Appeared at ICRA 2022 IEEE International Conference on Robotics and Automation
May 23-27 2022 Philadelphia (PA) USA

Learning to Retrieve Relevant Experiences for Motion Planning

Constantinos Chamzas, Aedan Cullen, Anshumali Shrivastava, Lydia E. Kavraki

Abstract— Recent work has demonstrated that motion plan-
ners’ performance can be significantly improved by retrieving
past experiences from a database. Typically, the experience
database is queried for past similar problems using a similarity
function defined over the motion planning problems. However,
to date, most works rely on simple hand-crafted similarity
functions and fail to generalize outside their corresponding
training dataset. To address this limitation, we propose (FIRE), a
framework that extracts local representations of planning prob-
lems and learns a similarity function over them. To generate
the training data we introduce a novel self-supervised method
that identifies similar and dissimilar pairs of local primitives
from past solution paths. With these pairs, a Siamese network
is trained with the contrastive loss and the similarity function is
realized in the network’s latent space. We evaluate FIRE on an 8-
DOF manipulator in five categories of motion planning problems
with sensed environments. Our experiments show that FIRE
retrieves relevant experiences which can informatively guide
sampling-based planners even in problems outside its training
distribution, outperforming other baselines.

I. INTRODUCTION

Motion planning is used in real-time autonomous vehi-
cles [1], manipulators in dynamic environments [2], and as
a subroutine in planners for complex missions (e.g. task and
motion planning [3]), all of which rely heavily on efficiency.
However, motion planning is still challenging, especially for
high-dimensional systems [4]. Sampling-based planners [5]—
[7] are a class of motion planning algorithms that have found
widespread adoption in the planning community. Although
significant progress has been made over the years, planning
is still computationally expensive [8], hindering the adoption
of robotic solutions. Thus, to endow robots with real-time
capabilities, faster motion planning algorithms are necessary.

A promising avenue is to guide planning by leveraging the
past experiences of a robot. Several methods have shown that
storing and retrieving experiences [9], [10] can significantly
improve motion planners’ efficiency. These methods have
focused on what to store and how to adapt/repair it for
the current situation, but not on how to retrieve the most
relevant experiences, defaulting to simple similarity functions.
In other words, little emphasis has been placed on finding
suitable functions that quantify the similarity of motion
planning problems, limiting the generalizability of retrieval-
based methods outside their training dataset.

In this context, for similar motion planning problems
or subproblems, the solution path of one can be used to
expedite the search when solving the other. Capturing this

All authors are affiliated with the Department of Computer Science, Rice
University, Houston TX, USA {chamzas, aedan, anshumali,
kavraki}@rice.edu. This work was supported in part by NSF
1718478, NSF-GRFP 1842494 and Rice University Funds.

Similar Dissimilar

M,

Fig. 1. Three example problems Mg, M7, Mo where the robot is tasked
with picking one object from a shelf starting from the same tuck (home)
configuration (not shown for visual clarity). The motion planning problems
Mp and M; have similar solution paths even though their workspaces are
visually different. On the other hand, visually similar workspaces such as
M7 and M3 can have different solution paths for subtle reasons (e.g. slightly
different goals, obstacle arrangements, and robot base orientation).

notion of similarity is the core investigation of this work.
Designing a good similarity function is very challenging
for motion planning problems. For example, in Fig. 1 two
visually dissimilar workspaces My, M; have similar solution
paths while visually similar workspaces M; and M, have
different solution paths. A good similarity function should
capture the commonalities between M, and M; while still
distinguishing between M; and M. These problems are part
of the “Tall-Shelf” dataset described in Sec. V.

To address this problem we propose Fast retrleval of
Relevant Experiences (FIRE). As detailed in Sec. IV, FIRE
extracts suitable local representations, called local primitives,
from previous problems. FIRE finds pairs of similar and
dissimilar local primitives using a self-supervised method.
With these pairs, a similarity function is learned which can
be used to retrieve relevant experiences and guide a motion
planner. We demonstrate the effectiveness of FIRE with an 8-
DOF mobile manipulator in five categories of diverse problems
with sensed environments as shown (Fig. 1). Through our
experiments (Sec. V) we show that FIRE generalizes better
outside its training dataset even with less data, and is faster in
terms of planning time than prior work. The implementation
of FIRE and the generated datasets are open-source .

Overall, the main contributions of this work lie in 1)
defining suitable local representations of motion planning
problems, 2) learning a similarity function over them, and 3)
applying it in the motion planning problem through our new
framework. Although FIRE is tailored to retrieval frameworks
that use local features and biased sampling distributions [11],
[12] we believe it could be easily adapted to work with other
retrieval-based methods [13]-[15].

Ihttps://github.com/KavrakiLab/pyre

https://github.com/KavrakiLab/pyre

Appeared at ICRA 2022 IEEE International Conference on Robotics and Automation
May 23-27 2022 Philadelphia (PA) USA

II. PROBLEM DESCRIPTION AND NOTATION

Feasible Path Planning: Consider a robot in a workspace
W. A configuration of the robot x is a point in the config-
uration space (C-space), € C. Obstacles in the workspace
induce C-space obstacles Xops C C. The set of configurations
that are not in collision is denoted by Xgee = C— Xops. We are
interested in finding a path p, from Tgrarr € Xfree 0 Tgoar €
Xree, as a continuous map with p(0) = Zgrarr, P(1) = Zooar
such that for all ¢ € [0, 1], p(t) € Xtee. We denote the motion
planning problem by M = (Zsragr, Tooar, YW)-

“Challenging Regions” and “Critical Samples”: In this
work, we are concerned with planning for high-dimensional
robotic manipulators, and focus on sampling-based motion
planners. A common theme in learning-based approaches is
to produce configurations in C-space regions with low visi-
bility [16], which are the main bottleneck for sampling-based
motion planners [17]. We denote these “challenging regions”,
and configurations inside them “critical samples.”

Retrieval-Based Learning for Motion Planning: Given a
dataset DS = {M" : p'}¥ | of past problems M and their
feasible paths p, retrieval-based methods extract information
from DS and store it in a database denoted DB. In this
context, DB is a structure that contains (key : value) entries,
with the experiences (values) being “critical samples.” The
indices (keys) of the database are local primitives denoted
by ¢ € L, where L is the space of local primitives. Each
local primitive includes local workspace information [12]
along with Zsparr, Tooar information (as defined in Sec. IV-
A). This work aims to learn a suitable similarity function
SIM : L x £ — {0, 1} over the local primitives in order to
retrieve relevant “critical samples” for a given problem M.

III. RELATED WORK

Over the years many techniques have been proposed to
guide sampling-based motion planners. Many examples use
heuristics to bias sampling, such as Bridge sampling [17],
Gaussian sampling [18], Medial-Axis sampling [19], and
workspace-based sampling [20]. However, these predefined
heuristics may or may not apply in different situations.

Thus, a growing number of works attempt to learn how to
guide planning by utilizing past solutions to motion planning
problems. One set of methods learns interesting regions
in W [21], [22] but requires an inverse kinematics solver
to infer samples in “challenging regions”. A similar class
of methods directly computes relevant configurations in C
from a motion planning problem M using a neural network.
For example, some methods train a conditional variational
autoencoder to reconstruct samples from previous paths [23]
or “challenging regions” [24]-[26]. The authors of [27], [28]
use a 3D CNN to sample in “challenging regions”, while [29]—
[31] use neural networks as motion planners.

Although these methods have shown some promising
results, mapping M to paths or “challenging regions” in
C is hard in high-dimensional problems. Motion planning
is sensitive to input; small changes in W, Tgrarr, OF TgoaL
can drastically alter the resulting solution [12], [14], [32].
Furthermore, this mapping is usually multi-modal, since a

Fig. 2. a) The blue dots depict the 10 projections defined on the arm and
gripper of the Fetch robot. Each blue dot is one projection point 7(x), € R3
of x € C. Specifically, each robotic link of the arm+gripper was used as a
projection, as described in its urdf. b) Examples of local occupancy grids
and their position in space derived from the sensed scene (lw = (b, v)).
Note that only non-empty local occupancy grids are generated.

motion planning problem may have multiple solution paths
or multiple disjoint “challenging regions” [15], [33].

For these reasons, some approaches have adopted retrieval-
based methods, also known as library- [34] or memory-
based [35] methods. Such methods typically store in memory
a database DB and retrieve relevant information in the form of
paths [36], [37] or sampling distributions [11], [38] based on
a similarity function over M. These methods naturally apply
to multi-modal problems, since for similar or identical M
multiple outputs can be retrieved. Another advantage of these
methods is that they are incremental since new experiences
can simply be added to the database DB. The main challenge
lies in constructing a good similarity function over M.

Defining a similarity function is challenging because M
contains heterogeneous parameters; Zsragr, Looar € C While
W is a 3D representation. Some approaches do not use a sim-
ilarity function but learn problem invariants [39], [40], others
construct the similarity only over Zgrarr and zgoar [10], [36],
and some construct it only over W [12], [13]. In [12] a hand-
crafted similarity function over local workspaces is defined,
while [13] defines workspace similarity based on geometric
deformation of obstacles. Most similarly to our work, [9]
learned a similarity function over Zsagrr, Tgoar, and YV using
a weighted combination of global workspace features. In
contrast, our work uses local features and leverages latent
space representations obtained from neural networks.

Learning similarity functions [41] in the latent space has
been successfully employed in computer-vision tasks, such
as image classification [42] and 3D object classification [43].
Our work is inspired by these methods, and applies similar
metric learning methods to the motion planning problem.

IV. METHODOLOGY

We propose FIRE, a framework that learns a similarity
function to retrieve relevant experiences from a database in
the form of “critical samples”. In Sec. IV-A we formulate
the local primitives which are the input to the similarity
function, and we extract them from past problems in Sec. IV-
B. Then, we describe how to generate similar and dissimilar
local primitives (Sec. IV-C). In Sec. IV-D, we train a Siamese
network by minimizing the contrastive loss of the local
primitive pairs and realize the similarity function in the
learned latent space. Finally, Sec. IV-E explains how the
similarity function can guide a sampling-based planner.

Appeared at ICRA 2022 IEEE International Conference on Robotics and Automation
May 23-27 2022 Philadelphia (PA) USA

A. Local primitives

First, we define a set of projections 7(z) : C — R used
to extract and compare local primitives. Each configuration x
is projected to multiple points in VV and stacked as a vector

(x) = [m1(x), ma(z),...,mp(z)] € R3%FP

where P is the number of projections. Fig. 2a) shows the
10 projections on the Fetch which we used. Specifically, we
used the link frames of the arm+gripper from the Fetch [44]
urdf. Projections have often been used to guide motion
planners [45] and specifying them is often a research problem
in itself, albeit outside the scope of this work.

Now we define the local primitives £, which include a local
3D occupancy grid and its position lw [12] along with some
auxiliary C-space information Zarger and Tpgo;:

{= [lw7 LTARGET l’PROJ]

More specifically, lw = (b,v) where b € {0,1}%% is a
64-bit binary vector that represents a (4x4x4) local occupancy
grid and v € R3 is the center position of the grid. Examples
of lw are shown in Fig. 2b. The variable zrarcer € C is either
Tstart O ZgoaL, depending on the situation as explained in
Alg. 1 and Sec. IV-E. Finally, we calculate zpro; from Zrarger
and the center position v of [w. We project Trarger to P points
in the workspace II(21areer) € R3* % and then aggregate all
the distances between the P points and v to calculate Zpge;:

Tpros = [HU — T (xTARGET)H PR ||'U - 7TP($TARGET)||] S RP

The variable xpro; serves as an interleaved representation of
Trarcer and lw and was empirically validated to improve the
latent space structure.

B. Creating the experience database

Alg. 1 describes how to create the experience database
DB from DS = {(Zsrarr; Taoar, W) : p'}, by associating

each local primitive with a configuration from a solution path.

First, the paths are shortcutted [46] to remove redundant
nodes not in “challenging regions” (line 1 in Alg. 1) and
keep only “critical samples”. Finding “critical samples” is
still an open research problem [12], [22], [24] but this simple

shortcutting heuristic has been used previously in [11], [39].

Next, TARGET (line 2 in Alg. 1) samples near xsrarr and
ZTgoar and chooses the one which yielded the most in-collision
samples with the workspace. This aims to create the same
local representation for motion plans with the same solution
path but swapped zsragr and xgoar- Consider for example the
task in Fig. 1, where the robot plans from the home (spprr) to
a grasp configuration (xgoar). The same solution path applies
for planning between the grasp configuration (sparr) back
to the tuck configuration (xgoa). Thus, to ensure that both
plans have the same local representations TARGET should
choose the same configuration as Zparger (€.g. the grasp
configuration). We then decompose the workspace to local
occupancy grids (line 3 in Alg. 1) by traversing the octomap
tree similarly to [12].

Algorithm 1: Creating the experience database

Input :MP problem W, Zsparr, Tooar Path p
Output : Database DB
1 Shortcut p’ = SHORTCUT(p)
2 Find target Ziarger < TARGET (ZgoaLs TsTART)
3 Decompose W to LW «+ {lwy, ..., lwy}
4 foreach [w € LWV do

5 foreach x € p’ do

6 foreach m € 11 do

7 if CONTAINS (lw, 7(z)) then
8 Tproy < |0 — I(Zrarcer)|

9 0 [lw, Trarcer, Teros]

10 z™ < NEXT(z,p)

11 aP < PREV(z,p)

12 Insert (¢ : zP,z,z™) in DB

13 return DB

Afterward, we iterate over the configurations in each
path, the local occupancy grids, and the projections. The
subroutine CONTAINS associates each configuration with its
relevant regions in the workspace. CONTAINS checks for
every projection (), € R® of the configuration x if it is
contained in the bounding box of an occupancy grid; if so
we store the local primitive ¢ along with the critical z, the
previous waypoint configuration 2P, and the next waypoint
configuration ™ in DB. The previous and next configurations
are only used to help us create similar pairs as described in
Alg. 2 and are not part of the retrieved experience.

C. Creating a dataset of similar pairs

Alg. 2 describes a novel method to create a dataset of
similar pairs of local primitives over which to learn the
similarity function. This is the key problem investigated in
this paper.

Given a database DB, we iterate over all pairs of local
primitives and perform the following checks. First, the
subroutine SAME_PROJ checks if the two local primitives
were generated by the same projection (line 3 in Alg. 2).
Then we check whether the centers v of the local occupancy
grids are close enough in W (line 4 in Alg. 2) and whether
the stored configurations are also close enough in C-space
(line 5 in Alg. 2). The variable [wg;qe is the length of the
side of the local occupancy bounding box [w.

Finally (line 5 in Alg. 2) we sample up to N times
z°*" ~ N(x;,07) until a configuration z7°*" is found
which passes the VALID check. The VALID subroutine
checks if 27" can connect through a collision-free edge (in
the full workspace W of ¢;) with the next !" and previous z¥
configuration of the local primitive ¢;. If such a configuration
is found then we consider (¢;,/;) similar and add them to
S. This procedure aims to discover local primitives whose
“critical samples” are good substitutes for one another by
emulating how “critical samples” are used to bias sampling
during planning (Sec. IV-E). To generate dissimilar pairs
we randomly choose local primitives from DB and generate
an equal number of dissimilar pairs. We denote the set that
includes these dissimilar pairs N'S.

Appeared at ICRA 2022 IEEE International Conference on Robotics and Automation
May 23-27 2022 Philadelphia (PA) USA

Algorithm 2: Creating a dataset of similar pairs
Input :Database DB
Output : Pairs of similar local primitives S
1 foreach (¢; : z¥ x% ') € DB do
foreach (¢; : z,2;,27) € DB do
if SAME_PROJ ({;,¢;) then
if ||v; —v;||; <= size, then
if ||.’£1 — (EJH < 1002 then
repeat N times
l.?ear NN(CCJ‘,O'Q)
if VALID (2,27, 2}') then
S + <€j, €z>
10 break
11 return S

e ® 9 S n AR W N

Note that Alg. 2 needs the “critical samples” extracted
from solution paths to find similar local primitives, and cannot
be used as a similarity function when solving a new motion
planning problem where only W, xgoaL, Tstarr 1S available.

D. Learning the similarity function

The learned similarity function is realized in the latent
space of a Siamese network. A Siamese network [47] is
comprised of two identical encoder networks as shown in

Fig. 3. Each encoder maps £ to a latent variable z € R®,

The overall network is relatively small with around 3500
parameters, and was trained with the contrastive loss [48]:

max (0, dp, — ||z; — sz2) if (¢;,0;) e NS

L4, 45) = .
(. 45) if (¢;,6;)€S

|2 — 211

This loss tries to bring local primitives that belong in
S (similar) as close as possible in the latent space Z, while
local primitives that belong in N'S (dissimilar) must have at
least a margin distance d,,, = 0.5. After having structured the
latent space Z the similarity function is defined as follows:

1 iflz— 2] <R

SIM(4;,4;5) =
(b, £5) 0 otherwise

where R = 0.2d,, is the retrieval radius. A lower retrieval
radius than the margin distance d,,, must be used to avoid
retrieving dissimilar pairs. After structuring the latent space
Z all the local primitives in DB are projected to Z and added
in a K-D tree [49] structure for fast retrieval. Finding similar
local primitives with SIM is equivalent [50] to retrieving all
the neighbors within radius R in the latent space Z.

E. Retrieving relevant experiences

When solving a new problem M =(Zgrapr,ZcoaL, YV) the
new local primitives are created with the following procedure.
First, we extract the local occupancy grids from W. Then, for
each local occupancy grid lw we generate two local primitives:
one With Zrarger = Tstarr and one with Zrarcer = TgoaL. The
value of zpge; is calculated from @ p,rger and £ as explained in
Alg. 1. Each created local primitive is projected to Z and its
neighbors within radius R are retrieved, effectively obtaining
their associated “critical samples” from DJ3. Finally, similarly

MaxPool
2x2x2

— 21

A

Q:_O”’” 27

lwi.b
4 ch.

[zTARGET; TPROJ
lwy.v]

3 e
=
<o _

L(z1,22)

[-I"l GET; TPROJ; —>|
lws.v]

<+

i

MazPool

2x2xﬁ

%
~
Q
=
S
1
3
Q
|
w
)

lws.b
4 ch. 1x2x2 i 2x2x1
2x1x2
Fig. 3. The Siamese network architecture used. The activation function

for all the layers was ReLU. Conv3D denotes a 3D convolutional layer,
MaxPool takes the maximum value out of every subgrid, and FC denotes a
fully connected layer. The parameters of each layer are shown in the figure.

""Small-Shelf" Problems (Train)

180 =i — = 1 T
=1 Uniform
I MPNetSMP

5

—
a
o

£ 120 N FLAME
’ = . FIRE
\ 2 90 - - = Timeout
| S 60
c
]
a 30
o
Start Goal BiEST-Default BlEST-TunePc:annzl:TC-Default RRTC-Tuned
a) b)

Fig. 4. a) An example problem from the “Small-Shelf” dataset. We generate
different problems by uniformly sampling the robot pose, the position of the
obstacles, and the height of the shelf. This is similar to the “Small-Shelf” used
in [12] but the shelf is shorter, making it more challenging due to the narrow
area the robot has to traverse. b) Planning time (including retrieval) with
different underlying planners for 100 test examples from the “Small-Shelf”
dataset. The timeout was set to 180 seconds.

to [12], we aggregate all the K “critical samples” and convert
them to a Gaussian Mixture Model (GMM):

1 &)
P(z|M) = ?ZN(@,U)
=0

The GMM can be used to bias the sampling of any sampling-
based planner. To keep the probabilistic completeness guar-
antees of sampling-based planners we sample from P (x| M)
with probability 0 < A < 1 and from a standard uniform
distribution with probability (1 — A). If the planner uses a
local expansion strategy like EST [6] we simply sample from
the mixtures that are within the local sampling radius.

V. EXPERIMENTS

We demonstrate the effectiveness of the learned similarity
function on five generated datasets with MOTIONBENCH-
MAKER [51]. Each dataset contains an 8-DOF (arm-+torso)
Fetch robot [44] with a workspace represented by an oc-
tomap [52], performing a pick task as shown in Fig. 4a. We
consider this a realistic representation since point clouds can
easily be obtained from a simple depth camera. The five
datasets generated were “Small-Shelf” (Fig. 4a), “Tall-Shelf”
(Fig. 5a), “Thin-Shelf” (Fig. 5b), “Table” (Fig. 5¢), and “Cage”
(Fig. 7a). As shown in the figures, the starting configuration
Tsrarr for all datasets was a home (tuck) position, except

Appeared at ICRA 2022 IEEE International Conference on Robotics and Automation
May 23-27 2022 Philadelphia (PA) USA

for “Table” where xgrarr is @ random configuration under the
table. The goal configuration xgo,. 1S an inverse kinematics
(IK) solution placing the end-effector in a grasping pose
relative to an object. For the “Shelf” datasets, one object
per shelf is grasped and it is always the one furthest back.
For “Table” and “Cage” the grasped object is shown in the
figures. We generate different motion planning problems
similarly to [12] by uniformly sampling poses for the robot
base and scene objects. Note that such variation generates
highly diverse planning problems since even small changes in
the positions of the obstacles relative to the robot drastically
affect Xops and the resulting zgoar .

All evaluated methods produce biased samples in C which
can guide any sampling-based motion planner. We evalu-
ated these methods within RRT-connect (RRTC) [53] and
bidirectional EST (BIEST) [6], implemented in the Open
Motion Planning Library (OMPL) [54]. Additionally, we
considered two versions of each planner: one with default
OMPL parameters (RRTC-DEFAULT and BIEST-DEFAULT) and
one with a tuned range parameter (RRTC-TUNED and BIEST-
TUNED) found by a parameter sweep over a diverse set of
problems. In our experiments we compare FIRE with the
following methods:

e UNIFORM: Default uniform sampling of the C-space.

e« MPNET-SMP [29]: This is the sampling-biasing version
of Motion Planning Networks. Given a training dataset
of 3D point cloud workspaces, Zstarr, Tcoar, and solution
paths, MPNET-SMP learns to iteratively produce samples
that mimic the solution paths. We adapted the provided
implementation and tuned its hyperparameters to achieve
the best performance for the given problems.

e FLAME [12]: This framework is similar to FIRE and also
retrieves “critical samples” from a DB. However, the
local primitives are simpler, including only workspace
information (lw) and not considering TgoaL O Tsrart-
The similarity function considers lw; similar to [w; if
they have the same position and binary representation.

e STATIC [39], [40]: These methods generate a static
sampling distribution by extracting key configurations
from past trajectories. They do not rely on a similarity
function but instead attempt to capture the problem’s
invariants. We emulate the static sampling idea of these
methods by retrieving all the C-space samples we have
stored in DB.

We consider these methods representative of the works
discussed in Sec. III, with MPNET-SMP being a non-retrieval
method that directly maps M to C-space samples using a
neural network, FLAME a retrieval-based method with a hand-
crafted similarity function, and STATIC a method that learns
problem invariants.

We evaluate the performance of FIRE and the generalization
of the learned similarity function when both the training and
testing examples come from the same dataset (Sec. V-A), and
also when the testing dataset is increasingly different from
the training dataset (Sec. V-B). Finally, we evaluate FIRE
when retrieving experiences it was not trained on, and while

the DB includes unrelated experiences (Sec. V-C). For our
experiments we used Robowflex with Movelt [55], [56] and
the OMPL benchmarking tools [57]. The sampling parameters
for FIRE were the same as [12] (62 = 0.2, A = 0.5).

A. Generalizing in similar problems

1) Learning (Training): In this experiment, MPNET-SMP,
FLAME, and FIRE were trained in problems that come from
the “Small-Shelf” dataset. FIRE and FLAME were given
enough training examples for their performance to converge
in the “Small-Shelf” dataset. By convergence, we mean that
the average planning time did not improve after doubling
the number of experiences in DB. Specifically, FIRE was
trained with a total of 500 training examples. From these
500 examples, 200 were used to learn the similarity function
and all of the 500 examples were added to DB. Training the
Siamese network of FIRE took around 1 hour for 200 epochs.
FLAME was trained with 1000 examples which were added
to DB as described in [12]. Since it was difficult to profile
the convergence of MPNET-SMP (/21 day of training time)
we provided it 5000 training examples to ensure that it has
enough data. This is of a similar order to [29] (10000).

2) Evaluation (Testing): The methods were tested in a dif-
ferent set of 100 problems that also come from “Small-Shelf”.
As seen in Fig. 4b, FIRE outperformed all other methods
in all four different settings in terms of planning time. We
do include the retrieval time in the total planning time
for FLAME and FIRE but it was negligible in all cases
(0.01 — 0.1 seconds). We also notice that the tuning of
the underlying planner and the use of experiences interact
synergistically, with the best performance being achieved by
FIRE with RRTC-TUNED.

B. Generalizing in increasingly different problems

1) Learning (Training): We do not perform any additional
training in these experiments and simply use the methods
trained on “Small-Shelf” from Sec. V-A.

2) Evaluation (Testing): In these experiments, the meth-
ods were tested on three datasets that are increasingly
different from “Small-Shelf” as shown in Fig. 5. The
“Tall-Shelf” is created by stacking the “Small-Shelf” three
times. The “Thin-Shelf” is also a bookcase but is different
from “Tall-Shelf” and “Small-Shelf” because there is a
divider and the distance between the shelves has changed.
Finally, “Table” is significantly different from “Small-Shelf”
regarding WW. We used 100 testing examples for each of
these three datasets. As shown in Fig. 6, MPNET-SMP could
not outperform UNIFORM in “Tall-Shelf” and “Table” except
for RRTC-DEFAULT, while in “Thin-Shelf” it was not able
to improve upon UNIFORM given the time limits. In some
cases MPNET-SMP performed worse than UNIFORM; we
attribute this behavior to the testing examples being outside
the training dataset of MPNET-SMP. FLAME did offer some
improvement for the “Tall-Shelf” environment but could not
transfer to “Thin-Shelf” or “Table”. Also, in some cases
FLAME performed worse than UNIFORM; this is attributed
to the retrieval of very few critical samples leading to

Appeared at ICRA 2022 IEEE International Conference on Robotics and Automation
May 23-27 2022 Philadelphia (PA) USA

"Tall-Shelf" Dataset (Test) "Thin-Shelf" Dataset (Test) "Table" Dataset (Test)

Goal Goal

Goal

a) Start b) Start o) Start

Fig. 5. The three datasets used to test the evaluated methods. Different problems are generated similarly to Fig. 4. a) An example environment from the
“Tall-Shelf” dataset. The “Tall-Shelf” is created by stacking the “Small-Shelf” three times. b) An example environment from the “Thin-Shelf” dataset. This
is also a bookcase like “Small-Shelf” and “Tall-Shelf”, but the shelves are shorter and there is a divider, making it a much more challenging problem. c)

An example environment from the “Table” dataset, which includes a table with several objects and is very different from the other datasets.

"Tall-Shelf" Planning Time

Planning Time (s)
-

o © N O
3 8 o o

w
S

BiEST-Default BiEST-Tuned RRTC-Default

Planner

RRTC-Tuned BIEST-Default

Fig. 6.
dataset. The timeout was set to 180 seconds.

"Cage" Dataset "Cage" Planning Time

0/0 500/0 500/500 500/4500
Cage/Small-Shelf Experiences Ratio

a) Start

Fig. 7. a) An example problem from the “Cage” dataset. b) Planning
time for 100 test examples from the “Cage” dataset using the RRTC-TUNED
planner. The timeout was set to 60 seconds. The x-axis shows the number
of experiences that exist in D3 from “Small-Shelf” and from “Cage”. Note
that “Small-Shelf” and “Cage” have very different solution paths. In other
words, the experiences from “Small-Shelf” do not transfer to “Cage”.

poor biased sampling (if nothing is retrieved it defaults to
UNIFORM). On the other hand, FIRE outperformed all other
methods even in “Thin-Shelf” and “Table”, demonstrating
that the learned similarity function generalizes to problems
that are significantly different than those in the training
dataset. We also note that “Table” has a different Zgparr
configuration than the training dataset “Small-Shelf”. This
demonstrates the usefulness of independently considering
Tsrarr and Tgoar in the local primitives defined by FIRE.

C. Robustness to irrelevant experiences

1) Learning (Training): In this experiment, we do not
retrain FIRE’s similarity function and use the one obtained
from training on “Small-Shelf” from Sec. V-A. However,

now we add to DB example problems from both “Cage”
Note that the problems from “Cage”

and “Small-Shelf”.
and “Small-Shelf”” are highly dissimilar in terms of solution
paths. Thus, when solving a problem from “Cage” a good
similarity function should not retrieve experiences generated
from “Small-Shelf”. The x-axis in Fig. 7b shows the ratio of
example problems from “Cage” and “Small-Shelf”. For exam-

"Thin-Shelf" Planning Time

Y N

BIiEST-Tuned
Planner

"Table" Planning Time
[Uniform
I MPNetSMP
[FLAME
I FIRE
- = =Timeout

i oo

BIiEST-Tuned RRTC-Default RRTC-Tuned
Planner

RRTC-Default RRTC-Tuned BIEST-Default

Planning time (including retrieval) when testing in the three datasets shown in Fig. 5. All of the methods are only trained with the “Small-Shelf”

ple, 500/0 denotes an experience database DB that has 500
examples from “Cage” and 0 examples from “Small-Shelf”.

2) Evaluation (Testing): In this experiment, we tested on
100 example problems from the “Cage” dataset using RRTC-
TUNED as the underlying planner. We compared with STATIC
to illustrate how irrelevant experiences from “Small-Shelf”
affect performance. The results in Fig. 7b show that although
STATIC significantly outperforms UNIFORM, its performance
degrades as we add irrelevant experiences in the training
dataset. On the other hand, FIRE is robust to the irrelevant ex-
periences from “Small-Shelf” added to DB since it maintains
its good performance even with the 500/4500 ratio. FIRE’s
similarity function was only trained on “Small-Shelf” while
DB includes experiences from “Cage”. This demonstrates
that the learned latent space can successfully structure local
primitives it was not trained on.

VI. CONCLUSION

In this work, we have proposed FIRE, a framework that
learns a similarity function for motion planning problems with
sensed environments. Using the learned similarity function,
FIRE retrieves relevant experiences from a database in the
form of “critical samples” that can informatively guide any
sampling-based motion planner. Through our experiments, we
demonstrated the generalization of FIRE outside its training
dataset. Furthermore, FIRE can also learn incrementally
without retraining by simply adding experiences in DB, and
can discriminate between relevant and irrelevant experiences.

In the future, we would like to improve FIRE by bound-
ing its memory requirements and treating biased samples
differently from uniform samples [22], [24]. Additionally,
we would like to investigate how the same ideas apply to
other problems that include motion planning such as task and
motion planning or kinodynamic planning.

[1]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Appeared at ICRA 2022 IEEE International Conference on Robotics and Automation
May 23-27 2022 Philadelphia (PA) USA

REFERENCES

Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
“Real-time motion planning with applications to autonomous urban
driving,” IEEE Trans. on Control Syst. Tech., vol. 17, no. 5, pp. 1105—
1118, 2009.

S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. Konidaris, “Robot
motion planning on a chip,” in Robotics: Science and Syst., 2016.

N. T. Dantam, Z. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
Int. J. of Robotics Research, vol. 37, no. 10, pp. 1134-1151, 2018.

J. F. Canny, The Complexity of Robot Motion Planning. MIT Press,
1988.

L. E. Kavraki, P. gvestka, J.-C. Latombe, and M. Overmars, ‘“Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566-580, 1996.
D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” Int. J. of Computational Geometry and Appli-
cations, vol. 9, no. 4n5, pp. 495-512, 1999.

S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, pp. 293-308, 2000.

0. Salzman, “Sampling-based robot motion planning,” Communications
of the ACM, vol. 62, no. 10, pp. 54-63, 2019.

N. Jetchev and M. Toussaint, “Fast motion planning from experience:
trajectory prediction for speeding up movement generation,” IEEE J.
Robot. Autom., vol. 34, no. 2, pp. 111-127, 2013.

D. Coleman, I. A. Sucan, M. Moll, K. Okada, and N. Correll,
“Experience-based planning with sparse roadmap spanners,” in /EEE
Int. Conf. Robot. Autom., pp. 900-905, 2015.

C. Chamzas, A. Shrivastava, and L. E. Kavraki, “Using local experi-
ences for global motion planning,” in /IEEE Int. Conf. Robot. Autom.,
pp. 8606-8612, May 2019.

C. Chamzas, Z. Kingston, C. Quintero-Pefia, A. Shrivastava, and L. E.
Kavraki, “Learning Sampling Distributions Using Local 3D Workspace
Decompositions for Motion Planning in High Dimensions,” in /IEEE
Int. Conf. Robot. Autom., June 2021.

J.-M. Lien and Y. Lu, “Planning motion in environments with similar
obstacles,” Robotics: Science and Syst., 2009.

G. Tang and K. Hauser, “Discontinuity-sensitive optimal control
learning by mixture of experts,” in IEEE Int. Conf. Robot. Autom.,
pp. 7892-7898, 2019.

W. Merkt, V. Ivan, T. Dinev, I. Havoutis, and S. Vijayakumar,
“Memory clustering using persistent homology for multimodality-and
discontinuity-sensitive learning of optimal control warm-starts,” I[EEE
Trans. Robot., 2020.

D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” IEEE Int. Conf.
Robot. Autom., vol. 3, pp. 44204426, 2003.

D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic
foundations of probabilistic roadmap planning,” Int. J. of Robotics
Research, vol. 25, no. 7, pp. 627-643, 2006.

V. Boor, M. H. Overmars, and a. V. D. Stappen, “The gaussian sampling
strategy for probabilistic roadmap planners,” in IEEE Int. Conf. Robot.
Autom., vol. 2, pp. 1018-1023, May 1999.

J.-M. Lien, S. L. Thomas, and N. M. Amato, “A general framework
for sampling on the medial axis of the free space,” in IEEE Int. Conf.
Robot. Autom., vol. 3, pp. 44394444, 2003.

H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle: An
adaptive sampling strategy for prm planning,” in Int. Wksp. on the
Algorithmic Foundations of Robotics, pp. 35-51, Springer, 2008.

M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace biasing
for sampling-based planners,” IEEE Int. Conf. Robot. Autom., pp. 3757—
3762, 2008.

D. Molina, K. Kumar, and S. Srivastava, “Learn and link: Learning
critical regions for efficient planning,” in IEEE Int. Conf. Robot. Autom.,
pp. 10605-10611, 2020.

B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in /EEE Int. Conf. Robot. Autom., pp. 7087—
7094, May 2018.

B. Ichter, E. Schmerling, T.-W. E. Lee, and A. Faust, “Learned critical
probabilistic roadmaps for robotic motion planning,” in /EEE Int. Conf.
Robot. Autom., pp. 9535-9541, 2020.

R. Kumar, A. Mandalika, S. Choudhury, and S. S. Srinivasa, “LEGO:
Leveraging experience in roadmap generation for sampling-based
planning,” IEEE/RSJ Int. Conf. on Intell. Robots and Syst., 2019.

[26]

[27]

[28]

[29]

(30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

R. K. Jenamani, R. Kumar, P. Mall, and K. Kedia, “Robotic motion
planning using learned critical sources and local sampling,” arXiv
preprint arXiv:2006.04194, 2020.

1. Patil, B. K. Rout, and V. Kalaichelvi, “Prediction of bottleneck
points for manipulation planning in cluttered environment using a 3d
convolutional neural network,” 2019 7th International Conference on
Control, Mechatronics and Automation (ICCMA), pp. 358-364, 2019.
R. Terasawa, Y. Ariki, T. Narihira, T. Tsuboi, and K. Nagasaka, “3d-cnn
based heuristic guided task-space planner for faster motion planning,”
in IEEE Int. Conf. Robot. Autom., pp. 9548-9554, 1EEE, 2020.

A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning
networks: Bridging the gap between learning-based and classical
motion planners,” IEEE Trans. Robot., 2020.

T. Jurgenson and A. Tamar, “Harnessing reinforcement learning for
neural motion planning,” in Robotics: Science and Syst., 2019.

B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, and L. Song, “Learning to
plan in high dimensions via neural exploration-exploitation trees,” in
Int. Conf. on Learn. Repr., 2020.

M. Farber, “Topological complexity of motion planning,” Discrete and
Computational Geometry, vol. 29, no. 2, pp. 211-221, 2003.

J. J. Rice and J. Schimmels, “Multi-homotopy class optimal path
planning for manipulation with one degree of redundancy,” Mechanism
and Machine Theory, vol. 149, p. 103834, 2020.

M. Stolle, H. Tappeiner, J. Chestnutt, and C. G. Atkeson, “Transfer
of policies based on trajectory libraries,” in IEEE/RSJ Int. Conf. on
Intell. Robots and Syst., pp. 2981-2986, IEEE, 2007.

T. S. Lembono, A. Paolillo, E. Pignat, and S. Calinon, “Memory of
motion for warm-starting trajectory optimization,” IEEE Robot. Autom.
Letters, vol. 5, no. 2, pp. 2594-2601, 2020.

D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in [EEE Int. Conf. Robot.
Autom., pp. 3671-3678, 2012.

E. Pairet, C. Chamzas, Y. R. Petillot, and L. E. Kavraki, “Path planning
for manipulation using experience-driven random trees,” IEEE Robot.
Autom. Letters, vol. 6, p. 3295-3302, Apr. 2021.

S. Finney, L. P. Kaelbling, and T. Lozano-Pérez, “Predicting Partial
Paths from Planning Problem Parameters,” in Robotics: Science and
Syst., 2007.

T. F. Iversen and L.-P. Ellekilde, “Kernel density estimation based
self-learning sampling strategy for motion planning of repetitive tasks,”
in IEEE/RSJ Int. Conf. on Intell. Robots and Syst., pp. 1380-1387,
IEEE, 2016.

P. Lehner and A. Albu-Schaeffer, “Repetition sampling for efficiently
planning similar constrained manipulation tasks,” IEEE/RSJ Int. Conf.
on Intell. Robots and Syst., pp. 2851-2856, 2017.

E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in
International workshop on similarity-based pattern recognition, pp. 84—
92, Springer, 2015.

O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wierstra,
“Matching networks for one shot learning,” in Proceedings of the 30™
International Conference on Neural Information Processing Systems,
pp. 3637-3645, 2016.

A. Zeng, S. Song, M. NieBner, M. Fisher, J. Xiao, and T. Funkhouser,
“3DMatch: Learning local geometric descriptors from rgb-d reconstruc-
tions,” in CVPR, 2017.

M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch and
Freight: Standard platforms for service robot applications,” in Wksp.
on Autom. Mobile Service Robots, 2016.

A. Orthey, A. Escande, and E. Yoshida, “Quotient-space motion
planning,” in IEEE/RSJ Int. Conf. on Intell. Robots and Syst., pp. 8089—
8096, IEEE, 2018.

B. Raveh, A. Enosh, and D. Halperin, “A little more, a lot better:
Improving path quality by a path-merging algorithm,” IEEE Trans.
Robot., vol. 27, no. 2, pp. 365-371, 2011.

D. Chicco, “Siamese neural networks: An overview,” Artificial Neural
Networks, pp. 73-94, 2020.

R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in IEEE Computer Society Conf. on
Computer Vision and Pattern Recognition, vol. 2, pp. 1735-1742, 2006.
J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509-517,
1975.

M.-F. Balcan, A. Blum, and N. Srebro, “A theory of learning with
similarity functions,” Machine Learning, vol. 72, no. 1-2, pp. 89-112,
2008.

Appeared at ICRA 2022 IEEE International Conference on Robotics and Automation
May 23-27 2022 Philadelphia (PA) USA

[51] C. Chamzas, C. Quintero-Pefia, Z. Kingston, A. Orthey, D. Rakita,
M. Gleicher, M. Toussaint, and L. E. Kavraki, “MotionBenchMaker:
A Tool to Generate and Benchmark Motion Planning Datasets,” IEEE
Robot. Autom. Letters, vol. 7, p. 882-889, Apr. 2022.

[52] A.Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard,
“OctoMap: An efficient probabilistic 3D mapping framework based on
octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189-206, 2013.

[53] J. J. Kuftner and S. M. LaValle, “RRT-Connect: An efficient approach
to single-query path planning,” in /EEE Int. Conf. Robot. Autom., vol. 2,
pp- 995-1001, 2000.

[54] 1. A. Sucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robot. Autom. Magazine, vol. 19, no. 4, pp. 72-82,
2012.

[55] S. Chitta, I. Sucan, and S. Cousins, “Moveit!,” IEEE Robot. Autom.
Magazine, vol. 19, no. 1, pp. 18-19, 2012.

[56] Z. Kingston and L. E. Kavraki, “Robowflex: Robot motion planning
with moveit made easy,” arXiv preprint arXiv:2103.12826, 2021.

[57] M. Moll, I. A. Sucan, and L. E. Kavraki, “Benchmarking motion
planning algorithms: An extensible infrastructure for analysis and
visualization,” IEEE Robot. Autom. Magazine, vol. 22, no. 3, pp. 96—
102, 2015.

	I Introduction
	II Problem Description and Notation
	III Related work
	IV Methodology
	IV-A Local primitives
	IV-B Creating the experience database
	IV-C Creating a dataset of similar pairs
	IV-D Learning the similarity function
	IV-E Retrieving relevant experiences

	V Experiments
	V-A Generalizing in similar problems
	V-A.1 Learning (Training)
	V-A.2 Evaluation (Testing)

	V-B Generalizing in increasingly different problems
	V-B.1 Learning (Training)
	V-B.2 Evaluation (Testing)

	V-C Robustness to irrelevant experiences
	V-C.1 Learning (Training)
	V-C.2 Evaluation (Testing)

	VI Conclusion
	References

