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Abstract—Graphical data arises naturally in several modern
applications, including but not limited to internet graphs, social
networks, genomics and proteomics. The typically large size of
graphical data argues for the importance of designing universal
compression methods for such data. In most applications, the
graphical data is sparse, meaning that the number of edges
in the graph scales more slowly than n?, where n denotes the
number of vertices. Although in some applications the number
of edges scales linearly with n, in others the number of edges
is much smaller than n? but appears to scale superlinearly with
n. We call the former sparse graphs and the latter heavy-tailed
sparse graphs. In this paper we introduce a universal lossless
compression method which is simultaneously applicable to both
classes. We do this by employing the local weak convergence
framework for sparse graphs and the sparse graphon framework
for heavy-tailed sparse graphs.

I. INTRODUCTION

There has recently been an increased interest in the problem
of graphical data compression [1], [2], [3], [4], [5]. [6], [7], [8],
[9]. For practical applications usually the real world graphical
data are “sparse”, where the sparsity is usually observed as a
condition on the ratio of the number of the edges in the graph
to the total number of potential edges. Therefore, roughly
speaking, a graph with n vertices is said to be sparse in a
broad sense if its number of edges is much smaller than n?.
One interesting sparsity regime is where the number of edges
grows linearly with the number of vertices. In a series of works
the authors of this paper have studied the problem of universal
lossless compression [10], [11] and distributed compression
[12] for sparse graphs in this sparsity regime. This was done by
employing the framework of “local weak convergence”, also
called the “objective method”, which allows one to make sense
of a probabilistic framework similar to stochastic processes for
sparse graphical data [13], [14], [15].

The purpose of this paper is to go beyond this sparsity
regime and achieve universal compression for graphs which
are still sparse, but with the number of edges growing super—
linearly with the number of vertices, i.e. sparse graphs with
heavy-tailed degree distributions. In order to address graphs
with heavy-tailed degree distributions, we employ a version
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of the graphon theory [16], [17], [18]. This framework, which
we call the sparse graphon framework, defines a notion of
convergence for heavy-tailed sparse graphs, similar to the local
weak convergence framework, but using a different metric to
discuss how close a given graph seems to be to another one.

We employ the local weak convergence framework together
with the sparse graphon framework to address the problem
of universal compression of graphical data with possibly
heavy-tailed degree distribution. More precisely, we aim to
compress a graph which is either consistent with the local
weak convergence framework or the sparse graphon frame-
work. However, the universality condition requires that the
encoder does not know which of the two frameworks the input
graph is consistent with, neither does it know the limiting
object describing the empirical statistics of the graph in each
of the two frameworks. Further, we want the encoder to
be information-theoretically optimal, in the sense that if we
appropriately normalize the codeword length associated to the
input graph it does not asymptotically exceed the entropy of
the limit object, with an appropriate notion of the entropy
for each of the two frameworks. In order to make sense of
optimality in the local weak sense we employ the notion
of BC entropy from [19]. On the other hand, in order to
make sense of optimality in the sparse graphon framework
we introduce a notion of entropy for this framework which
can be of independent interest.

The purpose of this paper is to investigate information
theoretic limits of compression in the above setting, which
paves the road to seek computationally efficient compression
algorithms achieving such limits (see [11] for a computa-
tionally efficient compression algorithm in the local weak
convergence framework).

The structure of this paper is as follows. In Section II,
we briefly review the local weak convergence framework
and the BC entropy. In Section III, we briefly review the
sparse graphon framework, introduce our notion of entropy
for this framework, and discuss its properties. In Section IV,
we discuss the properties that we expect from a universal
compression scheme based on the notions of entropy for the
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Notation Meaning
] - eyl
[a] [|]] for non-integer c > 1

log(.) logarithm in natural basis
Ry nonnegative real numbers
{0,1}* —0 the set of finite nonempty sequences of 0 and 1’s
nats(z) length of = € {0,1}* in nats: log 2xlength of =
P(Q) space of Borel probability measure on metric space
H(X) Shannon entropy of random variable X
D(I-) relative entropy

TABLE I: List of basic notation

local weak convergence and the sparse graphon frameworks.
We then state our main results on the existence of such
a universal compression scheme, and a converse result. In
Section V, we introduce our compression scheme and sketch
our proof ideas. We finally conclude the paper in Section VI.
We close this section by introducing some notation. Table I
lists our basic notation. All the graphs in this paper are simple,
so we drop the prefix simple when referring to graphs. For a
graph G and vertices v and w in G, v ~¢g w denotes the
existence of an edge between v and w. deg(v) denotes the
degree of a vertex v in G. G,, denotes the set of graphs on the
vertex set [n]. For a graph G € G,,, A(G) denotes its adjacency
matrix, ie. an n x n matrix where (A(G)); ; is equal to one
if i ~¢g 7 and zero otherwise. For p > 1, the L? norm of an
n x n matrix A is defined as ||Al[} := — Do1<ij<n [AiglP

II. THE FRAMEWORK OF LOCAL WEAK CONVERGENCE

In this section we briefly review the framework of local
weak convergence. The reader is referred to [13], [14], [15]
for more details.

Given a graph G and a vertex o in G, we let [G, o] denote
the isomorphism class of the connected component of o in G,
rooted at o. Here isomorphism is defined to preserve edges as
well as the root. For h > 0, [G, o], denotes the isomorphism
class corresponding to the subgraph of G consisting of vertices
with distance at most h from o, rooted at o. We can think of
[G, o]}, as the structure of the depth h neighborhood around o.
Let G, denote the space of isomorphism classes [G, o] where
G is connected and its vertex set is finite or countably infinite.
G, can be equipped with a metric, called the “local metric”,
where the distance between [G, o] and [G, ¢'] is defined to be
1/(1+h,), where h, is the supremum over all h > 0 such that
[G, 0]ln = [G', 0]n- 1t can be shown that G, equipped with the
local metric is a Polish space [15], i.e. a complete separable
metric space.

Given a finite graph G, we define U(G) € P(G,) to be the
law of [G, o], where o is chosen uniformly at random (u.a.r)
in G. We say that a sequence of finite graphs G(™) converges
in the local weak sense to u € P(G,) if U(G(™) converges
weakly to p as members of P(G,). Roughly speaking, this
means that for every depth h, the distribution of the local
neighborhood structures [G(™, ¢];, when o is chosen u.ar.
in G(™), converges to the distribution of the depth h neigh-
borhood around the root in p as n — co. For instance, the

sequence of sparse Erd6s—Rényi graphs where each edge is
independently present with probability p/n converges almost
surely (a.s.) in the local weak sense to a Galton-Watson limit
with Poisson(p) degree distribution. Not all u € P(G,) can
show up as the local weak limit of a sequence of finite graphs,
and a necessary condition called “unimodularity” must be
satisfied [15], which can be thought of as a kind of stationarity
condition. Let 7, denote the subset of the isomorphism classes
of rooted trees [T, o] € G,.

A. The BC Entropy

In this section we briefly review the notion of entropy
introduced by Bordenave and Caputo [19] for probability
distributions on G,, i.e. members of P(G,).

For integers n and m, let Gy, ,» be the set of graphs on the
vertex set [n] with m edges. Furthermore, given u € P(G,)
and € > 0, let G, m (1, €) denote the set of graphs G € Gn m
such that dip(U(G),n) < €, where dip denotes the Lévy—
Prokhorov metric [20] on P(G.). Roughly speaking, it can be
shown that if m,, /n — d/2 where d is the expected degree at
the root in u, then we have

lim lim — (log|Gn,m,, (1, €)| —mnlogn) = %(n), (1)

1

el nsocon
where ¥.(u) is a constant which depends on p, possibly —oo,
and is called the BC entropy of p. In words, () is effectively
the per-vertex growth rate of the size of the typical graphs,
after separating out the my, log n leading term. It can be shown
[19] that as long as my/n — d/2 as above, X(u) does not
depend on the choice of the sequence m,. Additionally, if p is
not unimodular, or the support of x is not contained in 7T,, we
have ¥(u) = —oo. Motivated by this, from this point forward,
we restrict our analysis to unimodular probability distributions

on 7,.

B. A Universal Lossless Compression Scheme adapted to the
Local Weak Convergence Framework

The authors of this paper have shown that in the context of
the local weak convergence framework the BC entropy is the
correct information-theoretical limit of compression [10]. This
is done in part by introducing a universal lossless compression
scheme. This is achieved in [10] for a broader class of marked
graphs where vertices and edges can carry additional marks;
however we state this result only for the setting of this paper
where such marks are not present. We denote the universal
compression map of [10] by fi» . G, — {0,1}* — 0,
which assigns a prefix-free codeword to each graph on the
vertex set [n]. Here the superscript lwc stands for “local
weak convergence”, and is assigned to distinguish it from the
compression map we will introduce later in Section V. This
compression map is lossless, i.e. there exists a decompression
map g™ such that the composition g o f< is the identity
map. Moreover, the compression scheme is universal in the
sense that given a sequence of graphs G™ converging to a
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unimodular limit i € P(G,) in the local weak sense, without
prior knowledge of p we have

wef1(n)yy _ o0 (R)
mECM) —m e v, @

lim sup

n— oo n
where m(™) denotes the number of the edges in G(™. Note
that the normalization is done in a way consistent with the
definition of the BC entropy. It is shown in [10] that such
a universal compression scheme (comprised of a universal
compression map and associated decompression map for each
n) exists, satisfying the condition (2) for all unimodular
u € P(T,) with expected degree at the root in the range
(0, 00), and for all sequences of finite graphs G(™) converging
to u in the local weak sense [10].

ITI. THE SPARSE GRAPHON FRAMEWORK

In this section, we briefly review the graphon framework
[21], with a focus on the sparse regime. Let (€, F,w) be
a probability space. A graphon is defined to be a nonneg-
ative function W : € x Q@ — R, which is symmetric,
ie. W(z,y) = W(y,z) for all z,y € €, and satisfies
Wy = [W(z,y)dn(z)dn(y) < oo. A graphon is said to
be LP for p > 1 if W] == [(W(z,y))Pdr(z)dn(y) < oo.

A graph G on a finite vertex set V naturally defines a
graphon W over the probability space V' equipped with the
uniform distribution, defined as W (v,w) = (A(G))y,w for
v,weV.

Assume that a symmetric n x n matrix B with non-
negative entries is given together with a probability vector
p=(p1,...,pn). We define the block graphon (p, B) to be a
graphon W over the finite probability space [n] equipped with
the probability distribution p such that for 1 < 7,7 < n, we
have W (3, j) = B ;.

For two L? graphons W and W’ defined on probability
spaces (2, F,w) and (', F',n’") respectively, we define

B2 (W, W) 1= inf \/ [ W) = Wiiat, )P, vl ),
(3)

where the infimum is taken over all couplings v of = and 7',
i.e. v is a probability measure over ) x Q" with marginals «
and ', respectively. In fact, §, yields a metric on the space
of equivalence classes of L2 graphons, with reference to the
notion of equivalence defined in [18, Definition 2.5] (see [18,
Theorem 2.11 and Appendix A] and [22]). Moreover, for two
graphons W and W’ on two probability spaces (€2, F, ) and
(Q, F',x"), respectively we define the cut norm as

5EI(W: W?)

:=inf sup
v s TCcaxo!

@
where the integration is over (z,z") € S and (y,y’) € T, and
the supremum is over measurable subsets S and T of Q2 x )'.
Moreover, the infimum is taken over all couplings » of 7 and
7’. Note that every graphon is by definition an L! function,
hence the cut norm is well defined. In fact, dg yields a metric

[, W) =W ) dvta )ty

on the space of equivalence classes of graphons, with reference
to the notion of equivalence defined in [18, Definition 2.5] (see
[18, Theorem 2.11 and Appendix A] and [22]).

A graphon W is said to be normalized if |[W||; = 1. Given
a normalized graphon W on a probability space (€2, F, ) and
a sequence of rarget densities py,, the sequence of W-random
graphs with target density py, is the sequence of random graphs
G™) on the vertex set [n] defined as follows. We first generate
random variables (X; : ¢ > 1) iid. from distribution .
Then, for each n and each pair of vertices 1 < v,w < n,
we independently place an edge between v and w in G(™
with probability min{1, p, W (X, X;,)}. We denote the law
of G(™ generated according to this procedure by G(n; p, W).

Given a graph G on n vertices carrying m edges, we define
the density of G to be 2m/n? and denote it by p(G). It can
be seen that if G ~ G(n;p,W), under some conditions
formalized in the following theorem, we have p(G(™)/p, —
1 a.s. as n — oo. This justifies the terminology target density.

Theorem 1 (Theorem 2.14 in [18]). Let G™ ~ G(n; p,W)
be a sequence of W-random graphs with target density pp,
where W is a normalized graphon over an arbitrary proba-
bility space, and p,, is such that np, — oo and p, — 0. Then,
as n — oo, we have p(G™)/p, — 1 a.s. and

1 n
5|j (WG( },W) =0 as..
Note that, as we discussed above, G(™ naturally defines
a graphon, and G™ /p(G™)) refers to the scaled graphon
corresponding to G(™). In fact the theorem above implies that
if pp — 0 and np, — oo, with m(™ denoting the number
of edges in G™ ~ G(n; p, W), we have m(™ /n? — 0 as.,
ie. G is sparse, but 2m(™ /n — oo as., ie. the average
degree of G(™ is not bounded. Therefore, this sparse graphon
framework allows us to study heavy-tailed sparse graphs, as
opposed to the local weak convergence framework, where
there is a well-defined limit degree distribution at the root.

A. Sparse Graphon Estimation

Borgs et al. have introduced several methods for estimating
the graphon W upon observing a sequence of W-random
graphons [18]. Here we introduce one of their methods, called
the least squares algorithm, which will be useful in our
discussion. Given integers n and k, a function = : [n] — [k],
and a k x k matrix B, we define B™ as the n x n matrix such
that (Bﬂ—),:,j = B:lr(wl),_?r(j) for1<i,j<n

Least Squares Algorithm: Given a graph G on n vertices,
and a parameter 3 such that 1 < 3 < n, let

(#,B) € lA(G) — B7|l2, ()

arg min
ﬁ:[n]—r[ﬁ],BERf]x[‘g]

where the minimization is taken over [8] x [S8] matrices B
and m : [n] — [B] such that for 1 < i < |B], either
1 ({i}) = 0 or |7 '({i})| > [n/B]. Recall that [B]
is a shorthand for [|3]]. Assume that we have solved the
optimization problem in (5), and 7 and B are its optimizers.
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Then, we define the output of the least squares estimation
algorithm to be the block graphon (p, B) where the probability
vector p = (P1,...,P|s) is such that p; = |7~ ({i})|/n for
1<i<|B].

With an appropriate choice of the parameter 3, for each
n the above algorithm yields a consistent graphon estimation
scheme, in the following sense.

Theorem 2 (Theorem 3.1 in [18]). Let W be an L? graphon,
normalized so that |W|, = 1, and let G™ be a sequence
of W-random graphs with target densities (p, : n > 1).
Furthermore, let W™ := ("), BM)) be the output of the
above least squares algorithm for G™) with parameter .
If pn, and (3, are such that as n — oo we have p, — 0,
npn — 00, Bn — oo, and B2 log B, = o(npy), then we have
with probability 1 that

lim &, (iﬁiﬂ}, W) =0.
n—oo Pn

B. Sparse Graphon Entropy

For an L? graphon W over a probability space (2, F, ),
we define

Ent(W) := E[W log W] — E[W]logE [W], (6)

where the expectations are taken with respect to the product
measure 7 X . Note that when W is a normalized graphon we
have E[W] = 1 and Ent(W) = E [W log W]. In fact, every
normalized graphon W corresponds to a probability measure
v on 2 x Q which is defined through the relation % =W.
With this, for such a normalized graphon, we may write

Ent(W) = D(v|jx x ). 7

Thus Ent(W) is a conic version of relative entropy, just as it
is for nonnegative random variables [23, pg. 94].

We can prove the following theorem. The last part of this
theorem gives an operational meaning for Ent(W) in terms of
the asymptotic behavior of the entropy of W-random graphs.

Theorem 3. Assume that W is an L? graphon on a probability
space (0, F, ). Then, the following hold:
1) Ent(W) is well defined and Ent(W) < cc.
2) Ent(W) > 0.
3) For a > 0, we have Ent(aW) = a Ent(W).
4) Assume that a sequence W, of L? graphons over
(R, F,mn) is given such that §,(W,,W) — 0 as
n — oco. Then we have Ent(W,,) — Ent(W) as n — oc.

5) Assume that G™ ~ G(n;p,W) is a sequence of W-
random graphs with target density py, such that np, —
oo and pn — 0. Then, with Ty, := (3) pn, we have

H(G™) —my log -

Mn

IV. PROBLEM STATEMENT AND MAIN RESULTS

lim
n—oo

=1— Ent(W).

In this section we formalize the problem of finding a
universal compression scheme which is capable of compress-

ing a sequence comprised of either sparse graphs which are
convergent in the local weak sense as discussed in Section II,
or heavy-tailed sparse graphs generated as a sequence of W-
random graphs as discussed in Section IIIL.

More precisely, for each n, we want to design a compression
map fn, : G, — {0,1}* — @ which assigns a prefix—free
codeword to every graph on the vertex set [n], as well as
a decompression map g,, such that g, o f, is identity, ie.
lossless compression. Additionally, we want this compression
scheme to be universally optimal in the following sense:

1) If we have a sequence of graphs G™ converging in the

local weak sense to some unimodular g € P(T,), then

(™))} — (™
li_msupnats(fn(G )) —m'™logn

n—oo n

< X(u).

Here, m(™ is the number of edges in G™, and the
normalization of the codeword length is done in a way
consistent with the definition of the BC entropy.

2) If G™ ~ G(n; p,W) for a normalized L? graphon W
and a sequence of target densities p, with p, — 0 and
npn — 0o, then with probability 1 we have

nats(f,(G™)) —m, log -

sup — fr < 1— Ent(W),
n—o0o Mn
where M, = (§)pn. Note that here the normalization

is consistent with the asymptotics of the sparse graphon
entropy as discussed in the last part of Theorem 3 in
Section III-B.

In this setup the encoder only observes the graph realization
G™), and not the whole sequence (G(“) : n > 1). Moreover,
the encoder does not a priori know from which of the two
ensemble types the realization G(™) comes, nor does it know
the limit objects for each of the two sequence of ensembles.

We address this problem by introducing such a universal
compression scheme, and will further discuss a converse result.
Our compression scheme employs a splitting method. More
precisely, given a graph G(™), we choose a splitting parameter
A, and split G(™ into two graphs, denoted by Gg? and
G{™. These two graphs are both on the vertex set [n], and
each edge in G(™ appears in precisely one of them. More
precisely, Gg“: consists of the edges (v, w) in G(™) where the
degrees of both of their endpoints are at most A,. We then
define G™ to include the remaining of edges in G(™). We
encode each of these two graphs separately, as discussed in
Section V. Roughly speaking, the splitting parameter is chosen
so that when G(®) is coming from a sequence in the local weak
convergence regime, Gg": contains most of the edges in G(™),
while when G(™) is coming from a sparse graphon ensemble
G™ contains most of the edges in G(*). To emphasize the
dependence of the compression and the decompression maps
on the parameter A,, we denote these mappings by fi»
and g5, respectively. We can prove that, with an appropriate
choice of Ay, a universal compression scheme exists in the
sense of the following theorem. The sequence a, here ensures
that np, does not converge to infinity arbitrarily slowly.
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Theorem 4. Assume that np, > a, where (a, : n > 1) is
known to both the encoder and the decoder, with a, — oo
as n — oo. Then, we can choose the sequence of splitting
parameters (A,, : n > 1) such that our compression scheme
((f&n,gan) : n > 1) achieves optimal universal compression,
in the sense discussed above. Namely, we have
1) IfG™ is a sequence of random graphs converging a.s.
in the local weak sense to some unimodular p € P(T,)
with deg(u) € (0, 00), then with probability 1

An (G(7))) — (™)
]i_msupnats(f“ (G'™)) —m™logn

n—oo n

< X(u),

where m™) denotes the number of edges in G™).

2) On the other hand, if G™ ~ G(n;p,W) is a sequence
of W-random graphs with target densities pr,, where W
is a normalized L? graphon, assuming that p, — 0 as
n — oo and np, > ay, with probability 1 we have

1
Pn <1 — Ent(W),

lim sup
n— oo

My

where Ty, == (3) pn.
In the above setting, the encoder and the decoder only know
the sequence ay, and do not know from which of the two
settings the input graph G'™) is generated, neither do they
know the limit objects p nor W in each setting, respectively.

Note that the first part of this theorem also allows for a fixed
sequence G(™). We also have the following converse result:

Theorem 5. Assume that ((fn,gn) : n > 1) is a sequence of
lossless compression/decompression maps (i.e. g, o [y is the
identity map). Then we have the following.

1) For any unimodular p € P(T.) with deg(n) € (0,00),
there exists a sequence of random graphs G™) defined
on a joint probably space such that U(G™)) converges
a.s. to p in the local weak sense, and for all t < Y.(u)

(™))} — (™
IP(]i_msup nats(f(G\™)) — m'™ logn St) <1

n—oo n

where m'™) denotes the number of edges in G™).

2) For any normalized L? graphon W and any sequence of
target densities py such that np, — oo and p, — 0, if
G™) ~ G(n; p,W) is the sequence of W-random graphs
with target densities py, then for all t < 1 — Ent(W),

nats(fn(G(n}))_ﬁn]‘)gp% <t) <1

My

P (li_m sup

n— oo

V. COMPRESSION SCHEME AND PROOF SKETCH

In this section, we introduce the compression and decom-
pression maps f2» and g2~ and discuss the proof ideas of our
main results. Given the sequence a, satisfying np, > a, and
an, — oo as n — oo as in Theorem 4, we choose the splitting
parameter A, := min{logay,loglogn} and find G &‘: and
G{™ as defined in Section IV. We first compress G‘(;l using
the compression method f© of Section II-B. Let R,, denote

the set of vertices v € [n] such that either degom) (v) > Ay
or degom(w) > A, for some w ~gm v. Clearly, both
endpoints of every edge in G™ are in R,. We may encode
the set R,, using logn + log (“;‘nl) nats. We then apply the
least squares algorithm of Section III-A to G (") with parameter
Bn. defined as follows, to obtain 7, and B,,. To define 3,, let
an = exp(|logm{™ /n]) where m{™ denotes the number of
edges in G™. Moreover, let B, := Van/logay if an > €?
and 1 otherwise. By rearranging the rows and columns in the
adjacency matrix of G(™), we can think of #,, as partitioning
this adjacency matrix into at most 3, blocks. Since G isa
subgraph of G(), we encode G\™ by going over each block,
and for the block (z,3),1 < i < j < SB,, we encode the edges
of G{™ that fall in block (i, 7)- We do this by first encoding the
number of edges of G™ in block (2, 7) followed by encoding
the positions of ones in that block.

For the proof of Theorem 4, if G(™) is convergent in the
local weak sense to some p, it can be shown that, since
Ap — oo, Gg‘l converges in the local weak sense to the same
limit. Therefore, using Eq. (2), the asymptotic normalized
codeword length associated to compressing ng: does not
exceed Y(u). Also, it can be shown that in this case the
number of nats used to encode G is o(n). This shows
the first part of Theorem 4. To prove the second part of the
theorem we first show that the above choice of By, satisfies the
conditions of Theorem 2. This means &(W ™) /p,, W) — 0
a.s., where W (™) is the block graphon obtained by applying the
least squares algorithm on G(™) with parameter 3,,. Moreover,
it can be shown that the number of nats used to encode Gg‘)

is o(my,), and the number of nats used to encode G&“) is
My log - +77 (1—Ent(W™ /) +o(,). But, using part
4 of Theorem 3, Ent(W®™ /p,) — Ent(W) a.s. since, with
probability 1, we have d3(W™ /p,, W) — 0.

The proof of Theorem 5 follows from the fact that in the
context of local weak convergence no compression scheme can
achieve an asymptotic rate below the BC entropy [10, Thoerem
4]. The second part follows from the asymptotic behavior of
the entropy of W-random graphs, i.e. part 5 of Theorem 3.

VI. CONCLUSION

We introduced a universal lossless compression method
simultaneously applicable to both sparse graphs and heavy-
tailed sparse graphs. We employed the framework of local
weak convergence for sparse graphs, and the sparse graphon
framework for heavy-tailed sparse graphs.
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