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A Deterministic Algorithm for the Capacity of
Finite-State Channels
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and Brian Marcus, Life Fellow, IEEE

Abstract— We propose two modified versions of the classical
gradient ascent method to compute the capacity of finite-state
channels with Markovian inputs. For the case that the channel
mutual information rate is strongly concave in a parameter
taking values in a compact convex subset of some Euclidean
space, our first algorithm proves to achieve polynomial accuracy
in polynomial time and, moreover, for some special families
of finite-state channels our algorithm can achieve exponential
accuracy in polynomial time under some technical conditions.
For the case that the channel mutual information rate may not
be strongly concave, our second algorithm proves to be at least
locally convergent.

Index Terms— Channel capacity, finite-state channels, gradient
ascent, hidden Markov processes.

I. INTRODUCTION

S opposed to a discrete memoryless channel (DMC),

which can be characterized by the conditional distrib-
ution of the output given the input, in a finite-state channel
(FSC) this conditional distribution depends on an underlying
state variable which evolves with time. Encompassing DMCs
as special cases, FSCs have long been used in a wide range
of communication scenarios where the current behavior of the
channel may be affected by its past. Among many others, con-
ventional examples of FSCs include inter-symbol interference
channels [10], partial response channels [28], [31] and Gilbert-
Elliott channels [24].
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While it is well-known that the Blahut-Arimoto algo-
rithm [2], [4] can be used to efficiently compute the capacity of
a DMC, the computation of the capacity of a general FSC has
long been a notoriously difficult problem and it has been open
for decades. The difficulty of this problem may be justified
by the widely held (yet not proven) belief that typically the
capacity of an FSC may not be achieved by any finite-order
Markovian input, and an increase of the memory of the input
may lead to an increase of the channel capacity. For recent
works studying the computability of the capacity of FSCs,
see [9] and [5].

We are mainly concerned with FSCs with Markov processes
of a fixed order as their inputs. Possibly an unavoidable com-
promise we have to make in exchange for progress in comput-
ing the capacity, the extra fixed-order assumption imposed on
the input process is also necessary for the situation where the
channel input has to satisfy certain constraints, notably finite-
type constraints [22] that are commonly used in magnetic and
optical recording [18], [23], [30]. On the other hand, the focus
on Markovian inputs can also be justified by the known fact
that the Shannon capacity of an indecomposable FSC [11]
can be approximated by the Markov capacity with increasing
orders (see Theorem 2.1 of [21]).

Recently, there has been some progress in computing the
capacity of FSCs with such input constraints. Below we
only list the most relevant work in the literature, and we
refer the reader to [14] for a comprehensive list of refer-
ences. In [19], the Blahut-Arimoto algorithm was reformu-
lated into a stochastic expectation-maximization procedure
and a similar algorithm for computing a lower bound on the
capacity of FSCs was proposed, which led to a generalized
Blahut-Arimoto algorithm [32] that proves to compute the
capacity under some concavity assumptions. More recently,
inspired by ideas in stochastic approximation, a randomized
algorithm was proposed in [14] to compute the capacity under
weaker concavity assumptions, which can be verified to hold
true for several families of practical channels [16], [20].

Both of the above-mentioned algorithms, however, are of
a randomized nature (a feasible implementation of the gener-
alized Blahut-Arimoto algorithm will necessitate a random-
ization procedure). By comparison, our algorithms, which
are deterministic in nature, can be used to derive accurate
estimates on the channel capacity, as evidenced by the tight
bounds in Section III-B.

In this paper, we first deal with the case that the mutual
information rate of the FSC is strongly concave in a parameter
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taking values in a compact convex subset of some Euclidean
space, for which we propose our first algorithm that proves
to converge to the channel capacity exponentially fast. This
algorithm largely follows the spirit of the classical gradient
ascent method. However, unlike the classical case, the lack of
an explicit expression for our target function and the bound-
edness of the variable domain (without an explicit description
of the boundary) pose additional challenges. To overcome
the first issue, a convergent sequence of approximating func-
tions (to the original target function) is used instead in our
treatment; meanwhile, an additional check condition is also
added to ensure that the iterates stay inside the given variable
domain. A careful convergence analysis has been carried out
to deal with the difficulties caused by such modifications.
This algorithm is efficient in the sense that, for a general
FSC (satisfying the above-mentioned concavity condition and
some additional technical conditions), it achieves polynomial
accuracy in polynomial time (see Theorem III.12), and for
some special families of FSCs it achieves exponential accuracy
in polynomial time (see Section III-B).

It is well known that the mutual information rate of an
FSC may not be concave under the natural parametrization in
several examples; see, e.g., [16], [20]. Another modification
of the classical gradient ascent method is proposed to han-
dle this challenging scenario. Similar to our first algorithm,
our second one replaces the original target function with
a sequence of approximating functions, which unfortunately
renders conventional methods such as the Frank-Wolfe method
(see, e.g., [3]) or methods using the Lojasiewicz inequality
(see, e.g., [1]) inapplicable. To address this issue, among
other subtle modifications, we impose an extra check in the
algorithm to slow down the pace “a bit” to avoid a premature
convergence to a non-stationary point but “not too much” to
ensure the local convergence.

As variants of the classical gradient ascent method, our
algorithms can be applied to any sequence of convergent
functions, so they can be of particular interest in information
theory since many information-theoretic quantities are defined
as the limit of their finite-block versions. We would also
like to add that our algorithms are actually stated in a much
more general setting and may have potential applications in
optimization scenarios where the target functions are difficult
to compute but amenable to approximations.

The remainder of this paper is organized as follows.
In Section II, we describe our channel model in greater
detail. Then, we present our first algorithm (Algorithm III.3)
in Section III and analyze its convergence behavior in
Section III-A under some strong concavity assumptions.
Applications of this algorithm for computing the capacity
of FSCs under concavity assumptions will be discussed in
Section III-B. In particular, in this section, we show that the
estimation of the channel capacity can be improved by increas-
ing the Markov order of the input process in some examples.
In Section IV, our second algorithm (Algorithm IV.2) is
presented, which proves to be at least locally convergent.
Finally, in Section I'V-B, our second algorithm is applied to two
FSCs where the concavity of the channel mutual information
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rates in the natural parametrization are not known, and yet fast
convergence behaviors are observed.

In the remainder of this paper, the base of the logarithm is
assumed to be e.

II. CHANNEL MODEL AND PROBLEM FORMULATION

In this section, we introduce the channel model consid-
ered in this paper, which is essentially the same as that
in [14], [32].

As mentioned before, we are concerned with a discrete-time
FSC with a Markovian channel input. Let X = {X,, : n =
1,2,...} denote the channel input process, which is often
assumed to be a first-order stationary Markov chain' over a
finite alphabet X, and let Y = {Y, : n = 1,2,...} and
S ={S,:n=0,1,...} denote the channel output and state
processes over finite alphabets )} and S, respectively.

Let IT be the set of all the stochastic matrices of dimension
|X| x |X|, where |X| denotes the cardinality of X. For any
finite set F' C X2 and any § > 0, define

Ops = {AcIl:A; =0, for (i,j) € F
and A;; > § otherwise}.

It can be easily verified that if one of the matrices from IIg s
is primitive, then all matrices from IIps will be primitive,
in which case, as elaborated on in [14], F' gives rise to a
so-called mixing finite-type constraint. Such a constraint has
been widely used in data storage and magnetic recording [23],
[30], the best known example being the so-called (d, k)-run
length limited ((d, k)-RLL) constraint over the alphabet {0, 1},
which forbids any sequence with fewer than d or more than
k consecutive zeros in between two successive 1’s.

The following conditions will be imposed on the FSC
described above:

(IL.a) The channel is stationary and characterized by

P(yﬂ|511v: 3{13v: y?_l) = p(Yn|Tn, Sn_1)

forany 1 < n < N, where p(yn|zn, sn—1) > 0 for any
positive integer n and any T, Sn—1, Yn-

(ILb) { Xy, Sn_1}22, is a first-order stationary Markov chain
whose transition probabilities satisfy

p(In+la Sn|3'm Sn—l) = p(In+1 |In)p(sn|$n: Sn—l):

for any positive integer n, where p(sn|Tn,sSn—1) >
0 for any sp_1, Sn, Tn-

(IL.c) The input process X is a first-order stationary Markov
chain, and there exist a set ¥ € X2 and 6 > 0 such
that the transition probability matrix of X belongs to
IIg s, each element of which is a primitive matrix.

It follows from Theorem 4.6.3 of [11] that an FSC specified as
above is indecomposable. Therefore, assuming that the input
X (or, more precisely, the transition probability matrix of X)) is
analytically parameterized by a finite-dimensional parameter 6
in the interior of a compact convex subset © of some Euclidean

I'The assumption that X is a first-order Markov chain is for notational
convenience only: through a usual “reblocking™ technique, the higher-order
Markov case can be boiled down to the first-order case.
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space, the parametrization being continuous at the boundary
(such a parameterization exists thanks to the stationarity of X,
and we will simply say that X is analytically parametrized by
6, for convenience), we can express the capacity of the above
channel as

C= %%%I(X(f?); Y(0) = ?eagklingo I (X(0);Y (9)), (1)

where
a H(Xf(0)) + H(YF(6) — H(X{(9), Yf‘(ﬂ))_

k
(2

Moreover, it can be shown as in [14] that I (X (6);Y (0))
(resp., its derivatives) converges to I(X(0);Y (8)) (resp.,
the corresponding derivatives) exponentially fast in k& under
Assumptions (IL.a), (ILb) and (IL.c). Hence, although the value
of the target function I(X (#); Y (f)) cannot be exactly com-
puted, it can be approximated by the function I} (X (8);Y (9)),
which has an explicit expression, within an error exponentially
decreasing in k.

Instead of merely solving (1), we will deal with the follow-
ing slightly more general problem

I(X(60); Y (9))

é .
g i) = iy, Vi)
subject to 8 € ©, 3)

under the following assumptions:

(Al) © is a compact convex subset of R? for some d € N
with nonempty interior ©° and boundary 90;

(A2) f(0) and all fr(f), & = 0, are continuous on © and
twice continuously differentiable in ©°;

(A3) there exist My > 0, N > 0 and 0 < p < 1 such that
forall k > 1,68 € ©° and £ = 0,1, 2, it holds true that
172(0)ll2 < Mo and

1720)— £9,(0) 1< N, | £9(6) - FO(B) || < N p*,
(4)

where ||-||, denotes the Frobenius norm (see, for exam-
ple, Section 5.6 of [17]) of a vector/matrix and the
superscript () denotes the {-th order derivative. Here,
for any twice continuously differentiable function f(6),
f(0) denotes the gradient of (@) for £ = 1 and the
Hessian matrix of f(@) for £ = 2.

Obviously, if we set fr(8) = Ix(X(0); Y (#)) and assume that

X (0) is analytically parameterized by some # € ©, then (3)

boils down to (1).

When the target function f(f) has an explicit expression
and © is specified by finitely many inequalities with twice
differentiable terms, the optimization problem (3) can be effec-
tively solved via, for example, the classical gradient ascent
method [6] or the Frank-Wolfe method [3] or their numerous
variants. However, feasible implementations and executions of
these algorithms usually hinge on explicit descriptions of ©
and V f, both of which can be rather intricate in our setting.

Before moving to the next two sections to present our
algorithms, we make some observations about the sequence
{fx(0)}32,- From the boundedness of ||fé£)(9)||2 and the

inequalities in (4), the uniform boundedness of { fg)(ﬂ)}z‘;o
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follows, i.e., there exists some 0 < M < oo such that for all
k>0,¢=0,1,2 and for all # € ©° we have

|7°@|, < m. ©)

In particular, for any # € ©°, when £ = 2, fg)(ﬁ') =2 L0
is a symmetric matrix whose spectral norm is given by

V2f(0) -

where A; denotes the largest (in modulus) eigenvalue
of V2f.(#). Hence, (5) and the easily verifiable fact
IV 7@l < |72 fi(6)]], imply that

—MT; < V2 f(6) < M, (6)

V2 7@, £ sup

for any k and any 8§ € ©°, where I; denotes the d x d identity
matrix, and for two matrices A, B of the same dimension,
by A =< B, we mean that B — A is a positive semidefinite
matrix. The existence of the constant M in (6) will be crucial
for implementing our algorithms.

III. THE FIRST ALGORITHM: WITH CONCAVITY

Throughout this section, we assume that f(f) is strongly
concave, i.e., there exists an m > 0 such that for all § € ©°,

V2£(0) < —mll. )
‘We also assume in this section that
f achieves its unique maximum in ©°. (8)

We will present our first algorithm to solve the optimiza-
tion problem (3) under the assumptions (Al), (A2), (A3) in
Section II. As mentioned before, the algorithm is in fact a
modified version of the classical gradient ascent algorithm,
whereas its convergence analysis is more intricate than the
classical one. To overcome the issue that the target function
f(8) may not have an explicit expression we capitalize on the
fact that it can be well approximated by { fx(8)} 2~ ,. which
will be used instead to compute how to move in each iteration.

Before presenting our algorithm, we need the following
lemma, which, as will be evidenced later, is important in
initializing and analyzing our first algorithm.

Lemma III.1: There exists a non-negative integer kp such

that
(@) (N + M)M protl 4 2N pho+1

I-p
L _
where § = max 79 é:g%:éf(ﬁ') >10:

1)
< — and Npke < —,
8 8

(b) For any k > ko, fr(f) is strongly concave and has a
unique maximum in ©°; and moreover, we have

d]/ZPkg
sup ||0; — 0" ||, + —— < dist(6%,00), (9)
k>ko L=y

where 6% denotes the unique maximum point of f(8),
0y denotes the unique maximum point of fi(#) and
dist(x, A) is defined as

dist(z, A) £ gng lz —yll,

for any point = € RY and any set A C R
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(c) There exists a yp € R such that for any integer k > ko,
0 C By CCrCO° and dist(Ck,d0) >0,
where
Bi £ {z €O : f(z) > yo},
Cké{Ieeifk(I)Zyu—g}
and dist(A, B) is defined as
dist(A, B) £

inf

Jnf e =yl

for any set A, B C R%.

Proof: Since (a) trivially holds for sufficiently large ko,
we will omit its proof and proceed to prove (b). Towards this
end, note that according to (4) and (7), it holds true that for
sufficiently large k, each fj is strongly concave. Noting that
f(0%) —maxgcpe f(8) = 4, we deduce from (a) and (4) that
for k large enough,

{eﬂeagfk(e) - gggg fx(9)

5
> fu(0%) — m f(6) — 3

B
> f(6") — max f(6) — 1
_30

4

Hence, for k sufficiently large, fi achieves its unique maxi-
mum at g € 0°.

We now prove that §; — 6* as k — oc. To see this, observe
that (4) implies the uniform convergence of fi to f, i.e., for
any £ > 0, there exists a non-negative integer K such that for
any k> K andany 0 € ©, f(f) —e < fr(0) < f(B) +¢€. In
particular, if k > K, we have

f(0*) —e < fi(0) < fi(6F) < f(O) +& < £(0%) +e,

which further implies that f(6;) — f(6*) as k — oc. It then
follows from the triangle inequality that

f(Ox) — F(67), (11)

Now, by the Taylor series expansion, there exists some feco°
such that

FOR)—FO)=VF(O) (6r — 67) + (65 — 67) ' V?f()(6;—07).
(12)

Since Vf£(6*) = 0 and V2f(f) < —ml; according to (7),
it follows from (11) and (12) that 8 — 6* as k — oo, as
desired.

It then immediately follows that |6} — 6% ||, +d'/2p* /(1 —
p) — 0 as k — oo. Observing that dist(#*,90) > 0 (since
g* € ©°), we infer that (9) holds for sufficiently large k.
Hence, (b) will be satisfied as long as kg is sufficiently large.

We now show that (¢) also holds for sufficiently large kq.
From the definition of 4, there exists a yp such that

é

i)
égggf@ + 3<% < gleagf(ﬂ) 1

> 0. (10)

as k — oc.
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Recalling (4) and using the same logic as that used to derive
(10), we infer that for all sufficiently large k,

4
max fr(f) <yo— 5 <wyo < max fr(0). (13)

6€00 8
According to (b) and the fact that §; € ©°, which follows
from (13), we deduce that ) C By C Cp C ©° and
dist(Cy, 00) > 0 with

Cr 2 {I : fr(z) = yo — g} and By = {z: fi(z) > yo}-

Therefore, (¢) is valid as long as Ky is sufficiently large.
Finally, choosing a larger kg if necessary, we conclude that
there exists a non-negative integer kg such that (a), (b) and
(c) are all satisfied. |

Remark 111.2: We remark that, for any k > kp, each By
specified as above has a non-empty interior, which is due to
the rightmost strict inequality in (13) and the continuity of fj.

We are now ready to present our first algorithm, which
modifies the classical gradient ascent method in the following
manner: instead of using Vf to find a feasible direction,
we use V fi as the ascent direction in the k-th iteration and
then pose additional check conditions for a careful choice
of the step size. Note that such modifications make the
convergence analysis more difficult compared to the classical
case, as elaborated on in the next subsection.

Algorithm 1I1.3 (The First Modified Gradient Ascent
Algorithm):

Step 0. Choose kg such that Lemma III.1 (a)-(c) hold. Set
k =0, go = fx, and choose a € (0,0.5), 8 € (0,1) and
By € ©° such that 6y € By, and Vgo(0p) # 0.

Step 1. Increase k by 1, and set ¢t = 1, gr = frotk-

Step 2. 1If vgk—l(gk—l) = 0, set

T =0k—1 + tVgr_1(0k—1 + p*T*1),
where 1 denotes the all-one vector in R?; otherwise, set
T=0,_1+tVgr_1(0r_1).
If 7¢O or
k(1) < gr(Bk—1)+0t [ Vg1 (Br_1) |2~ (N +M)Mtg* 5o,

set t = 3t and go to Step 2, otherwise set §x = 7 and go to
Step 1.

Remark Il1.4: N and p are chosen such that (4) holds and
the choices of them can be derived from Section IV of [15] in
practice. Furthermore, it is obvious from the definition of gy
that as k tends to infinity, gx (resp., its first and second order
derivatives) converges to f (resp., its first and second order
derivatives) exponentially fast with the same constants N and
p as in (4).

Remark II1.5: According to Lemma III.1, the choice of
ko depends on practical evaluations of constants N, p, M, and
is different from case to case. Moreover, the existence of 8y
can also be justified by Lemma IIL.1 (c).

Remark I11.6: We point out that for any £k > 1 in Step
2 of Algorithm I3, when Vgi_1(0x—1) = 0, the point
Ox_1 + p*T*01 will always lie in ©°. To see this, note that
if fp_1 is the maximum point of gx_1 = frig,—1, then
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Ok—1 =0y, _1- However, by Lemma IIL.1 (b), 6 ,, , sat-
isfies (9), which immediately implies that 6;_;+pF+%01 € ©°
when Vgr_1(0k—1) =0, for any k > 1.

Remark 111.7: For technical reasons that will be made clear
in the next section, o is chosen within (0, 0.5) to ensure the
convergence of the algorithm. In Step 2 of Algorithm II1.3, the
case that Vgg._1(6x_1) = 0 is singled out for special treatment
to prevent the algorithm from getting trapped at the maximum
point of fr_ for a fixed k, which may be still far away from
the maximum point of f.

A. Convergence Analysis

As mentioned earlier, compared to the classical gradient
ascent method, Algorithm IIL.3 poses additional challenges for
convergence analysis. The main difficulties come from the two
check conditions in Step 2: the “perturbed” Armijo condition
(see, e.g., Chapter 2 of [3] for more details)

9k(r) > gi(Ok—1)+at [|Vge_1 Ox—1)||2 — (N + M)Mtph+ko

may break the monotonicity of the sequence {gx(0k)}32,
which would have been used to simplify the convergence
analysis in the classical case; and the extra check condition
7 € © (t depends on k) forces us to seek uniform control
(over all k) of the time used to ensure the validity of this
condition in each iteration. In the remainder of this section,
we deal with these problems and examine the convergence
behavior of Algorithm III.3. In a nutshell, we will prove that
our algorithm converges exponentially fast under some strong
concavity assumptions.

Note that the variable k in Algorithm IIL.3 actually records
the number of times that Step 1 has been executed at the
present moment. To facilitate the analysis of our algorithm,
we will put it into an equivalent form, where an additional
variable n is used to record the number of times that Step 2
has been executed.

Below is Algorithm IIL.3 rewritten with the additional
variable n.

Algorithm IIL.8 (An Equivalent Form of Algorithm II1.3):

Step 0. Choose kj such that Lemma III.1 (a)-(c) hold. Set

n=0,k=0,§o = go = fr,> and choose a € (0,0.5),0 €
(0,1) and 6 € ©° such that 6y € By, and Vo (fo) # 0.
Step 1. Increase k by 1, and set ¢ =1, gx = Srotk-
Step 2. Increase n by 1. If Vgn_1(0n_1) = 0, set

T =0p—1 4 tVin-1(0n-1 + pF1); (14)

otherwise, set
T = bn_1 +tVin_1(0n_1). (15)

If & ©°or
k(1) <Gk (On—1)+t[|Vgn—1(6n—1) 13— (N + M)MtpFtke,
(16)
then set én — An_l,ﬁn = gn—1,t = Bt and go to Step 2;

otherwise, set én =7,Gn = gx and go to Step 1.
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Remark I11.9: Let ny = 0, and for any k > 1, recursively
define

gk e mf{n >MNE_1: én % én—l}-

Then, it can be verified in a straightforward manner that On s
Ok, Gny. = gk = frtk, forany k > 0and ) = 0111, G = G111
for any I with ng_q1 < I < ng—1. This justifies the equivalence
between Algorithm II1.3 and Algorithm IIL.8.

The following theorem establishes the exponential conver-
gence of Algorithm II1.8 with respect to n.

Theorem II1.10: Suppose, as in (7) and (8), that the strongly
concave function f achieves its unique maximum at 8* € ©°.

Then there exist an M >0 and a £ € (0,1) such that for all
n >0,
F(67) < mér,

|Gn (6n) — (17)

where ﬁn(éﬂ) is obtained by executing Algorithm IIL.8.
Proof: For simplicity, we only deal with the case that

Vin_1(6n_1) # 0 in Step 2 of Algorithm IIL8 (and
therefore (15) is actually executed), since the opposite case
follows from a similar argument by replacing b1 with
é‘1'1.—1 = Pk+k°1-

Let 71 (k) denote the smallest non-negative integer p such
that

ﬂk 1 ﬁpv.qﬂk 1(9‘”1:: 1) € 90 (18)

T'(k) denote the smallest non-negative integer ¢ such that ¢ >
Ti1(k) and

gk (énk—l + ﬁqvﬁ'ﬂk—l (éﬂk—r. ])
> gk (Ony_y) + B[V ing_, (Bny,_,) I3 — (N+M)MBTp" e

Note that the well-definedness of T7(k) and T'(k) follows
from the observation that if (18) holds for some non-negative
integer p, then it also holds for any integer p’ > p. Adopting
these definitions, we can immediately verify that T'(k) = ng —
ng—1, Which corresponds to the number of times Step 2 (of
Algorithm II1.3) has been executed to obtain f,,, from 6, .

The remainder of the proof consists of the following three
steps.

Step 1: Uniform boundedness of T'(k). In this step,
we show that there exists an A > 0 such that T'(k) < A
for all k.

Since ©° is open and 6 € ©°, we have T} (k) < oo for any
k > 0. Note that we have not shown that T (k) is uniformly
bounded at this stage.

For any g > Ti(k), letting

+ BV gni s Onis),

'r: ‘-"lkl

we have 7 € ©° and so both f(7) and f(r) are well-defined.
Recalling from (6) that

V2k(0) = V2 firko (6) = —M1q
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for any £ > 0 and any 6 € ©°, we derive from the Taylor
series expansion that

ak(r) =k B _2) + BTV 0k (B Vs (Bre_)
2q
2 Ve sV V000 Vit (B )
>gk(€ﬂk 1 ) F JBQVQE(Bﬂk—l )Tv.qﬂk—l (gﬂk—l)

M,@2
[z T

(19)

where ) € ©°. According to (4), we have

ng(éﬂk_l )Tv.aﬂk_l (éﬂk—l )
:Vﬁﬂk—l (Sﬂ-k—l )Tvﬁﬂk—l (aﬂk—] )
+ (Vr(One_,)" Ving_, (Ony_,)
TE Vénk—l (6ﬂk_1 )Tvﬁﬂkq (Gnk—l ))
>V éng_y One_)lI3 — No* ([ Vne_, (One_)ll,-
This, together with (19), implies that
k() ZgkBni_,) + BV i, Onic_)II3
M,Bz
IV s (Bni_) 13

—Nﬁq PV s (Gl

>k (Bni—s) + B Vi, One_y)I13
M,Bz

IVdnis (Bn, ) 15— NM BT,

where the last inequahty follows from (5). Note that for any
non-negative integer g > — log M/ log 3, we have

M,GZ

5(}_ >%}6q>aﬁqa

which immediately 1mplles that (16) fails; in other words, for
any non-negative integer g > 77 (k), we have

gk Ons_, + BTV Gny_, (Ons_,))
> gk(Bni_y) + @B Vine_, (One_,)lI3
sy (N ¢ M)M,@qpk+k°

as long as ¢ > —log M/log 3. It then follows that for any
integer k > 1, T'(k) can be bounded as

Ay ifTi(k) < Ap

Ti (k) if Ty (k) 2x Az, (20)

o
where A £ max{0,—logM/log 3+ 1} is a constant inde-
pendent of k. Now, to prove the uniform boundedness of T'(k),
what remains is to show that there exists an A; > 0 such that

for all k, T1(k) < A;.
From the definition of T'(k), we have

9k(6ni) >9k(One_,) +aB"® || Vin_, (0|13

— (N + M)MBT® gktko, 1)
Note that (4) and (21) imply that
9(Bni) > gr—1(Bny_,) — (N + M)M pF+Fo — N pFtFo,
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By summation, we obtain that

k—1
gk(éﬂ.k) > go(éo) e Z [(N+M)Mp§+kn+l _|_Npi+kn+1]
i=0
s [(N+M)MpFo+t  Npkott
= go(fo) — {( 1 Mp d .
—p I-p

It then follows from (4) that for all £ > 0 we have
go(gnk)

. (N + M)Mpku-i-l Npko-i-l
>go(bo) — N pidia
A N + M)Mpret! 2N prot!
=go(6o) — [( 1 Lol £
-P L—p
>g0(fo) — (22)
where the last inequality follows from Lemma III.1
(a). Now, letting yp, By, and Cy, be defined as in

Lemma IIL.1, we infer from (22) and Lemma IIL.1 (c) that
{Gm} k=0 € Ck, C© ©°. Hence, for any non-negative
integer p > log(dist(Ck,,80)/M)/log 3, we have Bnk  +
B°Vine_1(0n,_,) € ©° and it then follows that T} (k) < A,
where A; is defined as

log 3
Finally, it follows from (20) and (23) that
T(k) < A2 max{A;, Ay}, 24)

as desired.
Step 2: Exponential convergence of { f(f,,)}. Using (4),
(5) and the definition of {gn, }22,. we deduce From (21) that

F(Bne) 2 f(Oni,) + BV £ (Oni_)II3
— [(N + M)MBT® 2N + 2N M p|p*+ko.
On the other hand, we infer from (7) that

FO") S F B )4V F O y)T (6 ) — 6" — B, I3,

which, coupled with some straightforward estimates, yields
2m(f(6") = f(Bn,._,)) < IV £ (n,_) 13-

It then follows that
f(f"*) = f(éﬂk)

< £(8) = £ (On,_,) — aBT®|V f(bn,_,)II3

+ [(N + M)MBT® + 2N + 2N M p|pkt*e

< (1 - 2mafT®)(f(6") — f (b))
+ [(N +M)M + 2N + 2N Mp|p*+Fe
< (1 - min {2 mapB*,2 map2}) (£(6*) — f(bn, ,))

2

5. (NM+M + 2N +2NM) kot

= ??(f(ﬁ'*) = f(énk—l)) + Yk

()

(25)
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where
n=1—min {Qma, 7d13t((;? ,06) 2maf, 2ﬂ;;’8} ;
2
e 2 (NM+M + 2N —|—2NM) Skt
P

and (d) follows from (24). Recursively applying (25) and
noting that 0 < i < 1, we infer that there exist an M’ > 0 and
a £ € (0,1) such that

f(e*) - f(éﬂk) £ M’gk-

Step 3: Exponential convergence of { ﬁn(én)}. In this step,
we establish (17) and thereby finish the proof.

First, note that for any positive integer n > 0, there exists
an integer k' > 0 such that

(26)

n <n<npyr, n< (K +1)A,
éﬂ = Aﬂkn ﬁﬂ(éﬂ) = ﬁﬂk: (éﬂkr )J
where A is defined in (24). These four inequalities, together

with (4) and (26), imply that there exists an M >0 and a
£ € (0,1) such that for any n > 0,

|§ﬂ(éﬂ) | f(B*)l

<|gnp Ony) = FOn )| + | f(On,) — F(67)]

<Npk’+kg + M.f&.k’

SNPkOPLn/AJ_l s M!&-LR/AJ—I

<Mé,
which completes the proof of the theorem. m

Theorem III.10, together with the uniform boundedness

of T'(k) established in its proof, immediately implies that
Algorithm II1.3 converges exponentially in k. More precisely,
we have the following theorem.

Theorem I11.11: For a strongly concave function f whose
unique maximum is achieved at 6* € ©°, given in terms of

the approximating sequence of functions {f}3°, as in (3),
satisfying assumptions (A1), (A2) and (A3) in Section II, there
exist an M > 0 and a £ € (0,1) depending on m, M, N and
p such that for all k,

|9k (6x) — F(6%)| < ME,
where gi(fx) is defined as in Algorithm III.3.

27)

B. Applications of Algorithm I11.3

In this section, we discuss some applications of Algo-
rithm IIL.3 in information theory.

Consider an FSC satisfying (II.a)-(Il.c) and assume that all
the matrices in IIr 5 are analytically parameterized by 6 € ©°,
where © is a compact convex subset of R, d € N. Setting

f(0) =I(X(0);Y(6))
and

fi(0) = H(X2(0)|X1(6)) + H(Ye11(0)[Y1"(9))

—H(Xi41(6), Yer1 ()| X7 (0), Y(6)),  (28)
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we derive from [13] that (4) holds (the way of choosing N
and p in (4) for practical channels can also be derived from
Section IV of [15]). So, when f(6) is strongly concave with
respect to @ (this may hold true for some special channels,
see, for example, [16] and [20]) as in (7), our algorithm
applied to {fx(0)}3>, converges exponentially fast in the
number of steps to the maximum value of f(#). This, and
the easily verifiable fact that the computational complexity
of fr(@) is at most exponential in k, leads to the conclusion
that Algorithm IIL.3, when applied to {fx(f)}3>, as above,
achieves exponential accuracy in exponential time. We now
trade exponential time for polynomial time at the expense of
accuracy (see, e.g., Section 5 of [25] for a similar idea). For
any fixed r € R, and any k > [rlog2], choose the largest
[ € N such that & = [rlogl]. Substituting this into (27),
we have

|g[rlogl] (Hfr]og l]) - f(g*” < erlogé_

In other words, as summarized in the following theorem,
we have shown that Algorithm III.3, when used to compute
the channel capacity as above, achieves polynomial accuracy
in polynomial time.

Theorem III.12: For a general FSC satisfying (Il.a)-(IL.c)
and parameterized as above, if I(X(68);Y(0)) is strongly
concave with respect to § € © and achieves its unique
maximum in ©°, then for any fixed » € R, there exists
an algorithm computing its fixed-order Markov capacity that
achieves polynomial accuracy O(I"'°2¢) in polynomial time
O(I"'°2¢), where ¢ is the constant defined in (27) and c is the
cardinality of the output alphabet of the channel.

In the following, we show that for certain special families
of FSCs, we get a stronger convergence result than that in
Theorem III.12. In particular, for the following two examples,
Algorithm IIL.3 can be applied to the sequence { fx(0)} 3>, (or
its variants) defined in (28) to compute the channel capacity,
achieving exponential accuracy in polynomial time.

1) BEC With the (1,00)-RLL Constraint: In this section,
we consider the Markov capacity of a binary erasure chan-
nel (BEC) under the (1, oc)-RLL constraint.

A BEC with parameter ¢ (denoted by BEC(¢)) is a chan-
nel with binary input process {X,}52, and output process
{Yn}o2, such that for each n, Y, equals the transmitted
symbol X,, with probability 1 — ¢, and equals the erasure
symbol with probability e. When there is no input constraint,
it is well-known that the capacity of this channel equals 1 —&.
In this section, we focus on the case when {X,}°, is
required to satisfy the (1, cc)-RLL constraint, i.e., {11} is a
forbidden set for { X, }22 ;. Under this constraint, the BEC(g)
can be viewed as an FSC with only one state. It is worth noting
that although the feedback capacity of this channel was found
in [29], its non-feedback capacity remains unknown. In the
following, we will consider the Markov capacity of the BEC(g)
under the (1, c0)-RLL constraint when there is no feedback.
For such a channel, we will use Algorithm III.3 to evaluate
the first-order Markov capacity, which, compared to a lower
bound for the second-order Markov capacity, will lead to the
conclusion that higher-order memory in the channel input may
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increase the Markov capacity, even though the input of the
channel forms a 1-step shift of finite type [22].

We first suppose that {X,,}2° | is a first-order stationary
Markov chain with the transition probability matrix (indexed

by 0, 1)
1-6 6
- )

for 0 < @ < 1. It has been established in [20] that the mutual
information rate I(X (0);Y (8)) of a BEC(¢) with this input
can be computed as

I(X(8);Y () = (1—¢)" ) H(Xi12(8)|X1(6))e"
=0

and I(X(0),Y(8)) is strictly concave with respect to 6.
Now, setting f(0) = I(X(0);Y (6)), one verifies, through
straightforward computation, that

£(6) = lim f(6),

where
2 H(0)

146’
H(O 1 1— (=)' x
fu(0) (1 —¢)? (li;+2(1+9H( 1(+9) ))EI 1

% (e (550) )

for £k > 2 and H(p) —plogp — (1 — p)log(l — p)
is the binary entropy function. In what follows, assuming
€ = 0.1, we will show that Algorithm III.3 can be applied to
compute the first-order Markov capacity of the BEC(g) under
the (1, c0)-RLL constraint, i.e., the maximum of f(€) over all
6 € [0,1].

From now on, we suppose € = 0.1 in the remainder of this
section.

First of all, we claim that f(f) achieves its unique maximum
within the interval [0.25,0.55] and therefore in the interior of
© £ [0.2,0.6]. To see this, noting that fx(f) < f(0) for
any @ and through evaluating the elementary function fi00(8),
we have

fo(0) =f1(0) = (1 —¢)

0.442239 < fio0(6) < 0.442240

max
6<[0.25,0.55]

and therefore

max _ f(6) > 0.442239,
6¢[0.25,0.55]

(29)

where (29) follows from the fact that fz(f) is monotonically
increasing in k. On the other hand, using the stationarity
of {¥,}22, and the fact that conditioning can not increase
entropy, we have

f(6) =I1(X(0); Y (0))
=H(Y) - H(e)
< H(Y3(0)[Y1(60), Ya(6)) — H(e),
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where H (Y') is the entropy rate of {Y;, }7=. Then, by straight-
forward computation, we deduce that (recall that € = 0.1),

f(9)

6<[0,0. 25]u[o 55,1]

- 96[0,0.25]u[u.55,1] H(Y3(0)|Y1(0),Y=2(0)) — H(e)

< 0.414483,
which, together with (29), yields

1) =  oax (D),

max
#€[0,0.25|U[0.55,1] 6€[0.25,0.55]

as desired.
Next, we will show that (4), (5) and (7) are satisfied for all
6 € [0.2,0.6]. Note that for k > 2 we have

fe(0) — fe—1(0) s )
(o (=) ¢ 2 (52)

X(]. E)2k 1

Recalling that we require £ = 0.1, this implies that for any
k > 5 and any 6 € [0.2,0.6],

[fe(@) — fr—r(0)] < (1

This, together with the easily verifiable fact that 0.378 <
f5(6) < 0.443 for any 6 < [0.2,0.6], further implies that

|fe(8) — F(6)] <0.9x0.1% and 0.37 < fi(#) <045

for any k > 5 and any 6 € [0.2,0.6].
Going through similar arguments, we obtain that when € =
0.1, for any k > 13 and any 6 < [0.2,0.6],
£ (0) — fia(6)] < 72.9 x 0.1%,
|£x(8) — £'(8)] < 8.1x 0.1%,

—&)%2eF1 =81 x 0.1%.

and
—0.44 < f;(9) < 0.76,

and, for any k > 18 and any 6 € [0.2,0.6],

¢ (6) — fi_1(8)| < 370.575 x 0.1%,
| £ (0) — f"(6)| < 41.175 x 0.1%,

and
—581<f (6) < —1.88.

To sum up, we have shown that (4) is satisfied with N =
371 and p = 0.1, (5) is satisfied with M = 5.81 and (7)
is satisfied with m = 1.88. Under these choices of the
constants, direct calculation shows that k; = 18 is sufficient
for Lemma III.1. As a result, Algorithm IIL.3 is applicable
to find the maximum of the function f. Observing that,
by its definition, the computational complexity of fi(f) is
polynomial in k, we conclude that Algorithm III.3 achieves
exponential accuracy in polynomial time.

Now, applying Algorithm IIL3 to the sequence { fx(f) : k >
18} over © = [0.2,0.6] with « = 0.4, 3 = 0.9 and the initial
point 8 = 0.5, we obtain that

B110 ~ 0.395485,  f110(f110) ~ 0.442239.
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Furthermore, under the settings given above, £ and 5 can be
chosen such that £ =n < 0.767. It now follows from (4), (26)
and Snk = 6 (see Remark I11.9) that

|f110(f110) — £(67)]
< | f110(6110) — f(B110)| + | f(B110) — F(67)| < 2.621 x 10",

which further implies that when the input is a first-order
Markov chain and € = 0.1, the capacity of the BEC(¢) under
the (1, oc)-RLL constraint can be bounded as

0.4422382 < f(6*) < 0.4422398. (30)

Note that according to [29], the feedback capacity of a BEC(¢)
under the (1, oo)-constraint can be computed as

(1 —¢e)H(p)

Crv () = 05p2051+ (1 —e)p (1—e)p’
When € = 0.1, this value is 0.445502, which is greater than
the upper bound we obtain in (30).

We now consider the case when the input is a second-order
stationary Markov chain, whose transition probability matrix
(indexed by 00,01 and 10 only since 11 is prohibited by the
(1, cc)-RLL constraint) is given by

p 1-p 0
0o o0 1],
g 1—q 0O

where 0 < p, g < 1. For this case, from the Birch lower bound
(see, e.g., Lemma 4.5.1 of [8]), we have

H(Yo|Ys,Ya, Y3, X9, X1)—H(e) < HY)—H(e) = I(X;Y).

It can then be checked by direct computation that for the case
€= 0.1, when p ~ 0.597275 and g ~ 0.614746 we have

H(Y5|Y5, Y4, Y3, Xg., Xl) ==, H(E) ~ 0.442329,

which is a lower bound on the second-order Markov capacity
yet strictly larger than the upper bound on the first-order
Markov capacity given in (30). Hence we can draw the
conclusion that for the BEC channel with Markovian inputs
under the (1, c0)-RLL constraint, an increase of the Markov
order of the input process from 1 to 2 does increase the channel
capacity.

2) A Noiseless Channel With Two States: In this section,
we consider a noiseless FSC with two channel states, for which
we show that Algorithm IIL.3 can be applied to show that
higher-order memory can yield larger Markov capacity.

More precisely, the channel input {X,}2° , is a stationary
process taking values from the alphabet A = {0,1} and,
except at time 0, the channel state {5, }32, is determined by
the channel input, that is, 5, = X, n = 1,2, .... The channel
is characterized by the following input-output equation:

Y’n :é(sﬂ—ljxﬂ)i‘ Th=—= 1121"': (31)

where ¢ is a deterministic function with ¢(0,0) = 1,4(0,1) =
0,4(1,0) = 0 and ¢(1,1) = 0. We remark that this channel
is a unifilar FSC, whose feedback capacity corresponds to the
optimal reward of a dynamical program (see [27] for more
details). In this section, we consider the case when there
is no feedback. In this case, ¢ naturally induces a sliding
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block code that maps the full A-shift S onto the shift of
finite type Sr, where the forbidden set F is {101}. It can
be readily verified that the Shannon capacity of (31) is equal
to its stationary capacity? [12], which can be computed as the
largest eigenvalue of the adjacency matrix of the 3rd higher
block shift of Sy and is approximately equal to 0.562399
(see Chapter 4 and 13 of [22] for more details). In what
follows, we will focus on the Markov capacity of (31); more
specifically, we will compute the Markov capacity when the
input {X,,}2° ; is an i.i.d. process and a first-order stationary
Markov chain, which will be compared with the Shannon
capacity.

It can be easily verified that the mutual information rate
of (31) can be computed as

: 1
I(X;Y) = lLim H(Yen|Yy) - EH(Yf‘IXf)
= lim H(Yen|VF) = HY).

When {X,,}22, is a stationary Markov chain, the output
{Yn}o2, is a hidden Markov chain with an unambiguous
symbol whose entropy rate can be computed by the following
formula [15]:

H(Y) = ZP(Y1 i ()))H(Yﬂ,ﬁrlnf1 =(1,0,...,0)).
n=1 'n—l n—1
(32)

This formula will play a key role in our analysis detailed
below.

We first consider the degenerate case that {X,}5°, is an
i.i.d. process. Letting # denote P(X; = 0), we note that the
Markov chain {(X,_1,X,)}32, has the following transition
probability matrix (indexed by 00,01, 10,11)

g 1-66 0 0

0 0 6 1-6

g 1-66 0 0 ’
0 0 6 1-6

whose left
eigenvalue is

(m1(6), m2(6), m3(8), a(6)) = (67,6(1-06),6(1-6), (1-6)*).

eigenvector corresponding to the largest

Using (32), we have

r(Bs)'1
r(Bg)-11
I'(Bg)l 1
(B )I 11

> m(6)r(Bs)'1log

1= 0
—Zm(ﬁ)r(Be)‘ lelog =0+~
1=0
Gl e =100 1=11:111%
0 6 1-6

B=|1-80 0o |,
0 6 1-86

HY)=—

where r = (1 —

and both r(By)~11,r(Bs)~'c should be interpreted as 1.

2 According to our ongoing research, the stationary capacity of this channel
is indeed achieved by a second-order Markov input.

Authonzed licensed use limited to: Univ of Calif Berkeley. Downloaded on July 07,2022 at 20:17:10 UTC from IEEE Xplore. Restrictions apply.



1474

Setting f() £ H(Y), we note that

£(6) = lim £u(6),

where
i By)'1
fx(6) 2 — IZ; 1 (8)r(Bo)'1log %
B I— 1
_ ;m (0)r(Bg) clog rEBe;‘ TR kE=0.

Similarly as in the previous example, we can show that
1) < f(9),

#€[0,0. 41]u[u 89,1] 0 110 ,0.80]
which means that f(#) will achieve its maximum within the
interior of [0.4,0.9]. Moreover, through tedious but similar
evaluations as in the previous example, we can choose (below,
rather than a constant, N is a polynomial in K, but the proof
of Theorem III.10 carries over almost verbatim)

ko =120, N = (374.945k? 4 6207.73k + 46587.2),
p=0875, m=12 M =10.3T.

Though the function f(f) is not concave near 8 = 0,
tedious yet straightforward computation indicates that f”(6) <
fi50(8)+Np'?° < 0 for any § € [0.4,0.9], which immediately
implies that f(f) is strongly concave within the interior of
the interval [0.4,0.9]. Then, similarly as in Section III-B1,
one verifies that, when applied to the channel in (31),
Algorithm II1.3 achieves exponential accuracy in polynomial
time.

Letting o = 0.4, 3 = 0.9, we apply our algorithm to the
sequence {fx(9) : k > 120} with © £ [0.4,0.9], 6, = 0.5,
n =& = 0.901061, and we obtain that

J150(0450) ~= 0.4292892.
Now from (4), (26) and the fact that ém = 6, we conclude

| fa50(Pas0) — £(67)|
< | faso(Pas0) — f(Oas0)| + | f(Pas0) —
which further implies that

O450 =~ 0.6257911,

f(6%)] < 0.0001745,

0.4291146 < f(6*) < 0.4294638 (33)

for the i.i.d. case.

Now, we consider the case that {X,}52; is a genuine
first-order stationary Markov process, and assume the Markov
chain {(X,_1,X,)}22, has the following transition proba-
bility matrix (indexed by 00,01, 10, 11)

0
1—g
0 ?
L—4

p l-p 0
0 0 q
p 1l-p 0

0 0 q
where 0 < p,gq < 1. Again, straightforward compu-
tation shows that for p =~ 0.674521,q =~ 0.595176,
H(Yy|Y3, X2, X1) is approximately 0.513259, which gives a
lower bound on H(Y'). Comparing this lower bound with the
upper bound in (33), we conclude that the capacity is increased
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when increasing the Markov order of the input from 0 to 1.
Finally, we also point out that direct evaluation of a trivial
upper bound (for the first-order Markov capacity of (31)) gives

ma.xH(Y5|Y5, Y4, Y3, Yg, 1/1) ~ 0.548481
pP.q

for p ~ 0.629902, ¢ =~ 0.734121. Comparing this upper bound
with 0.562399, the Shannon capacity given at the beginning
of this section, we also conclude that the Shannon capacity
of (31) cannot be achieved by any first-order Markovian
input.

IV. THE SECOND ALGORITHM: WITHOUT CONCAVITY

In this section, we consider the optimization problem (3)
for the case when f may not be concave.

For a non-convex optimization problem with a continuously
differentiable target function f and a bounded domain, conven-
tionally there are two major methods for finding its solution:
the Frank-Wolfe method [3] and the method through the
Lojasiewicz inequality (see, e.g., [1]). However, both of these
methods in general tend to fail in our setting: for the Frank-
Wolfe method, the computation for finding the feasible ascent
direction and the verification of the relevant gradient condition
(which is necessary for the convergence of this method) both
depend on the existence of an exact formula for Vf and a
tractable description of ©, which is however not available in
our case; on the other hand, due to the fact that our target
function is the limit of a sequence of approximating functions,
the method through the Lojasiewicz inequality necessitates
a “uniform” version of the Lojasiewicz inequality over all
sequences of approximating functions, which does not seem
to hold true in our setting.

Motivated by Algorithm II1.3, we propose in the following
our second algorithm to efficiently solve the optimization
problem (3) when the target function may not be concave.
Except for using the sequence {V fi}po, as the ascent
direction in each iteration, an additional check condition is
proposed for the choice of the step size. This check condition
is chosen carefully to ensure an appropriate pace for the decay
of V fi, which turns out to be crucial for the convergence of
this algorithm.

Similarly as in Section III, we need the following lemma
before presenting our second algorithm.

Lemma IV.1: Assume the function f(f) has s stationary
points {6} };_; which are all contained in ©°, and that f(&)
achieves its maximum in ©°. If, for each k, fr(f#) also has
finitely many stationary points which are all contained in ©°,
then for any fixed b € R with 0 < b < 1, there exists a

non-negative integer ko such that
ko

2N
(a) p1/3 4 p2k0/3 < 1 and - P

max | £(67) — max £(6) > 0;

)
< —, where § 2
p 8
(b) There exists a yp € R such that

0 C Bry € Cry € O°%, Ay N Bry # 0, dist(Cr,,90) > 0,

where

Ay, 2 {9 € 0°: IV o O)ll, >

2Npk0/3
et
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Bko = {9 € O: fko(g) Z yl]}:
Oko é{geefku(e)zy{)_g}

Note that Ay, depends on b, whereas By, and Cy, do

not.

Proof: By replacing what was assumed to be the unique
maximum of f with maxe::1<i<s f(67), a similar argument
as in the proof of Lemma III.1(c) yields that there exists a
Yo <yt — i such that for all sufficiently large k, § C By C
Cy C ©° and dist(Cy, ©°) > 0, where

¥ 9*
Yy e;f‘f%?‘gsf( i )s

By 2 {0€0: fu(6) > w),
Oké{aee:fk(ﬂ)zyo—g}.

Now, for any k and any fixed 0 < b < 1, let

aN k/3
42 {eee° V@, > 2V }

We claim that for all large enough k, Ay N By # 0. To see
this, define

k/3

Dy

2N
{oce: s, > 55

+Np"},

B’é{ﬁee:f(9)2y0+g}.

It then follows from (4), the continuity of f and the fact
Yo + 6/8 < y* that Dy C A, B’ C B for all large
enough k and B’ has a non-empty interior. Observing that D$
converges to the finite set consisting of all stationary points of
f, we deduce that Dy N B’ # () and therefore Ax N By # () for
sufficiently large k and therefore establish the claim. Finally,
it immediately follows from this claim and the observation
that (a) trivially holds for kg sufficiently large that there
exists a non-negative integer ko such that (a) and (b) are both
satisfied.

Recalling that f and each f; are assumed to have finitely
many stationary points in ©°, we now present our second
algorithm.

Algorithm IV.2 (The Second Modified Gradient Ascent
Algorithm):

Step 0. Choose 0 < b < 1. Choose ko, yp and such that the
conditions in Lemma IV.1 are satisfied. Set k = 0, go = f,
and choose o € (0,0.5), # € (0,1), 8y € Ag, N By, where
Ay, and By, are defined as in Lemma IV.1.

Step 1. Increase k£ by 1. Set t = 1 and gx = frtk,-

Step 2. Set

T =0p_1 +tVgr_1(0k_1).

If & ©°or
2Npk/3
1-b

IVgr(7)lly <

or
9k(1) < gk(Bk—1) + at | Var_1(0x—1)| 12,

1475

set ¢ = [t and go to Step 2, otherwise set 8, = 7 and go
to Step 1.

Remark IV.3: The constants in Step 0 are chosen to ensure
the convergence of the algorithm. The existence of 6y follows
from Lemma IV.1 (b). Furthermore, as stated in Remark I11.4,
N and p are chosen such that (4) holds and the choices of
them can be derived from Section IV of [15] in practice.

Remark IV4: In Step 2, for any feasible k, one of the
necessary conditions for updating the value of 6y, is

Npk/S

1-b6°

This is a key condition imposed to make sure that
[[Vgk()||2 is not too small and thereby the algorithm will
not prematurely converge to a non-stationary point.

IVgr(7)ll =

A. Convergence Analysis

To conduct the convergence analysis of Algorithm IV.2, we
need to reformulate the algorithm via possible relabelling of
the functions {gx}3>, and iterates {6;}7°, similarly as in
Section III-A. For ease of presentation only, we assume in the
remainder of this section that such a relabelling is not needed
and thereby k actually records the number of times that Step 2
has been executed.

The following theorem asserts the convergence of
Algorithm IV.2 under some regularity conditions.

Theorem IV.5: Under the same assumptions as in
Lemma IV.1,

k]_in;ogk(ﬂk) exists and ||Vgx(6k)|l, — O,

where gi(fx) is defined in Algorithm IV.2.
Proof: Similarly as in Section III-A, define

T (k) S il'lf{p €Z:O0_1+ ﬁPVQk_l(Gk_l) (= 90},

T(k) 2 inf{q €Z:q>Ti(k),

2N (k+ko)/3
IV gx(8—1 + BTV g_1(06_1))ll, > "7}

1—b
T(k) 2 inf{reZ:r>T(k),
gk (Ok—1+0"Vgr—1(0k—1)) > gi(0k—1)+aB" |Vge-1(8k-1)|3 ¥

and
Ty(k) £ T(k) — Tu(k), Ts(k) 2 T(k)—T(k).

In other words, for each k, T7(k) can be regarded as the
number of times that Step 2 of Algorithm IV.2 has been
executed before the condition 7 € ©° is met; T5(k) can be
regarded as the number of additional times that Step 2 of
Algorithm IV.2 has been executed before the condition

2N plk+ko)/3
1-b

is also met, and T5(k) can be regarded as the number of
additional times that Step 2 of Algorithm IV.2 has been
executed before the Armijo condition

9 (Oc—1 4+ BV gr_1(0x-1)) > gr(Or—1) + B || Vgr_1(0x—1)|3

IV (Ok—1+ BIVgr_1(0c—1))ll, =
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is also met. The well-definedness of ’f(k) is based on the
fact that if 0x_1 + PV gr—1(6x—1) € ©° for some non-negative
integer p, then the same inequality also holds for any integer
p’ > p; and the well-definedness of T'(k) will be postponed
to Step 2 of this proof detailed below.

The remainder of the proof consists of 5 steps, with the
first three devoted to establishing the uniform boundedness of
Ti(k), T5(k) and T3(k) and thus that of T'(k).

Step 1: Uniform boundedness of 75(k). As in the proof
of Theorem IIIL.10, it can be readily verified that T3 (k) < oo
for all k > 0. Hence, when considering 75(k), we assume that
T =0k_1+ IV gr_1(0r_1) is already in ©°.

In order to prove the uniform boundedness of T5(k),
we proceed by way of induction. First of all, by the defi-
nition of go and the choice of #y, we have ||[Vgo(fo)|, =
2N p*o/3 /(1 — b). Now, assuming that

ng(koJrk—l)/S
1-b

holds for some non-negative integer k, we will derive
a sufficient condition on B37 such that ||Vg(7)|, =
2N pke+k)/3 /(1 — b), where we recall that 7 is defined by

T =01+ BVagr_1(0k_1).

IVgr—1(0k-1)ll, = (34)

(33)

To this end, we first note that by the Taylor series expansion,
there exist £ and £ in ©° such that

k() — gr(Or—1)
2
= va(T)T('-" — Ok—1) — (Or—1 — T)TVQT;C(O(G_&_I —7)

and

k(1) — gr(Or—1)

g
=Vgi(Ok—1)" (1 — Or—1) + (1 — 9k—1]Tngk(£)(T — Or—1),
which immediately imply that
v?
Var(r)T(r — Ox—1) — (Br—1 — T)Tng(g)(qu )

= Vgr(Oe-1)" (r — Oe—1) + (1 — 9::—1)1"%(1’ — Or—1).

(36)
Noting that ||Vzgk(£)||2 < M for all £ € ©° and
IVgr(0) — Vgr—1(0)ll,
= IV fitko (8) = V fiiko—1(0)ll < Np¥H 0 (37)
for all # € ©°, we deduce from (36) that
IVgk()ll2 l7 — k-1l
> Vg(0k—1)"(r — k1) — M |7 — 65_1[3
> Vge—1(0k—1)" (T — Ok_1)
— Np*% |lr — sy = M |7 — Okl (38)

Clearly, it follows from (35) that the vectors Vgg_1(6r—1) and
T — B_1 have the same direction, which means that (38) can
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be rewritten as

V()5 [l — Ok—1lly
2 IVgk—-1(0k—1)ll2 IT — Ok—1ll5
— NpFthe |7 — 01|, — M ||7 — 15 -

Simplifying this inequality and recalling that 7 — 01 =
B9V gy _1(6r_1), we have

IVgr(r)lly = (1 — MB) [|Vgr_1(8k—1)ll, — Np*+F
N pko+k—1)/3
1-b

Now, using the fact 1 — p/3 — p?*o/3 > 0 (see Lemma IV.1
(a)), (34) and (39), we conclude that the condition

> (1—-Mp9) — Npktke  (39)

1/3 _ 2ko/3

£ (40)

1—-p
7 <
i< M
is sufficient for ||V gx(7)||, > 2N pk+ke)/3 /(1 — b). In other
words, the induction argument successfully proceeds as long
as (40) holds, and therefore T5(k) can be uniformly bounded
as below:

log ((1 _ pl/3 _ p2ke/3) /M)
log 8

T3(k) < max ¢ 0, = |

(41)

Step 2: Uniform boundedness of T3(k). First note
from (40) that if the inequality

9N plk+ko)/3
V95 (Bs—1 + BV g1 (Bs-1))lp > —5——

holds for some non-negative integer g, then it remains true
for any integer ¢' > g¢. This observation justifies the
well-definedness of T53(k). Moreover, due to the boundedness
of T5(k) for each k (in fact, it is uniformly bounded), we
can assume without loss of generality that ||[Vgk(7)|, >
2N p(k+ko)/3 /(1 — b) is already satisfied, where 7 = Op_1 +
B"Vgr_1(0k—_1), before we proceed to establish the uniform
boundedness of T5(k).

By the Taylor series expansion formula and (37), we have

gk(7)> gr(Or—1) + B Var(0x—1)T Vgr—1(0k—1)

M 2r
Ry PN
> (k1) + B [[Vgr—1(6k-1) I3

Mﬁ?!" 2 k+kg ar
——5 1Vgr—1(0x—1)|l3—Np 8" [[Vgr—1(6x-1)ll,,

where 7 = 0p_1 + "Vgr—_1(0r—1). It then follows that the
condition

1 N ko1
g
M M ||Vgk_1(0k_1)ll5

is sufficient to ensure that
k(7) = g(Ok—1) + B ||V gr—1(6k—1)|l3 -
Recalling that

(42)

9N plk+ko—1)/3

9N ph+ko—1
=
1-b -

IVgr—1(6k—1)llz = 1-b
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with 0 < b < 1 fixed, we deduce that the condition 8" < b/M
is sufficient for (42). In other words, we have

logh—log M
i 1

Step 3: Uniform boundedness of T’ (k) and T'(k). In this
step, we will show that 77 (k) is uniformly bounded over all k.
This, together with the established fact that T5(k) and T3(k)
are both uniformly bounded, immediately implies the uniform
boundedness of T'(k) over all k.

From Algorithm IV.2,

9k(0k) > gr(Bx—1) + at | Vgr_1(6x_1)ll5

for all k > 0, where 0 = 6x_1 + BT®Vgr_1(Or_1).
Using (4), we have

T4(k) < max {0, @3)

ko+1 Npkg—‘rl

I-p

90(0k) > gx(O) — > gk(Ok—1) —

Npko—‘r]
> gk—1(0k—1) — NpFtho — s
¥
from which we arrive at

ey N ko+1
g0(6k)> go(60) — Y Np*tko — lp_ -
k=1

2N p*o
1—p"°
(44)

> go(o) —

for all k& > 0. Recalling from Lemma IV.1 and Step 0 of
Algorithm IV.2 that

0o € Bk, = {z € O : fio(z) 2 90} = {x € ©: go(z) > wo},

we deduce from (44) and Lemma IV.1 that for all £ > 0,

2N p*o
SkG{Iigu(I)Zyo— l_pp}gcko geo:‘

where Cy, is defined in Lemma IV.1 (b) and dist(Cy,,90) >
0. Hence, for any non-negative integer p such that
p = log(dist(C,,00)/M)/log3, we have 6Ox_1 +
[PV gi(0r—1) € ©°, establishing the following uniform bound

log(dist(Cl,, ©°)/M)
log B

Ti(k) < max {0, -5 1} : (45)

Finally, it is clear from (41), (43), (45) and the definition
of T'(k) that there exists a non-negative integer B such that,
for all k,

T(k) < B. (46)

Step 4: Convergence of gi(0i). It follows from (4), (46)
and the fact ||Vgg_1(fx—1)|l, = 2N pk+*o—1)/3 /(1 —b) that
9k(6k) = g(O—1) + aB™H | Vg1 (85-1)ll3

> gi—1(Bk—1) + BBt | Vgk_1(8k_1)||3 —Np*tke
4a35+1N2p2(k+k9—1)/3

(1-19)?
Observing that if k£ is large enough,

> gr—1(0k—1) + — Npktko,

4aﬂ8+1N2p2(k+ku—1)/3 . Npk+ku
(L—uP - '
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we deduce that g (0r) > gr—1(0x—1) for sufficiently large k.
Noting that (4) and the definition of g, imply that there exists
a C > 0 such that gi(6r) < C for all k, we conclude that
limg_, o0 g (6r) exists.

Step 5: ||V gx(0k)|l, — 0. Since

gk(0k) > gk_1(0k_1) + BB ||V§'k—1(9k—l)”§ — Npttho,

we have

n—1 n—1

> o [ Vge_1(6x-1)ll; < gn(6n)—g0(60)+Y | Np**,

k=1 k=1

which, together with the uniform boundedness of
{9k (6k) }iZo, yields

o0

> apBH || Vgr_1(6k-1)ll3 < oo.

k=1

Hence, limp .o ||Vgr—1(6k—1)|[, = 0. The proof of the
theorem is thus complete. |

B. Applications of Algorithm IV.2

1) Gilbert-Elliott Channel: In this section, we consider
a Gilbert-Elliott channel with a first-order Markovian input
under the (1, oo)-RLL constraint.

A Gilbert-Elliott channel [24] is a special FSC with two
states: a good state ¢ and a bad state b. The state process
{Sn}aL, is a stationary first-order Markov chain and the chan-
nel alternates between two binary symmetric channels (BSCs)
according to the channel state. More precisely, let {S5,}2°
be the state process which is a stationary Markov chain with
alphabet {g, b} and parameters

pg £ P(S1=g|Si-1=0b), pp2 P(S;=b|Si_1=g).

Then the Gilbert-Elliott channel is characterized by the input-
output equation

Yn=Xn®En, n=12,---, 47)

where ¢ denotes binary addition, {X,}2°; is the input,
{¥n 52, is the output and { E,, }2°  is the noise process given
by

with probability 1 — &4,

with probability &g,

with probability 1 — &,

with probability &5,

when S;,_; =1, for 0 < g4 < g < 1. In other words, at time
n, if the previous channel state S,,_; takes the value 0, the
channel is a BSC with crossover probability €4, and if S;,_4

takes the value 1, it is a BSC with crossover probability &.
It is worth noting that the channel is characterized by

P(Yn, Sn|Zn, sn—1) = p(yn|Tn, Sn—1)P(sn|sn—1)
and the mutual information rate can be computed as

I(X;Y) = lim H(Yi Y1) — H(E|EFT).
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0.350;
U.MS;
D.3-48§
D.M?;
D.346§

0.345[

I!:llIl1‘0‘“1‘?“‘1‘4I
Fig. 1. Values of fj(0).

Although the capacity of the Gilbert-Elliott without the
input constraint can be iteratively computed as in [24],
we consider here its first-order Markov capacity under the
(1,0c)-RLL constraint. In particular, we consider the case
for pg = pp = 03, g4 = 0.01, &5 = 0.1 and assume
that {X,,}>2; is a first-order binary Markov chain with the
transition probability matrix

[1—9 ]

. 0], 0 &8 £

In this case, the mutual information rate I (X (8);Y (0)) is a
function of # and finding the channel capacity boils down to
maximizing I(X (0); Y (8)) over 0 < @ < 1. To the best of our
knowledge, the concavity of (X (8);Y (6)) for this channel is
not known, yet our Algorithm I'V.2 can be applied to effectively
maximize it. Setting

fx(0) = H(Yx(0)|Y{"~(0)) — H(Ex|ET ™),

and applying Algorithm IV.2 with the initial point 0, =
0.2 and kg = 6, we have obtained the simulation results shown
in Figure 1.

k Ok V fi(0k) Jr(Ok)

6 | 0.200000 | 7.059197 x 10—! | 0.281366
7 | 0.288240 | 3.606449 x 10—! | 0.327527
8 | 0.378401 | 1.049006 x 10~ | 0.347958
9 | 0.404626 | 4.271872 x 1072 | 0.349884
10 | 0.415306 | 1.862974 x 102 | 0.350211
11 | 0.417635 | 1.346518 x 102 | 0.350248
12 | 0.421001 | 6.053556 x 10~3 | 0.350281
13 | 0.422514 | 2.742047 x 10~3 | 0.350288
14 | 0.423200 | 1.246199 x 10—3 | 0.350289
15 | 0.423511 | 5.672211 x 10— | 0.350289
16 | 0.423653 | 2.583526 x 10— | 0.350289

The table in Figure 1 shows how the iterate 0y, the gradient
V fi(fr) and the function fx(fx) behave when k increases.
We observe that, as k becomes larger, V fx(6) and fi(0)
stabilize, both very quickly, and our algorithm converges very
fast for this example.

Finally, as a comparison, we note from [24] that the
unconstrained capacity of a general Gilbert-Elliott channel is
given by

C=Wn2(1- lim E[H(P(En = 1|En-1,%)))),

where E[H(P(E, = 1|E,_1,5))] increases in n. Hence,
using the recursive relation of P(E, = 1|E,_1,50) given
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in [24], we compute that the unconstrained capacity of the
Gilbert-Elliott channel with p, = p, = 0.3,£4 = 0.01 and
ep = 0.1 is approximately 0.474806, which is strictly larger
than the values of fi(fx) in Figure 1, which we believe are
close to the first-order Markov capacity of the channel under
the (1, o0)-RLL constraint.

2) POST Channel: Our second example is the so-called
Previous Output is the STate (POST) channel [26] with a
first-order Markovian input under the (1, cc)-RLL constraint.

Let {X,}>2; and {Y¥,}22, denote the binary channel
inputs and outputs, respectively. A POST(«) channel is an
FSC such that

Yo=X,

Yﬂ =X n® Z’n
where {Z,}52, is a Bernoulli(a)) process and ¢ denotes
binary addition. Alternatively, letting {E,}52 ; denote the
noise process and {S,}52; denote the state process defined

by S, = Y,,_1 for any positive integer n, we can characterize
the POST(«) channel by

Yn:XneaEn

if Xn. = In-1,
if Xﬂ. ?é Yﬂ—l)

n:]_’2,...

where E,, = 0if X,, = S,,_; and E,, is a Bernoulli(a) random
variable if X,, # S,,_1.

It has been shown in [26] that feedback does not increase
the unconstrained capacity of a POST channel, which can be
computed as o

C=In(l+(1—a)a™=).
In this section, we focus on the Markov capacity of this
channel under the (1, 00)-RLL constraint and we show that
our Algorithm IV.2 is applicable in this case. More precisely,
we consider the case a = 0.01 and suppose {X,}5°, is a
first-order Markov chain with the transition probability matrix
[ 1-6 6

i 0], 0<0<1.

In this case, similarly as in Section IV — B1, we have
(AT = k]jm %I(X{‘;Y]")
~ lim (H(Y{") — H(Ef, XT) + H(XY)

k—oo k
= H(X5|X1) + lim (H(Ye[Y{™)

—H(Xy, Ex| X§1 EF ),

where the last equality follows from the fact that {X,}2° , is
assumed to be a first-order Markov chain. Now letting

Fr(6)=H(X2|X1)+H (Y |Y{ ™) —H (X, Ex| X7, Ef ),

we apply Algorithm IV.2 to this example with the initial point
ko = 4 and 6, = 0.2 and observe the following simulation
result:

k O V fi(Or) (k)
4 | 0.200000 7.731777 x 10~ | 0.40568718788544
5 | 0.362147 4.758119 x 10~2 | 0.46534645257927
6 | 0.372126 1.648384 x 10~2 | 0.46566463030699
7 | 0.376447 3.338922 x 10~3 | 0.46570737390734
8 | 0.377322 6.990075 x 10~% | 0.46570913902315
9 | 0.377505 1.473396 x 1074 | 0.46570921652954
. Restrictions apply.
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Again, fast convergence is observed from our simulation
results.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
and the associate editor for their constructive comments which
have greatly helped to improve this paper.

REFERENCES

[1] P. A. Absil, R. Mahony, and B. Andrews, “Convergence of the iterates
of descent methods for analytic cost functions,” SIAM J. Optim., vol. 16,
no. 2, pp. 531-547, Jan. 2005.

[2] S. Arimoto, “An algorithm for computing the capacity of arbitrary
discrete memoryless channels,” IEEE Trans. Inf. Theory, vol. IT-18,
no. 1, pp. 14-20, Jan. 1972.

[3] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:
Athena Scientific, 1999.

[4] R. E. Blahut, “Computation of channel capacity and rate distortion
functions,” IEEE Trans. Inf. Theory, vol. TT-18, no. 1, pp. 460-473,
Jan. 1972.

[5] H. Boche, R. F. Schaefer, and H. V. Poor, “Shannon meets Turing:
Non-computability and non-approximability of the finite state channel
capacity,” Commun. Inf. Syst., vol. 20, no. 2, pp. 81-116, 2020.

[6] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge Univ. Press, 2004.

[7] J. Chen and P. H. Siegel, “Markov processes asymptotically achieve the
capacity of finite-state intersymbol interference channels,” IEEE Trans.
Inf. Theory, vol. 54, no. 3, pp. 1295-1303, Mar. 2008.

[8] T. Cover and J. Thomas, Elements of Information Theory, 2nd ed.
New York, NY, USA: Wiley, Jul. 2006.

[9] D. Elkouss and D. Pérez-Garcia, “Memory effects can make the trans-
mission capability of a communication channel uncomputable,” Nature
Commun., vol. 9, no. 1, p. 1149, Mar. 2018.

[10] G. Forney, “Maximum-likelihood sequence estimation of digital
sequences in the presence of intersymbol interference,” IEEE Trans.
Inf. Theory, vol. IT-18, no. 3, pp. 363378, May 1972.

[11] R. Gallager, Information Theory and Reliable Communication.
New York, NY, USA: Wiley, 1968.

[12] R. M. Gray, Entropy and Information Theory. New York, NY, USA:
Springer, 2011.

[13] G. Han, “Limit theorems in hidden Markov models,” IEEE Trans. Inf.
Theory, vol. 59, no. 3, pp. 1311-1328, Mar. 2013.

[14] G. Han, “A randomized algorithm for the capacity of finite-state chan-
nels,” IEEE Trans. Inf. Theory, vol. 61, no. 7, pp. 3651-3669, Jul. 2015.

[15] G. Han and B. Marcus, “Analyticity of entropy rate of hidden Markov
chains,” IEEE Trans. Inf. Theory, vol. 52, no. 12, pp. 5251-5266,
Nov. 2006.

[16] G. Han and B. H. Marcus, “Concavity of the mutual information rate
for input-restricted memoryless channels at high SNR,” IEEE Trans. Inf.
Theory, vol. 58, no. 3, pp. 15341548, Mar. 2012.

[17] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. Cambridge,
U.K.: Cambridge Univ. Press, 2012.

[18] K. A. S. Immink, “EFMplus: The coding format of the multimedia com-
pact disc.” IEEE Trans. Consum. Electron., vol. 41, no. 3, pp. 491-497,
Aug. 1995.

[19] A. Kav&i€, “On the capacity of Markov sources over noisy channels,”
in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, USA,
Nov. 2001, pp. 2997-3001.

[20] Y. Li and G. Han, “Asymptotics of input-constrained erasure chan-
nel capacity,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 148-162,
Jan. 2017.

[21] Y. Li, G. Han, and P. H. Siegel, “On NAND flash memory channels
with intercell interference,” Tech. Rep.

[22] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge, U.K.: Cambridge Univ. Press, 1995.

[23] B. Marcus, R. Roth, and P. H. Siegel, “Constrained systems and coding
for recording channels,” in Handbook Coding Theory. Amsterdam,
The Netherlands: Elsevier, 1998.

[24] M. Mushkin and I Bar-David, “Capacity and coding for the
Gilbert-Elliott channels,” IEEE Trans. Inf. Theory, vol. 35, no. 6,
pp. 1277-1290, Nov. 1989.

[25] E. Ordentlich and T. Weissman, “Bounds on the entropy rate of binary
hidden Markov processes,” in Entropy of Hidden Markov Processes
and Connections to Dynamical Systems (London Mathematical Society
Lecture Note), vol. 385. Cambridge, U.K.: Cambridge Univ. Press, 2011,
pp. 117-171.

1479

[26] H. H. Permuter, H. Asnani, and T. Weissman, “Capacity of a post
channel with and without feedback,” IEEE Trans. Inf. Theory, vol. 60,
no. 10, pp. 6041-6057, Oct. 2014.

[27] H. H. Permuter, P. Cuff, B. Van Roy, and T. Weissman, “Capacity of
the trapdoor channel with feedback,” IEEE Trans. Inf. Theory, vol. 54,
no. 7, pp. 3150-3165, Jul. 2008.

[28] J. Proakis, Digital Communications, 4th ed. New York, NY, USA:
McGraw-Hill, 2000.

[29] O. Sabag, H. H. Permuter, and N. Kashyap, “The feedback capacity of
the binary erasure channel with a no-consecutive-ones input constraint,”
IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 8-22, Jan. 2016.

[30] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2260-2299,
Oct. 1998.

[31] H. Thapar and A. Patel, “A class of partial response systems for
increasing storage density in magnetic recording,” IEEE Trans. Magn.,
vol. MAG-23, no. 5, pp. 36663668, Sep. 1987.

[32] P. O. Vontobel, A. Kavéi¢, D. M. Arnold, and H.-A. Loeliger, “A gener-
alization of the Blahut—Arimoto algorithm to finite-state channels,” IEEE
Trans. Inf. Theory, vol. 54, no. 5, pp. 1887-1918, May 2008.

[33] C. Wu, G. Han, and B. Marcus, “A deterministic algorithm for the
capacity of finite-state channels,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jul. 2019, pp. 1897-1901.

Chengyu Wu received the B.S. degree in mathematics from Zhengzhou
University in 2015 and the Ph.D. degree in mathematics from The University
of Hong Kong in 2020. He is currently a Research Associate with the
Department of Mathematics, The University of Hong Kong. His research
interests include information theory, probability theory, ergodic theory, and
symbolic dynamics.

Guangyue Han (Senior Member, IEEE) received the B.S. and M.S. degrees in
mathematics from Peking University, China, in 1997 and 2000, respectively,
and the Ph.D. degree in mathematics from the University of Notre Dame,
USA, in 2004. After three years with the Department of Mathematics,
The University of British Columbia, Canada, he joined the Department of
Mathematics, The University of Hong Kong, China, in 2007. His main
research areas are coding and information theory.

Venkat Anantharam (Fellow, IEEE) received the B.Tech. degree in electron-
ics from IIT Madras in 1980, and the M.S. degree in electrical engineering,
the M.A. and C.Phil. degrees in mathematics, and the Ph.D. degree in
electrical engineering from UC Berkeley in 1982, 1983, 1984, and 1986,
respectively. From 1986 to 1994, he was a Faculty Member of the School
of EE, Cornell University, before moving to the Department of Electrical
Engineering and Computer Sciences, UC Berkeley, where he is currently a
Faculty Member. His research interests include communication networking,
game theory, information theory, probability theory, and stochastic control.

Brian Marcus (Life Fellow, IEEE) attended the Claremont McKenna College.
He received the B.A. degree in mathematics from the Pomona College in
1971 and the Ph.D. degree in mathematics from the University of California
at Berkeley, under the supervision of Rufus Bowen, in 1975. He was an IBM
‘Watson Postdoctoral Fellow, an Associate Professor in mathematics with UNC
Chapel Hill, and a Research Staff Member with the IBM Almaden Research
Center. Since 2002, he has been a Professor in mathematics with The Univer-
sity of British Columbia, worked as the Department Head, from 2002 to 2007.
He has held a visiting and an adjunct associate professor positions with UC
Berkeley, UC Santa Cruz, and Stanford University and worked as a Principal
Ph.D. Supervisor for students with UNC Chapel Hill, UC Santa Cruz, Stanford
University, and UBC. He has published more than 70 research papers in
ergodic theory, symbolic dynamics, and information theory; coauthored An
Introduction to Symbolic Dynamics and Coding (Cambridge University Press,
1995, second edition 2021) with Doug Lind; and holds 12 U.S. patents.
He shared the 1993 Leonard J. Abraham Prize Paper award of the IEEE
Communications Society with Paul Siegel and Jack Wolf, was an Invited
IEEE ISIT Plenary Speaker in 1995, and an AMS Fellow in 2018. He served
on the AMS Council (2003—2006), the CMS Board of Director (2015-1019),
and the Interim Deputy Director of the Pacific Institute for the Mathematical
Sciences PIMS (2016-2018). He is currently the PIMS UBC Site Director.

Authonzed licensed use limited to: Univ of Calif Berkeley. Downloaded on July 07,2022 at 20:17:10 UTC from IEEE Xplore. Restrictions apply.



