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Abstract. Solar-induced chlorophyll fluorescence (SIF) has
previously been shown to strongly correlate with gross pri-
mary productivity (GPP); however this relationship has not
yet been quantified for the recently launched TROPOspheric
Monitoring Instrument (TROPOMI). Here we use a Gaus-
sian mixture model to develop a parsimonious relationship
between SIF from TROPOMI and GPP from flux towers
across the conterminous United States (CONUS). The mix-
ture model indicates the SIF-GPP relationship can be char-
acterized by a linear model with two terms. We then esti-
mate GPP across CONUS at 500 m spatial resolution over
a 16d moving window. We observe four extreme precipi-
tation events that induce regional GPP anomalies: drought
in western Texas, flooding in the midwestern US, drought
in South Dakota, and drought in California. Taken together,
these events account for 28 % of the year-to-year GPP differ-
ences across CONUS. Despite these large regional anoma-
lies, we find that CONUS GPP varies by less than 4 % be-
tween 2018 and 2019.

1 Introduction

Terrestrial gross primary productivity (GPP) is the total
amount of carbon dioxide (CO,) assimilated by plants
through photosynthesis and represents one of the main
drivers of interannual variability in the global carbon cy-

cle (Le Quéré et al., 2018). As such, quantifying the spa-
tiotemporal patterns of terrestrial GPP is critical to under-
standing how the carbon cycle will both respond to and in-
fluence climate. Work over the past decade has shown satel-
lite measurements of solar-induced chlorophyll fluorescence
(SIF) to correlate strongly with tower-based estimates of
GPP (e.g., Frankenberg et al., 2011a; Yang et al., 2015; Sun
et al., 2017; Turner et al., 2020; Wang et al., 2020) and are
often used as a remote-sensing proxy for GPP.

This relationship between SIF and GPP is typically ex-
pressed through a pair of light use efficiency models (Mon-
teith, 1972) that relate GPP and SIF to the absorbed photo-
synthetically active radiation (APAR):

GPP = APAR x ®co,. (1
SIF = APAR x B®F, )

where ®co, is the light use efficiency of CO, assimilation,
®r is the fluorescence yield, and B is the probability of flu-
oresced photons escaping the canopy. Solving for APAR and
substituting, we can rewrite GPP as follows:

GPP = 20 g 3)
BPr
The derivation follows from Lee et al. (2013), Guanter
et al. (2014), Sun et al. (2017), and others.
This seemingly straightforward relationship between SIF
and GPP has been widely used to infer GPP from measure-
ments of SIF (e.g., Frankenberg et al., 2011a; Parazoo et al.,
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2014; Yang et al., 2015, 2017; Sun et al., 2017, 2018; Mag-
ney et al., 2019; Turner et al., 2020) with some work show-
ing that SIF captures more variability in GPP than APAR
alone (e.g., Yang et al., 2015, 2017; Magney et al., 2019).
However, there is much complexity encapsulated in the first
term of Eq. (3) (®co,/BPr). There is an ongoing debate
about what exactly SIF is telling us about GPP (e.g., Joiner
and Yoshida, 2020; Maguire et al., 2020; Dechant et al.,
2020; He et al., 2020; Marrs et al., 2020) and the spatiotem-
poral scales at which SIF and GPP correlate well. A recent
paper from Magney et al. (2020) presents a concise sum-
mary of the covariation between SIF and GPP at different
spatiotemporal scales and how nonlinear relationships at the
leaf scale often integrate to a linear response at the canopy
scale. This is due, in large part, to the fact that most of our
satellite measurements occur near the middle of the day when
the ®co,-Pr response is more or less linear and the observed
signal is integrated over many leaves.

Here we focus on the ecosystem-scale relationship be-
tween SIF and GPP, as that is the relevant observable scale
from spaceborne instruments. We begin by characterizing the
relationship between instantaneous SIF from the TROPO-
spheric Monitoring Instrument (TROPOMI) and half-hourly
GPP from flux towers. Following this, we use this ecosystem-
scale relationship to infer GPP at a spatial resolution of 500 m
using TROPOMI SIF measurements and identify drivers of
interannual variability in GPP. Previous work has identified
effects and responses such as drought (e.g., Sun et al., 2015),
flooding (Yin et al., 2020), and seasonal redistribution (But-
terfield et al., 2020) as important factors controlling interan-
nual variability in GPP.

2 Identifying distinct relationships between SIF and
GPP

We build on our previous work (Turner et al., 2020)
downscaling measurements of SIF to 500 m spatial res-
olution. Briefly, the TROPOspheric Monitoring Instru-
ment (TROPOMI; Veefkind et al., 2012) is a nadir-viewing
imaging spectrometer. TROPOMI has a 2600 km swath with
a nadir spatial resolution of 5.6 km along track and 3.5km
across track. Kohler et al. (2018) presented the first retrievals
of SIF from TROPOMI. As in Turner et al. (2020), we apply
a post hoc bias correction to ensure positivity of monthly av-
erage values, as systematically negative SIF values are non-
physical. We downscale individual TROPOMI scenes using
the near-infrared reflectance of vegetation index (NIRy) that
was proposed by Badgley et al. (2017, 2019). We use the
MCD43A4.006 (vO6) MODIS NBAR (nadir BRDF-adjusted
reflectance; bidirectional reflectance distribution function)
reflectances (Schaaf et al., 2002) to compute NIR,. Two no-
table differences from Turner et al. (2020) are the follow-
ing: (1) the analysis is extended to cover all of CONUS,
and (2) we now use a 16d moving window, thus including
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a full orbit cycle in each averaging window to minimize ef-
fects due to viewing-illumination geometry and noise. Sup-
plement Fig. S3 shows the improvement when averaging to
longer temporal windows with an r of 0.66, 0.74, 0.79, and
0.82 for instantaneous and 8, 16, and 32 d temporal windows,
respectively.

The extension to CONUS facilitates comparison of
TROPOMI SIF retrievals to flux tower data over a more rep-
resentative set of ecosystems and robustly infers the SIF-
GPP relationship. Specifically, there are 102 AmeriFlux
sites (Baldocchi et al., 2001) within CONUS that reported
data in 2018, 2019, or 2020, whereas (Turner et al., 2020)
only included 11 sites and did not have data from forests.
Figure 1 shows the location of these 102 AmeriFlux sites
overlaid on the dominant land cover. These eddy covariance
sites provide a direct measure of net ecosystem exchange
(NEE; CO, fluxes) (Baldocchi et al., 1988). We compute
GPP at each site using nighttime measurements of NEE as
a proxy for ecosystem respiration (Reichstein et al., 2005)
to partition the NEE into respiration and GPP. The Ameri-
Flux sites used here cover 10 ecosystems as defined by the
International Geosphere-Biosphere Programme: evergreen
needleleaf forest, deciduous broadleaf forest, mixed forest,
grassland, cropland, wetland, woody savanna, savanna, open
shrubland, and closed shrubland. These are the classifica-
tions reported with the AmeriFlux data as of July 2021
(https://ameriflux.1bl.gov, last access: 27 July 2021).

We characterize the relationship between TROPOMI SIF
and AmeriFlux GPP by plotting downscaled SIF observa-
tions against daily GPP from the nearest AmeriFlux site
(see Supplement Figs. S1-S3). The TROPOMI overpass time
varies over the orbit cycle. Frankenberg et al. (2011b) pre-
sented a simple approach to compute a “daily corrected” SIF
that accounts for variations in overpass time, length of day,
and solar zenith angle:

ftzfcos [SZA(x,y,7)]dr
cos[SZA(x, y, )]

ﬁ(x’y,t)ZSIF(x’y,Ts) k] (4)

where SIF(x, y, t;) is the instantaneous SIF, SZA is the lo-
cal solar zenith angle, 7 is sunrise, 7 is sunset, and T is
the hour corresponding to the TROPOMI overpass time. We
compare this daily corrected SIF against the daily GPP for
each AmeriFlux site. Specifically, the seven steps we take
here are as follows: (1) construct a time series of daily GPP
from each AmeriFlux site; (2) apply the post hoc bias correc-
tion to the TROPOMI SIF data; (3) compute the daily cor-
rection for TROPOMI SIF data; (4) downscale TROPOMI
scenes to 500m spatial resolution using MODIS NIRy;
(5) find all TROPOMI scenes that cover an AmeriFlux site;
(6) construct a time series of SIF observations from the 500 m
grid cell that contains the AmeriFlux site; and (7) regress co-
incident daily corrected TROPOMI SIF on daily AmeriFlux
GPP with a bisquare regression. The bisquare regression was
chosen due to robustness against outliers. Additionally, we
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Figure 1. Dominant land cover over the conterminous United States (CONUS). Colors show the dominant land cover over CONUS. Classifi-
cation is based on the 2019 USDA (United States Department of Agriculture) CropScape database (USDA, 2018). Forests are shown in green
croplands in yellow, and wetlands are in blue. Location of 102 AmeriFlux sites used in this study are shown as yellow stars. See Table S1 for

a list of all sites.

force the regression through the origin based on the physical
constraint that GPP should be zero if SIF is zero. We ob-
serve a linear relationship between SIF and GPP when plot-
ted against all ecosystems (Supplement Fig. S1) and when
separated by ecosystem (Supplement Fig. S2). Notable ex-
ceptions are closed shrubland, open shrubland, and savanna
ecosystems where SIF explains less than 10 % of the vari-
ability in GPP for AmeriFlux sites in those ecosystems due,
in part, to a low signal-to-noise ratio. These ecosystems typ-
ically have a small SIF signal, and the bright surfaces often
result in a higher retrieval uncertainty. This combination of
a small signal and high retrieval uncertainty results in a low
signal-to-noise ratio, complicating efforts to derive a robust
relationship between SIF and GPP for these ecosystems.
Many of the ecosystems exhibit a similar linear relation-
ship between SIF and GPP, which begs the following ques-
tion: what ecosystems have a distinct SIF-GPP relationship?
To address this, we bootstrap the bisquare regression for
each ecosystem 2000 times. The slopes from this bootstrap
can be seen in Fig. 2. The range of slopes vary from 13 to
18 (umol m2s~ 1)/ mWm=2sr ! s7!) with grasslands at
the low end and evergreen needleleaf forests at the high end.
We then use a two-component Gaussian mixture model (see,
for example, Bishop, 2007) to identify clusters of ecosys-
tems with a similar SIF-GPP relationship. The implemen-
tation of our Gaussian mixture model is adapted from Turner
and Jacob (2015). Parameters of the mixture model are ob-
tained via an iterative expectation—maximization algorithm.
A drawback of these mixture models is that they often find
local minima. To address this, we repeat the fitting of the
mixture model with multiple initializations and use simulated
annealing to search for a global minimum. We tested a range
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of mixture model sizes and found a mixture of two Gaussians
to be the most robust. Adding additional terms in the model
resulted in Gaussian functions that did not have the largest
weighting factor for any ecosystem. This is because ecosys-
tems like woody savanna and deciduous broadleaf have a
large spread in their slope. As such, there is a lot of uncer-
tainty, and the model does not find that they require a unique
regression slope. The resulting mixture model is overlaid on
the histogram in Fig. 2.

We observe a clustering of ecosystems with SIF-GPP rela-
tionships around 16.4 (umol m2s~ 1)/ mWm2sr ! s7h).
This grouping is the dominant weighting term for wetlands,
evergreen needleleaf forests, deciduous broadleaf forests,
mixed forests, cropland, and woody savanna. We refer to this
cluster as the “dominant cluster” and assume that ecosystems
not specifically mentioned elsewhere will have a response
that is similar to this primary cluster. The other component
of the mixture model corresponds to grasslands. Ecosystems
not explicitly mentioned use the dominant cluster for scaling
SIF to GPP. Table 1 lists the SIF-GPP relationships for these
two clusters. The uncertainty is the variance for the Gaussian
function for that particular cluster (see Bishop, 2007; Turner
and Jacob, 2015, for more on Gaussian mixture models). Pre-
vious work has also found unique SIF-GPP relationships be-
tween C3 and C4 plants using measurements from a tower
including a nonlinear response in C3 plants (He et al., 2020);
we examined this here using two AmeriFlux sites in corn
fields and two in potato fields. We do observe potential differ-
ences in the SIF-GPP relationship between these C3 and C4
systems (see Supplement Fig. S5). The difference in the SIF—
GPP relationship for C3 and C4 systems seen here is also sim-
ilar to what was observed using NIR, (Badgley et al., 2019).

Biogeosciences, 18, 6579-6588, 2021
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Figure 2. Identifying distinct SIF-GPP relationships across ecosys-
tems. Histogram shows the distribution of slopes that map SIF to
GPP using a bisquare regression and a 2000-member bootstrap.
Colors denote the different ecosystems, and triangles at the bot-
tom show the mean for that ecosystem. Gray distributions are from
a two-member Gaussian mixture model, and the stars indicate the
mean for that component.

Table 1. SIF-GPP relationships for different groupings.

Cluster SIF-GPP relationship* (s;)
Dominant cluster 9.1£0.2
Grassland 11.0+0.3

* All SIF-GPP relationships have units of
(gC m—2d-! )/ (mW m2sr~ ! nm~! ). Uncertainty is the
diagonal of the covariance matrix for the mixture model.

These relationships can be used to reconstruct GPP from
TROPOMI SIF as follows: GPP = SIF x (Zl f,~s,~), where s;
is the SIF-GPP relationship in Table 1 for the ith cluster and
fi is the fraction of a grid cell represented by that cluster.

TROPOMI is in low earth orbit and only observes a snap-
shot in time. The equatorial overpass time at nadir is 13:30
local time. We compute a daily corrected SIF that accounts
for variations in overpass time, length of day, and solar zenith
angle (Frankenberg et al., 2011b; Kohler et al., 2018):

frf)fcos [SZA(x,y,7)]dr

SIF(x,y.1) = SIF(x, y. T
(x,y,1) (¥, 3, 7) cos[SZA(x, y, 75)]

&)

where SIF(x, y, t) is the instantaneous SIF, SZA is the local
solar zenith angle, 79 is sunrise, T is sunset, and 7y is the
hour corresponding to the TROPOMI overpass time. More
formally, we scale the instantaneous SIF by the ratio of the
integral of the cosine of the solar zenith angle (SZA) over the
day to cos(SZA) from the TROPOMI overpass time. Putting
everything together, we estimate daily GPP from TROPOMI
SIF observations as follows:

GPP(x,y,1) = SIF(x, . 1) -y ) si fi(x. y), (©6)

where SIF(x, y, t) is the 500 m downscaled SIF using a 16d
moving window, y is a unit conversion from umol to gC, s;
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is the SIF-GPP relationship inferred from comparison with
AmeriFlux GPP (see Table 1), f;(x,y) is the fraction of the
grid cell represented by the ith cluster, SZA is the local so-
lar zenith angle, 7 is sunrise, 77 is sunset, and T, is the hour
corresponding to the TROPOMI overpass time. We do not in-
clude information on cloud cover in our approach; this could
potentially be included in the future to account for diurnal
variations in PAR.

Our estimate of GPP is proportional to SIF and the regres-
sion coefficients: GPP o SIF- - -;. As such, we propagate our
uncertainties in quadrature:

<8GPP )2+Z<8GPP )2
lof = —O0g5 Og.
o dSIF —\ s,

= \/ (osr Y ,sifite. )

FY (TR y.0) -0y ysi filx, )’ @

1

where oggg is the uncertainty in the daily corrected SIF and
oy, 1s the uncertainty in the SIF-GPP relationship.

3 Drivers of interannual variations in US gross
primary productivity

Figure 3 shows annual mean GPP across CONUS inferred
from TROPOMI SIF measurements using Eq. (6). A number
of prominent features are visible such as the Central Valley of
California, the Snake River Valley in Idaho, and the Adiron-
dack Mountains in upstate New York. California’s Central
Valley and Idaho’s Snake River Valley are both major agri-
cultural regions in the western US (e.g., the Central Valley
of California accounts for more than 15 % of irrigated land
in the US). The Adirondack Mountains are a roughly circu-
lar dome that rise above the surrounding lowlands, result-
ing in a shorter growing season and lower annual mean GPP.
This shortened growing season can be seen in an animation
of GPP over CONUS (Video Supplement).

We observe substantial GPP across the eastern US (delin-
eated here by 98° W) with annual mean values generally in
excess of 5gCm~2d~!. This region accounts for less than
half of the land but more than 70 % of the annual GPP. This
delineation in GPP roughly coincides with the location of
drylands in CONUS that are more sensitive to changes in pre-
cipitation as inferred by measurements from the Global Pre-
cipitation Measurement (GPM) mission (specifically, we use
the GPM_3IMERGDE.06 product); drylands are also pro-
jected to expand in future climate (Yao et al., 2020). Most
of the large year-to-year differences occur in these western
US drylands (see Fig. 3c), a notable exception being a neg-
ative GPP anomaly in 2019 relative to 2018 that extended
across Illinois, Indiana, and Ohio. Here we highlight four
precipitation-driven GPP anomalies, which taken together,
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Figure 3. Interannual variations in gross primary productivity across CONUS. Map of annual mean GPP for 2018 (a) and 2019 (b). (c) Map
of the difference in annual mean GPP between 2019 and 2018. Red indicates higher GPP in 2019, and blue indicates higher GPP in 2018.
Inset in the bottom left corner shows a time series of the average GPP across CONUS for 2018 and 2019.

account for 28 % of the interannual GPP variability across the
United States: (1) 2018 drought in western Texas, (2) 2019
midwestern crop flooding, (3) 2018 drought in South Dakota,
and (4) 2018 drought in California. Figure 4 summarizes the
interannual precipitation differences that we hypothesize are
responsible for explaining these four GPP anomalies.

The largest positive GPP anomaly in 2019 relative to 2018
was observed across western Texas. This single event ac-
counted for 11 % of the year-to-year difference in GPP across
CONUS with an annual GPP of 0.65 4 0.47PgC in 2018
and 0.76 £0.45PgC in 2019. From Fig. 4a, we observe
50 % higher GPP in spring 2019 compared to spring 2018.
This increase in GPP was driven by a lack of precipitation
in spring 2018. The cumulative precipitation from October
2017 through June 2018 was 50 % less than October 2018
through June 2019 (500 mm vs. 1000 mm). The other no-
table difference between GPP in 2018 and 2019 was a sec-
ond peak during fall 2018 that was not present in 2019. This
second peak coincided with a series of precipitation events

https://doi.org/10.5194/bg-18-6579-2021

beginning in early September. This tight coupling between
GPP and precipitation is expected for dryland systems such
as western Texas (e.g., Smith et al., 2019). The seasonal GPP
dynamics inferred from TROPOMI SIF are also present in
the MODIS vegetation index NIR,, albeit with slight differ-
ences in magnitude, implying convergent responses in SIF
and NIR, for this ecosystem.

The second largest anomaly is the reduction in 2019 GPP
relative to 2018 across midwestern crop areas (specifically
Illinois, Indiana, and Ohio) that accounted for 7 % of the
year-to-year difference in CONUS GPP. The 2018 annual
GPP was 0.70 £0.12 and 0.63 = 0.14 PgC in 2019. We ob-
serve a decrease in the maximum GPP between 2019 and
2018 as well as a 2-week delay in the timing of the max-
imum. This anomaly was highlighted in recent work from
Yin et al. (2020), who attribute the anomaly to flooding in the
midwestern US. The flooding delayed the planting of crops
by 2 weeks and resulted in decreased carbon uptake across
the midwestern crop areas and Mississippi Alluvial Valley,

Biogeosciences, 18, 6579-6588, 2021
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Figure 4. Major drivers of interannual variability in CONUS GPP.
Black line shows the TROPOMI-derived GPP over Texas (a), the
midwestern crop region (b), South Dakota (c), and California (d).
Blue line shows the cumulative precipitation over the water year as
measured by the GPM satellite. Green line is NIRy from MODIS.
Black and green dotted lines are 2018 GPP and NIRy superimposed
on the 2019 time series.

where we also observe a negative anomaly in Fig. 3c. Yin
et al. (2020) provide a detailed discussion of these floods and
their impacts on crop productivity.

South Dakota exhibits a dipole with positive anomalies in
2019 in the west and negative anomalies in the east, again
relative to 2018. The 2018 annual GPP was 0.20 £0.09 and
0.63 £0.08 PgC in 2019. The negative anomalies in the east
are driven by the flooding events discussed above and in Yin
et al. (2020). However, the positive anomaly in the west-
ern portion of the state is the dominant term. This positive
anomaly is driven by a series of summer precipitation events
that served to extend the growing season across the western
plains. From Fig. 4c, we can see three precipitation events
throughout the mid-to-late summer that coincide with pauses
in senescence: mid-July, early August, and mid-September.
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Figure 5. Comparison of the seasonal cycle inferred from
TROPOMI SIF to FluxCom and FluxSat. Red lines indicate the
2018 seasonal cycle, and blue lines indicate the 2019 seasonal cycle
for TROPOMI (dashed lines), FluxSat (dotted lines), and FluxCom
(solid lines). Thin gray lines are years 2001-2017 for FluxCom.

As with Texas, this highlights the tight coupling between
GPP and precipitation for dryland systems. In total, these
precipitation events served to increase statewide GPP in 2019
relative to 2018.

The final notable anomaly is California’s positive GPP
anomaly in 2019. The 2018 annual GPP was 0.27 £ 0.24 and
0.33 £0.26 PgC in 2019. The year 2018 had a mild drought
in California with ~ 80 % of the state being classified as ab-
normally dry; 2019 had 50 % more precipitation during the
water year than 2018 (Fig. 4c). Two consequences of this
drought in 2018 were a delayed onset of photosynthesis and
a mid-summer senescence. The onset of photosynthesis in
2018 coincided with a series of atmospheric rivers that de-
livered about a third of the total precipitation that year, indi-
cating a water limitation up to that point. In contrast, 2019
had ample precipitation through the winter, and we observe
both an earlier onset of photosynthesis and an extension of
the growing season into the fall. Evergreen forests are the
main contributor to the SIF signal during the summer and
fall (Turner et al., 2020) and, as such, will be more sensi-
tive to the accumulated precipitation. The spatial pattern of
the differences in August—November GPP (Fig. S4) strongly
correlate with evergreen forests.

In contrast to the anomalies presented earlier, the SIF-
derived GPP and MODIS-based vegetation index (NIRy)
show divergent seasonal dynamics for California. NIR,
shows small differences between 2018 and 2019 with a
strong similarity to the 2019 SIF-derived GPP. The season-
ality of NIR, is similar to that of the leaf area index (LAI)
derived from MODIS (see Supplement Fig. S6), implying a
biophysical signal. Vegetation indices derived from the red
and NIR part of the spectrum estimate photosynthetic capac-
ity provided optimal soil moisture, temperature, and PAR are
known (Sellers, 1985). As such, this suggests that we ob-
served a downregulation of photosynthesis from evergreen
forests in response to a water limitation during fall 2018,
whereas these forests were close to photosynthetic capacity
in fall 2019 resulting in a similar seasonality to 2018 and

https://doi.org/10.5194/bg-18-6579-2021
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2019 NIR,. Sims et al. (2014) also report a low sensitivity of
MODIS vegetation indices to drought stress in forests.

We additionally compare our GPP estimated from
TROPOMI SIF to previous work developing gridded GPP
products using machine learning. Specifically, the Flux-
Com initiative (http://www.fluxcom.org/, last access: 27 July
2021 Jung et al., 2020) and FluxSat (Joiner and Yoshida,
2020) independently trained machine-learning models to
predict gridded GPP from eddy covariance sites using
remote-sensing data (including MODIS). Figure 5 shows
the CONUS seasonal cycle from FluxCom, FluxSat, and
TROPOMI. The seasonal cycles of GPP inferred from
TROPOMI and FluxSat are generally in agreement with a
similar magnitude, while FluxCom predicts 35 % less GPP.
Additionally, the interannual variability in GPP over CONUS
inferred from TROPOMI SIF is larger than what is pre-
dicted by either FluxCom or FluxSat, both of which show
little interannual variability. The low interannual variability
is particularly evident in FluxCom, where we can see a small
spread in the variability from 2001 to 2017 (gray lines).

4 Conclusions

We have developed a parsimonious relationship between
measurements of SIF from TROPOMI and GPP inferred
from flux towers. This relationship allows for the estima-
tion of GPP directly from TROPOMI SIF measurements.
We combine this SIF-GPP relationship with work downscal-
ing TROPOMI data to 500 m spatial resolution to construct
estimates of GPP across the conterminous United States in
2018 and 2019. We observe large regional anomalies that
are driven by extreme precipitation events. Namely, western
Texas, South Dakota, and California experienced droughts in
2018, while midwestern US crop areas (Illinois, Indiana, and
Ohio) experienced flooding in 2019. Taken together, these
four events account for 28 % of the year-to-year variability
in GPP across the conterminous United States. Despite these
large regional anomalies, our estimate of US GPP varies by
less than 4 % between 2018 and 2019.

The impact of the western Texas drought, South Dakota
drought, and midwestern flooding are observed in other
remote-sensing measures of photosynthetic capacity such as
NIR,, while the California drought shows a divergent re-
sult using SIF; the divergent responses are driven by specific
ecosystems such as evergreen forests. Our work suggests that
SIF provides a measure of photosynthetic activity as opposed
to photosynthetic capacity and converges with other remote-
sensing measures under nonstressed conditions. Future work
investigating the response to extreme events in evergreen sys-
tems may provide additional insight into these divergent re-
sponses in remote-sensing measurements related to photo-
synthesis.
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