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Abstract—We propose a kernel-PCA-based method to detect anomaly in chemical sensors. We use temporal signals
produced by chemical sensors to form vectors to perform the principal component analysis (PCA). We estimate the
kernel-covariance matrix of the sensor data and compute the eigenvector corresponding to the largest eigenvalue of the
covariance matrix. The anomaly can be detected by comparing the difference between the actual sensor data and the
reconstructed data from the dominant eigenvector. In this letter, we introduce a new multiplication-free kernel, which is
related to the �1-norm for the anomaly detection task. The �1-kernel PCA is not only computationally efficient but also
energy-efficient because it does not require any actual multiplications during the kernel covariance matrix computation.
Our experimental results show that our kernel-PCA method achieves a higher area under curvature score (0.7483) than
the baseline regular PCA method (0.7366).

Index Terms—Sensor signal processing, sensor, �1-kernel, anomalous sensor detection, multiplication-free (MF) method, principal
component analysis (PCA).

I. INTRODUCTION

Chemical sensors are widely used to detect ammonia, methane,
and other volatile organic compounds (VOCs) [1], [2], [3]. The life
and performance of chemical gas detection sensors can be affected
by various factors, including temperature, humidity, other interfering
chemical gases, physical factors, etc. Anomalous sensors can pro-
duce drifting waveforms and it is a fatal problem for reliable gas
identification and concentration estimation [4], [5]. In this work, we
determine anomalous sensors and sensor measurements in an array of
uncalibrated sensors by using robust �1-principal component analysis
(PCA) without using reference time-series data.

PCA is used in anomalous sensor and sensor signal detection [6], [7],
[8]. In this approach, the covariance matrix is constructed from a set of
data vectors and the anomalous items (outliers) or vectors are found by
using the reconstruction difference [9], [10]. The principal components
of the data covariance matrix are computed and the original data vectors
are reconstructed using only the first few principal components. In
general, the reconstructed data vector is similar to the original data
vectors, and the reconstructed data items that are different from the
corresponding original items are considered to be anomalous.

In this letter, we propose to use �1-kernel PCA based on a
multiplication-free (MF) kernel to detect anomaly in chemical sensors.
Although the conventional PCA, which is based on the �2-norm has
successfully solved many problems, it is sensitive to outliers in the data
because the effects of the outliers are overamplified by the �2-norm.
Recently, it has been shown that �1-norm-based methods produce better
results in practical problems compared to the �2-norm-based methods
in several real-world signal, image, and video processing problems. In
particular, �1-kernel PCA usually is more robust against outliers in data
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compared to the �2-PCA [11]. In the ordinary �2-PCA, the principal
vector is calculated as the dominant eigenvector of the data covariance
matrix, which itself is calculated using the standard outer products.
In this letter, we propose the eigendecomposition of the �1-kernel
covariance matrix obtained using a new vector product, which induces
the �1-norm without performing any multiplications. Because of low
computational complexity, the �1-kernel PCA can be implemented in
edge devices directly connected to the chemical sensors.

Related work includes the regular �2-PCA, kernel-PCA meth-
ods [12], the recursive �1-PCA [13], and the efficient �1-PCA via bit
flipping [14]. The recursive �1-PCA [13] and the efficient �1-PCA
via bit flipping [14] returns the same result while the former takes the
exponential time and the latter takes the polynomial time. Both �1-PCA
methods [13], [14] require some parameters to be properly adjusted
and rely on recursive methods. On the contrary, the proposed �1-kernel
PCA approach does not need any hyperparameter adjustments. Its
implementation is as straightforward as the regular PCA because
we construct a sample kernel-covariance matrix using the proposed
�1-kernel and obtain the eigenvalues and eigenvectors of the kernel
covariance matrix to define the linear transformation instead of solving
an optimization problem.

The rest of the letter is organized as follows: In Section II, we
formally introduce the �1-kernel PCA and describe its application in an
anomalous chemical sensor detection task. In Section III, we compare
our method with the regular PCA, the recursive �1-PCA [13], and the
efficient �1-PCA via bit flipping [14]. Finally, in Section IV, we draw
our main conclusions.

II. L1-KERNEL PCA

In our recent work [11], [15], we proposed a set of kernel-based
PCA methods related to the �1-norm. These Mercer-type kernels are
obtained from MF dot products.
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Fig. 1. Data produced by three ammonia sensors in two different
ammonia gas recording experiments. The sensor 2 (in red) is the
obstructed sensor. These data constitute our test set. (a) Sample data
1. (b) Sample data 2.

Let w = [w1 · · · wn]T ∈ R
n×1 and x = [x1 · · · xn]T ∈ R

n×1 be two
n-dimensional column vectors. Similar to the regular dot product
of vectors, we defined the MF vector product [11]. In vector data
correlation operations, we use the following vector product:

wT � x �
n∑

i=1

sign(wi × xi ) min(|wi|, |xi|) (1)

which turns out to be a Mercer type kernel: K (w, x) = wT � x. In
(1), sign(wi × xi ) can be computed without performing any actual
multiplications and min operation can be implemented by subtraction
and checking the sign of the result of the subtraction. For this reason,
we call (1) an MF dot product. The dot product defined in (1) induces
the �1-norm as xT � x = ∑n

i=1 min(|xi|, |xi|) = ‖x‖1 and it induces a
Mercer-type kernel [11].

Suppose that we collect vectors of sensor data and form a dataset
X = [x1 x2 . . . xD] ∈ R

N×D. The well-known �2-PCA (regular PCA)
method relies on the eigendecomposition of the sample covariance
matrix C = XT X. Similarly, we estimate the kernel covariance matrix
as follows:

A = XT � X (2)

where the matrix A is constructed using the dot products of the form
xT

i � x j . As a result, the construction of the kernel-covariance matrix
A is straightforward. We name the kernel-PCA based on the vector
product in (1) as the �1-kernel PCA.

A. Anomaly Detection Using L1-Kernel PCA

We first assume that there are D sensors and some of them are
anomalous. Sensors are assumed to be close to each other and they
produce correlated output waveforms, as shown in Fig. 1. We have the
measurement data X = [x1 x2 . . . xD] ∈ R

N×D. The measurement data
are generated by normalizing the raw sensor measurement values to
[−1, 1] and subtracting the mean. We construct the covariance matrix
A = XT � X ∈ R

D×D and calculate its eigenvectors. Let v1 ∈ R
D×1

be the dominant principal component vector. Finally, we reconstruct
the data segment using the vector v1: x̂i = v1vT

1 xi, i = 1, 2, .., D and

compute the error vector xi − x̂i. The sensor measurement in the ith
segment is assumed to be anomalous if the cumulative squared differ-
ence (CSD) between x̂i and xi is larger than a threshold. The threshold
can be set as T = μ + ασ , where μ and σ are the mean and standard
deviation of CSD values learned from a training data set. The parameter
α is usually selected as 3 with the Gaussianity assumption of the
CSD values. If a sensor produces successive anomalous measurement
vectors it is considered to be anomalous.

In the second case, we assume that we only have a single sensor.
For example, the sensor 3 produces impulsive spikes between 0 and
1200 s, as shown in Fig. 1(a) (in orange). Similar to the PCA-based
denoising methods [12], [16], we form data vectors from neighbor-
ing temporal data windows and form the measurement data matrix
X = [x1 x2 . . . xL] ∈ R

N×L where L is the number of data windows
and we have N samples in each window. We form the kernel covariance
matrix A = XT � X ∈ R

L×L and compute its eigenvalues and eigen-
vectors vi ∈ R

L×1. We reconstruct the data matrix X̂ = VVT X using
the first l eigenvectors V = [v1, . . ., vl ] where v1 is the eigenvector
corresponding to the largest eigenvalue. After this step, we compare
the actual data vectors xi with the reconstructed ones x̂i, i = 1, 2, . . ., l .
The vectors significantly different from the reconstructed vectors are
considered to be anomalous. We let l = 1 and observed that it is
sufficient for anomaly detection.

Complexity Analysis: To calculate the covariance matrix C, we
perform D2˜N multiplications and D2(N − 1) additions because we
perform N multiplications in each dot product. On the other hand,
to calculate the �1-kernel covariance matrix A, we perform D2˜N sign
operations, D2˜N min operations and D2(N − 1) additions. According
to [17, Table 1], a multiplication operation consumes about four times
more energy compared to the MF-operations in compute-in-memory
(CIM) implementation at 1 GHz operating frequency. In this letter,
we have three sensors and we used an Arduino to collect data so
energy efficiency will not be significant but it will be significant in
a large network with its own hardware. Since the value of D = 3
or 5 is much smaller than the vector length N = 125 or 224, the
eigenvector computation is negligible compared to the covariance
matrix construction in this task. As a result, the �1-kernel PCA is about
four times more energy efficient in CIM implementation. It is also
more energy efficient in many other processors because multiplications
consume more energy than additions and subtractions. [18].

Contribution: In our recent work [11], we introduced the �1-kernel
PCA while this letter introduces a novel method to employ the �1-
kernel PCA into the anomaly detection problem. Our experiments
show that in the anomaly detection task, the �1-kernel PCA produces
better results than the regular PCA, the recursive �1-PCA [13], and
the efficient �1-PCA via bit flipping [14] in our dataset obtained from
chemical sensors.

III. EXPERIMENTAL RESULTS

We collected data using three ammonia MQ137 Tin oxide (SnO2)-
based sensors [19]. Sensors are connected to an Arduino Uno board,
and the sampling rate is 2 samples per second. Sensors and a cylin-
drical ammonia source are placed in an airtight chamber. Sensors are
preheated for 48 h before collecting the data. When SnO2 is heated
and exposed to the air, it reacts with the oxygen present in the air
and form a layer of negative ion on the surface and reduce the surface
conductivity [19]. When ammonia vapor comes in contact with the
surface, it combines with the oxide ion layer on the top and releases
electrons for conduction. As a result, the conductivity of the surface
increases. This change in surface resistance can be measured in the
form of voltage. Our experimental setup is shown in Fig. 2.

Multiple Sensor Anomaly Detection: The three sensors are placed
close to each other and one of the sensors (sensor 2) is obstructed
by a cylindrical cover with multiple holes. The cover causes the
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Fig. 2. Illustration of our experimental setup.

Fig. 3. ROC of different PCAs on the sensor data. Recursive �1-
PCA [13] and �1-PCA via bit flipping [14] return the same ROC because
their eigenvectors are the same.

Table 1. AUC for Various Methods

sensor to react more slowly than the other sensors to the ammonia
build-up and release. The obstruction level of the outlier sensor is
adjusted in each trial to avoid overfitting to one condition. Moreover, to
generate a more realistic environment with varying levels of ammonia
concentration, the chamber lid is opened at random intervals and with
random duration. Opening and closing the lid is repeated multiple times
to create different rise and fall responses. Sensor waveforms from two
experiments are shown in Fig. 1.

We apply the �1-kernel PCA-based anomaly detection method de-
scribed in Section II-A to the data obtained from the three sensors. We
compared the proposed method with the regular �2-PCA, the recursive
�1-PCA [13] and the efficient �1-PCA via bit flipping [14]. The latter
two compute v1 = arg maxv:‖v‖=1

∑N
i=1 |vT xi|. Tolerance parameter of

the recursive �1-PCA method is set as 1 × 10−8 as suggested by
Markopoulos et al. [13]. We plot the receiver operating characteristic
(ROC) curve in Fig. 3 and compute the area under curve (AUC)
scores for each method. As shown in Table 1 states, the �1-kernel
PCA provides the highest AUC score, and the recursive �1-PCA [13]
provides the lowest AUC score in this case. This is probably due to the
nonconvex optimization method that they use to compute the principle
vector, and the method requires a suitable tolerance parameter. On the
other hand, the �1-kernel PCA does not need any tolerance parameters
and the eigenvector computations are equivalent to the computational
load of the regular PCA.

CSD values of the sensors’ response in Fig. 1(a) using different
PCAs are listed in Table 2, and CSD values of the sensors’ response

Fig. 4. Reconstructed waveforms of Segments 1 and 2 in Table 4.
The reconstructed waveforms do not have spikes. (a) Segment 1. (b)
Segment 2.

in Fig. 1(b) are listed in Table 3, respectively. The threshold values
21.63 for the regular PCA, 21.64 for the �1-PCA via bit flipping [14],
and 21.61 for the �1-kernel PCA are computed from the normal cases
obtained from other experiments. We have different threshold values
for the regular PCA and the �1-kernel PCA because they have different
principle eigenvectors. Even if we use the same threshold (21.60), the
classification results in Tables 2 and 3 will not change.

Sensor 2 does not always exhibit anomalous behavior. In general, its
response increases due to ammonia gas exposure but does not decrease
as fast as the other sensors when there is no gas, as shown in Fig. 1. The
regular PCA detects the anomalous behavior of Sensor 2 in 9 out of 28
data segments. On the other hand, the �1-PCA via bit flipping and our
�1-kernel PCA detect the anomalous behavior of Sensor 2 in 10 out of
28 data segments. Moreover, the regular PCA and the �1-PCA via bit
flipping produce a false alarm in the second data segment (250–499 s)
of Sensor 1 as shown in Table 3 while our �1-kernel PCA avoids this
false alarm case. In conclusion, �1-kernel PCA produces better results
than the regular PCA, the recursive �1-PCA [13] and �1-PCA via bit
flipping [14].

Anomaly Detection Using a Single Sensor: During the first three
ammonia gas exposures, the sensor 3 positively responds but it also
produces spikes up to 1200 s, as shown in Fig. 1(a). Multisensor PCA-
based anomaly detection cannot detect this behavior because only the
sensor 1 works properly before 1200 s. However, we compare the
current sensor window of Sensor 2 with its neighboring data windows,
we can identify the anomalous behavior. We used L = 5 data segments
to construct the 5 × 5 covariance and �1-kernel covariance matrices.
In each data segment, we have N = 224 measurement. We used only
the dominant eigenvector to estimate the data segments.

The regular PCA, the �1-PCA via bit flipping, and the �1-kernel PCA
reconstructed waveforms do not have spikes and that is how we can
identify the anomaly in sensor readings, as shown in Fig. 4. Table 4
shows the CSD values of these methods and they correctly identified
the anomolous segments.

IV. CONCLUSION

In this letter, we presented a framework for detecting anomalous
sensors and sensor measurements in a chemical sensory system using
the �1-kernel PCA. We collected data from three commercial Tin Oxide
(SnO2) sensors by exposing them to ammonia in an environment-
controlled experiment. The proposed �1-kernel PCA is more robust
than the regular PCA in our experiments. This is due to the fact that
�1-kernel PCA is related with the �1-norm and it gives less emphasis
to anomalous spikes in sensor measurements while computing the
correlation matrix. The computational energy cost of the �1-kernel
PCA is much lower than the regular PCA on many processors. Because
of low energy complexity, the �1-kernel PCA can be implemented in
low-cost edge devices directly connected to the chemical sensors.
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Table 2. CSDs of the Sample Data 1 in Fig. 1(a) Using Regular PCA

Table 3. CSDs of the Sample Data 2 in Fig. 1(b) Using Regular PCA

Table 4. CSD Values Due to Ammonia Exposure of Sensor 3
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