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Abstract—In this article, we address the problem of esti-
mating the location of gas leak sources using sparse unre-
liable spatio-temporal chemical sensor data. We pose the
task of estimating the underlying gas signal and predicting
the source location as an inverse problem. For this purpose,
we develop a novel deep-learning projection-based frame-
work. We incorporate traditional projection-onto-convex-sets
(POCS) iteration in the structure of the deep model to obtain
a regularized solution that conforms to our prior knowledge
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of the spatio-temporal structure of the gas concentration distribution. We use discrete cosine transform (DCT) layers
to model the smooth nature of the gas plume signal. In the DCT domain, we project the feature maps onto a low-pass
region, whose boundary is determined during training using the backpropagation algorithm. This operation is equivalent
to projecting onto a convex set. Furthermore, these projection operations are embedded in the nonlinear structure of
a convolutional neural network. We address two different types of data: methane—propane leak from industrial plants
and isopropyl alcohol (isopropanol) vapor leak in an indoor environment. Experimental resulis are presented. Our results
show that we can obtain a smooth estimate of the underlying gas signal while obtaining a good source location prediction

with high accuracy.

Index Terms—Deep learning, discrete cosine transform (DCT), inverse problem, multiple-sensor systems, source

identification.

|. INTRODUCTION

AS leak detection is crucial for environmental and
security purposes. The rising levels of organic gases such

as methane in the atmosphere are very concerning for the envi-
ronment because of their strong greenhouse effect. This makes
developing leak gas detection technology crucial to reducing
emissions and combating climate change. On another note,
gases such as ammonia (NH3) are by-products of improvised
explosive devices (IEDs) that can wreak havoc on life and
property. In light of this, detecting ammonia in these scenarios
can immensely help in the early identification of such dangers.
volatile organic compound (VOC) gas detection technolo-
gies encompasses methods such as satellite imagery [1], [2],
[3], commercially available bolometer-type IR cameras [4],
spectrometry [5], and chemical olfactory technology [6], [7].
While these technologies vary vastly based on the application,
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chemical sensors are the cheapest and most flexible to use
in cyber-physical systems (CPSs) for indoor and outdoor
environments. Chemical sensors can detect a wide array of
gas analytes such as ammonia, methane, acetone, ethylene,
ethanol, and toluene [8]. Nonetheless, one of the most impor-
tant challenges facing electronic nose technology is the sensor-
to-sensor response variations. These variations arise due to
aging and environmental factors such as temperature and
humidity. This phenomenon is referred to as sensor drifi.
Furthermore, sensor calibration is costly and impractical.

Isopropyl alcohol can be detected by low-cost chemical field
effect transistors (ChemFET) [7], [9]. The low cost of this
technology and its relative ease to connect to processing units
have spurred interest in developing CPSs for dangerous gas
detection and source targeting [7]. In [7], a crowd-sourcing-
based CPS system for IED detection in large public events is
envisioned. In their system, a large number of mobile sensory
units are hosted by volunteers among the crowd. These units
are attached to the participants’ smartphones, and the data
is sent to a central server to be analyzed. Given the limited
accuracy of the sensors, the CPS employs a two-level feedback
logic.

A. Gas Source Localization

While the inherent inaccuracies of sensor measurements are
an issue in their own right, determining the source location is
challenging even with ideal sensors. Many methods have been
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suggested to estimate the location of gas source leaks, indoors
and outdoor. Traditional approaches rely on expert-knowledge
modeling and analyses. One of the most popular models is
the Gaussian plume model [10], [11], thanks to its simplicity.
Ma et al. [10] estimated the model parameters using different
optimization algorithms and determine the source location
accordingly. Yong et al. [12] maximized the likelihood func-
tion of a Gaussian plume model in an indoor setting and
perform tracking by moving toward the predicted source
location. Ma et al. [13] adopted a wave dispersion model to
locate the gas source based on computational fluid dynamics
(CFD). They argued that the downwind distance to the source
is linearly correlated with the time it takes gas concentration to
stabilize. Other approaches include the use of nonparametric
models such as Gaussian processes regressions [14]. In [14],
a Bayesian prior of Gaussian processes was assumed and,
based upon the density construction, tracking was conducted
using simulated annealing to balance between exploration
and exploitation. Asenov ef al. [15] optimized an Eulerian
simulator model given with the observed measurements of
the sensors and the wind information as the initial conditions.
The sensors are mounted on unmanned autonomous vehicles
(UAVs). The UAV is then flown to the location that maximizes
a likelihood score.

While the previous work explores a wide array of
approaches, simulation-based models are complicated and
require thorough domain-based fluid dynamics or meteorologi-
cal knowledge. On the other hand, semianalytical plume-based
morphology models assume knowledge of the wind informa-
tion and assume substantial homogeneity of the wind field.
Furthermore, selecting the best model is nontrivial and requires
expert knowledge [16].

B. Bandlimited Interpolation Using a Deep Neural
Network

The limitations mentioned above motivate us to find a
generic framework to address the problem of gas source
localization that does not require expert knowledge. For
this purpose, we pose the problem as an inverse image-
interpolation problem, and, by using the interpolated images,
one can predict the source location. Furthermore, we are
interested in a data-driven framework to improve the solution
to the inverse problem. In this work, we combine tradi-
tional image-processing algorithms. In particular, we use the
Papoulis—Gerchberg (PG) algorithm [17] and deep convolu-
tional neural networks to achieve this.

Generally speaking, signal and image interpolation prob-
lems are ill-posed inverse problems [18]. Without any prior
assumptions, there exists an infinite number of solutions.
Only a very small set of these solutions is meaningful. The
primary assumption we employ is that the gas density signal is
bandlimited in the Fourier domain. In other words, the signal
exhibits low-pass behavior. The bandlimitedness assumption is
widely used in many signal-processing applications, especially
in the case of sparse input data. In this work, we define ban-
dlimitedness in the discrete-cosine-transform (DCT) domain,
instead of the frequency domain, as usual. The main reason is
to avoid dealing with complex arithmetic.

In addition, we incorporate a deep neural network in our
iterative procedure to introduce data-driven regularization to
the ill-posed problem and to overcome the limitations of ban-
dlimited interpolation. We use the backpropagation algorithm
to optimize our neural network. After obtaining a gas density
image, we predict the source location based on the peak values
of the image.

C. Isopropyl Alcohol and Methane Leak Source
Identification

In this article, we consider two different scenarios. In the
first case, we assume that we have a large number of methane
sensors, and we can estimate the gas distribution image (a 2-D
function) in a given area. Given that the gas distribution image
must be slowly varying and smooth compared to images of
rigid objects with sharp edges, we assume a low-pass behavior
for the gas distribution as in [19]. In the second case, we have
a small number of isopropyl alcohol sensors, and we use the
temporal history of the sensor data to predict the location of
the isopropyl alcohol gas source. We also assume a low-pass
behavior in 1-D sensor measurement data and take advantage
of the PG algorithm to estimate the 2-D gas distribution.

The proposed method not only applies to chemical sensors,
but also to infrared (IR) and other point sensors.

D. Article Organization

The organization of this article is as follows. In Section II-
A, we lay out the mathematical background for bandlim-
ited image interpolation. Furthermore, we explain the deep-
learning-based bandlimited interpolation framework we devel-
oped. In Section III-A, we describe our isopropyl alcohol
data acquisition and the preprocessing of the methane data.
In Section IV, we explain our experimental settings and report
our results. Finally, we provide our conclusion.

Il. DCT-BASED BANDLIMITED INTERPOLATION

Our problem is to estimate the concentration of the chemical
gas distribution in a given region from sparsely located sen-
sors. This is essentially an interpolation problem. In the classic
image interpolation (completion) problem, one is presented
with a subset of image pixel intensities, and the task is to
find the missing points from the given point. The interpolated
points should conform to a certain assumption made a priori.
After we interpolate the relative gas distribution, we can
identify the maxima of the interpolated distribution and locate
the source of the gas leak.

We assume that the gas concentration field is a discrete
image xg[m,n]. We approximately know xg[m,n] at some
locations § = {(m;,n;) | i = 1,2,...,L}, where L is
the number of sensor measurements. We pose the problem
as a constrained optimization problem, that is, finding a
bandlimited signal whose pixel intensity at the given pixel
locations is identical or as close as possible to the intensity
of these given pixel values. Interpolating signals via the
bandlimitedness assumption has been well studied over the
past [20], [21], and it has been successfully applied in many
areas such as image super-resolution [22], direction-of-arrival
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Fig. 1. Block diagram of the proposed data interpolation framework. The POCS procedure is run with different bandwidth parameters and the resuits
are fed to a convolutional neural network. The process is repeated. There are residual connections between each block.

(DoA) estimation [23], and medical imaging [24]. While
signals cannot simultaneously be bandlimited and have finite
support, a large class of natural finite-support signals has most
of their spectral energy concentrated in a finite bandwidth. This
means that one can obtain a “good” bandlimited approximation
of such signals.

There exist many algorithms to solve bandlimited inter-
polation problems. One of the classical image interpolation
methods is the PG algorithm and its variants [17], [25],
[26]. This class of algorithms falls under the more generic
framework of alternating projection onto convex sets (POCS).

In the PG algorithm, the problem is posed in a Hilbert space
framework, and we are interested in recovering the image x, €
RMx*N where M and N are the width and the height of the
image. To achieve this, it is assumed that the image x, is
bandlimited in the Fourier domain. This means that the signal
lies in the intersection of two convex sets in R¥*V defined
as follows:

Ci:={x cRM*N | X (w1, @7) =0 when (w1, @2) ¢ SUPPrw}
(1)

where X denotes the discrete-space Fourier transform of an
image x, and SUPPpw represents a low-pass region in the
Fourier domain, and

RM x N

Con={xc | x(m,n) = xg(m, n) for (m,n) € S}.

2

The two sets are known to be closed and convex sets in
RN*M 118]. The PG algorithm is an iterative algorithm since
it performs successive orthogonal projections onto C; and C; to
generate a sequence of iterates

= ppy(xk), k=1{0,1,2,..) ®)

where P; and P, are the orthogonal projection operators
onto C; and Cp, respectively. If the intersection C; N Cy is
nonempty, the iteration converges to a solution x* € C; N Cy.
It is assumed that the intersection is nonempty. Since the sets
C1 and C; are closed and convex, the projection operators are
firmly nonexpansive operators and so is the composite operator
PP [18].

Typically, projecting onto the set C; is implemented in the
Fourier domain. First, the discrete Fourier transform (DFT) of
x* is computed and all the high-frequency components of X €
are forced to zero. Then its inverse DFT is computed. The

resulting image may have different values than xg[m, n] in in

the spatial domain at locations (m, n) € S. The projection onto
C, imposes the known image values such that xzy1(m,n) =
Xg(m,n),¥(m,n) € S. The process is then repeated until
the algorithm converges to a solution or to a fixed point
x* = Py Pyx*. In this article, we use DCT instead of DFT
to implement the iterative interpolation algorithm.

Despite its appealing concept, this alternating projection
method has its limitations. First of all, the assumption of
bandlimitedness does not hold in reality, given that bandlim-
ited signals must have infinite support in the space domain.
In reality, the spectrum of natural signals decays very quickly
at high frequencies, so one should in principle find an effective
“bandwidth” for good interpolation. Nevertheless, signals vary
in their spectral energy distribution, and finding an effective
bandwidth parameter for each case is nontrivial. This makes
the algorithm impractical for automated tasks.

Another concern is that the bandlimited interpolation is opti-
mal in the mean-square sense. This means that interpolating
the signal via the aforementioned algorithm is likely to gloss
over some fine details that are crucial in some applications,
as in locating the gas source in our case.

A. lterative Projection Onto Convex Sets Using DCT

Let x;, € RY*N be the true gas field image. Since the
sensor measurement data is 2-D, we can consider it as an
image whose spatial dimensions are the same and equal to N.
Extension to three dimensions is straightforward. Let Mnz €
{0, 1" be a logical mask such that Mz, ; = 1 if there is
a nonzero measurement at location (i, j) and zero otherwise.
Let Mz € {0, 1}¥*¥ be a logical mask such that Mz, = 1 if
the reading at location (i, j) is equal to 0 and 1 otherwise. Let
o denote the Hadamard (elementwise) matrix product. Given
the sparse input map x; := x; o Mz, our objective is to
recover the missing points xg o (1 — Mnz — Mz). In other
words, we want to find an estimate £ ¢ BR¥*N such that
XoMnz = x3 = xg o Mnz and X o Mz = 0. The signal
X must also be bandlimited. Finally, ¥ must be nonnegative
since the true gas field signal is nonnegative. The nonnegativity
constraint also corresponds to a half-space which is also a
convex set.

The constraints X € C; is expressed as follows:

[X1;j = [Toctilij =0 VG, j) ¢ SUPPrw “4)

where 7 : RV » RN*N s the 2-D type-II DCT,
and SUPPgw is a discrete set ¢ {0,1,...,N — 1}x
{0,1,...,N —1J.
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We defined the bandwidth support (region) as
SUPPw :={(@, j)| i +j <BW} )

for some integer number BW. This corresponds to a triangular
area in the DCT domain. Given the DCT X of an image, the
projection onto the DCT-bandlimited subspace is given by

[X)ij, i+j<BW
0, otherwise.

[PDCI')A(]U i= [ (6)

The projection onto the C; is simply done by equating
the interpolated image with the given spatial constraints
foMnz = X, = Mnzoxg and £ o Mz = 0. The
alternating projection procedure is summarized as pseudocode
in Algorithm 1.

Algorithm 1 Pseudocode for the DCT-Based Iterative
POCS. g Is the Initial Estimate, x; Is the Given Input
Measurements, Myz and Mz Are Both the Nonzero and
the Zero Measurements Masks. X; Is the Interpolated Image
at Step i. I Is the Total Number of Iterations. Lower-Case x
and y Are in the Space Domain, While Uppercase X and ¥
Are in the DCT Domain. a € R Is an Acceleration Factor
Given in (7), and (.)+ Zeros Out Negative Values

Input: Xp, x;, Mnz, Mz, I, BW
1 create projection mask Ppcr with parameter BW
2fori=11% 1Ido
3 X = Tperk;
4 Y =PpcrX

(take DCT)
(Bandlimiting)
y=aTycY  (inverse DCT)

2

6 | y=Mnzoxg+(1—Mnz)oy
7| y=(01—-Mz)oy

§ | T =)y

9 end

10 returnx’

The acceleration factor & in Algorithm 1 is a normalizing
scalar that can be chosen to accelerate the convergence. In this
work, we set a to

(Mngz o (T71Y), x5)

a= 7
[IMnz o (T-1Y)|13 + €

which minimizes the mean-square error between the inter-
mediate values of y at the given locations and the given
constraints x; = Mnz o X, and € is a small number to ensure
numerical stability. This accelerated version of the algorithm
was first proposed in [27] and is proved to converge to a
solution, provided one exists, that is, the intersection of the
sets is nonempty.

B. Deep Regularizer-Based lterative Completion

It is well known that the bandlimited interpolation is an
ill-posed problem [18], [20]. This means that, even with the
bandlimiting assumption, the solution can still be far from the
desired one. In general, one can add regularization functions to
the bandlimiting interpolation problem and solve the following

optimization problem:

min f(x)
stxely
xel
x=>0. 8)

Youla and Webb [18] used the energy of the image, that is,
the square of the £2 norm as f(x) to regularize the image
construction. In general, for a subdifferentiable regularizer
function, one can solve the problem posed in (8) using the
following iteration:

y = POCS(x")
x+1 = Prox;¢(y) ©)

where POCS refers to the procedure described in Algorithm 1
and Prox;s(y) := argmin,{(1/2)||y — zlI2 + Af ()} is the
proximal operator of the regularizing function f(.) with hyper-
parameter A > 0. If the function f(.) is differentiable, the
proximal operator reduces a regular gradient-descent update
step.

Nevertheless, one of the main difficulties involving the
previous procedure is to find an appropriate regularizer func-
tion f(x), whose proximal operator can be calculated eas-
ily. Instead, we use deep learning to learn a data-driven
regularization procedure. This practice has been applied in
many approaches, such as learned iterative shrinkage algorithm
(ITSA) and deep-based landweber iterations [28], [29], [30].
Instead of directly learning a regularizing function f(x), one
can replace the second step in the procedure in (9) with
a function DNN(y), where DNN stands for a deep neural
network. The procedure now becomes

y = POCS(x’)

x'+1 = DNN(y) (10)

where DNN is a deep neural network that we train using
past data for the task. The forward model DNN(.) can be
interpreted as applying a data-driven regularization step.

C. Interpolation With Unknown Bandwidth

Another important reason for incorporating deep learning
in the POCS approach is to overcome the fact that we do
not know the bandwidth parameter suitable for each case,
as mentioned before. For this purpose, we propose solving the
problem with different preset bandwidth parameters in parallel
and let the deep neural network in the procedure given in (10)
fuse the different solutions and decide on which one fits the
observed data.

To achieve this, we run the DCT-based POCS algorithm
for different bandwidth values in parallel. Let the set of
bandwidth parameters be B}V, where each parameter BW €
BW correspond to a different bandwidth parameter as in
(5). Let B := [BW]| be the number of bandwidth parame-
ters. After running POCS for all cases in B}V in parallel,
we concatenate the resulting images and feed them to our
DNN : RNXNxB 5 RNXN 1t is worth mentioning that the
neural network will output a single image. This allows the

Authorized licensed use limited to: ASU Library. Downloaded on November 13,2022 at 18:46:04 UTC from IEEE Xplore. Restrictions apply.



BADAWI et al.: DEEP-LEARNING-BASED GAS LEAK SOURCE LOCALIZATION FROM SPARSE SENSOR DATA

21003

neural network to construct the output image from different
choices of bandwidth. The resulting image is then fed back to
the POCS algorithm and the process is repeated L times.

The algorithm is summarized in Algorithm 2 and a visual
illustration of the framework is shown in Fig. 1. Note that
we use a skip-connection (dampening factor) £ < [0, 1) when
combining the results of the previous POCS iterations and the
previous output of the neural network, as indicated in line 5 in
Algorithm 2. The variable yj corresponds to the intermediate
output of the residual operation. This approach improves the
flow of gradient in the backpropagation algorithm and, thus,
accelerates the training process. The inner loop in Algorithm 2
(lines 4-7) is run in parallel using vectorization semantics.

It is worth mentioning that, by using a fast implementation
of DCT, the POCS procedure runs at a comparable speed to a
relatively small CNN that implements separable convolution.
Performing POCS for K iterations for all bandwidths in
parallel accounts to O(N x N x log N x B x K) complexity.
For a separable convolutional layer with an input of size
N x N x B’ and an output of size N x N x B’, where
B’ is the number of channels, calculating the channelwise
convolution is O(m x m x N x N x B') for kernels
of size m x m, and calculating the pointwise convolution is
O(N x N x B’ x B’). Usually, B > m x m. Therefore,
for a network of K layers, the order of the number of
operations is O(N x N x B’ x B’ x K), compared O(N x
N x logN x B x K). In our case, B is 4, which is much
smaller than a typical choice of the number of channels B’
in a neural network, as the number of channels can go up to
2048 in very deep models. Given that log N < B’, running
the POCS procedure for K steps for B different bandwidth
parameters is on par with running a very small convolutional
network of K layers with small channel (depth) size (B’ = B).

Algorithm 2 Pseudocode for the Deep Regularizer DCT-
POCS Procedure. The Algorithm Takes the Sparse Input
X and the Two Logical Masks Mnz and Mz, the Num-
ber of Unrolling Steps Is L, the Bandwidth Parameters
Set BW, and the Number of Unrolling Steps for the
POCS Algorithm K. The Algorithm Returns the Output o
that Represents the Completed (Interpolated) Image Data.
The Subroutine Pocs(xji, x5, Mnz, Mz, BW;, K) Imple-
ments Algorithm 1 With Initial Condition yJ‘: and Iterates
for K Steps

Input: x;, Mz, Mz, L
150 « x;
2 )Y < x; (=1 to B)
3 for i=1 to L do
4 | for j=1I to B do

s || yie By - PRt

6 Z:f — POCS(y},xs,MNz,Mz, BW;, K)
7 | end

8 Z_" — Concgt(z‘i, zé, S— z‘é)

9 | X' <« DNN(Z)

10 end

11 returnt’

TABLE I
ARCHITECTURE OF THE DEEP REGULARIZED NETWORK USED IN THE
LARGE-SCALE METHANE DATA EXPERIMENT. THE FILTER SIZE IS
3 x 3 IN THE LAYERS EXCEPT THE FIRST AND THE LAST (CONV 1 AND
CONvV 7), WHEREITIS SETTO 5 x 5

Layer | Num Channels | Dilation Rate | Activation

Input (128 x 128 x 4)

Conv 1 64 1 Leaky Relu (0.2)
Conv 2 64 2 Leaky Relu (0.2)
Conv 3 64 4 Leaky Relu (0.2)
Conv 4 64 8 Leaky Relu (0.2)
Conv 5 64 <+ Leaky Relu (0.2)
Conv 6 64 2 Leaky Relu (0.2)
Conv 7 1 1 Relu

Output (128 x 128 x 1)

TABLE Il
ARCHITECTURE OF THE DEEP REGULARIZED NETWORK USED IN THE
SMALL-SCALE ISOPROPANOL DATA EXPERIMENT. THE FILTER SIZE IS
3x3

Layer | Num Channels | Dilation Rate | Activation

Input (32 x 32 x 8)
1

Conv 1 16 Leaky Relu (0.2)
Conv 2 16 2 Leaky Relu (0.2)
Conv 3 16 4 Leaky Relu (0.2)
Conv 4 16 2 Leaky Relu (0.2)
Conv 4 1 1 Relu

Output (32 x 32 x 4)

To train the deep model, we unroll a few layers of the
procedure and optimize the neural network to minimize
the loss criterion. We use two loss criteria for the large-
scale methane—propane and the small-scale indoor isopropyl
alcohol interpolation problems as explained in Section IV.
We also use two different network architectures. The first
architecture is for the large-scale 128 x 128 input images
correspond to methane—propane gas field signals, and another
32 x 32 x 8 temporal low-resolution images correspond to
the indoor isopropyl alcohol leak data that we collected
using three commercially available tin oxide (SnOz) MQ317
chemical sensors that are sensitive to isopropyl alcohol [31].
Details on the datasets are provided in Section III-A. The
architecture of the large-scale neural network for the methane
data experiment is given in Table I. The architecture of the
small-scale neural network for the isopropanol data experi-
ment is given in Table II. Note that in this case the neural
network DNN : R3232x(TxIBW)I |, R32x32xT  yhere T is
the temporal dimension and K is the number of bandwidth
choices.

[1l. DATA ACQUISITION AND PROCESSING

A. Leak Detection Using Chemical Gas Sensors
We collected sensor measurements using three tin oxide
(SnO2) MQ137 sensors [31]. Data collection was done using
an Arduino, as the sensors have an analog output wired
connection and were used for reliability. For the experiments
of source localization, a grid of 18 x 18 in? was created.
As the sensors are resistive chemical sensors, they need to
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be preheated for a certain period of time before testing. This
is done so that the sensors form a desired active oxide layer
than can detect any gas present in the air. In this case, before
starting the experiments, we heated the sensors for up to 48 h.
These sensors are not calibrated, so to do sensor-to-sensor
calibration, first, a controlled experiment was done. In these
controlled experiments, we placed the three sensors close to
one another so that they all read the same underlying gas
concentration signal. Ideally, the relation between the sensor
measurement and the actual concentration can be approxi-
mated by the following formula:

s(t) = Ac(t) + b (11)

where s(f) is the sensor measurement (in volt) and c(f) is the
gas concentration (in ppm). b is the dc offset, and A is a gain
factor. Each sensor will have its own parameters A and b.
We first estimated the dc offset using the measurement values
when no gas signal is present. We then calculated the relative
gains of each sensor with respect to a reference sensor. Let
sensor 51 be our reference sensor, and the relative gain is given
by

Z 5i (1) (12)
s1(t) — b]

We then calibrated the sensor measurements using the
following formula:

&) = S Gsi(t) — b (13)
A;

One issue with this calibration approach is that the actual
sensor response can deviate significantly from the ideal model
expressed in (11). In order to get reliable and robust estimates
for the relative gains, we manually selected segments for cal-
ibration in which the sensor responses are linearly correlated
the most.

According to our experiments, we found that the dc offsets
by, by, and by are equal to 0.7 V. The relative gains are
(A2/A1) = 1.43 and (A3/A1) = 1.61.

We then applied the calibration formulas using these num-
bers and fed the input to our deep model to determine the
source location as explained in detail in Section I'V-B.

The experiment was conducted in the following order.

Step 1: The source was placed at the desired location.

Step 2: The three sensors were placed at different grid points
as shown in Fig. 2.

Step 3: Once the source and the sensors were placed at
their respective locations, the lid of the source was removed,
exposing the air.

Step 4: The data was collected from each sensor using the
Arduino which transferred the data to a computer.

Step 5: After one set of experiments was completed, the
lid of the source was closed and the room air was vented out.
We waited until all the sensors returned back to their baseline
response, indicating that there is no more gas in the air.

Step 6: The procedure was repeated six times with different
source and sensor positions on the defined grid and corre-
sponding sensor data was collected each time. This data was
then used in our source localization framework.

Sensorg
Sensor
Source 3
. Ol
Sensor;

(0,0)

Fig. 2. lllustration of the isopropyl alcohol 18 x 18 in2 grid with the
source stationed at (x = 6, y = 9) and the three sensors located at
(x=9,y=06), (x=16,y=12), and (x = 15, y = 9). The corresponding
time series are shown in Fig. 3.
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Fig. 3. Corresponding calibrated time-series measurements of each
sensor in the experiment shown in Fig. 2.

Fig. 3 shows how the data from the sensors look for one
set of experiments.

B. Methane Data Preprocessing

In this section, we simulate an IR sensor system using IR
video cameras. We used the dataset collected in [11]. The
dataset consists of high-resolution thermal-IR imaging video
recordings of gas leaks from industrial plants. Given that
methane has high absorbance in the long-wave IR (LWIR)
spectrum, methane leakage can be detected via IR imag-
ing [32]. This means that pixel intensities and their temporal
behavior are directly indicative of the presence of methane
signals at their respective locations.

In order to pose the problem as a source identification from
sparsely located IR sensor data, we first preprocess the videos
by removing the background from the scene. This was done
by estimating the optical flow using the Kanade—Lucas algo-
rithm [33]. We segmented the foreground from the background
based on whether the magnitude of the optical flow field
exceeds a certain threshold. Given that the camera is stationary
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video hackground
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E;timation

backgrond-subtracted frame

original frame

Fig. 4. llustration of the background subtraction process.

in these videos, we estimated the background by taking the
average over the different background estimates. We then
completed the missing parts using the PG algorithm and
manually smoothed the boundaries. Fig. 4 shows an example
of an original video frame and the processed result. Sparse
sensor locations are shown in Figs. 5(c) and 6(c), respectively.
In order to make the data match low-cost IR sensory data,
we model the sensor response from the pixel intensity values to
reflect the limitations of their sensing capabilities. To do this,
let o(m,n,t) € [0,1] for t € {1,...,T} be a pixel intensity
value at location m,n at time step . We use the following
relation to model a low-cost sensor response:

Xg(m,n) = (14)

T
= 1m0 = Th)

t=1

where [ is the 0-1 indicator function and Th is a certain
threshold. Equation (14) accounts for the low accuracy and
the low temporal resolution of an IR sensor.

We then randomly generate coordinate set S and sample the
locations {xg(m,n) |(m,n) € S} to generate our input data.
It is worth mentioning that |S| < N x N, where N x N is
the size of the original image x,. We then feed these sparse
images, along with constraints masks to our deep framework
to try and retrieve the full image x,. In our experiments, we set
Th=16/255and T = 16.

IV. EXPERIMENTAL RESULTS

A. Methane Source Localization

We trained our neural network by unrolling a few steps
of the forward model in Algorithm 2. We used four DCT
bandwidth parameters BW = {4, 8, 16, 32}. Each inference
pass is four iterations (L = 4) with the POCS procedure
applied four times (K = 4). Our dampening factor g is set to
0.5. We used the same parameters for training and inference.
The final output % is then optimized to minimize the following
loss:

L(x) = ||xg — X||lw — ASSIM(xg, X) (15)

where W is a weight matrix used to give more emphasis
to the area surrounding the source location and is given
mathematically by

£—1*2—|— '_'*2
Rl ;||) 16}

a

Wi, j) =1+ 10exp (—

where (i*, j*) are the coordinates of the source. We select
o = 7. The second term SSIM in (15) refers to the structural
similarity index metric [34]. The SSIM between two image
patches x and y is given by

Quxpy +€1)(20xy + €2)

SSIM(x, y) =
(=00 (u2+p2 + )l +o02+c2)

a7

where p, and pu, are the means, o-f and a)? are the variances,
and oy, is the cross-correlation, and ¢y and ¢; are small
constants. The hyperparameter 2 = 10~3, and we trained
the neural network over the frames of one video for ten
epochs. We construct our inputs from the pixel intensity
values according to (14), where our averaging window size is
16 frames, and our threshold Th is set to 10/255. This means
that the values of x, € {(0/16), (1/16), ..., (16/16)}.

Source Localization Results: We assess the goodness of the
output of our deep-POCS network, that is, the interpolated
image, by considering how close the maxima with the largest
amplitude to the source. In order to do this, we first detect all
local maxima of the output of the neural network. Let X be
the output of the framework. We first apply a maximum filter
to X

MG, j) = max{X(,1) | (k,I) eNBRG, j)}  (18)

where the neighborhood NBR(i, j) is defined as the 7 x 7 grid
surrounding point (i, j). We then find all the local maxima
MAX =) |%; = x;"1*}. We then select the kth largest
values of the set and construct the set M_4X;. In our case,
we take the top five points. Let the source be located at (p, q),
We then define our distance-to-source metric as follows:

dist := min({d((p, 9), (m, m)) | (m,n) € MAXi}  (19)

where d is the Euclidean distance between two 2-D points.
In addition to that, we perform another pass to the deep NN
while removing the constraints around the maxima points in
MAX . Mathematically, we modify our nonzero mask Mnz

as follows:
0, @“pe U
(J,J}EM.AXk
[Mnz]ij, otherwise

NBR(k, I)
Mz, =
LJ

(20)

where NBR(k, ) is the neighborhood of the extreme point with
location (k, ). In our case, for each of five extreme points in
MAX}, we eliminate the spatial constraints x; contained in
their respective 7 x 7 grid neighborhood. Once we obtain the
eroded mask My7', multiply it with the sparse input x{V :=
xs oMy’ and feed the new input to the deep model again and
obtain a new interpolated output. We then detect the maxima

points and compare their distances to the source location.
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TABLE Ill
RESULTS WITH 480 SENSOR MEASUREMENTS FOR THE DEEP
REGULARIZED POCS COMPARED TO GMM FITTING
AND TRADITIONAL POCS

Vid ID Maxima Distance to Source

Deep DCT-POCS | Deep DCT-POCS | GMM ‘ POCS ‘ POCS

one step two step DCT BW=16 | DCT BW=32

Exp 1 224 15.8 19.7 27.8 294
Exp 2 19.1 13.3 20.1 266 35.1
Exp 3 1.7 10.1 11.4 17.3 10.1
Exp 4 213 189 319 421 484
Exp 5 157 9.6 12.0 18.5 17.9
Exp 6 28.1 17.9 26.5 333 34.7
Exp 7 12.8 89 12.0 17.6 11.5

TABLE IV
RESULTS WITH 100 SENSOR MEASUREMENTS FOR THE DEEP
REGULARIZED POCS COMPARED TO GMM FITTING
AND TRADITIONAL POCS

Vid ID Maxima Distance to Source

Deep DCT-POCS | Deep DCT-POCS | GMM POCS POCS

one step wo step DCT BW=16 | DCT BW=32

Exp 1 251 225 26.2 277 314
Exp 2 19.1 14.1 220 274 296
Exp 3 19.9 17.1 153 204 16.6
Exp 4 27:1 24.2 36.7 43.4 44.5
Exp 5 18.1 159 143 18.7 19.7
Exp 6 285 20.1 258 jl4 355
Exp 7 18.7 15.2 14.1 18.4 18.6

We also compared our deep-DCT-POCS results with a
Gaussian-mixture model (GMM). In this case, we start off
by selecting a number of mixtures M. We then repeat the
location pair (x,y) of the sparse measurements based on
the intensity of measurement at that location. In our case,
since the measurements correspond to the count the pixel
intensity exceeds the threshold Th = 10/255 in a total of
16 consecutive, these counts range from O to 16, and so we
repeat these points in our fitting datasets accordingly. For
example, if the intensity at location (xp, yo) is 3/16 and the
intensity at location (x1, y1) is 10/16. We repeat the location
pair (x1, y1) 10 times, while repeating the location (xq, Yo)
three times. Notice that if the value of xg(m, n) is 0, we then
do not include that point in GMM fitting process. Once we
have repeated our location pairs according to their intensities,
we end up with an d x 2 dataset D, where d is the final
size after repetition and now we try to find the 2-D mean
vectors p;, the 2 x 2 co-variance matrices C; and the weights
of each Gaussian in the mixture model 7 by finding maximum
likelihood location

M—1
M-1 i
{x}, u},Cl}, =argmax > mN (', Ci|D) (21)
i=0

where N is a 2-D Gaussian distribution. We solve (21) using
the expectation-maximization algorithm. Once the algorithm
converges, we then take the locations of the means u; as
our candidate maxima locations and construct our set M.AX
and find the score dist defined in (19). Finally, we compare
the results with the traditional POCS algorithm as explained
in Section II-A. Our results are summarized in Table III for

(@ (b

() (d)

Fig. 5. Example of an input signal and the DNN-DCT-POCS with
480 input measurements. (a) Ground-truth gas leak image with the
source marked in red. (b) Location of all the sensors. (c) Sparse input
signal to the DNN. (d) Output of the DNN. The global maximum point is
marked in blue.

N\

(b

(©) (d)

Fig. 6.  Another example of an input signal and the DNN-DCT-POCS
with only 100 input measurements. (a) Ground-truth gas leak image with
the source marked in red. (b) Location of all the sensors. (c) Sparse input
signal to the DNN. (d) Output of the DNN. The global maximum point is
marked in blue.

inputs with 480 input measurements and in Table IV for inputs
with 100 sensor measurements.

As one can see from Tables II and IV, the Deep
DCT-POCS approach provides a better score in most
cases than in both the GMM fitting and traditional POCS
approaches. Furthermore, while the GMM fitting gives dis-
tances better than the Deep DCT-POCS in some examples,
it is significantly worse than our method in some videos.
In addition to that, the GMM will always give a higher mixture
weight z; for the distribution N (u;, C;) with u; closest to the
center of mass, which is far from the peak (source) location.
Visual examples are provided in Fig. 5.

B. Results: Isopropyl Alcohol Source Localization

After calibrating the chemical sensor data as mentioned in
Section III-A, we downsampled the input data by a factor of
2. Therefore, our sampling rate is 1 sample/s. The original
images have a spatial dimension of 18 x 18. Because we use
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TABLE V
AVERAGE DISTANCE BETWEEN THE LOCATION OF THE PEAK OF THE
RECONSTRUCTED SIGNAL AND THE TRUE SOURCE LOCATION VERSUS
THE DISTANCE BETWEEN THE TRUE SOURCE AND THE CENTROID OF
THE THREE SENSOR MEASUREMENTS

avg dist
By ‘ DNN | Centroid
Expl | 314 | 449
Exp2 | 277 | 280
Exp3 | 389 | 482
|

|

=

|

|

Fig. 7. Example of output image given the isopropyl alcohol sensor
measurements over three locations. The sensor locations are colored in
red. The source is located at the blue point, while the predicted source
location (the argmax of the output image}) is located at the green point.

32-point DCT transform, our input images and masks must be
32 x 32 pixels. We pad zeros to the original 18 x 18 images,
and we set our zero mask M, as follows:

1, 9<i<24and9<j<24

M.];; =
[M1;j 0, otherwise.

(22)

This means that we limit the support to be equal to the
original input image size while using a higher-resolution DCT
in our POCS layers. Given the limited number of data points
at each time step, we feed four consecutive time frames to
our neural network in order to capture some information from
the temporal behavior of the measurements at each location,
that is, our input size is 32 x 32 x 4, with a total number of
12 nonzero constraints.

Training the Model With Partially Known Ground Truth: Given
the limited amount of measurement we have at each time step,
and the fact that we do not have the full gas signal across the
entire grid, this makes the problem of estimating the isopropyl
alcohol source location very challenging.

In order to supervise the neural network, we create a dense
“gas field” signal as follows: given the 12 input constraints,
we add four additional fake measurements at the source
location for each temporal map. The intensity is selected large
enough to be larger than any of the measurements. We then use
the POCS procedure to create an artificial dense ground-truth
signal from the sparse constraints such that its peaks at each
time step coincide with the true source location. We then
stored these dense fields and supervised the neural network
to minimize the following loss:

L&) = |1 — xglI3 (23)

where X is the output of the neural network, and x, is the
synthetic signal with argmax(xg;) = (Xsrc, Ysrc). We used
two bandwidth parameters BW; = 4, and BW, = 8. The
POCS procedure is run for eight iterations, while the overall
procedure is run only for one iteration.

We used five experiments for training, three for validation,
and three more experiments for testing our model. Our results
over the test dataset are given in Table V. An example of
an output image is shown in Fig. 7. As one can see, our
model achieves a better distance score than predicting the
source location by simply considering the center of mass. This
suggests that the time-series measurements are very noisy, and
simple averaging is very sensitive to these fluctuations in time
series as can be seen in Fig. 3. On the other hand, the model
learns robust features from the time series that as less sensitive
to these fluctuations.

V. CONCLUSION

In this article, we addressed the issue of locating a leaking
gas source given sparse and noisy sensor measurements. For
this purpose, we proposed a data interpolation framework
that combines deep neural networks with a regular POCS-
based 1-D signal and two- or higher-dimensional interpolation
algorithms. In particular, we utilized the iterative bandlimited
interpolation algorithm, also known as the PG algorithm.
Instead of using the Fourier transform we used the DCT
to avoid complex numbers. The interpolation problem is ill-
posed. We combined the iterative structure with a convolu-
tional neural network to regularize the iterations to achieve
reliable solutions. The overall algorithm is trained with past
data.

We experimented with two different datasets at two different
scales. The first example is indoor isopropyl alcohol gas leak
data, which we collected using three commercially available
chemical sensors. The second data corresponds to methane
leaks in industrial plants that were extracted from IR videos.
We tested our approach on the two datasets and we were able
to interpolate the gas field spatial signal with high accuracy.
We considered the local maxima of the reconstructed 2-D data
as candidates for the source locations. Our approach achieved
better results than GMM-based interpolation in the case of the
methane data, and the center of mass-based location estimation
in the case of isopropyl alcohol data.
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