2021 IEEE International Conference on Cluster Computing (CLUSTER)

Octo-Tiger’s New Hydro Module and Performance
Using HPX+CUDA on ORNL’s Summit

Patrick Diehl®*, Gregor DaiBf, Dominic Marcello*, Kevin Huck@®?*, Sagiv Shiber §, Hartmut Kaiser®*,
Juhan Frank$, Geoffrey C. Clayton®3$, and Dirk Pfliiger®?
*LSU Center for Computation & Technology, Louisiana State University, Baton Rouge, LA, 70803 U.S.A
Email: patrickdiehl @lsu.edu
TIPVS, University of Stuttgart, Stuttgart, 70174 Stuttgart, Germany
i OACISS, University of Oregon, Eugene, OR, U.S.A.
§ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803 U.S.A.

Abstract—Octo-Tiger is a code for modeling three-dimensional
self-gravitating astrophysical fluids. It was particularly designed
for the study of dynamical mass transfer between interacting
binary stars. Octo-Tiger is parallelized for distributed systems
using the asynchronous many-task runtime system, the C++ stan-
dard library for parallelism and concurrency (HPX) and utilizes
CUDA for its gravity solver. Recently, we have remodeled Octo-
Tiger’s hydro solver to use a three-dimensional reconstruction
scheme. In addition, we have ported the hydro solver to GPU
using CUDA kernels. We present scaling results for the new hydro
kernels on ORNL’s Summit machine using a Sedov-Taylor blast
wave problem. We also compare Octo-Tiger’s new hydro scheme
with its old hydro scheme, using a rotating star as a test problem.

I. INTRODUCTION

Octo-Tiger is an astrophysics finite volume hydrodynamic
code for simulating the evolution of stellar systems [1]. Octo-
Tiger consists of several modules, e.g. hydro, gravity, and
radiation. The gravity is solved based on the fast multipole
method using adaptive octrees. The hydro module solves the
mass, momentum and energy equations of an inviscid fluid in a
rotating frame of reference, which reduces numerical viscosity
effects. Recently, we improved the accuracy of the hydro
module by including a full three-dimensional reconstruction
technique (see a thorough introduction of this technique
in [1]). With the fully three-dimensional reconstruction, the
hydro module became the hotspot of the application. Here, we
present and test its initial GPU implementation. Our radiation
module, still in the testing phase, uses an explicit transport
scheme with the reduced speed of light approximation, coupled
to an implicit scheme for the radiation-hydro coupling terms,
in a manner similar to Skinner et al. [2].

To validate the theoretical claim that the full three-
dimensional reconstruction technique results in more accuracy,
a rotating star simulation using the old and new hydro modules
with the same gravity module were executed. The error and
convergence of both methods is compared to validate the theo-
retical claim with numerical results, see Section VI. However,
this paper focuses on the task-based execution using adaptive
mesh refinement, resulting in some irregular parallelism. The
task-based approach helps us with properly parallelizing the
tree-traversals. As we strive for the lowest time per timestep

2168-9253/21/$31.00 ©2021 IEEE
DOI 10.1109/Cluster48925.2021.00059

204

possible, this in turn means we have to process millions of
cells in sub-second runtimes. This means we have a task-graph
of extremely short running compute kernels mixed with the
communication and data transfers.

We are revisiting the performance of the gravity module
and studying the performance of the new hydro module
on ORNL’s Summit. Octo-Tiger’s scaling capabilities have
been previously shown: NERSC’s Cori [3] and on CSCS Piz
Daint [4], however, in these measurements an older version
of the hydro module was used. We have experience running
Octo-Tiger and the C++ standard library for parallelism and
concurrency (HPX) [5] on x86 systems and CRAY based
systems, but not much previous experience with distributed
runs on IBM® Power9™ systems.

First, the hydro module for the Sedov-Taylor blast wave
is studied. Second, a rotating star for the combination of the
hydro and gravity module is simulated. For both problems, we
show the node level scaling for CPU and CPU+GPU runs on a
single node. Note that due to the different implementations of
the hydro kernels, especially the more computationally intense
reconstruction of the fluxes in the new implementation, we can
not directly compare the scaling results.

In addition, analyzing such large task graphs can be rather
challenging, see Figure 1. This is the first time we employ
APEX with CUDA support to get combined profiling of the
CPU and GPU tasks. CPU-only profiling with APEX has been
shown in [6].

The paper is structured as follows: Section II covers the
related work. Section III sketches the software framework.
Section IV introduces Octo-Tiger’s new hydro module and
its GPU acceleration. Section V shows the node level and
distributed scaling of Octo-Tiger on Summit. Section VI
compares the accuracy of the new three-dimensional full
reconstruct of the hydro kernel with the previous kernel.
Finally, Section VII concludes the paper.

II. RELATED WORK

There are many astrophysics codes which combine hydro-
dynamic and gravity solvers for the simulation of astrophysical
fluids. Here, however, we are focusing on those which have
two additional properties that Octo-Tiger has: /) They are

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

accelerated by an asynchronous many-task system (AMT)
and 2) They use adaptive grid refinement. ChaNGa (Charm
N-body Gravity solver) [7] performs collisionless N-body
simulations for cosmological simulations or simulations of
isolated stellar systems. A moving-mesh hydrodynamic solver
was added to ChaNGa [8] together with the implementation of
multiple time-steps techniques to form the code MANGA [9],
suitable for simulating interacting binary stars. Enzo-E / Cello
(formerly Enzo-P) [10], which is currently under active de-
velopment, is designed for astrophysics simulations, including
star formation and cosmology applications. Cello provides the
AMR feature within Enzo-E. Both of these codes use the AMT
Charm++ [11]. Another AMR-based code is Castro [12], part
of the AMReX Astrophysics suite utilizing the more traditional
MPI+X approach. The Athena++ code, a C++ rewrite of
the magneto-hydrodynamic code Athena C, implements an
adaptive mesh refinement and uses MPI+OpenMP for its
parallelization [13]. A GPU-accelerated version of Athena++,
K-Athena, was refactored using Kokkos to achieve better
performance and portability [14]. All these codes attempt to
exploit high abstraction programming for the parallelization of
their code to display scaling on exascale supercomputers. For
example, Charm++ and the AMT used by Octo-Tiger, HPX,
have very similar programming models. From an application
developer perspective, HPX can be seen as an abstraction
to C++ and Charm++ more as a standalone library [15].
According to this survey [16] HPX has the highest technical
readiness. Two of the codes, K-Athena and Castro, have
recently reported their scaling and performance on OLCF’s
Summit [14], [17]. We aim to report Octo-Tiger’s performance
on Summit as well, in particular after upgrading the hydro
solver and porting it to GPU CUDA kernels. Since two of
the main functionalities of the code, the gravity and hydro
solvers, can be executed on GPUs, it is interesting to study
the scaling on numerous GPUs. Although a direct comparison
between the performance of codes is not trivial, a simple basic
measurement of interest is the number of cells (zones) updated
per second (or per microseconds). Castro reported a value
of 130 zones/useconds on one Summit node [17], while K-
Athena reported a peak value of > 100 zones/useconds [14].

III. SOFTWARE FRAMEWORK

A. C++ standard library for parallelism and concurrency

HPX is the C++ standard library for parallelism and con-
currency. It exposes an API that fully conforms to the recent
C++ standards [18] on top of an asynchronous many-task
runtime system (AMT). It has been described in detail in
other publications, such as [5], [19]-[21]. In the context of this
paper, HPX has been used for two purposes. a) to coordinate
the asynchronous execution of a multitude of heterogeneous
tasks (both on CPUs and GPUs), thus managing local and
distributed parallelism while observing all necessary data
dependencies, and b) as the parallelization infrastructure for
executing CUDA-kernels on the CPUs via the asynchronous
HPX backend.

205

B. APEX

APEX [22] is a performance measurement library for
distributed, asynchronous multitasking systems. It provides
lightweight measurements without perturbing high concur-
rency through synchronous and asynchronous interfaces. To
support performance measurement in systems that employ
user-level threading, APEX uses a dependency chain in ad-
dition to the call stack to produce traces and task dependency
graphs. The synchronous APEX instrumentation application
programming interface (API) can be used to add instrumenta-
tion to a given run time and includes support for timers and
counters. The NVIDIA CUDA Profiling Tools Interface [23]
provides CUDA host callback and device activity measure-
ments. Additionally, the hardware and operating system are
monitored through an asynchronous measurement that involves
the periodic or on-demand interrogation of the operating
system, hardware states, or runtime states (e.g., CPU use,
resident set size, memory “high water mark’). The NVIDIA
Management Library interface [24] provides periodic CUDA
device monitoring to APEX. In previous work [25], APEX was
extended to capture additional timers and counters related to
CUDA device-to-device memory transfers, as well as tracking
memory consumption on both device and host when requested
with the cudaMalloc* API calls.

Tracing measurement is typically used by application de-
velopers to understand timing and dependency relationships
between different tasks within an application. When tracing
to the Open Trace Format (OTF2) or Google Trace Events
Format, each concurrent CUDA Stream is assigned three
virtual “threads” to track kernel, memory and synchronization
activity. This is necessary because these three classes of events
are not perfectly nested timers — there is a potential for
asynchronous overlap — which are a requirement for the OTF2
tracing library (Google Trace Events are more forgiving).
However, each operation class within a Stream does have
a guaranteed ordering, so this segregation of event types is
sufficient to meet the requirements of the tracing libraries and
formats. However, because the Octo-Tiger CUDA implemen-
tation uses up to 128 concurrent streams per process (along
with the actual HPX worker and helper threads on the CPU),
even a relatively small run with 6 ranks per node can result in
over 2400 unique “threads” of execution, and a collection of
trace files over 27GB in size from just 25 iterations. To work
around this issue of scale, APEX was extended to support task
dependency trees to complement the existing task dependency
graph support. The tree is a summary representation of the task
dependency relationships (task types, not individual tasks),
revealing the full dependency chain and not just immediate
parent/child relationships. While this can result in tree repre-
sentations that are larger than the graph representation — due
to expanded recursions and continuations, see Figure 1b for an
example — the trees are still quite manageable and helpful in
diagnosing problems in programming models like HPX that
do not have a meaningful callstack context but do have a
task dependency context, including tasks and other activity

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

(a) Task tree example.

(b) Task graph example.

Fig. 1. Task tree and task graph of Octo-Tiger as captured by APEX. Intensity of red color is correlated with the node’s contribution to the overall runtime. The
recursive structure of the octree is evident in the expanded tree. High resolution images are available here (https://doi.org/10.6084/m9.figshare.14666184.v1).

offloaded to GPU devices. To complement the taskgraph and
tasktree data in the absence of a full trace, APEX also captures
task and counter scatterplot data, indicating on the = axis when
the task started or the counter was captured, and the y axis
contains the duration of the task or the value of the counter.
The tasks are sampled using a user-specified fraction (default
1%) whereas the counters are sampled at every value capture.
This data collection allows the application developer to capture
a time sequence of data without the filesystem overhead of a
full event trace. Examples are shown in Section V.

IV. OcTO-TIGER

In this section, we briefly introduce the modules of Octo-
Tiger studied in this paper, followed by details on how we
integrate their GPU implementation with HPX. For a more
general overview of the modules themselves, we refer to Octo-
Tiger’s method paper [1].

A. Octo-Tiger’s Gravity Solver

Octo-Tiger uses a fast multipole method (FMM) for solv-
ing the gravity [26]. This particular implementation of the
FMM globally conserves both linear and angular momenta to
machine precision, and, when coupled to the hydro-dynamics
solver, also globally conserves energy to machine precision.
The solver uses a third order multipole expansion. Its accuracy
can be varied by adjusting the opening criterion, 6. Lower
values of the opening criterion lead to stricter multipole
acceptance criteria, requiring that multipoles be further away
to interact. This increases the solver’s accuracy at the cost of
more computation time.

B. Octo-Tiger’s Hydro Implementation

Octo-Tiger solves the equations of hydrodynamics using
a finite volume method. It evolves the mass density, three
linear momenta, and gas energy on a rotating adaptive mesh

refinement (AMR) mesh. The AMR mesh is based on an
octree structure, with each node of the octree being either not
refined at all or fully refined with eight sub-grids of twice the
resolution as their parent. By default, each of those sub-grids
consists of 8 cells, however, this is adjustable at compile-time
to allow for more finely refined sub-grids with more cells (for
instance 163). The evolved variables reside on the leaf sub-
grids of the octree. It additionally evolves an entropy tracer,
using it to implement the dual energy formalism of Bryan
et al. [27]. First, the evolution variables are reconstructed
from cell averages at 26 quadrature points on the cell face:
the centers of cell faces and cell edges and at cell vertices.
This is accomplished by applying the piece-wise parabolic
method (PPM) of Colella et al. [28]. This third order, five
cell stencil is applied along the lines between cell centers
that coincide with particular quadrature points, producing left
and right values for each. Octo-Tiger optionally allows for the
contact discontinuity detection available with PPM. Once the
evolution values are reconstructed, the semi-discrete central-
upwind scheme of Kurganov et al. [29] is applied to the
reconstructed left and right variables at the quadrature points,
producing fluxes. These fluxes are summed at quadrature
points on a given cell face using Newtonian quadrature to
obtain the final flux. Octo-Tiger’s complete hydro scheme is
described by Marcello, Shiber, et al. [1]. In this paper, we
compare our new hydro module to the old hydro module.
The old hydro module used the same reconstruction method,
however, flux values were only computed at the centers of cell
faces.

C. Octo-Tiger’s CUDA Implementation

To understand Octo-Tiger’s GPU implementation of the hy-
dro module, it is worth reintroducing the GPU implementation
of the gravity module from prior work. While the gravity
module uses entirely different compute methods (which we

206

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

will only briefly mention here), it uses the same mechanism
for combining HPX and CUDA to facilitate concurrent GPU
kernel execution. The following subsection offers details how
(and why) we use this mechanism, followed by the details of
the hydro GPU implementation in the subsequent subsections.

1) Gravity Module GPU Implementation: The gravity
solver—more specifically the calculation of the same-level
interactions in the second FMM step—was the original hot
spot within Octo-Tiger [30], [31]. Here, we have to calculate
the cell-to-cell interactions for each of the cells of a sub-
grid. The exact number of interactions per cell depends on the
parameter . The actual hot spot consisted of different methods
(henceforth called gravity kernels) that take care of the various
types of cell-to-cell interactions. All kernels operate on one
sub-grid at a time, calculating all interactions between the cells
within that sub-grid in addition to their interactions with cells
in the ghost layer. The interaction types and the gravity kernels
themselves are detailed in prior work in more detail [30].

As a sub-grid only contains 512 cells by default, a gravity
kernel responsible for calculating the interactions of a single
sub-grid does not cause enough work to saturate a GPU. There
are two ways to address this. As mentioned previously, the
number of cells per sub-grid can be increased, which in turn
would provide more work for each GPU kernel. However, this
would be an Octo-Tiger specific solution. Instead, we were
previously able to overcome this limitation for the gravity-
solver GPU kernels by using a more general approach: A
HPX-CUDA integration.

This integration allows for the execution of CUDA kernels
to be integrated with the HPX runtime system via HPX futures.
Essentially, after launching a CUDA kernel, HPX offers the
functionality to return a HPX future for it. The HPX scheduler
will then continue to poll a CUDA event that will be set as
soon as said CUDA kernel is done. Once the event is set, the
HPX future will be set to ready, which in turn triggers all tasks
that depend on it. This allows us to integrate CUDA kernels
into the HPX task graph.

We can thus handle CUDA kernels (and CPU/GPU data
transfers) the same way as any other HPX task, making
it easily possible to chain them with other tasks, such as
arbitrary CPU compute tasks, inter-node communication, or
I/0. Crucially, this means that the execution of a CUDA
kernel gets automatically overlapped with other tasks, which
includes the execution of other CUDA kernels on separate
CUDA streams. This leads to the concurrent execution of
multiple CUDA kernels on separate sub-grids, preventing GPU
starvation despite the small workload with just 512 workitems
per kernel invocation.

As we launch each CUDA kernel within a normal HPX task,
we can easily suspend the task until the GPU kernel is done (as
indicated by its HPX future) and have an HPX worker thread
pick up the original task afterwards to process its results.
This allows a single worker thread to easily handle multiple
CUDA streams, switching between HPX tasks. In previous
work, we achieved a high GPU utilization and performance
using this approach within the gravity solver [4]. There, we

207

used 12 worker threads (one for each CPU core) and 128
CUDA streams for one P100 GPU.

For this approach, however, we need to keep any GPU-
wide synchronization to a minimum. This includes calls to
cudaMalloc () and the creation of CUDA streams. To avoid
creating more CUDA streams than necessary, we pre-allocate
them at the start of the simulation. We usually use a pool
of 128 HPX CUDA executors per device, each handling one
CUDA stream. We further employ a GPU-buffer manager to
avoid on-the-fly allocation of buffers as much as possible. If
available, the manager reuses previously allocated but cur-
rently unused device buffers from previous kernel invocations.
Only if none is available a new buffer will be created.

Both the HPX-CUDA integration (exposed with HPX fu-
tures) and the buffer manager (exposed by a set of allocators
within the library CPPuddle) can now be used independent
of Octo-Tiger, to allow a similar scheme of easy, task-based,
concurrent GPU kernel execution in other applications. This
also means we can also easily re-use this technique to port
more of Octo-Tiger’s solvers to the GPU.

Furthermore, if needed, this CUDA-HPX integration ap-
proach can be combined with the other approach mentioned to
increase GPU utilization: Increasing the size of the sub-grids.
This allows us to approach the issue both on the tasking level
using the integration and on the data-structure level by using
sub-grids with more cells.

2) Initial Hydro Module GPU Implementation: Between
the GPU implementation of the gravity module and the
changes moving from the old hydro (where flux values are
only computed at the centers of cell faces) to the new one as
outlined in Section IV-B, the hydro module becomes the new
application hot spot. Hence, we have ported the relevant meth-
ods of the hydro solver to CUDA for this work. The two major
hot spots within the solver are the reconstruct method
and the compute_fluxes method (henceforth called hydro
kernels). The reconstruct method reconstructs the evolution
variables using the PPM method as mentioned in Section IV-B.
In turn, the flux method takes care of computing the fluxes and
the Newtonian quadrature to obtain the final flux.

Just as the kernel of the gravity solver, each hydro kernel
operates on one sub-grid in each invocation. Therefore, we
are facing the same challenge as for the gravity solver: One
kernel invocation on its own is insufficient to prevent GPU
starvation. We have therefore ported the hydro solver’s meth-
ods into CUDA kernels in two steps: First, we have optimized
the kernels to run efficiently on a GPU. We have removed
any excessive branching within the method (to avoid warp
divergence), we have flattened all required data structures into
one-dimensional arrays of continuous memory and removed
any remaining, unnecessary memory in-directions of the initial
CPU implementation. Second, we have integrated the kernels
into the HPX task graph as we did with the gravity kernel to
facilitate concurrent GPU kernel execution and the overlap of
data transfers.

3) Next steps for the Hydro GPU Implementation: While
porting the hydro solver to CUDA resolves a major bottleneck

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TOOLCHAIN AND OCTO-TIGER’S DEPENDENCIES.

gcc 8.1.1/9.1.0 | hwloc 1.11.12
spectrum-mpi 10.3.1 boost 1.70.0
cuda 11.2.0 jemalloc 5.1.0

hpx 1.6.0 silo 4.10.2
hdf5 1.8.12 cppuddle d32e50b

within Octo-Tiger, the kernels themselves are still an initial
implementation and thus not yet tuned to the maximum extent:
We first need to evaluate whether the concurrent execution of
the multiple GPU hydro kernels with several CUDA streams
and HPX futures is sufficient for GPU utilization. While we
had achieved good results with this approach within the gravity
solver [4], the hydro kernels are less compute-intensive than
the gravity kernels. Thus, we might reach the limits of this
approach.

If we do, there are multiple ways to address the issue:
The easiest way is to simply increase the size of the sub-
grids, providing more work per kernel invocation, increasing
the number of blocks in the CUDA launch configuration.
This makes it both easier to utilize the entire device and
to increase the likelihood of having multiple resident blocks
per SM which increases occupancy and thus hides latency.
Of course, a higher sub-grid size comes with the trade-off
of decreased scalability as (given the same overall grid size)
we have less sub-grids to distribute to the different compute
nodes. A more sustainable method would be to combine the
kernels of multiple sub-grids into one kernel. However, this
kind of work aggregation is more tedious to implement and
comes with several implementation challenges of its own.

Thus, the current state of the CUDA implementation in
this work provides a good starting point to evaluate the
performance, before moving forward to fine-tuning the ker-
nels themselves. We have therefore enabled Octo-Tiger to be
configured with larger sub-grid sizes at compilation time, and
we will study its performance and scalability impact in the
following sections. A significant performance impact of larger
sub-grid sizes in the hydro kernels would be a strong indication
that we should focus on further work-aggregation before any
fine-tuning of the compute kernels themselves.

V. PERFORMANCE MEASUREMENTS

In this section, we examine the scaling of Octo-Tiger on
ORNL’s Summit. Table I shows the toolchain that compiled
Octo-Tiger. Table II lists the hardware information of ORNL’s
Summit. Note that we used 128 streams per V100. Disclaimer:
Due to a testbed allocation on Summit, we had limited node
hours, which limited the possible performance measurements.
In addition, for jobs with more than 128 nodes we experienced
some error from the IBM® Spectrum MPI on Summit that we
send too many messages and a network device crashed, see
IBM® ticket TS005902510. We therefore cannot show scaling
results beyond 128 nodes. Strong scaling was used for all runs.

TABLE 11
ORNL’S SUMMIT HARDWARE INFORMATION

GPUs 6 NVIDIA® Volta™ V100
oS RHEL 7.4
Interconnect

CPU 2 IBM® POWER9™
Kernel 4.14.0
Mellanox® EDR 100G InfiniBand

TABLE III
SIMULATION DETAILS OF THE SEDOV-TAYLOR BLAST WAVE. NOTE THAT
EACH CONFIGURATION HAS 16,777,216 CELLS TO BE PROCESSED.

Sub-Grid Size Sub-Grid Count Refinement level
83 32768 5
162 4096 4
323 512 3

A. Sedov-Taylor Blast Wave (Pure Hydro)

To benchmark the new hydro kernels, the Sedov-Taylor blast
wave is used. Table III shows the details of each level of
refinement.

1) Node level scaling: The scaling on one Summit node is
presented in this section. Each configuration with an increasing
sub-grid size, see Table III, is executed on a single node using
CPUs and CPUs + GPUs. We start with one HPX locality,
which is equivalent to one MPI process. Thus, using six HPX
localities, we run six MPI processes on Summit. We chose
this setup to enable easy multi-GPU usage, at the expense of
more inter-process communication. For each HPX locality, we
assigned seven CPU cores and none of the six GPUs. Figure 2a
shows the scaling with the increasing number of localities.

The CPU-only scaling for the sub-grid sizes of 8% and 163
behaves similarly, and the sub-grid size of 323 performs better
for three and more localities.

For the next run, one locality was assigned to seven CPU
cores and one NVIDIA® V100 GPU. With six localities, all
available CPU cores and GPUs on a single node are utilized.
We assigned 128 CUDA streams to each locality. Note that
for the sub-grid size of 32 we had to decrease the number of
streams for the run with one locality, since queuing too many
large kernels caused the device to hit its memory limit.

Figure 2b shows the number of processed sub-grids per
second. With increasing sub-grid size, the number of cells pro-
cessed per second improves notably, even though the overall
grid size stays the same (albeit consisting of fewer sub-grids).
As mentioned in Section IV-C2, the hydro GPU kernels might
not offer enough work to prevent GPU starvation, even with
running multiple kernels (on separate sub-grids using separate
CUDA streams) concurrently on the GPU. Increasing the sub-
grid size increases the amount of work per kernel accordingly,
making it easier to scale up to an entire GPU simply by
having more blocks of work items available. Of course, it also
increases the chance of having multiple blocks resident on one
SM (we ensure that register usage is low enough for multiple
blocks to be resident on one SM during the compilation
time), increasing occupancy and thus hiding latencies more
efficiently. The average runtime per reconstruct kernel
is just 258 microseconds, or 108 microseconds for the flux

208

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

CPU only (Pure Hydro)

-10°
[[[[[
Sub-grid size
- 25| _o— g3 |
g —— 163
2 5
o 2 32 =
Q.
B
2 15| =
3]
=
a.
2 1 / .
©
O /
v
0.5 | 8
| | | | | |
1 2 3 4 5 6
localities
(@)
106 CPU + GPU (Pure Hydro)
6 7 [[[I I]
Sub-grid size
) —— 83
g 3
§ —— 16[
z 4 323 s
Q
Y
=
2
g
S 2f .
a.
5
N ././r-"/./.
0 - |
| | | | |

—_
o

localities
(b)

Fig. 2. Cells processed per second for the node level scaling. For one up to
6 localities on one Summit node. One locality was assigned to seven CPUs
and one NVIDIA® V100 GPU.

kernel when using a sub-grid size of 8%, further highlighting
this point. In the short term, we can offset this problem
by using a larger sub-grid size. However, an explicit work
aggregation scheme combining multiple sub-grids might be
preferable as a long-term solution.

Overall, we get a reasonable speedup for using the GPUs
given the initial state of our hydro implementation. For all sub-
grid sizes, the processed number of sub-grids was one order
of magnitude higher.

2) Distributed scaling: The scaling up to 128 Summit
nodes using 768 NVIDIA® V100 GPUS and 5376 CPU cores
is studied. Here, we use 6 localities with one GPU and 7
CPU cores per node. Figure 3a shows the number of sub-grids

209

processed per second. Here, the sub-grid size of 163 performs
slightly better than the sub-grid size of 83. For up to 8 nodes
the sub-grid size of 32% performs best, but later not enough
work is available, and the scaling flattens out. Figure 3b shows
the speedup with respect to a single node. For up to 8 nodes all
sub-grid sizes perform similarly and the largest sub-grid size
flattens out again. Up to 16 nodes the lower two sub-grid sized
perform similar and later the smallest sub-grid size performs
best.

We need at least 7 sub-grids per locality (42 per node),
as otherwise the 7 CPU cores are underutilized. While the
majority of the work is done by the GPUs, there are pre-
processing steps and the procedure of sending the data to the
GPU and launching the kernels that are done purely by the
CPU. Ideally, we have more sub-grids per locality, to truly
benefit from the overlapping of computation, inter-locality
communication and CPU/GPU data transfers that we gain by
using the task-based functionality offered by HPX. Indeed, we
can observe good scaling as long as we have about 21 sub-
grids per locality, as we both have enough work for all cores
and the GPU and benefit from the overlapping. The parallel
efficiency degrades visibly when going below that threshold.
First, we start losing the benefits of overlapping. Later on,
we simply cannot use all CPU cores of a locality to do the
pre-processing, kernel launches and communication tasks (as
one core always works on one sub-grid). Lastly, we hit the
point where we only have one sub-grid per locality. Here, we
naturally do not benefit at all by adding more nodes.

We can see this in the runs with sub-grid size 32%. Here we
go below 21 sub-grids per locality in-between 4 and 8 nodes
(as we use 6 localities per node), afterwards we go below 7
sub-grids at 16 nodes. Lastly, we hit 1 sub-grid per locality at
64 nodes, so further increasing the node count to 128 makes
no difference.

It is worth noting that the largest run with sub-grid size
8% and 128 nodes results in a runtime per timestep of just
286ms, while with a sub-grid size of 163 we get a runtime per
timestep of 211ms. Considering each timestep consists of three
consecutive iterations of the hydro solver (due to Octo-Tiger’s
use of a third-order Runge Kutta time integration scheme)
this highlights that even small inefficiencies and barriers could
cause significant slowdowns, simply due to the short runtimes
involved.

B. Rotating star (Hydro and gravity)

For the second example, the rotating star problem is studied,
where the gravity solver is added to the hydro solver. Table IV
shows the details for each level. Here, we use the default 6
value (0.5) for the rotating star problem, which leads to fewer
cell-to-cell interactions than we encounter with production
run simulations. This makes the gravity solver less compute-
intensive than it would typically be. Furthermore, we have
redesigned the gravity GPU kernels to allow different (larger)
stencil sizes, making them currently less finely tuned than they
previously were, as the shared-memory implementation in the
monopole-monopole gravity kernel assumed a fixed stencil

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

Blast wave (Pure Hydro)

107
T T T T I I I
8 Sub-grid size y
) —— 83
b=
§ 6l —— 163 |
z 323
[}
Y
3 4 .
2
3
& 20 i
°
O
0 - |
| | | | | | | |
20 2l 92 23 24 25 96 97
nodes
()
Blast wave (Pure Hydro)
[[[[[[
Sub-grid size
—o—]3
26 [|
—— 163
323
= 4| |— Optimal |
= 2
5
Q.
wn
22 [|
20 [|
| | | | | | | |

20 2l 92 93 94 95 96 o7
nodes
(b)

Fig. 3. Cells processed per second for the distributed scaling from one Summit
node up to 128 Summit nodes. Note that all six NVIDIA® V100 GPUs per
node were used.

TABLE IV
SIMULATION DETAILS OF THE ROTATING STAR. NOTE THAT EACH
CONFIGURATION HAS 16, 777,216 CELLS.

Sub-Grid Size Sub-Grid Count
83 44472
163 5944

AMR boundaries Refinement level
3800 8
3800 7

size. Still, the rotating star scenario presents a good benchmark
as it allows us to test the hydro- and gravity solver together
in a simple scenario.

1) Node level scaling: The scaling on one Summit node is
presented in this section. Each configuration with an increasing
sub-grid size, see Table IV, is executed on a single node using

CPUs and CPUs + GPUs. We start with one HPX locality,
which is equivalent to one MPI process. Therefore, using six
HPX localities, we run six MPI processes on Summit. For each
HPX locality, we assigned seven CPU cores and none of the
six GPUs. Figure 4a shows the node level scaling from one
up to 6 localities for CPUs only. The smaller sub-grid sizes
perform better using the CPUs only. We suspect that this is due
to the gravity solver’s handling of the root sub-grid within the
octree: We have to process all same-level interactions within
the sub-grid (as there is no higher level available that would
take care of those interactions within the FMM algorithm).
The runtime of calculating these interactions is O(N?) with
N as the number of cells in the root sub-grid. In a CPU-
only run, the root node is processed like any other sub-grid,
meaning the same-level interactions are calculated within one
HPX task; thus, only one CPU core is working on it, while
all other cores take care of other tasks. This increases the
runtime substantially while increasing the size of the sub-grids
in particular, since the entire next top-down tree-traversals
within the FMM algorithm depend on the results of the root
sub-grid. With an increasing number of CPU cores, more of
them will simply be idle whilst waiting on these results. When
increasing the number of localities, the ratio of the root sub-
grid’s work to the work of the remaining sub-grids on the root
locality increases, resulting in a higher load imbalance.

Figure 4b shows the node level scaling adding one GPU
to each locality. In that case, the GPU kernels benefit of the
larger sub-grid size and larger sub-grid sizes performs better.
The issue with the root sub-grid is less severe here as the
interactions are not being calculated by one CPU core alone,
but instead by a GPU kernel. Between this improvement, and
the general better runtime behavior of the hydro kernels when
dealing with larger sub-grids, the performance improves when
switching to a sub-grid size of 163. However, the speedup is
less severe than with the Sedov-Taylor blast wave scenario as
the gravity GPU kernels do not seem to benefit from larger
sub-grid sizes (even with the improved GPU kernel for the
root sub-grid). Again, the processed sub-grids per second are
one order of magnitude higher adding the GPUs.

2) Distributed scaling: We now study scaling on up to 128
Summit nodes using 768 NVIDIA® V100 GPUS and 5376
CPU cores. Here, we use 6 localities with one GPU and 7
CPU cores per node. Figure 5a shows the processed sub-grids
per second for increasing number of nodes. Again, for the
combined hydro and gravity simulation, the larger sub-grid
sizes results in slightly better performance. Larger sub-grid
sizes have less effect on the gravity solver and predominantly
accelerate the hydro solver. Therefore, we observe a similar
picture as for the hydro-only scenario. It is worth noting that
the runtime per time step on 128 nodes for the sub-grid size
8% is ~ 0.48 seconds, and for sub-grid size 162 it is 0.45
seconds. Note that for each time step, Octo-Tiger solves 3
hydro steps and 6 FMM steps (the gravitational potential as
well as its time derivative appear in the source equations for
the hydrodynamics). Here, the same argument is valid that
we have good scaling as long as we have 21 sub-grids per

210

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

CPU only (Hydro and gravity)

-10°
I I I I
Sub-grid size
= 25| 83 s
g 3
§ —— 16
g 2f i
a,
3
2 151 N
3]
g
o 1+ |
3
@)
0.5} |
| | | | |
1 3 4 5 6
localities
(a)
106 CPU + GPU (Hydro and gravity)
1.5 — T T T T T
Sub-grid size
= —— 83
g 3
§ —o— 16
z 10 |
Q
2,
]
2
a 051 =
S
@)
0 b | | | | L

localities
(b)

Fig. 4. Cells processed per second for the node level scaling. For one up to
6 localities on one Summit node. One locality was assigned to seven CPUs
and one NVIDIA® V100 GPU.

locality. This indicates that approximately 16 million cells are
not enough work for 768 GPUs.

C. APEX + CUDA

The introduced overhead for the APEX CUDA measure-
ments was about 30 seconds for the run on a full single node
which is & 8.5% of the total execution time. This is slightly
more than using APEX without the CUDA counters where the
overhead was around one percent [6]. This overhead is likely
caused by excessive callback processing for some frequently
called but short-lived CUDA functions. In fact, because the
algorithms support the ability for each locality to schedule
work on more than one GPU, the profiling showed that the

211

Rotating star (Hydro and gravity)

107
4 - I I I I I I I —]
Sub-grid size
s —— 83
g 3
g 3| —e— 16 .
8
a,
3 2f :
2
2
Z Lf :
)
@)
0 - |
| | | | | | | |
20 21 92 23 24 25 26 97
nodes
(a)
Rotating star (Hydro and gravity)
I I I I I I I
Sub-grid size
——]3
26 [|
—— 163
—— Optimal
5]
Q,
)
22 [|
20 [|
| | | | | | | |
200 21 92 23 24 25 96 9of
nodes
(b)

Fig. 5. Cells processed per second for the distributed scaling from one Summit
node up to 128 Summit nodes. Note that all six NVIDIA ® V100 GPUs per
node were used.

function cudaSetDevice is called over 4,322,208 times
during a 332 second run. In addition, HPX uses polling to
detect GPU activity completion instead of callbacks — polling
provides faster throughput — and performing the polling
requires 3,056, 145 calls to cudaEventQuery. These fre-
quent, short calls are fine on their own, but there is an observed
overhead in measuring them.

Figure 6 shows the time spent in the sampled tasks
during a short execution of the rotating star problem.
The gravity (monopole/multipole interactions) and hydro
(flux_cuda_kernel, reconstruct_cuda_kernel) kernels execute
on the GPU, whereas other actions are executed on the
CPU. The validation routine (compare_analytic_action_type)

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

GPU: cuda_multipole_interactions_kernel_non_rho()

20007 ---- 83 Mean: 349.372

---- 16 Mean: 839.402

usec

10004 _

100 150 200
seconds from program start

50

GPU: cuda_p2m_interaction_non_rho()

750
---- 83 Mean: 80.319

4 o8
---- 163 Mean: 176.171

Wiﬂ.}m H

100 150 200
seconds from program start

hmm;:g'

eossscces

oteessiansantes 2s2
Silatinies 1t

500 -

usec

250

0

GPU: cuda_p2p_interactions_kernel()

---- 83 Mean: 75.686
---- 16° Mean: 81.798

400 +

usec

200
[I

[L el
100 150 200 300

seconds from program start

GPU: reconstruct_cuda_kernel()

-8

1000
---- 83 Mean: 192.715
---- 163 Mean: 302.293

usec

500 -

50

100 150 200
seconds from program start

300

compare_analytic_action_type

---- 83 Mean: 61549.199
. ---= 16° Mean: 442822.587

2000000 -

usec

200
seconds from program start

regrid_scatter_action_type

1000
83 Mean: 45.518
163 Mean: 33.352

500

usec

100 150 200
seconds from program start

GPU: cuda_multipole_interactions_kernel_rho()
[

---- 83 Mean: 448.217
---- 16° Mean: 1213.207

10000 4

usec

5000 -

100 150 200
seconds from program start

50

GPU: cuda _p2m_interaction_rho()

---- 83 Mean: 84 72
---- 163 Mean: 184.206

12 4 S e

————gmmmm————
250

usec

250

b3aiiaisd

By ey erirritoreriivis oot i3

100 150 200
seconds from program start

GPU: flux_cuda_kernel()

i

---- 83 Mean: 68.877
16> Mean: 181.641

400 -

usec

200

100
seconds from program start

150 200

check_for_refinement_action_type

---- 83 Mean: 327.805
---- 163 Mean: 962.387

- eww o

200
seconds from program start

form_tree_action_type

83 Mean: 14.489
163 Mean: 20.532

usec

200
seconds from program start

solve_gravity_action_type

---- 83 Mean: 239.792

20000 4 ---- 163 Mean: 776.698

usec

100 150 200
seconds from program start

Fig. 6. GPU kernel activity and CPU task actions for the gravity and hydro tasks when executing the 83 and 16 rotating star test on 6 localities. The 163
decomposition leads to longer-running tasks and kernels, but a shorter overall execution time because there are significantly fewer of them.

is executed on the CPU only. As this routine is only used for
validating the results, it is unlikely to be ported to the GPU.

Figure 7 shows three counters captured during the rotating
star run that indicate utilization of the allocated hardware.
The CPU user-space utilization in Figure 7a is captured by
monitoring the /proc/stat virtual file. Although HPX has
launched 1 worker thread per physical core, the operating
system detects 4 hardware threads per core. Therefore, the
maximum utilization possible in this configuration is 25%.
During the CPU-intensive validation at the end of execution,
these threads are fully utilized, and during most of the ex-
ecution the threads are well utilized. Time spent processing
system calls (not shown) peaks at 3% during initialization and
finalization and otherwise averages 0.66%. The GPU utiliza-
tion data is captured by periodically capturing the available
NVML data for device 0. Finally, Figure 7c shows the total
memory allocated on the device through cudaMalloc+ ()
calls, which peaks out at less than 11% of available memory.
The GPU utilization and memory usage show that there is

212

plenty of resources available to increase the amount of work
per kernel and retain more data on the GPU.

VI. ASTROPHYSICAL TEST RESULTS

To verify that Octo-Tiger’s new hydro module delivers
better results for an equilibrium configuration, we ran a
rotating star test problem. This star was constructed using a
polytropic structural equation of state with the self-consistent
field method (SCF) [32]. It is uniformly rotating about its z-
axis at a rate sufficient to produce a star whose minor axis
is 3/4 the length of its major axis. We ran this problem for
ten dynamical times. Since the star begins in equilibrium, we
expect it to stay in equilibrium. We used two resolutions and
for each resolution, two choices for the opening criterion, 6.
(Lower &’s result in a larger multi-pole interaction stencil for
the gravity solver and hence better results). Here we define
the density error as

Yalprc — p)A®
Vv

it = ()

)

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

CPU User %

o I WA W, At Aoy pAf TN, ocality 0

" | \AW\:\jj\[

250

50 200

0 150
seconds from program start

(a) CPU Utilization of the 168 total available hardware threads. Data captured
by locality O represents the aggregate utilization of all processes on the node.

GPU: Device 0 Utilization %

Mt

LaJIT TN VU Y Py T
50

0 150
seconds from program start

—— locality 0
--- Mean: 11.6

200

(b) GPU Utilization for Device 0 used by locality 0.

GPU: Total Bytes Occupied on Device
1 B

e

—— locality 0
—— locality 1
—— locality 2
—— locality 3
—— locality 4
—— locality 5
--- Mean: 584197830.5

I_J

1
1
1
1

value

500000000
2500000001
0

50 100 150

seconds from program start

200 250

(c) Total memory occupied through explicit allocations on each GPU.

Fig. 7. APEX Performance counter metrics from the 163 rotating star test
case run on 6 localities.

TABLE V
THE AVERAGE ERROR IN THE DENSITY FIELD FOR THE ROTATING STAR
TEST USING THE OLD AND NEW HYDRO MODULES. IN THESE UNITS, THE
CENTRAL DENSITY OF THE STAR IS 1.

Refinement Level ~ Opening Criterion Old New
6 0.5 241 x 1072 1.45x 1073
6 0.35 5.22 x 1074 3.59 x 10~
7 0.5 2.52x 1073 1.51 x 1073
7 0.35 4.49 x 1074 278 x 10~

However, we have seen that a problem containing 16, 777,216
cells starts to flatten out up to 128 nodes and indicates that
even larger problems are necessary to provide enough work for
the additional GPUs. With our testbed allocation on Summit,
we could only show preliminary scaling results; however, we
will continue to work to get the larger node counts running.

Third, the variation of sub-grid sizes was added to Octo-
Tiger and this work studied the performance impact for the
first time. For the hydro module on a single node, the sub-
grid size of 323 showed the best performance for the combined
CPU and GPU runs, since with the larger sub-grid size more
work was available for a single kernel run. However, for
the distributed runs, only up to 8 nodes the largest sub-grid
size gave the best performance. For the combined hydro and
gravity simulation, the sub-grid size of 163 gives slightly better
performance. This indicates that this sub-grid size will be the
default for production runs.

Finally, the APEX CUDA profiling provides combined task
trees and task graphs for the work on the GPU and CPU.
Previously, Octo-Tiger was run first to profile the CPU usage
with APEX and a second time with NVIDIA®profiler. The
new plots provide some insights into the asynchronicity of
HPX and the dependency of tasks. The scatter plots showed
that the memory usage on the GPU was small, since only
the data to be computed are kept in the device memory. In
addition, we could show a good utilization of the CUDA
devices on a single node. These plots provide a good base
to analyze the combined asynchronous tasks on the CPU and
GPU and support our efforts to optimize the concurrent CPU
and GPU tasks.

A. Future Work

where p is the numerical mass density, p;¢ is the mass density
from the initial conditions, A is a cell width, V' is the initial
volume of the star, and the summation is over the entire
domain 2. As shown in Table V, in all cases the new hydro
module delivers a lower error.

VII. CONCLUSION

This paper showed the following aspects in evaluating Octo-
Tiger’s performance on Summit. First, from the astrophysical
aspect, the new implementation of the hydro kernel using a
fully three-dimensional reconstruction of the fluxes is more
computationally expensive than the old kernel. However, the
new hydro kernel evolves an equilibrium rotating star with
greater accuracy than the old kernel.

Second, the scaling on Summit showed the following two
things. First, on a single node, the usage of the GPUs improved
the cells processed per second by an order of magnitude. Thus,
Octo-Tiger benefits from the usage of GPUs for the hydro,
and combined hydro and gravity simulations. Second, the
distributed scaling up to 128 nodes using 768 NVIDIA® V100
GPUS and 5376 CPU cores was presented. Both test problems
scaled up to 128 nodes for the two lower sub-grid sizes.

213

The results of this work motivate further improvements of
the hydro solver’s GPU implementation. We plan to investigate
on-the-fly work aggregation across sub-grids to combine the
benefits of larger GPU kernels to saturate GPUs with the
increased scalability that smaller sub-grids offer.

Furthermore, after recent promising results using HPX and
Kokkos together within the gravity solver, we plan to port
the current hydro CUDA implementation to Kokkos [33] as
well. The HPX Kokkos integration works similarly as the
CUDA one, and transforming the hydro CPU methods into
GPU Kokkos kernels would have required the same changes to
the methods themselves as outlined in Section IV-C2. Hence,
as of the current state, we have already completed the first
important steps.

Using Kokkos rather than pure CUDA provides us with
two advantages: We can easily target GPUs of other ven-
dors, such as AMD GPUs (and with the recently introduced
Kokkos SYCL execution space, also Intel GPUs). Further-
more, Kokkos provides the means of using explicit SIMD
vectorization [34] to run GPU-capable kernels efficiently on
the CPU as well. Currently, we have to maintain a second
set of CPU kernels using Vc for SIMD vectorization, which
would be replaced by the Kokkos kernels. With a portable
Kokkos implementation, there would be no need to maintain

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

two specialized CPU and GPU kernels to cover all platforms
anymore. APEX already supports Kokkos profiling.

Furthermore, we plan to optimize the hydro kernels for
shared memory usage as soon as they have been ported to
Kokkos. With respect to HPX, more debugging is needed
for jobs with larger node counts (> 128 nodes): We have
experienced stalls for higher node counts due to an error
from the IBM® Spectrum MPI on Summit possibly caused by
sending too many messages which result in a network device
crash, see IBM® ticket TS005902510.

From the application perspective, the authors would like to
compare the performance of the rotating star with the Castro
code to gain insight into whether the more accurate hydro
module results in more stable shapes of the star. However, a
comparison of the scaling is not trivial since different algo-
rithms and solvers are used in both codes. In addition, Octo-
Tiger utilizes asynchronous computation with HPX, which
CASTRO does not, as it uses MPI+X. Next, these scaling
results are the preparation for large production runs on GPU
accelerated supercomputers.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC05-000R22725. Diehl and Marcello thank the LSU Center
of Computation & Technology for supporting this work. The APEX work was
supported by the Scientific Discovery through Advanced Computing (SciDAC)
program funded by U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research (ASCR) under contract DE-SC0021299.

SUPPLEMENTARY MATERIALS

The scripts to compile Octo-Tiger are available on GitHub and the script to
run the jobs and the input files on Zenodo, respectively. CPPuddle is available
here.

REFERENCES

[11 D. C. Marcello et al., “Octo-tiger: a new, 3d hydrodynamic code for
stellar mergers that uses hpx parallelisation,” Monthly Notices of the
Royal Astronomical Society, 2021.

[2] M. A. Skinner et al., “A Two-moment Radiation Hydrodynamics Module
in Athena Using a Time-explicit Godunov Method,” ApJS, vol. 206,
no. 2, p. 21, Jun. 2013.

[3] T. Heller et al., “Harnessing billions of tasks for a scalable portable
hydrodynamic simulation of the merger of two stars,” The International
Journal of High Performance Computing Applications, vol. 33, no. 4,
pp. 699-715, 2019.

[4] G. DaiB} et al., “From piz daint to the stars: Simulation of stellar merg-
ers using high-level abstractions,” in Proceedings of the international
conference for high performance computing, networking, storage and
analysis, 2019, pp. 1-37.

[5] H. Kaiser et al., “HPX - The C++ Standard Library for Parallelism and
Concurrency,” Journal of Open Source Software, vol. 5, no. 53, p. 2352,
2020.

[6] P. Diehl et al., “Performance measurements within asynchronous task-
based runtime systems: A double white dwarf merger as an application,”
Computing in Science & Engineering, 2021.

[7]1 P. Jetley et al., “Massively parallel cosmological simulations with
changa,” in 2008 IEEE International Symposium on Parallel and Dis-
tributed Processing, 2008, pp. 1-12.

[8] P. Chang et al., “A moving-mesh hydrodynamic solver for ChaNGa,”
mnras, vol. 471, no. 3, pp. 3577-3589, Nov. 2017.

[9]1 L. J. Prust et al., “Common envelope evolution on a moving mesh,”

mnras, vol. 486, no. 4, pp. 5809-5818, Jul. 2019.

J. Bordner et al., “Enzo-p / cello: Scalable adaptive mesh refinement

for astrophysics and cosmology,” in Proceedings of the Extreme Scaling

Workshop, ser. BW-XSEDE *12. USA: University of Illinois at Urbana-

Champaign, 2012.

[10]

214

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]
[24]
[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

L. V. Kale et al., “Charm++: A portable concurrent object oriented sys-
tem based on c++,” in Proceedings of the Eighth Annual Conference on
Object-Oriented Programming Systems, Languages, and Applications,
ser. OOPSLA ’93. New York, NY, USA: Association for Computing
Machinery, 1993, p. 91-108.

A. Almgren et al., “Castro: A massively parallel compressible astro-
physics simulation code,” Journal of Open Source Software, vol. 5,
no. 54, p. 2513, 2020.

J. M. Stone et al., “The Athena++ Adaptive Mesh Refinement Frame-
work: Design and Magnetohydrodynamic Solvers,” apjs, vol. 249, no. 1,
p. 4, Jul. 2020.

P. Grete et al, “K-Athena: a performance portable structured
grid finite volume magnetohydrodynamics code,” arXiv e-prints, p.
arXiv:1905.04341, May 2019.

I. P. Demeshko et al., “TBAA20: Task-Based Algorithms and Applica-
tions,” Los Alamos National Laboratory, Tech. Rep. LA-UR-21-20928,
2021.

P. Thoman e al,, “A taxonomy of task-based parallel programming
technologies for high-performance computing,” The Journal of Super-
computing, vol. 74, no. 4, pp. 1422-1434, 2018.

M. P. Katz et al., “Preparing Nuclear Astrophysics for Exascale,” arXiv
e-prints, p. arXiv:2007.05218, Jul. 2020.

The C++ Standards Committee, “ISO International Standard ISO/IEC
14882:2020, Programming Language C++,” Geneva, Switzerland: Inter-
national Organization for Standardization (ISO)., Tech. Rep., 2020.

H. Kaiser et al., “HPX: A Task Based Programming Model in a Global
Address Space,” in Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, ser. PGAS " 14.
ACM, 2014, pp. 6:1-6:11.

——, “Higher-level parallelization for local and distributed asyn-
chronous task-based programming,” in Proceedings of the First In-
ternational Workshop on Extreme Scale Programming Models and
Middleware, ser. ESPM ’15. New York, NY, USA: ACM, 2015, pp.
29-37.

T. Heller et al., “Closing the Performance Gap with Modern C++,” in
High Performance Computing, ser. Lecture Notes in Computer Science,
M. Taufer et al., Eds., vol. 9945. Springer International Publishing,
2016, pp. 18-31.

K. A. Huck et al., “An autonomic performance environment for exas-
cale,” Supercomputing frontiers and innovations, vol. 2, no. 3, pp. 49-66,
2015.

NVIDIA, “Cuda profiling tools interface,” 2020, https://docs.nvidia.com/
cuda/cupti/index.html.

——, “Nvidia management library (nvml),” 2020, https://developer.
nvidia.com/nvidia-management-library-nvml.

W. Wei et al., “Memory reduction using a ring abstraction over gpu
rdma for distributed quantum monte carlo solver,” 2021.

D. C. Marcello, “A Very Fast and Angular Momentum Conserving Tree
Code,” AJ, vol. 154, no. 3, p. 92, Sep. 2017.

G. L. Bryan er al., “A piecewise parabolic method for cosmological
hydrodynamics,” Computer Physics Communications, vol. 89, no. 1-3,
pp. 149-168, Aug. 1995.

P. Colella et al., “The Piecewise Parabolic Method (PPM) for Gas-
Dynamical Simulations,” Journal of Computational Physics, vol. 54, pp.
174-201, Sep. 1984.

A. Kurganov et al., “Semidiscrete central-upwind schemes for hyper-
bolic conservation laws and hamilton—jacobi equations,” J. Comput.
Phys. SIAM J. Sci. Comput, vol. 23, pp. 707-740, 01 2000.

D. Pfander et al., “Accelerating Octo-Tiger: Stellar mergers on Intel
Knights Landing with HPX,” in Proceedings of the International Work-
shop on OpenCL, ser. IWOCL *18. New York, NY, USA: ACM, 2018,
pp. 19:1-19:8.

G. Dail3, “Octo-tiger: Binary star systems with hpx on nvidia p100,”
Master thesis, Universitit Stuttgart, May 2018.

I. Hachisu, “A Versatile Method for Obtaining Structures of Rapidly
Rotating Stars,” ApJS, vol. 61, p. 479, Jul. 1986.

H. C. Edwards et al., “Kokkos: Enabling manycore performance porta-
bility through polymorphic memory access patterns,” Journal of Parallel
and Distributed Computing, vol. 74, no. 12, pp. 3202 — 3216, 2014,
domain-Specific Languages and High-Level Frameworks for High-
Performance Computing.

D. Sahasrabudhe et al., “A portable simd primitive using kokkos for
heterogeneous architectures,” in International Workshop on Accelerator
Programming Using Directives. Springer, 2019, pp. 140-163.

Authorized licensed use limited to: Louisiana State University. Downloaded on November 13,2022 at 20:46:01 UTC from IEEE Xplore. Restrictions apply.

