a subset of those samples sequenced and included in 683 
phylogenomic analyses. 684 
 685 
     Figure 2. Comparison of topologies recovered from concatenated and species-tree 686 
analyses for the diploid Cyanococcus clade (highlighted in blue). Note the inconsistent 687 
placement of V. pallidum and V. elliottii populations between analyses and datasets. 688 
Sample numbers refer to the voucher table in Appendix S1. Values above branches 689 
indicate support (bootstrap or posterior probability). Values below branches indicate gene 690 
concordance factors (gCF) and site concordance factors (sCF). These are reported as 691 
gCF/sCF. Intraspecific (population-level) support values are not shown. (A) Phylogenetic 692 
estimate from IQ-TREE analysis of the concatenated IUPAC dataset. (B) Species tree 693 
inferred from SVDquartets analysis of the concatenated IUPAC dataset. (C) Species tree 694 
inferred from ASTRAL-III analysis of the IUPAC dataset. (D) Species tree inferred from 695 
ASTRAL-III analysis of the allele dataset.  696 
 697 
Figure 3. Comparison of species trees inferred with IUPAC and allele data. In both 698 
instances, alleles and IUPAC sequences were assigned to species. Note the inconsistent 699 
placement of V. pallidum and V. elliottii between datasets. (A) Species tree inferred from 700 
ASTRAL-III analysis of the IUPAC dataset. (B) Species tree inferred from ASTRAL-III 701 
analysis of the allele dataset. Values on branches indicate local posterior probability 702 
support.  703 
 704 
Figure 4. Evidence for the homoploid hybrid origin of Vaccinium pallidum. (A) Network 705 
inferred from the allele dataset in which alleles were assigned to species. Values on 706 
hybrid edges are the estimated genomic contributions from each parent (gamma). (B) 707 
Posterior distribution of Bayesian species-tree analysis. The lowest 5% of trees from the 708 
posterior distribution are depicted in yellow, showing alternative placement of V. 709 
pallidum sister to V. myrtilloides and V. boreale. (C) Network inferred from IUPAC 710 
dataset with increased population sampling. Note that the hybrid event predates 711 
divergence of all sampled V. pallidum populations.  712 
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Appendix S1. Voucher table.

Number Determination Author 2C genome size (pg)* Ploidy
PM-CY-075 Vaccinium fuscatum Aiton 1.45 2x
PM-CY-080 Vaccinium pallidum Aiton 1.38 2x
PM-CY-081 Vaccinium tenellum Aiton 1.35 2x
PM-CY-082 Vaccinium fuscatum Aiton 1.35 2x
PM-CY-084 Vaccinium fuscatum Aiton 1.38 2x
PM-CY-105 Vaccinium myrtilloides Michaux 1.43 2x
PM-CY-113 Vaccinium boreale Hall & Aalders 1.08 2x
PM-CY-114 Vaccinium myrtilloides Michaux 1.34 2x
PM-CY-120 Vaccinium myrtilloides Michaux 1.45 2x
PM-CY-122 Vaccinium boreale Hall & Aalders 1.35 2x
PM-CY-141 Vaccinium pallidum Aiton 1.36 2x
PM-CY-145 Vaccinium fuscatum Aiton 1.43 2x
PM-CY-171 Vaccinium arboreum Marshall - -
PM-CY-172 Vaccinium elliottii Chapman 1.21 2x
PM-CY-174 Vaccinium tenellum Aiton 1.21 2x
PM-CY-175 Vaccinium caesariense Mackenzie 1.30 2x
PM-CY-178 Vaccinium pallidum Aiton 1.25 2x
PM-CY-190 Vaccinium fuscatum Aiton 1.45 2x
PM-CY-191 Vaccinium darrowii Camp 1.37 2x
PM-CY-194 Vaccinium fuscatum Aiton 1.41 2x
PM-CY-200 Vaccinium tenellum Aiton 1.39 2x
PM-CY-201 Vaccinium elliottii Chapman 1.40 2x
PM-CY-205 Vaccinium darrowii Camp 1.31 2x
PM-CY-207 Vaccinium elliottii Chapman 1.32 2x
PM-CY-211 Vaccinium fuscatum Aiton 1.37 2x
PM-CY-214 Vaccinium fuscatum Aiton 1.44 2x
PM-CY-221 Vaccinium darrowii Camp 1.39 2x
PM-CY-223 Vaccinium pallidum Aiton 1.60 2x
PM-CY-224 Vaccinium pallidum Aiton 1.65 2x
PM-CY-226 Vaccinium pallidum Aiton 1.37 2x
PM-CY-227 Vaccinium myrtilloides Michaux - -
PM-CY-231 Vaccinium pallidum Aiton - -
PM-CY-234 Vaccinium macrocarpon Aiton 1.38 2x
PM-CY-240 Vaccinium pallidum Aiton - -
PM-CY-251 Vaccinium pallidum Aiton 1.33 2x
PM-CY-258 Vaccinium myrtilloides Michaux 1.29 2x
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PM-CY-299 Vaccinium tenellum Aiton 1.41 2x
PM-CY-301 Vaccinium stamineum L. - -
PM-CY-314 Vaccinium tenellum Aiton 1.32 2x

*The 2C genome size values reported here are averages of two independent runs



Section Location Latitude
Cyanococcus NC; Pilot Mountain, seep streamside, Grindstone trail, low elevation. Hairs on stems in two rows. 36.347191
Cyanococcus TN; Cherohala Skyway (Rt. 165); 0.5km E of Hemlock Rd turnoff; roadside35.362685
Cyanococcus NC; Duke Forest off of Gate 10 entrance. 36.022586
Cyanococcus NC; Duke Forest off of Gate 10 entrance. 36.022586
Cyanococcus NC; Duke Forest off of Gate 10 entrance. Hairless 36.022586
Cyanococcus NH; White Mountains; below Silver Cascade Falls 44.206797
Cyanococcus ME; Mt Desert Island; Cox Protectorate 44.402011
Cyanococcus ME; Mt Desert Island; Cox Protectorate 44.402011
Cyanococcus NH; White Mountains; north of Echo Lake along trail to Artists Bluff 44.182038
Cyanococcus NH; Mount Lafayette, NH, ridge trail 44.158272
Cyanococcus NJ; Cheesequake State Park; trail to Hooks Creek Lake, yellow trail 40.437405
Cyanococcus NJ; Cheesequake State Park; trail to Hooks Creek Lake, yellow trail 40.437405
Batodendron NC; Raven Rock State Park; Raven Rock loop trail 35.466053
Cyanococcus NC; Raven Rock State Park; Raven Rock loop trail 35.466053
Cyanococcus NC; Raven Rock State Park; Raven Rock loop trail 35.466053
Cyanococcus NC; Raven Rock State Park; Raven Rock loop trail 35.466053
Cyanococcus NC; Raven Rock State Park; Raven Rock loop trail 35.466053
Cyanococcus FL; along Gainesville-Hawthorn trail 29.591233
Cyanococcus FL; Gainesville; woods next to Walt Judd's house 29.571185
Cyanococcus SC; Dr Humphries Rd just before junction with Rt. 34 34.234087
Cyanococcus SC; Peachtree Rock Preserve, common along trail to the rock 33.830945
Cyanococcus GA; Cochran, Red Dog Farm Rd (dirt road) near junction with Magnolia Rd32.449065
Cyanococcus FL; Apalachicola NF, along Hwy 65, across from NF Rd 105 pullout. 30.28174
Cyanococcus FL; Telogia, along Hwy 65; 100m North of Telogia Baptist Church 30.354447
Cyanococcus FL; Racetrack Rd near intersection with FL-9B 30.105055
Cyanococcus FL; Yulee; Mentoria Rd near junction with Rt. 200 30.617185
Cyanococcus FL; Port Charlotte; Tippecanoe Environmental Park 26.994556
Cyanococcus VA; along Blue Ridge Parkway 37.927431
Cyanococcus VA; Blue Ridge Parkway, Ravens Roost Overlook 37.933354
Cyanococcus VA; Riven Rock Park, Harrisonburg; along Rawley Pike Rd. 38.517555
Cyanococcus WV; Canaan Valley; Freeland boardwalk 39.024692
Cyanococcus OH; West Branch State Park; along Aliance Rd 41.125812
Oxycoccus OH; Triangle Lake Bog State Nature Preserve 41.118853
Cyanococcus NC; Bull Pen road, North Carolina, Slick Rock
Cyanococcus NC; Trail from Shortoff Mt to Cole Gap 35.109372
Cyanococcus MI; Upper Peninsula; UNDERC Field Station; Tender Bog 46.230041



dataset:
F1 myr�lloides x ellio�i (alleles) -loglik
net0 230.960307
net1* 103.464253
net2 90.8944061
net3 90.8944061

*Network shown for each dataset.

dataset:
all diploids (alleles) -loglik
net0 142.493988
net1* 65.6625044
net2 59.9362875
net3 59.9362875

dataset:
all pallidum pops (IUPAC) -loglik
net0 5292.03115
net1* 2919.78883
net2 2855.42376
net3 2848.98776

Known F1 hybrid

Crowl et al.—American Journal of Botany 2022 – Appendix S2

Appendix S2. SNaQ results.

The best network selected (indicated with an asterisks) is shown below each table.
Likelihood values are given for each model tested from three datasets.
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Appendix S3. PhyParts results.
The best individual IUPAC gene trees inferred from IQ-TREE were used as input to visualize discordance for
the four main topologies (A-D) recovered with concatenated and species tree analyses (see also Fig. 2).
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