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Abstract—Octo-Tiger is a code for modeling three-dimensional
self-gravitating astrophysical fluids. It was particularly designed
for the study of dynamical mass transfer between interacting
binary stars. Octo-Tiger is parallelized for distributed systems
using the asynchronous many-task runtime system, the C++ stan-
dard library for parallelism and concurrency (HPX) and utilizes
CUDA for its gravity solver. Recently, we have remodeled Octo-
Tiger’s hydro solver to use a three-dimensional reconstruction
scheme. In addition, we have ported the hydro solver to GPU
using CUDA kernels. We present scaling results for the new hydro
kernels on ORNL’s Summit machine using a Sedov-Taylor blast
wave problem. We also compare Octo-Tiger’s new hydro scheme
with its old hydro scheme, using a rotating star as a test problem.

I. INTRODUCTION

Octo-Tiger is an astrophysics finite volume hydrodynamic

code for simulating the evolution of stellar systems [1]. Octo-

Tiger consists of several modules, e.g. hydro, gravity, and

radiation. The gravity is solved based on the fast multipole

method using adaptive octrees. The hydro module solves the

mass, momentum and energy equations of an inviscid fluid in a

rotating frame of reference, which reduces numerical viscosity

effects. Recently, we improved the accuracy of the hydro

module by including a full three-dimensional reconstruction

technique (see a thorough introduction of this technique

in [1]). With the fully three-dimensional reconstruction, the

hydro module became the hotspot of the application. Here, we

present and test its initial GPU implementation. Our radiation

module, still in the testing phase, uses an explicit transport

scheme with the reduced speed of light approximation, coupled

to an implicit scheme for the radiation-hydro coupling terms,

in a manner similar to Skinner et al. [2].

To validate the theoretical claim that the full three-

dimensional reconstruction technique results in more accuracy,

a rotating star simulation using the old and new hydro modules

with the same gravity module were executed. The error and

convergence of both methods is compared to validate the theo-

retical claim with numerical results, see Section VI. However,

this paper focuses on the task-based execution using adaptive

mesh refinement, resulting in some irregular parallelism. The

task-based approach helps us with properly parallelizing the

tree-traversals. As we strive for the lowest time per timestep

possible, this in turn means we have to process millions of

cells in sub-second runtimes. This means we have a task-graph

of extremely short running compute kernels mixed with the

communication and data transfers.

We are revisiting the performance of the gravity module

and studying the performance of the new hydro module

on ORNL’s Summit. Octo-Tiger’s scaling capabilities have

been previously shown: NERSC’s Cori [3] and on CSCS Piz

Daint [4], however, in these measurements an older version

of the hydro module was used. We have experience running

Octo-Tiger and the C++ standard library for parallelism and

concurrency (HPX) [5] on x86 systems and CRAY based

systems, but not much previous experience with distributed

runs on IBM® Power9™ systems.

First, the hydro module for the Sedov-Taylor blast wave

is studied. Second, a rotating star for the combination of the

hydro and gravity module is simulated. For both problems, we

show the node level scaling for CPU and CPU+GPU runs on a

single node. Note that due to the different implementations of

the hydro kernels, especially the more computationally intense

reconstruction of the fluxes in the new implementation, we can

not directly compare the scaling results.

In addition, analyzing such large task graphs can be rather

challenging, see Figure 1. This is the first time we employ

APEX with CUDA support to get combined profiling of the

CPU and GPU tasks. CPU-only profiling with APEX has been

shown in [6].

The paper is structured as follows: Section II covers the

related work. Section III sketches the software framework.

Section IV introduces Octo-Tiger’s new hydro module and

its GPU acceleration. Section V shows the node level and

distributed scaling of Octo-Tiger on Summit. Section VI

compares the accuracy of the new three-dimensional full

reconstruct of the hydro kernel with the previous kernel.

Finally, Section VII concludes the paper.

II. RELATED WORK

There are many astrophysics codes which combine hydro-

dynamic and gravity solvers for the simulation of astrophysical

fluids. Here, however, we are focusing on those which have

two additional properties that Octo-Tiger has: 1) They are
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accelerated by an asynchronous many-task system (AMT)

and 2) They use adaptive grid refinement. ChaNGa (Charm

N-body Gravity solver) [7] performs collisionless N-body

simulations for cosmological simulations or simulations of

isolated stellar systems. A moving-mesh hydrodynamic solver

was added to ChaNGa [8] together with the implementation of

multiple time-steps techniques to form the code MANGA [9],

suitable for simulating interacting binary stars. Enzo-E / Cello

(formerly Enzo-P) [10], which is currently under active de-

velopment, is designed for astrophysics simulations, including

star formation and cosmology applications. Cello provides the

AMR feature within Enzo-E. Both of these codes use the AMT

Charm++ [11]. Another AMR-based code is Castro [12], part

of the AMReX Astrophysics suite utilizing the more traditional

MPI+X approach. The Athena++ code, a C++ rewrite of

the magneto-hydrodynamic code Athena C, implements an

adaptive mesh refinement and uses MPI+OpenMP for its

parallelization [13]. A GPU-accelerated version of Athena++,

K-Athena, was refactored using Kokkos to achieve better

performance and portability [14]. All these codes attempt to

exploit high abstraction programming for the parallelization of

their code to display scaling on exascale supercomputers. For

example, Charm++ and the AMT used by Octo-Tiger, HPX,

have very similar programming models. From an application

developer perspective, HPX can be seen as an abstraction

to C++ and Charm++ more as a standalone library [15].

According to this survey [16] HPX has the highest technical

readiness. Two of the codes, K-Athena and Castro, have

recently reported their scaling and performance on OLCF’s

Summit [14], [17]. We aim to report Octo-Tiger’s performance

on Summit as well, in particular after upgrading the hydro

solver and porting it to GPU CUDA kernels. Since two of

the main functionalities of the code, the gravity and hydro

solvers, can be executed on GPUs, it is interesting to study

the scaling on numerous GPUs. Although a direct comparison

between the performance of codes is not trivial, a simple basic

measurement of interest is the number of cells (zones) updated

per second (or per microseconds). Castro reported a value

of 130 zones/μseconds on one Summit node [17], while K-

Athena reported a peak value of > 100 zones/μseconds [14].

III. SOFTWARE FRAMEWORK

A. C++ standard library for parallelism and concurrency

HPX is the C++ standard library for parallelism and con-

currency. It exposes an API that fully conforms to the recent

C++ standards [18] on top of an asynchronous many-task

runtime system (AMT). It has been described in detail in

other publications, such as [5], [19]–[21]. In the context of this

paper, HPX has been used for two purposes. a) to coordinate

the asynchronous execution of a multitude of heterogeneous

tasks (both on CPUs and GPUs), thus managing local and

distributed parallelism while observing all necessary data

dependencies, and b) as the parallelization infrastructure for

executing CUDA-kernels on the CPUs via the asynchronous

HPX backend.

B. APEX

APEX [22] is a performance measurement library for

distributed, asynchronous multitasking systems. It provides

lightweight measurements without perturbing high concur-

rency through synchronous and asynchronous interfaces. To

support performance measurement in systems that employ

user-level threading, APEX uses a dependency chain in ad-

dition to the call stack to produce traces and task dependency

graphs. The synchronous APEX instrumentation application

programming interface (API) can be used to add instrumenta-

tion to a given run time and includes support for timers and

counters. The NVIDIA CUDA Profiling Tools Interface [23]

provides CUDA host callback and device activity measure-

ments. Additionally, the hardware and operating system are

monitored through an asynchronous measurement that involves

the periodic or on-demand interrogation of the operating

system, hardware states, or runtime states (e.g., CPU use,

resident set size, memory “high water mark”). The NVIDIA

Management Library interface [24] provides periodic CUDA

device monitoring to APEX. In previous work [25], APEX was

extended to capture additional timers and counters related to

CUDA device-to-device memory transfers, as well as tracking

memory consumption on both device and host when requested

with the cudaMalloc* API calls.

Tracing measurement is typically used by application de-

velopers to understand timing and dependency relationships

between different tasks within an application. When tracing

to the Open Trace Format (OTF2) or Google Trace Events

Format, each concurrent CUDA Stream is assigned three

virtual “threads” to track kernel, memory and synchronization

activity. This is necessary because these three classes of events

are not perfectly nested timers – there is a potential for

asynchronous overlap – which are a requirement for the OTF2

tracing library (Google Trace Events are more forgiving).

However, each operation class within a Stream does have

a guaranteed ordering, so this segregation of event types is

sufficient to meet the requirements of the tracing libraries and

formats. However, because the Octo-Tiger CUDA implemen-

tation uses up to 128 concurrent streams per process (along

with the actual HPX worker and helper threads on the CPU),

even a relatively small run with 6 ranks per node can result in

over 2400 unique “threads” of execution, and a collection of

trace files over 27GB in size from just 25 iterations. To work

around this issue of scale, APEX was extended to support task
dependency trees to complement the existing task dependency

graph support. The tree is a summary representation of the task

dependency relationships (task types, not individual tasks),

revealing the full dependency chain and not just immediate

parent/child relationships. While this can result in tree repre-

sentations that are larger than the graph representation – due

to expanded recursions and continuations, see Figure 1b for an

example – the trees are still quite manageable and helpful in

diagnosing problems in programming models like HPX that

do not have a meaningful callstack context but do have a

task dependency context, including tasks and other activity
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Elapsed Time: 337.257 seconds
Cores detected: 176
Worker threads observed: 7
Available CPU time: 2360.8 seconds

APEX MAIN:
total calls: 1
total time: 337.257

dijkstra_termination_action:
total calls: 2

total time: 0.000131448

cleanup_buffers_action:
total calls: 1

total time: 1.82647

timestep_driver_ascend_action_type:
total calls: 1

total time: 0

step_action_type:
total calls: 54
total time: 0.00935498

output_stage3_action:
total calls: 3
total time: 0.000551028

output_stage2_action:
total calls: 3
total time: 0.252347

output_stage1_action:
total calls: 3
total time: 0.363389

diagnostics_action_type:
total calls: 54

total time: 0.112916

primary_namespace_decrement_credit_action:
total calls: 2019

total time: 0.0187507

get_child_client_action_type:
total calls: 1

total time: 0

cudaEventQuery:
total calls: 3.01804e+06

total time: 15.824

cudaEventCreateWithFlags:
total calls: 128

total time: 1.05334

force_nodes_to_exist_action_type:
total calls: 5932

total time: 0.168987

N3hpx10components6server23create_component_actionI11node_serverJ13node_location11node_clientddxmmmEEE:
total calls: 24

total time: 0.0228777

initialize_action:
total calls: 1
total time: 3.31727

schedule_parcel:
total calls: 629774
total time: 26.1953

run_helper:
total calls: 1
total time: 0.00168603

primary_namespace_increment_credit_action:
total calls: 128

total time: 0.00426194

notify_worker_action:
total calls: 1

total time: 0

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 76012
total time: 0.751823

set_value_action_boolmanaged_component_tag:
total calls: 1

total time: 0

primary_namespace_route_action:
total calls: 95

total time: 0.00487213

update_agas_cache_action:
total calls: 78

total time: 0.000578047

regrid_scatter_action_type:
total calls: 111

total time: 0.0173313

base_set_event_action:
total calls: 1

total time: 0

call_shutdown_functions_action:
total calls: 1

total time: 0

primary_namespace_colocate_action:
total calls: 2

total time: 0.000101449

set_child_aunt_action_type:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 118

total time: 0.175892

N3hpx4lcos19base_lco_with_valueIxxNS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

compare_analytic_action_type:
total calls: 18

total time: 0.173986

copy_to_locality_action_type:
total calls: 6

total time: 0.00100927

set_value_action_naming_id_typemanaged_component_tag:
total calls: 1

total time: 0

check_for_refinement_action_type:
total calls: 100

total time: 0.222998

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 2566

total time: 1.95519

send_hydro_boundary_action_type:
total calls: 1

total time: 0

background_work:
total calls: 2566
total time: 0.0596008

regrid_gather_action_type:
total calls: 100

total time: 0.0163684

hpx_destroy_component_action:
total calls: 2

total time: 0.000155195

set_value_action_id_typemanaged_component_tag:
total calls: 1

total time: 0

cudaStreamDestroy:
total calls: 128
total time: 0.000449228

cudaFree:
total calls: 7085
total time: 1.63121

cudaFreeHost:
total calls: 3745
total time: 0.149475

async:
total calls: 54
total time: 0.26976

step_action_type:
total calls: 240
total time: 0.0553567

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 4603
total time: 0.431692

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 216
total time: 0.00547841

cudaSetDevice:
total calls: 576
total time: 0.00249988

cudaEventRecord:
total calls: 24
total time: 0.000329337

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 120
total time: 0.001945

async:
total calls: 3443
total time: 0.404983

GPU: Memcpy DtoH:
total calls: 96
total time: 0.000416256

GPU: Memcpy HtoD:
total calls: 120
total time: 0.000466687

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 24

total time: 0.00274377

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 24

total time: 0.00635685

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 24

total time: 6.1024e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 24

total time: 3.5264e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 24

total time: 0.000210623

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 360
total time: 0.00794509

cudaSetDevice:
total calls: 960
total time: 0.00384556

cudaEventRecord:
total calls: 40
total time: 0.000493279

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 200
total time: 0.00212514

async:
total calls: 3868
total time: 0.429391

GPU: Memcpy DtoH:
total calls: 160
total time: 0.000677952

GPU: Memcpy HtoD:
total calls: 200
total time: 0.000752864

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 40

total time: 0.00419126

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 40

total time: 0.0101239

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 40

total time: 9.2224e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 40

total time: 4.7488e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 40

total time: 0.000346784

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 504
total time: 0.00899381

cudaSetDevice:
total calls: 1344
total time: 0.00503336

cudaEventRecord:
total calls: 56
total time: 0.000586883

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 280
total time: 0.00219811

async:
total calls: 4148
total time: 0.419154

GPU: Memcpy DtoH:
total calls: 224
total time: 0.000958204

GPU: Memcpy HtoD:
total calls: 280
total time: 0.00107779

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 56

total time: 0.00555868

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 56

total time: 0.0137661

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 56

total time: 0.000123199

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 56

total time: 7.0336e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 56

total time: 0.00048707

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 432
total time: 0.00896514

cudaSetDevice:
total calls: 1152
total time: 0.00439468

cudaEventRecord:
total calls: 48
total time: 0.000592349

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 240
total time: 0.0025927

async:
total calls: 3972
total time: 0.237201

GPU: Memcpy DtoH:
total calls: 192
total time: 0.00084406

GPU: Memcpy HtoD:
total calls: 240
total time: 0.000924223

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 48

total time: 0.00512399

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 48

total time: 0.0121625

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 48

total time: 0.000110912

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 48

total time: 6.1184e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 48

total time: 0.000416352

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 432
total time: 0.00910806

cudaSetDevice:
total calls: 1152
total time: 0.00442512

cudaEventRecord:
total calls: 48
total time: 0.000576509

cudaLaunchKernel:
total calls: 240
total time: 0.00251753

async:
total calls: 984
total time: 0.071069

GPU: Memcpy DtoH:
total calls: 192
total time: 0.000826464

GPU: Memcpy HtoD:
total calls: 240
total time: 0.000927455

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 48

total time: 0.00501699

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 48

total time: 0.0120924

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 48

total time: 0.000107936

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 48

total time: 6.3168e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 48

total time: 0.000413694

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 288
total time: 0.00505939

cudaSetDevice:
total calls: 768
total time: 0.00290062

cudaEventRecord:
total calls: 32
total time: 0.000333483

cudaLaunchKernel:
total calls: 160
total time: 0.0012702

async:
total calls: 630
total time: 0.0315966

GPU: Memcpy DtoH:
total calls: 128
total time: 0.000544224

GPU: Memcpy HtoD:
total calls: 160
total time: 0.000618112

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 32

total time: 0.00323865

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 32

total time: 0.00795691

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 32

total time: 6.5568e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 32

total time: 3.7792e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 32

total time: 0.000277407

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 144
total time: 0.00319848

cudaSetDevice:
total calls: 384
total time: 0.00158958

cudaEventRecord:
total calls: 16
total time: 0.000260952

cudaLaunchKernel:
total calls: 80
total time: 0.000976168

async:
total calls: 282
total time: 0.00168206

GPU: Memcpy DtoH:
total calls: 64
total time: 0.000280992

GPU: Memcpy HtoD:
total calls: 80
total time: 0.000314304

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 16

total time: 0.00170704

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 16

total time: 0.00411164

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 16

total time: 3.856e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 16

total time: 2.2176e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 16

total time: 0.00013776

N3hpx4lcos19base_lco_with_valueINS0_6futureIdEES3_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

step_action_type:
total calls: 1536
total time: 0.218715

async:
total calls: 240
total time: 1.42584

N3hpx4lcos19base_lco_with_valueINS0_6futureIdEES3_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

step_action_type:
total calls: 4608
total time: 0.611103

async:
total calls: 1536
total time: 6.01834

N3hpx4lcos19base_lco_with_valueINS0_6futureIdEES3_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

step_action_type:
total calls: 12288
total time: 0.741962

async:
total calls: 4608
total time: 16.6284

N3hpx4lcos19base_lco_with_valueINS0_6futureIdEES3_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

async:
total calls: 12288
total time: 23.5504

async:
total calls: 302041
total time: 61.5114

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 511791
total time: 74.6187

cudaEventRecord:
total calls: 12160
total time: 0.204782

cudaMemcpy:
total calls: 1
total time: 2.3356e-05

cudaMalloc:
total calls: 5295
total time: 0.812819

cudaSetDevice:
total calls: 291840
total time: 1.17562

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMallocHost:
total calls: 2747
total time: 0.241805

cudaMemcpyAsync:
total calls: 109440
total time: 2.89861

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 60800
total time: 0.958017

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 184320
total time: 3.63265

cudaSetDevice:
total calls: 491520
total time: 1.97649

cudaEventRecord:
total calls: 20480
total time: 0.247086

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 102400
total time: 1.00017

async:
total calls: 718044
total time: 86.5496

GPU: Memcpy DtoH:
total calls: 81920
total time: 0.356692

GPU: Memcpy HtoD:
total calls: 102400
total time: 0.388852

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 20480

total time: 2.11415

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 20480

total time: 5.11141

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 20480

total time: 0.0456257

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 20480

total time: 0.0261891

GPU: discs_phase2(double*, double const*, double, int):
total calls: 20480

total time: 0.178687

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 258048
total time: 4.96809

cudaSetDevice:
total calls: 688128
total time: 3.11663

cudaEventRecord:
total calls: 28672
total time: 0.32939

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 143360
total time: 1.3433

async:
total calls: 912645
total time: 81.9043

GPU: Memcpy DtoH:
total calls: 114688
total time: 0.498638

GPU: Memcpy HtoD:
total calls: 143360
total time: 0.544993

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 28672

total time: 2.94897

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 28672

total time: 7.14188

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 28672

total time: 0.0625054

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 28672

total time: 0.0367265

GPU: discs_phase2(double*, double const*, double, int):
total calls: 28672

total time: 0.250653

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 221184
total time: 4.30108

cudaSetDevice:
total calls: 589824
total time: 3.55833

cudaEventRecord:
total calls: 24576
total time: 0.369251

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 122880
total time: 1.17709

async:
total calls: 805485
total time: 65.2401

GPU: Memcpy DtoH:
total calls: 98304
total time: 0.428127

GPU: Memcpy HtoD:
total calls: 122880
total time: 0.468125

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 24576

total time: 2.52794

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 24576

total time: 6.11538

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 24576

total time: 0.0536437

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 24576

total time: 0.0312097

GPU: discs_phase2(double*, double const*, double, int):
total calls: 24576

total time: 0.214232

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 221184
total time: 4.24405

cudaSetDevice:
total calls: 589824
total time: 2.26907

cudaEventRecord:
total calls: 24576
total time: 0.284078

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 122880
total time: 1.15387

async:
total calls: 607338
total time: 40.3983

GPU: Memcpy DtoH:
total calls: 98304

total time: 0.42754

GPU: Memcpy HtoD:
total calls: 122880
total time: 0.467915

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 24576

total time: 2.52248

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 24576

total time: 6.10726

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 24576

total time: 0.0535634

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 24576

total time: 0.0312165

GPU: discs_phase2(double*, double const*, double, int):
total calls: 24576

total time: 0.21415

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 147456
total time: 2.79212

cudaSetDevice:
total calls: 393216
total time: 1.51917

cudaEventRecord:
total calls: 16384
total time: 0.184151

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 81920
total time: 0.736694

async:
total calls: 403891
total time: 16.9573

GPU: Memcpy DtoH:
total calls: 65536
total time: 0.285247

GPU: Memcpy HtoD:
total calls: 81920
total time: 0.312084

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 16384

total time: 1.67499

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 16384

total time: 4.05978

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 16384

total time: 0.0351571

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 16384

total time: 0.0204418

GPU: discs_phase2(double*, double const*, double, int):
total calls: 16384

total time: 0.142593

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 73728
total time: 1.40668

cudaSetDevice:
total calls: 196608
total time: 0.77668

cudaEventRecord:
total calls: 8192
total time: 0.0925446

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 40960
total time: 0.377821

async:
total calls: 199208
total time: 1.23643

GPU: Memcpy DtoH:
total calls: 32768
total time: 0.142284

GPU: Memcpy HtoD:
total calls: 40960
total time: 0.155667

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 8192

total time: 0.837182

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 8192

total time: 2.0305

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 8192

total time: 0.0177074

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 8192

total time: 0.0103966

GPU: discs_phase2(double*, double const*, double, int):
total calls: 8192

total time: 0.0713272

GPU: Memcpy HtoD:
total calls: 1
total time: 1.376e-06

GPU: Memcpy DtoH:
total calls: 48640
total time: 0.216829

GPU: Memcpy HtoD:
total calls: 60800
total time: 0.234619

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 12160

total time: 1.32373

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 12160

total time: 3.17469

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 12160

total time: 0.0314939

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 12160

total time: 0.0177236

GPU: discs_phase2(double*, double const*, double, int):
total calls: 12160

total time: 0.109861

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 278513
total time: 29.2544

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMallocHost:
total calls: 783
total time: 0.0591533

set_local_timestep_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 27252
total time: 0.731393

cudaMalloc:
total calls: 1413
total time: 0.231754

cudaSetDevice:
total calls: 72672
total time: 0.295683

cudaEventRecord:
total calls: 3028
total time: 0.0497097

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 15140
total time: 0.237248

async:
total calls: 271502
total time: 30.0605

GPU: Memcpy DtoH:
total calls: 12112
total time: 0.0534293

GPU: Memcpy HtoD:
total calls: 15140
total time: 0.058442

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 3028

total time: 0.327592

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 3028

total time: 0.783381

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 3028

total time: 0.00768215

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 3028

total time: 0.00432689

GPU: discs_phase2(double*, double const*, double, int):
total calls: 3028

total time: 0.0269072

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 46080
total time: 0.909388

cudaSetDevice:
total calls: 122880
total time: 0.488316

cudaEventRecord:
total calls: 5120
total time: 0.0635641

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 25600
total time: 0.2566

async:
total calls: 317712
total time: 32.9808

GPU: Memcpy DtoH:
total calls: 20480
total time: 0.0893641

GPU: Memcpy HtoD:
total calls: 25600
total time: 0.0978854

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 5120

total time: 0.529816

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 5120

total time: 1.28122

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 5120

total time: 0.0113511

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 5120

total time: 0.00664709

GPU: discs_phase2(double*, double const*, double, int):
total calls: 5120

total time: 0.0446672

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 64512
total time: 1.26079

cudaSetDevice:
total calls: 172032
total time: 0.737727

cudaEventRecord:
total calls: 7168
total time: 0.0835492

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 35840
total time: 0.34385

async:
total calls: 365677
total time: 31.3978

GPU: Memcpy DtoH:
total calls: 28672
total time: 0.124588

GPU: Memcpy HtoD:
total calls: 35840
total time: 0.136671

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 7168

total time: 0.738668

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 7168

total time: 1.78597

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 7168

total time: 0.0156091

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 7168

total time: 0.00918455

GPU: discs_phase2(double*, double const*, double, int):
total calls: 7168

total time: 0.0624094

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 55296
total time: 1.06874

cudaSetDevice:
total calls: 147456
total time: 0.57022

cudaEventRecord:
total calls: 6144
total time: 0.0723248

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 30720
total time: 0.294283

async:
total calls: 338569
total time: 20.5209

GPU: Memcpy DtoH:
total calls: 24576

total time: 0.10696

GPU: Memcpy HtoD:
total calls: 30720
total time: 0.117605

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 6144

total time: 0.633845

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 6144

total time: 1.53395

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 6144

total time: 0.013639

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 6144

total time: 0.00794315

GPU: discs_phase2(double*, double const*, double, int):
total calls: 6144

total time: 0.0536074

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 55296
total time: 1.06083

cudaSetDevice:
total calls: 147456
total time: 0.644506

cudaEventRecord:
total calls: 6144
total time: 0.0719661

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 30720
total time: 0.286573

async:
total calls: 153194
total time: 9.89449

GPU: Memcpy DtoH:
total calls: 24576
total time: 0.106981

GPU: Memcpy HtoD:
total calls: 30720
total time: 0.117443

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 6144

total time: 0.632715

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 6144

total time: 1.52977

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 6144

total time: 0.0134915

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 6144

total time: 0.00795716

GPU: discs_phase2(double*, double const*, double, int):
total calls: 6144

total time: 0.0535354

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 36864
total time: 0.679932

cudaSetDevice:
total calls: 98304
total time: 0.380006

cudaEventRecord:
total calls: 4096
total time: 0.0453896

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 20480
total time: 0.179855

async:
total calls: 97431
total time: 4.10546

GPU: Memcpy DtoH:
total calls: 16384
total time: 0.0709742

GPU: Memcpy HtoD:
total calls: 20480
total time: 0.0784648

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 4096

total time: 0.418105

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 4096

total time: 1.01352

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 4096

total time: 0.0087428

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 4096

total time: 0.00521033

GPU: discs_phase2(double*, double const*, double, int):
total calls: 4096

total time: 0.0356713

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 18432
total time: 0.340897

cudaSetDevice:
total calls: 49152
total time: 0.195684

cudaEventRecord:
total calls: 2048
total time: 0.0223772

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 10240
total time: 0.0885094

async:
total calls: 48140
total time: 0.291439

GPU: Memcpy DtoH:
total calls: 8192
total time: 0.0353887

GPU: Memcpy HtoD:
total calls: 10240
total time: 0.0390358

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 2048

total time: 0.209135

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 2048

total time: 0.507708

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 2048

total time: 0.00440319

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 2048

total time: 0.00258771

GPU: discs_phase2(double*, double const*, double, int):
total calls: 2048

total time: 0.0178317

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 105659
total time: 10.2655

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMallocHost:
total calls: 179
total time: 0.0125069

set_local_timestep_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 8568
total time: 0.207527

cudaMalloc:
total calls: 316
total time: 0.035285

cudaSetDevice:
total calls: 22848
total time: 0.0934612

cudaEventRecord:
total calls: 952
total time: 0.0140128

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 4760
total time: 0.0632353

async:
total calls: 98007
total time: 10.5085

GPU: Memcpy DtoH:
total calls: 3808
total time: 0.0166831

GPU: Memcpy HtoD:
total calls: 4760
total time: 0.0184059

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 952

total time: 0.101891

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 952

total time: 0.245185

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 952

total time: 0.00241762

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 952

total time: 0.00132432

GPU: discs_phase2(double*, double const*, double, int):
total calls: 952

total time: 0.00839806

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 14400
total time: 0.293173

cudaSetDevice:
total calls: 38400
total time: 0.152786

cudaEventRecord:
total calls: 1600
total time: 0.0211119

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 8000
total time: 0.0849457

async:
total calls: 110956
total time: 11.4157

GPU: Memcpy DtoH:
total calls: 6400
total time: 0.0276748

GPU: Memcpy HtoD:
total calls: 8000
total time: 0.0305939

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 1600

total time: 0.166177

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 1600

total time: 0.401877

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 1600

total time: 0.00362492

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 1600

total time: 0.00206899

GPU: discs_phase2(double*, double const*, double, int):
total calls: 1600

total time: 0.0139248

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 20160
total time: 0.399935

cudaSetDevice:
total calls: 53760
total time: 0.208966

cudaEventRecord:
total calls: 2240
total time: 0.0261405

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 11200
total time: 0.109506

async:
total calls: 126217
total time: 10.9209

GPU: Memcpy DtoH:
total calls: 8960
total time: 0.0386657

GPU: Memcpy HtoD:
total calls: 11200
total time: 0.0429256

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 2240

total time: 0.231636

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 2240

total time: 0.558988

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 2240

total time: 0.00492771

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 2240

total time: 0.00285625

GPU: discs_phase2(double*, double const*, double, int):
total calls: 2240

total time: 0.0194239

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 17280
total time: 0.336449

cudaSetDevice:
total calls: 46080
total time: 0.178744

cudaEventRecord:
total calls: 1920
total time: 0.0242582

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 9600
total time: 0.092653

async:
total calls: 118036
total time: 6.96477

GPU: Memcpy DtoH:
total calls: 7680
total time: 0.0331888

GPU: Memcpy HtoD:
total calls: 9600
total time: 0.0368994

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 1920

total time: 0.198802

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 1920

total time: 0.479173

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 1920

total time: 0.00424604

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 1920

total time: 0.00245712

GPU: discs_phase2(double*, double const*, double, int):
total calls: 1920

total time: 0.0167089

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 17280
total time: 0.346913

cudaSetDevice:
total calls: 46080
total time: 0.177812

cudaEventRecord:
total calls: 1920
total time: 0.0234104

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 9600
total time: 0.101221

async:
total calls: 47115
total time: 3.04429

GPU: Memcpy DtoH:
total calls: 7680
total time: 0.0333777

GPU: Memcpy HtoD:
total calls: 9600
total time: 0.0369356

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 1920

total time: 0.200465

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 1920

total time: 0.482415

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 1920

total time: 0.0042861

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 1920

total time: 0.00242524

GPU: discs_phase2(double*, double const*, double, int):
total calls: 1920

total time: 0.0166941

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 11520
total time: 0.218368

cudaSetDevice:
total calls: 30720
total time: 0.120005

cudaEventRecord:
total calls: 1280
total time: 0.0145664

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 6400
total time: 0.0575834

async:
total calls: 29697
total time: 1.27629

GPU: Memcpy DtoH:
total calls: 5120
total time: 0.0221022

GPU: Memcpy HtoD:
total calls: 6400
total time: 0.0246224

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 1280

total time: 0.130466

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 1280

total time: 0.316737

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 1280

total time: 0.00269933

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 1280

total time: 0.00159776

GPU: discs_phase2(double*, double const*, double, int):
total calls: 1280

total time: 0.0111268

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 5760
total time: 0.111697

cudaSetDevice:
total calls: 15360
total time: 0.061574

cudaEventRecord:
total calls: 640
total time: 0.00760992

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 3200
total time: 0.0318558

async:
total calls: 14790
total time: 0.0887484

GPU: Memcpy DtoH:
total calls: 2560
total time: 0.0109625

GPU: Memcpy HtoD:
total calls: 3200
total time: 0.0123233

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 640

total time: 0.0661392

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 640

total time: 0.159776

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 640

total time: 0.00139094

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 640

total time: 0.00081936

GPU: discs_phase2(double*, double const*, double, int):
total calls: 640

total time: 0.00556347

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 24251
total time: 1.93045

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

set_local_timestep_action_type:
total calls: 1

total time: 0

async:
total calls: 17760
total time: 1.68561

cudaEventRecord:
total calls: 47
total time: 0.000737452

cudaMalloc:
total calls: 61
total time: 0.00539532

cudaSetDevice:
total calls: 1128
total time: 0.00471136

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMallocHost:
total calls: 36
total time: 0.00185063

cudaMemcpyAsync:
total calls: 423
total time: 0.01408

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 235
total time: 0.00399273

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 720
total time: 0.0145762

cudaSetDevice:
total calls: 1920
total time: 0.00765918

cudaEventRecord:
total calls: 80
total time: 0.00106491

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 400
total time: 0.00406245

async:
total calls: 18562
total time: 1.74219

GPU: Memcpy DtoH:
total calls: 320
total time: 0.00138442

GPU: Memcpy HtoD:
total calls: 400
total time: 0.00152336

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 80

total time: 0.00829444

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 80

total time: 0.0201109

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 80

total time: 0.000181312

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 80

total time: 9.8943e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 80

total time: 0.000694941

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 1008
total time: 0.0195762

cudaSetDevice:
total calls: 2688
total time: 0.0103747

cudaEventRecord:
total calls: 112
total time: 0.00126714

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 560
total time: 0.0054149

async:
total calls: 19204
total time: 1.7095

GPU: Memcpy DtoH:
total calls: 448
total time: 0.00193283

GPU: Memcpy HtoD:
total calls: 560
total time: 0.00214038

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 112

total time: 0.0113842

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 112

total time: 0.0280068

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 112

total time: 0.000246112

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 112

total time: 0.000144256

GPU: discs_phase2(double*, double const*, double, int):
total calls: 112

total time: 0.000974398

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 864
total time: 0.0167871

cudaSetDevice:
total calls: 2304
total time: 0.00860607

cudaEventRecord:
total calls: 96
total time: 0.00101017

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 480
total time: 0.00461884

async:
total calls: 18770
total time: 0.753926

GPU: Memcpy DtoH:
total calls: 384
total time: 0.00166822

GPU: Memcpy HtoD:
total calls: 480
total time: 0.00185549

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 96

total time: 0.00985589

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 96

total time: 0.0241882

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 96

total time: 0.000213792

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 96

total time: 0.00012288

GPU: discs_phase2(double*, double const*, double, int):
total calls: 96

total time: 0.000835805

set_local_timestep_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 864
total time: 0.0174096

cudaSetDevice:
total calls: 2304
total time: 0.0089953

cudaEventRecord:
total calls: 96
total time: 0.0014449

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 480
total time: 0.00504433

async:
total calls: 2096
total time: 0.145775

GPU: Memcpy DtoH:
total calls: 384
total time: 0.00166956

GPU: Memcpy HtoD:
total calls: 480
total time: 0.00184112

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 96

total time: 0.0100306

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 96

total time: 0.0239487

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 96

total time: 0.000207839

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 96

total time: 0.00011888

GPU: discs_phase2(double*, double const*, double, int):
total calls: 96

total time: 0.000831388

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 576
total time: 0.00992851

cudaSetDevice:
total calls: 1536
total time: 0.00589084

cudaEventRecord:
total calls: 64
total time: 0.000627225

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 320
total time: 0.00284194

async:
total calls: 1503
total time: 0.0613075

GPU: Memcpy DtoH:
total calls: 256
total time: 0.0010926

GPU: Memcpy HtoD:
total calls: 320
total time: 0.00121987

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 64

total time: 0.00649286

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 64

total time: 0.015745

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 64

total time: 0.000130304

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 64

total time: 7.8784e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 64

total time: 0.000563646

send_hydro_boundary_action_type:
total calls: 1

total time: 0

cudaMemcpyAsync:
total calls: 288
total time: 0.00501779

cudaSetDevice:
total calls: 768
total time: 0.00311086

cudaEventRecord:
total calls: 32
total time: 0.000242721

send_hydro_children_action_type:
total calls: 1

total time: 0

cudaLaunchKernel:
total calls: 160
total time: 0.00134173

async:
total calls: 702
total time: 0.00414636

GPU: Memcpy DtoH:
total calls: 128
total time: 0.000552863

GPU: Memcpy HtoD:
total calls: 160
total time: 0.000624029

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 32

total time: 0.00324877

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 32

total time: 0.00790897

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 32

total time: 6.6144e-05

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 32

total time: 4.1408e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 32

total time: 0.000280768

GPU: Memcpy DtoH:
total calls: 188
total time: 0.000820607

GPU: Memcpy HtoD:
total calls: 235
total time: 0.000903518

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 47

total time: 0.00504831

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 47

total time: 0.0119086

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 47

total time: 0.000111076

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 47

total time: 6.1444e-05

GPU: discs_phase2(double*, double const*, double, int):
total calls: 47

total time: 0.00041626

async:
total calls: 18726
total time: 0.138783

async_launch_policy_dispatch::call:
total calls: 16392

total time: 1.81552

async:
total calls: 18729
total time: 0.143952

async:
total calls: 16392
total time: 0.140044

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 1391
total time: 0.0617751

async_launch_policy_dispatch:
total calls: 30

total time: 0.00671252

send_hydro_boundary_action_type:
total calls: 1

total time: 0

diagnostics_action_type:
total calls: 240

total time: 0.484792

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 192

total time: 0.0457005

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 6878
total time: 0.25282

N3hpx4lcos19base_lco_with_valueI13diagnostics_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

diagnostics_action_type:
total calls: 1536

total time: 3.05374

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 576

total time: 0.135769

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 44641
total time: 1.14649

N3hpx4lcos19base_lco_with_valueI13diagnostics_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

diagnostics_action_type:
total calls: 4608

total time: 9.10394

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 1536

total time: 0.36641

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 122354
total time: 2.56512

N3hpx4lcos19base_lco_with_valueI13diagnostics_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

diagnostics_action_type:
total calls: 12288

total time: 24.0747

N3hpx4lcos19base_lco_with_valueI13diagnostics_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

async:
total calls: 280080
total time: 2.29018

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

GPU: Event Synchronize:
total calls: 180131

total time: 1.28955

cudaMemcpyToSymbol:
total calls: 4
total time: 0.00319158

cudaStreamCreateWithFlags:
total calls: 128

total time: 1.06695

cudaGetDeviceProperties:
total calls: 128

total time: 1.34933

cudaSetDevice:
total calls: 130
total time: 0.000545791

GPU: Memcpy HtoD:
total calls: 4
total time: 9.408e-06

timestep_driver_ascend_action_type:
total calls: 1

total time: 0

set_child_aunt_action_type:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 5296

total time: 2.93587

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

get_child_client_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

N3hpx4lcos19base_lco_with_valueIxxNS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 458231
total time: 3.73318

set_value_action_naming_id_typemanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 3597

total time: 1.02477

async:
total calls: 21393
total time: 0.129143

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 2568

total time: 0.35099

async:
total calls: 19312
total time: 0.110925

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 15008
total time: 0.0805935

async_launch_policy_dispatch:
total calls: 2

total time: 0.000145735

load_components_action:
total calls: 1

total time: 0.0053803

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 20
total time: 0.000199739

send_hydro_boundary_action_type:
total calls: 1

total time: 0

set_child_aunt_action_type:
total calls: 1

total time: 0

set_value_action_id_typemanaged_component_tag:
total calls: 1

total time: 0

regrid_scatter_action_type:
total calls: 7

total time: 0.000269303

regrid_scatter_action_type:
total calls: 416

total time: 0.0882187

async_launch_policy_dispatch:
total calls: 80

total time: 0.0691302

primary_namespace_decrement_credit_action:
total calls: 1

total time: 7.243e-06

async_launch_policy_dispatch:
total calls: 512

total time: 0.438625

regrid_scatter_action_type:
total calls: 2304

total time: 0.291813

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 513
total time: 0.0108534

regrid_scatter_action_type:
total calls: 1

total time: 1.5661e-05

async:
total calls: 511
total time: 0.0193882

base_set_event_action:
total calls: 1

total time: 0

regrid_scatter_action_type:
total calls: 511

total time: 0.0144466

base_set_event_action:
total calls: 1

total time: 0

primary_namespace_decrement_credit_action:
total calls: 1

total time: 6.56e-06

async_launch_policy_dispatch:
total calls: 1536

total time: 1.27882

regrid_scatter_action_type:
total calls: 6656

total time: 0.772963

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 1536
total time: 0.0254721

async:
total calls: 1536
total time: 0.0505577

regrid_scatter_action_type:
total calls: 1536

total time: 0.044475

base_set_event_action:
total calls: 1

total time: 0

async_launch_policy_dispatch:
total calls: 4096

total time: 3.54022

regrid_scatter_action_type:
total calls: 16384

total time: 0.625204

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 4096
total time: 0.0735828

async:
total calls: 4096
total time: 0.197894 regrid_scatter_action_type:

total calls: 4096
total time: 0.139184

base_set_event_action:
total calls: 1

total time: 0

primary_namespace_decrement_credit_action:
total calls: 2

total time: 1.1128e-05

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 80
total time: 0.00174885

async:
total calls: 80
total time: 0.00366169

regrid_scatter_action_type:
total calls: 80

total time: 0.00279354

base_set_event_action:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 37
total time: 0.0284521

async:
total calls: 230
total time: 0.00151644

form_tree_action_type:
total calls: 141
total time: 0.0637309

async:
total calls: 105
total time: 0.000729265

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 424

total time: 0.427392

async:
total calls: 516
total time: 0.00294435

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 2560

total time: 0.222911

async:
total calls: 560
total time: 0.00308388

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 14400
total time: 0.0779212

compare_analytic_action_type:
total calls: 80

total time: 0.33386

N3hpx4lcos19base_lco_with_valueI10analytic_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

compare_analytic_action_type:
total calls: 512

total time: 9.0471

N3hpx4lcos19base_lco_with_valueI10analytic_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

compare_analytic_action_type:
total calls: 1536

total time: 20.1784

N3hpx4lcos19base_lco_with_valueI10analytic_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

compare_analytic_action_type:
total calls: 4096

total time: 84.4468

N3hpx4lcos19base_lco_with_valueI10analytic_tS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

check_for_refinement_action_type:
total calls: 416

total time: 0.925764

send_hydro_boundary_action_type:
total calls: 1

total time: 0

async:
total calls: 3214
total time: 0.135595

check_for_refinement_action_type:
total calls: 2304

total time: 4.87163

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 224

total time: 0.0358494

async:
total calls: 11862
total time: 0.451219

base_set_event_action:
total calls: 1

total time: 0

check_for_refinement_action_type:
total calls: 6656

total time: 13.9007

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 704

total time: 0.086759

async:
total calls: 62998
total time: 1.68403

base_set_event_action:
total calls: 1

total time: 0

check_for_refinement_action_type:
total calls: 16384

total time: 34.0654

send_hydro_boundary_action_type:
total calls: 1

total time: 0

send_hydro_amr_boundary_action_type:
total calls: 1

total time: 0

send_hydro_children_action_type:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 2560

total time: 0.332468

async:
total calls: 169428
total time: 3.59149

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

async:
total calls: 373467
total time: 3.98838

send_hydro_children_action_type:
total calls: 1

total time: 0

send_hydro_boundary_action_type:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 11634

total time: 0.229414

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 396

total time: 0.031671

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 730

total time: 0.0181319

force_nodes_to_exist_action_type:
total calls: 24

total time: 0.00161063

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 2447

total time: 0.0451361

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 76

total time: 0.00543155

force_nodes_to_exist_action_type:
total calls: 52

total time: 0.000883571

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 642

total time: 0.0123805

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 1

total time: 0.000220209

base_set_event_action:
total calls: 1

total time: 0

base_set_event_action:
total calls: 1

total time: 0

force_nodes_to_exist_action_type:
total calls: 4

total time: 5.6932e-05

base_set_event_action:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 2908

total time: 1.26278

async:
total calls: 8296
total time: 0.0443142 form_tree_action_type:

total calls: 5741
total time: 1.49431

async:
total calls: 12718
total time: 0.0704818

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

form_tree_action_type:
total calls: 6146

total time: 0.549556

async:
total calls: 28938
total time: 0.156595

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

set_value_action_int32_tmanaged_component_tag:
total calls: 1

total time: 0

async:
total calls: 35659
total time: 0.19273

primary_namespace_decrement_credit_action:
total calls: 8

total time: 0.000214341

regrid_gather_action_type:
total calls: 416

total time: 0.0857143

regrid_gather_action_type:
total calls: 2304

total time: 0.275682

N3hpx4lcos19base_lco_with_valueI15node_count_typeS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

regrid_gather_action_type:
total calls: 6656

total time: 0.73614

N3hpx4lcos19base_lco_with_valueI15node_count_typeS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

regrid_gather_action_type:
total calls: 16384

total time: 0.530077

N3hpx4lcos19base_lco_with_valueI15node_count_typeS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

N3hpx4lcos19base_lco_with_valueI15node_count_typeS2_NS_6traits6detail21managed_component_tagEE16set_value_actionE:
total calls: 1

total time: 0

(a) Task tree example.

Elapsed Time: 332.908 seconds
Cores detected: 176
Worker threads observed: 7
Available CPU time: 2330.36 seconds

cudaEventQuery:
total calls: 3.05614e+06
total time: 16.0611s
time per call: 5.25536e-06s

GPU: Event Synchronize:
total calls: 180092
total time: 1.2914s
time per call: 7.17078e-06s

  count: 180092

cudaMemcpy:
total calls: 1
total time: 2.6216e-05s
time per call: 2.6216e-05s

GPU: Memcpy HtoD:
total calls: 900465
total time: 3.44622s
time per call: 3.82715e-06s

  count: 1

force_nodes_to_exist_action_type:
total calls: 25426
total time: 0.94494s
time per call: 3.71643e-05s

  count: 16006

check_for_refinement_action_type:
total calls: 25860
total time: 53.8009s
time per call: 0.00208047s

  count: 3488

  count: 25760

async:
total calls: 8.95651e+06
total time: 715.573s
time per call: 7.98941e-05s

  count: 622781

  count: 1

  count: 7114640

cudaEventRecord:
total calls: 180090
total time: 2.19723s
time per call: 1.22008e-05s

  count: 180092

cudaMallocHost:
total calls: 3629
total time: 0.319749s
time per call: 8.81093e-05s

  count: 3629

regrid_scatter_action_type:
total calls: 32100
total time: 1.98026s
time per call: 6.16902e-05s

  count: 6224

cudaMalloc:
total calls: 6864
total time: 1.13858s
time per call: 0.000165877s  count: 6864

cudaSetDevice:
total calls: 4.32173e+06
total time: 18.2772s
time per call: 4.22914e-06s

  count: 4322208

cudaMemcpyAsync:
total calls: 1.62082e+06
total time: 32.6699s
time per call: 2.01564e-05s

  count: 1620828

cudaLaunchKernel:
total calls: 900460
total time: 9.13268s
time per call: 1.01422e-05s

  count: 900460

output_stage1_action:
total calls: 3
total time: 0.381926s
time per call: 0.127309s

  count: 18729

async_launch_policy_dispatch::call:
total calls: 16392
total time: 1.81031s
time per call: 0.000110439s

  count: 16392

  count: 16392

cleanup_buffers_action:
total calls: 1
total time: 1.97109s
time per call: 1.97109s

cudaStreamDestroy:
total calls: 128
total time: 0.000497492s
time per call: 3.88666e-06s

  count: 128

cudaFree:
total calls: 6864
total time: 1.74927s
time per call: 0.000254847s

  count: 6864

cudaFreeHost:
total calls: 3629
total time: 0.170623s
time per call: 4.70166e-05s

  count: 3629

  count: 25760

async_launch_policy_dispatch:
total calls: 11247
total time: 7.43115s
time per call: 0.000660723s

  count: 6224

primary_namespace_decrement_credit_action:
total calls: 2087
total time: 0.0194042s
time per call: 9.29764e-06s

  count: 4

  count: 900460

GPU: Memcpy DtoH:
total calls: 720368
total time: 3.14191s
time per call: 4.36153e-06s

  count: 720368

GPU: flux_cuda_kernel(double const*, double const*, double*, double*, int*, int*, bool const*, double, double, double, double, int, double, double):
total calls: 180092
total time: 18.6762s
time per call: 0.000103704s

  count: 180092

GPU: reconstruct_cuda_kernel(double, int, int, int*, int*, double*, double*, double*, double*, double, double const*, int, int, int):
total calls: 180092
total time: 45.0397s
time per call: 0.000250093s

  count: 180092

GPU: hydro_pre_recon_cuda(double*, double, bool, double*, int, int):
total calls: 180092
total time: 0.401528s
time per call: 2.22957e-06s

  count: 180092

GPU: discs_phase1(double*, double const*, double, double, double, double):
total calls: 180092
total time: 0.231959s
time per call: 1.288e-06s

  count: 180092

GPU: discs_phase2(double*, double const*, double, int):
total calls: 180092
total time: 1.57705s
time per call: 8.75689e-06s

  count: 180092

diagnostics_action_type:
total calls: 18726
total time: 36.5667s
time per call: 0.00195272s

  count: 454153

  count: 2334

  count: 15592

  count: 18672

form_tree_action_type:
total calls: 29415
total time: 7.42163s
time per call: 0.000252308s

  count: 2619

background_work:
total calls: 2687
total time: 0.0599506s
time per call: 2.23114e-05s

  count: 6

regrid_gather_action_type:
total calls: 25859
total time: 1.64122s
time per call: 6.34681e-05s

  count: 25760

APEX MAIN:
total calls: 1
total time: 332.908s
time per call: 332.908s

  count: 3056145

  count: 5932

  count: 100

  count: 71647

  count: 3

  count: 1

  count: 111

  count: 54

  count: 2687

  count: 2687

  count: 2077

  count: 100

initialize_action:
total calls: 1
total time: 3.17048s
time per call: 3.17048s

  count: 1

parcelhandler::put_parcel:
total calls: 1
total time: 4.609e-05s
time per call: 4.609e-05s

  count: 1

dijkstra_termination_action:
total calls: 2
total time: 0.000157686s
time per call: 7.8843e-05s

  count: 2

primary_namespace_colocate_action:
total calls: 2
total time: 0.00012857s
time per call: 6.4285e-05s

  count: 2

update_agas_cache_action:
total calls: 38
total time: 0.000472717s
time per call: 1.24399e-05s

  count: 38

run_helper:
total calls: 1
total time: 0.0017776s
time per call: 0.0017776s

  count: 1

schedule_parcel:
total calls: 632929
total time: 25.8529s
time per call: 4.08465e-05s

  count: 632979

N3hpx10components6server23create_component_actionI11node_serverJ13node_location11node_clientddxmmmEEE:
total calls: 24
total time: 0.167722s
time per call: 0.00698842s

  count: 24

  count: 118

copy_to_locality_action_type:
total calls: 6
total time: 0.000948827s
time per call: 0.000158138s

  count: 6

compare_analytic_action_type:
total calls: 6242
total time: 112.441s
time per call: 0.0180136s

  count: 18

primary_namespace_increment_credit_action:
total calls: 127
total time: 0.00443946s
time per call: 3.49564e-05s

  count: 127

step_action_type:
total calls: 18726
total time: 1.59577s
time per call: 8.52168e-05s

  count: 54

output_stage2_action:
total calls: 3
total time: 0.317876s
time per call: 0.105959s  count: 3

primary_namespace_route_action:
total calls: 66
total time: 0.00384434s
time per call: 5.82475e-05s

  count: 66

output_stage3_action:
total calls: 3
total time: 0.000410015s
time per call: 0.000136672s

  count: 3

cudaEventCreateWithFlags:
total calls: 128
total time: 0.819378s
time per call: 0.00640139s

  count: 128

hpx_destroy_component_action:
total calls: 2
total time: 0.000106338s
time per call: 5.3169e-05s

  count: 2

  count: 130

cudaMemcpyToSymbol:
total calls: 4
total time: 0.000796219s
time per call: 0.000199055s

  count: 4

cudaStreamCreateWithFlags:
total calls: 128
total time: 0.836502s
time per call: 0.00653517s

  count: 128

cudaGetDeviceProperties:
total calls: 128
total time: 1.2313s
time per call: 0.0096195s

  count: 128

  count: 2

load_components_action:
total calls: 1
total time: 0.00578007s
time per call: 0.00578007s

  count: 1

  count: 460032

  count: 5179

  count: 147748

  count: 21499

  count: 6224

  count: 18726
  count: 18672

  count: 18726

  count: 2

  count: 7

  count: 4

(b) Task graph example.

Fig. 1. Task tree and task graph of Octo-Tiger as captured by APEX. Intensity of red color is correlated with the node’s contribution to the overall runtime. The
recursive structure of the octree is evident in the expanded tree. High resolution images are available here (https://doi.org/10.6084/m9.figshare.14666184.v1).

offloaded to GPU devices. To complement the taskgraph and

tasktree data in the absence of a full trace, APEX also captures

task and counter scatterplot data, indicating on the x axis when

the task started or the counter was captured, and the y axis

contains the duration of the task or the value of the counter.

The tasks are sampled using a user-specified fraction (default

1%) whereas the counters are sampled at every value capture.

This data collection allows the application developer to capture

a time sequence of data without the filesystem overhead of a

full event trace. Examples are shown in Section V.

IV. OCTO-TIGER

In this section, we briefly introduce the modules of Octo-

Tiger studied in this paper, followed by details on how we

integrate their GPU implementation with HPX. For a more

general overview of the modules themselves, we refer to Octo-

Tiger’s method paper [1].

A. Octo-Tiger’s Gravity Solver

Octo-Tiger uses a fast multipole method (FMM) for solv-

ing the gravity [26]. This particular implementation of the

FMM globally conserves both linear and angular momenta to

machine precision, and, when coupled to the hydro-dynamics

solver, also globally conserves energy to machine precision.

The solver uses a third order multipole expansion. Its accuracy

can be varied by adjusting the opening criterion, θ. Lower

values of the opening criterion lead to stricter multipole

acceptance criteria, requiring that multipoles be further away

to interact. This increases the solver’s accuracy at the cost of

more computation time.

B. Octo-Tiger’s Hydro Implementation

Octo-Tiger solves the equations of hydrodynamics using

a finite volume method. It evolves the mass density, three

linear momenta, and gas energy on a rotating adaptive mesh

refinement (AMR) mesh. The AMR mesh is based on an

octree structure, with each node of the octree being either not

refined at all or fully refined with eight sub-grids of twice the

resolution as their parent. By default, each of those sub-grids

consists of 83 cells, however, this is adjustable at compile-time

to allow for more finely refined sub-grids with more cells (for

instance 163). The evolved variables reside on the leaf sub-

grids of the octree. It additionally evolves an entropy tracer,

using it to implement the dual energy formalism of Bryan

et al. [27]. First, the evolution variables are reconstructed

from cell averages at 26 quadrature points on the cell face:

the centers of cell faces and cell edges and at cell vertices.

This is accomplished by applying the piece-wise parabolic

method (PPM) of Colella et al. [28]. This third order, five

cell stencil is applied along the lines between cell centers

that coincide with particular quadrature points, producing left

and right values for each. Octo-Tiger optionally allows for the

contact discontinuity detection available with PPM. Once the

evolution values are reconstructed, the semi-discrete central-

upwind scheme of Kurganov et al. [29] is applied to the

reconstructed left and right variables at the quadrature points,

producing fluxes. These fluxes are summed at quadrature

points on a given cell face using Newtonian quadrature to

obtain the final flux. Octo-Tiger’s complete hydro scheme is

described by Marcello, Shiber, et al. [1]. In this paper, we

compare our new hydro module to the old hydro module.

The old hydro module used the same reconstruction method,

however, flux values were only computed at the centers of cell

faces.

C. Octo-Tiger’s CUDA Implementation

To understand Octo-Tiger’s GPU implementation of the hy-

dro module, it is worth reintroducing the GPU implementation

of the gravity module from prior work. While the gravity

module uses entirely different compute methods (which we
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will only briefly mention here), it uses the same mechanism

for combining HPX and CUDA to facilitate concurrent GPU

kernel execution. The following subsection offers details how

(and why) we use this mechanism, followed by the details of

the hydro GPU implementation in the subsequent subsections.

1) Gravity Module GPU Implementation: The gravity

solver—more specifically the calculation of the same-level

interactions in the second FMM step—was the original hot

spot within Octo-Tiger [30], [31]. Here, we have to calculate

the cell-to-cell interactions for each of the cells of a sub-

grid. The exact number of interactions per cell depends on the

parameter θ. The actual hot spot consisted of different methods

(henceforth called gravity kernels) that take care of the various

types of cell-to-cell interactions. All kernels operate on one

sub-grid at a time, calculating all interactions between the cells

within that sub-grid in addition to their interactions with cells

in the ghost layer. The interaction types and the gravity kernels

themselves are detailed in prior work in more detail [30].

As a sub-grid only contains 512 cells by default, a gravity

kernel responsible for calculating the interactions of a single

sub-grid does not cause enough work to saturate a GPU. There

are two ways to address this. As mentioned previously, the

number of cells per sub-grid can be increased, which in turn

would provide more work for each GPU kernel. However, this

would be an Octo-Tiger specific solution. Instead, we were

previously able to overcome this limitation for the gravity-

solver GPU kernels by using a more general approach: A

HPX-CUDA integration.

This integration allows for the execution of CUDA kernels

to be integrated with the HPX runtime system via HPX futures.

Essentially, after launching a CUDA kernel, HPX offers the

functionality to return a HPX future for it. The HPX scheduler

will then continue to poll a CUDA event that will be set as

soon as said CUDA kernel is done. Once the event is set, the

HPX future will be set to ready, which in turn triggers all tasks

that depend on it. This allows us to integrate CUDA kernels

into the HPX task graph.

We can thus handle CUDA kernels (and CPU/GPU data

transfers) the same way as any other HPX task, making

it easily possible to chain them with other tasks, such as

arbitrary CPU compute tasks, inter-node communication, or

I/O. Crucially, this means that the execution of a CUDA

kernel gets automatically overlapped with other tasks, which

includes the execution of other CUDA kernels on separate

CUDA streams. This leads to the concurrent execution of

multiple CUDA kernels on separate sub-grids, preventing GPU

starvation despite the small workload with just 512 workitems

per kernel invocation.

As we launch each CUDA kernel within a normal HPX task,

we can easily suspend the task until the GPU kernel is done (as

indicated by its HPX future) and have an HPX worker thread

pick up the original task afterwards to process its results.

This allows a single worker thread to easily handle multiple

CUDA streams, switching between HPX tasks. In previous

work, we achieved a high GPU utilization and performance

using this approach within the gravity solver [4]. There, we

used 12 worker threads (one for each CPU core) and 128
CUDA streams for one P100 GPU.

For this approach, however, we need to keep any GPU-

wide synchronization to a minimum. This includes calls to

cudaMalloc() and the creation of CUDA streams. To avoid

creating more CUDA streams than necessary, we pre-allocate

them at the start of the simulation. We usually use a pool

of 128 HPX CUDA executors per device, each handling one

CUDA stream. We further employ a GPU-buffer manager to

avoid on-the-fly allocation of buffers as much as possible. If

available, the manager reuses previously allocated but cur-

rently unused device buffers from previous kernel invocations.

Only if none is available a new buffer will be created.

Both the HPX-CUDA integration (exposed with HPX fu-

tures) and the buffer manager (exposed by a set of allocators

within the library CPPuddle) can now be used independent

of Octo-Tiger, to allow a similar scheme of easy, task-based,

concurrent GPU kernel execution in other applications. This

also means we can also easily re-use this technique to port

more of Octo-Tiger’s solvers to the GPU.

Furthermore, if needed, this CUDA-HPX integration ap-

proach can be combined with the other approach mentioned to

increase GPU utilization: Increasing the size of the sub-grids.

This allows us to approach the issue both on the tasking level

using the integration and on the data-structure level by using

sub-grids with more cells.

2) Initial Hydro Module GPU Implementation: Between

the GPU implementation of the gravity module and the

changes moving from the old hydro (where flux values are

only computed at the centers of cell faces) to the new one as

outlined in Section IV-B, the hydro module becomes the new

application hot spot. Hence, we have ported the relevant meth-

ods of the hydro solver to CUDA for this work. The two major

hot spots within the solver are the reconstruct method

and the compute_fluxes method (henceforth called hydro

kernels). The reconstruct method reconstructs the evolution

variables using the PPM method as mentioned in Section IV-B.

In turn, the flux method takes care of computing the fluxes and

the Newtonian quadrature to obtain the final flux.

Just as the kernel of the gravity solver, each hydro kernel

operates on one sub-grid in each invocation. Therefore, we

are facing the same challenge as for the gravity solver: One

kernel invocation on its own is insufficient to prevent GPU

starvation. We have therefore ported the hydro solver’s meth-

ods into CUDA kernels in two steps: First, we have optimized

the kernels to run efficiently on a GPU. We have removed

any excessive branching within the method (to avoid warp

divergence), we have flattened all required data structures into

one-dimensional arrays of continuous memory and removed

any remaining, unnecessary memory in-directions of the initial

CPU implementation. Second, we have integrated the kernels

into the HPX task graph as we did with the gravity kernel to

facilitate concurrent GPU kernel execution and the overlap of

data transfers.

3) Next steps for the Hydro GPU Implementation: While

porting the hydro solver to CUDA resolves a major bottleneck
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TABLE I
TOOLCHAIN AND OCTO-TIGER’S DEPENDENCIES.

gcc 8.1.1/9.1.0 hwloc 1.11.12
spectrum-mpi 10.3.1 boost 1.70.0
cuda 11.2.0 jemalloc 5.1.0
hpx 1.6.0 silo 4.10.2
hdf5 1.8.12 cppuddle d32e50b

within Octo-Tiger, the kernels themselves are still an initial

implementation and thus not yet tuned to the maximum extent:

We first need to evaluate whether the concurrent execution of

the multiple GPU hydro kernels with several CUDA streams

and HPX futures is sufficient for GPU utilization. While we

had achieved good results with this approach within the gravity

solver [4], the hydro kernels are less compute-intensive than

the gravity kernels. Thus, we might reach the limits of this

approach.

If we do, there are multiple ways to address the issue:

The easiest way is to simply increase the size of the sub-

grids, providing more work per kernel invocation, increasing

the number of blocks in the CUDA launch configuration.

This makes it both easier to utilize the entire device and

to increase the likelihood of having multiple resident blocks

per SM which increases occupancy and thus hides latency.

Of course, a higher sub-grid size comes with the trade-off

of decreased scalability as (given the same overall grid size)

we have less sub-grids to distribute to the different compute

nodes. A more sustainable method would be to combine the

kernels of multiple sub-grids into one kernel. However, this

kind of work aggregation is more tedious to implement and

comes with several implementation challenges of its own.

Thus, the current state of the CUDA implementation in

this work provides a good starting point to evaluate the

performance, before moving forward to fine-tuning the ker-

nels themselves. We have therefore enabled Octo-Tiger to be

configured with larger sub-grid sizes at compilation time, and

we will study its performance and scalability impact in the

following sections. A significant performance impact of larger

sub-grid sizes in the hydro kernels would be a strong indication

that we should focus on further work-aggregation before any

fine-tuning of the compute kernels themselves.

V. PERFORMANCE MEASUREMENTS

In this section, we examine the scaling of Octo-Tiger on

ORNL’s Summit. Table I shows the toolchain that compiled

Octo-Tiger. Table II lists the hardware information of ORNL’s

Summit. Note that we used 128 streams per V100. Disclaimer:

Due to a testbed allocation on Summit, we had limited node

hours, which limited the possible performance measurements.

In addition, for jobs with more than 128 nodes we experienced

some error from the IBM® Spectrum MPI on Summit that we

send too many messages and a network device crashed, see

IBM® ticket TS005902510. We therefore cannot show scaling

results beyond 128 nodes. Strong scaling was used for all runs.

TABLE II
ORNL’S SUMMIT HARDWARE INFORMATION

GPUs 6 NVIDIA® Volta™ V100 CPU 2 IBM® POWER9™
OS RHEL 7.4 Kernel 4.14.0

Interconnect Mellanox® EDR 100G InfiniBand

TABLE III
SIMULATION DETAILS OF THE SEDOV-TAYLOR BLAST WAVE. NOTE THAT

EACH CONFIGURATION HAS 16, 777, 216 CELLS TO BE PROCESSED.

Sub-Grid Size Sub-Grid Count Refinement level
83 32768 5
163 4096 4
323 512 3

A. Sedov-Taylor Blast Wave (Pure Hydro)

To benchmark the new hydro kernels, the Sedov-Taylor blast

wave is used. Table III shows the details of each level of

refinement.

1) Node level scaling: The scaling on one Summit node is

presented in this section. Each configuration with an increasing

sub-grid size, see Table III, is executed on a single node using

CPUs and CPUs + GPUs. We start with one HPX locality,

which is equivalent to one MPI process. Thus, using six HPX

localities, we run six MPI processes on Summit. We chose

this setup to enable easy multi-GPU usage, at the expense of

more inter-process communication. For each HPX locality, we

assigned seven CPU cores and none of the six GPUs. Figure 2a

shows the scaling with the increasing number of localities.

The CPU-only scaling for the sub-grid sizes of 83 and 163

behaves similarly, and the sub-grid size of 323 performs better

for three and more localities.

For the next run, one locality was assigned to seven CPU

cores and one NVIDIA® V100 GPU. With six localities, all

available CPU cores and GPUs on a single node are utilized.

We assigned 128 CUDA streams to each locality. Note that

for the sub-grid size of 323 we had to decrease the number of

streams for the run with one locality, since queuing too many

large kernels caused the device to hit its memory limit.

Figure 2b shows the number of processed sub-grids per

second. With increasing sub-grid size, the number of cells pro-

cessed per second improves notably, even though the overall

grid size stays the same (albeit consisting of fewer sub-grids).

As mentioned in Section IV-C2, the hydro GPU kernels might

not offer enough work to prevent GPU starvation, even with

running multiple kernels (on separate sub-grids using separate

CUDA streams) concurrently on the GPU. Increasing the sub-

grid size increases the amount of work per kernel accordingly,

making it easier to scale up to an entire GPU simply by

having more blocks of work items available. Of course, it also

increases the chance of having multiple blocks resident on one

SM (we ensure that register usage is low enough for multiple

blocks to be resident on one SM during the compilation

time), increasing occupancy and thus hiding latencies more

efficiently. The average runtime per reconstruct kernel

is just 258 microseconds, or 108 microseconds for the flux
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Fig. 2. Cells processed per second for the node level scaling. For one up to
6 localities on one Summit node. One locality was assigned to seven CPUs
and one NVIDIA® V100 GPU.

kernel when using a sub-grid size of 83, further highlighting

this point. In the short term, we can offset this problem

by using a larger sub-grid size. However, an explicit work

aggregation scheme combining multiple sub-grids might be

preferable as a long-term solution.

Overall, we get a reasonable speedup for using the GPUs

given the initial state of our hydro implementation. For all sub-

grid sizes, the processed number of sub-grids was one order

of magnitude higher.

2) Distributed scaling: The scaling up to 128 Summit

nodes using 768 NVIDIA® V100 GPUS and 5376 CPU cores

is studied. Here, we use 6 localities with one GPU and 7
CPU cores per node. Figure 3a shows the number of sub-grids

processed per second. Here, the sub-grid size of 163 performs

slightly better than the sub-grid size of 83. For up to 8 nodes

the sub-grid size of 323 performs best, but later not enough

work is available, and the scaling flattens out. Figure 3b shows

the speedup with respect to a single node. For up to 8 nodes all

sub-grid sizes perform similarly and the largest sub-grid size

flattens out again. Up to 16 nodes the lower two sub-grid sized

perform similar and later the smallest sub-grid size performs

best.

We need at least 7 sub-grids per locality (42 per node),

as otherwise the 7 CPU cores are underutilized. While the

majority of the work is done by the GPUs, there are pre-

processing steps and the procedure of sending the data to the

GPU and launching the kernels that are done purely by the

CPU. Ideally, we have more sub-grids per locality, to truly

benefit from the overlapping of computation, inter-locality

communication and CPU/GPU data transfers that we gain by

using the task-based functionality offered by HPX. Indeed, we

can observe good scaling as long as we have about 21 sub-

grids per locality, as we both have enough work for all cores

and the GPU and benefit from the overlapping. The parallel

efficiency degrades visibly when going below that threshold.

First, we start losing the benefits of overlapping. Later on,

we simply cannot use all CPU cores of a locality to do the

pre-processing, kernel launches and communication tasks (as

one core always works on one sub-grid). Lastly, we hit the

point where we only have one sub-grid per locality. Here, we

naturally do not benefit at all by adding more nodes.

We can see this in the runs with sub-grid size 323. Here we

go below 21 sub-grids per locality in-between 4 and 8 nodes

(as we use 6 localities per node), afterwards we go below 7
sub-grids at 16 nodes. Lastly, we hit 1 sub-grid per locality at

64 nodes, so further increasing the node count to 128 makes

no difference.

It is worth noting that the largest run with sub-grid size

83 and 128 nodes results in a runtime per timestep of just

286ms, while with a sub-grid size of 163 we get a runtime per

timestep of 211ms. Considering each timestep consists of three

consecutive iterations of the hydro solver (due to Octo-Tiger’s

use of a third-order Runge Kutta time integration scheme)

this highlights that even small inefficiencies and barriers could

cause significant slowdowns, simply due to the short runtimes

involved.

B. Rotating star (Hydro and gravity)

For the second example, the rotating star problem is studied,

where the gravity solver is added to the hydro solver. Table IV

shows the details for each level. Here, we use the default θ
value (0.5) for the rotating star problem, which leads to fewer

cell-to-cell interactions than we encounter with production

run simulations. This makes the gravity solver less compute-

intensive than it would typically be. Furthermore, we have

redesigned the gravity GPU kernels to allow different (larger)

stencil sizes, making them currently less finely tuned than they

previously were, as the shared-memory implementation in the

monopole-monopole gravity kernel assumed a fixed stencil
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Fig. 3. Cells processed per second for the distributed scaling from one Summit
node up to 128 Summit nodes. Note that all six NVIDIA® V100 GPUs per
node were used.

TABLE IV
SIMULATION DETAILS OF THE ROTATING STAR. NOTE THAT EACH

CONFIGURATION HAS 16, 777, 216 CELLS.

Sub-Grid Size Sub-Grid Count AMR boundaries Refinement level
83 44472 3800 8
163 5944 3800 7

size. Still, the rotating star scenario presents a good benchmark

as it allows us to test the hydro- and gravity solver together

in a simple scenario.

1) Node level scaling: The scaling on one Summit node is

presented in this section. Each configuration with an increasing

sub-grid size, see Table IV, is executed on a single node using

CPUs and CPUs + GPUs. We start with one HPX locality,

which is equivalent to one MPI process. Therefore, using six

HPX localities, we run six MPI processes on Summit. For each

HPX locality, we assigned seven CPU cores and none of the

six GPUs. Figure 4a shows the node level scaling from one

up to 6 localities for CPUs only. The smaller sub-grid sizes

perform better using the CPUs only. We suspect that this is due

to the gravity solver’s handling of the root sub-grid within the

octree: We have to process all same-level interactions within

the sub-grid (as there is no higher level available that would

take care of those interactions within the FMM algorithm).

The runtime of calculating these interactions is O(N2) with

N as the number of cells in the root sub-grid. In a CPU-

only run, the root node is processed like any other sub-grid,

meaning the same-level interactions are calculated within one

HPX task; thus, only one CPU core is working on it, while

all other cores take care of other tasks. This increases the

runtime substantially while increasing the size of the sub-grids

in particular, since the entire next top-down tree-traversals

within the FMM algorithm depend on the results of the root

sub-grid. With an increasing number of CPU cores, more of

them will simply be idle whilst waiting on these results. When

increasing the number of localities, the ratio of the root sub-

grid’s work to the work of the remaining sub-grids on the root

locality increases, resulting in a higher load imbalance.

Figure 4b shows the node level scaling adding one GPU

to each locality. In that case, the GPU kernels benefit of the

larger sub-grid size and larger sub-grid sizes performs better.

The issue with the root sub-grid is less severe here as the

interactions are not being calculated by one CPU core alone,

but instead by a GPU kernel. Between this improvement, and

the general better runtime behavior of the hydro kernels when

dealing with larger sub-grids, the performance improves when

switching to a sub-grid size of 163. However, the speedup is

less severe than with the Sedov-Taylor blast wave scenario as

the gravity GPU kernels do not seem to benefit from larger

sub-grid sizes (even with the improved GPU kernel for the

root sub-grid). Again, the processed sub-grids per second are

one order of magnitude higher adding the GPUs.

2) Distributed scaling: We now study scaling on up to 128
Summit nodes using 768 NVIDIA® V100 GPUS and 5376
CPU cores. Here, we use 6 localities with one GPU and 7
CPU cores per node. Figure 5a shows the processed sub-grids

per second for increasing number of nodes. Again, for the

combined hydro and gravity simulation, the larger sub-grid

sizes results in slightly better performance. Larger sub-grid

sizes have less effect on the gravity solver and predominantly

accelerate the hydro solver. Therefore, we observe a similar

picture as for the hydro-only scenario. It is worth noting that

the runtime per time step on 128 nodes for the sub-grid size

83 is ≈ 0.48 seconds, and for sub-grid size 163 it is 0.45
seconds. Note that for each time step, Octo-Tiger solves 3
hydro steps and 6 FMM steps (the gravitational potential as

well as its time derivative appear in the source equations for

the hydrodynamics). Here, the same argument is valid that

we have good scaling as long as we have 21 sub-grids per
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Fig. 4. Cells processed per second for the node level scaling. For one up to
6 localities on one Summit node. One locality was assigned to seven CPUs
and one NVIDIA® V100 GPU.

locality. This indicates that approximately 16 million cells are

not enough work for 768 GPUs.

C. APEX + CUDA

The introduced overhead for the APEX CUDA measure-

ments was about 30 seconds for the run on a full single node

which is ≈ 8.5% of the total execution time. This is slightly

more than using APEX without the CUDA counters where the

overhead was around one percent [6]. This overhead is likely

caused by excessive callback processing for some frequently

called but short-lived CUDA functions. In fact, because the

algorithms support the ability for each locality to schedule

work on more than one GPU, the profiling showed that the
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Fig. 5. Cells processed per second for the distributed scaling from one Summit
node up to 128 Summit nodes. Note that all six NVIDIA ® V100 GPUs per
node were used.

function cudaSetDevice is called over 4, 322, 208 times

during a 332 second run. In addition, HPX uses polling to

detect GPU activity completion instead of callbacks — polling

provides faster throughput — and performing the polling

requires 3, 056, 145 calls to cudaEventQuery. These fre-

quent, short calls are fine on their own, but there is an observed

overhead in measuring them.

Figure 6 shows the time spent in the sampled tasks

during a short execution of the rotating star problem.

The gravity (monopole/multipole interactions) and hydro

(flux cuda kernel, reconstruct cuda kernel) kernels execute

on the GPU, whereas other actions are executed on the

CPU. The validation routine (compare analytic action type)
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Fig. 6. GPU kernel activity and CPU task actions for the gravity and hydro tasks when executing the 83 and 163 rotating star test on 6 localities. The 163

decomposition leads to longer-running tasks and kernels, but a shorter overall execution time because there are significantly fewer of them.

is executed on the CPU only. As this routine is only used for

validating the results, it is unlikely to be ported to the GPU.

Figure 7 shows three counters captured during the rotating

star run that indicate utilization of the allocated hardware.

The CPU user-space utilization in Figure 7a is captured by

monitoring the /proc/stat virtual file. Although HPX has

launched 1 worker thread per physical core, the operating

system detects 4 hardware threads per core. Therefore, the

maximum utilization possible in this configuration is 25%.

During the CPU-intensive validation at the end of execution,

these threads are fully utilized, and during most of the ex-

ecution the threads are well utilized. Time spent processing

system calls (not shown) peaks at 3% during initialization and

finalization and otherwise averages 0.66%. The GPU utiliza-

tion data is captured by periodically capturing the available

NVML data for device 0. Finally, Figure 7c shows the total

memory allocated on the device through cudaMalloc*()
calls, which peaks out at less than 11% of available memory.

The GPU utilization and memory usage show that there is

plenty of resources available to increase the amount of work

per kernel and retain more data on the GPU.

VI. ASTROPHYSICAL TEST RESULTS

To verify that Octo-Tiger’s new hydro module delivers

better results for an equilibrium configuration, we ran a

rotating star test problem. This star was constructed using a

polytropic structural equation of state with the self-consistent

field method (SCF) [32]. It is uniformly rotating about its z-

axis at a rate sufficient to produce a star whose minor axis

is 3/4 the length of its major axis. We ran this problem for

ten dynamical times. Since the star begins in equilibrium, we

expect it to stay in equilibrium. We used two resolutions and

for each resolution, two choices for the opening criterion, θ.

(Lower θ’s result in a larger multi-pole interaction stencil for

the gravity solver and hence better results). Here we define

the density error as

ρL1 :=

∑
Ω(ρIC − ρ)Δ3

V
, (1)
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(a) CPU Utilization of the 168 total available hardware threads. Data captured
by locality 0 represents the aggregate utilization of all processes on the node.

(b) GPU Utilization for Device 0 used by locality 0.

(c) Total memory occupied through explicit allocations on each GPU.

Fig. 7. APEX Performance counter metrics from the 163 rotating star test
case run on 6 localities.

TABLE V
THE AVERAGE ERROR IN THE DENSITY FIELD FOR THE ROTATING STAR

TEST USING THE OLD AND NEW HYDRO MODULES. IN THESE UNITS, THE

CENTRAL DENSITY OF THE STAR IS 1.

Refinement Level Opening Criterion Old New
6 0.5 2.41× 10−3 1.45× 10−3

6 0.35 5.22× 10−4 3.59× 10−4

7 0.5 2.52× 10−3 1.51× 10−3

7 0.35 4.49× 10−4 2.78× 10−4

where ρ is the numerical mass density, ρIC is the mass density

from the initial conditions, Δ is a cell width, V is the initial

volume of the star, and the summation is over the entire

domain Ω. As shown in Table V, in all cases the new hydro

module delivers a lower error.

VII. CONCLUSION

This paper showed the following aspects in evaluating Octo-

Tiger’s performance on Summit. First, from the astrophysical

aspect, the new implementation of the hydro kernel using a

fully three-dimensional reconstruction of the fluxes is more

computationally expensive than the old kernel. However, the

new hydro kernel evolves an equilibrium rotating star with

greater accuracy than the old kernel.

Second, the scaling on Summit showed the following two

things. First, on a single node, the usage of the GPUs improved

the cells processed per second by an order of magnitude. Thus,

Octo-Tiger benefits from the usage of GPUs for the hydro,

and combined hydro and gravity simulations. Second, the

distributed scaling up to 128 nodes using 768 NVIDIA® V100
GPUS and 5376 CPU cores was presented. Both test problems

scaled up to 128 nodes for the two lower sub-grid sizes.

However, we have seen that a problem containing 16, 777, 216
cells starts to flatten out up to 128 nodes and indicates that

even larger problems are necessary to provide enough work for

the additional GPUs. With our testbed allocation on Summit,

we could only show preliminary scaling results; however, we

will continue to work to get the larger node counts running.

Third, the variation of sub-grid sizes was added to Octo-

Tiger and this work studied the performance impact for the

first time. For the hydro module on a single node, the sub-

grid size of 323 showed the best performance for the combined

CPU and GPU runs, since with the larger sub-grid size more

work was available for a single kernel run. However, for

the distributed runs, only up to 8 nodes the largest sub-grid

size gave the best performance. For the combined hydro and

gravity simulation, the sub-grid size of 163 gives slightly better

performance. This indicates that this sub-grid size will be the

default for production runs.

Finally, the APEX CUDA profiling provides combined task

trees and task graphs for the work on the GPU and CPU.

Previously, Octo-Tiger was run first to profile the CPU usage

with APEX and a second time with NVIDIA®profiler. The

new plots provide some insights into the asynchronicity of

HPX and the dependency of tasks. The scatter plots showed

that the memory usage on the GPU was small, since only

the data to be computed are kept in the device memory. In

addition, we could show a good utilization of the CUDA

devices on a single node. These plots provide a good base

to analyze the combined asynchronous tasks on the CPU and

GPU and support our efforts to optimize the concurrent CPU

and GPU tasks.

A. Future Work

The results of this work motivate further improvements of

the hydro solver’s GPU implementation. We plan to investigate

on-the-fly work aggregation across sub-grids to combine the

benefits of larger GPU kernels to saturate GPUs with the

increased scalability that smaller sub-grids offer.

Furthermore, after recent promising results using HPX and

Kokkos together within the gravity solver, we plan to port

the current hydro CUDA implementation to Kokkos [33] as

well. The HPX Kokkos integration works similarly as the

CUDA one, and transforming the hydro CPU methods into

GPU Kokkos kernels would have required the same changes to

the methods themselves as outlined in Section IV-C2. Hence,

as of the current state, we have already completed the first

important steps.

Using Kokkos rather than pure CUDA provides us with

two advantages: We can easily target GPUs of other ven-

dors, such as AMD GPUs (and with the recently introduced

Kokkos SYCL execution space, also Intel GPUs). Further-

more, Kokkos provides the means of using explicit SIMD

vectorization [34] to run GPU-capable kernels efficiently on

the CPU as well. Currently, we have to maintain a second

set of CPU kernels using Vc for SIMD vectorization, which

would be replaced by the Kokkos kernels. With a portable

Kokkos implementation, there would be no need to maintain
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two specialized CPU and GPU kernels to cover all platforms

anymore. APEX already supports Kokkos profiling.

Furthermore, we plan to optimize the hydro kernels for

shared memory usage as soon as they have been ported to

Kokkos. With respect to HPX, more debugging is needed

for jobs with larger node counts (≥ 128 nodes): We have

experienced stalls for higher node counts due to an error

from the IBM® Spectrum MPI on Summit possibly caused by

sending too many messages which result in a network device

crash, see IBM® ticket TS005902510.

From the application perspective, the authors would like to

compare the performance of the rotating star with the Castro

code to gain insight into whether the more accurate hydro

module results in more stable shapes of the star. However, a

comparison of the scaling is not trivial since different algo-

rithms and solvers are used in both codes. In addition, Octo-

Tiger utilizes asynchronous computation with HPX, which

CASTRO does not, as it uses MPI+X. Next, these scaling

results are the preparation for large production runs on GPU

accelerated supercomputers.
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SUPPLEMENTARY MATERIALS

The scripts to compile Octo-Tiger are available on GitHub and the script to
run the jobs and the input files on Zenodo, respectively. CPPuddle is available
here.
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