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The availability of high readout-rate, high sensitivity, direct electron detectors will have a major 

impact on our ability to understand not only the spatial but also the temporal structure of materials 

systems. Areas where spatiotemporal information is essential for fundamental understanding of 

functionality include phase changes, transport and chemical conversion processes. For example, 

in heterogeneous catalysis, reactant molecules chemisorb onto nanoparticles surfaces and are 

transformed into product molecules. The breaking and making of chemical bonds is associated 

with structural dynamics in the particles such as fluxionalities in strain as well as atomic diffusion 

processes. Understanding this fluxionality and how it relates to functionality will be key to 

designing new and improved catalysts. However, extracting subtle structural information from 

time-resolved electron microscopy images is not straightforward. The short exposure times needed 

for high temporal resolution, usually results in very low signal-to-noise (SNR) in individual frames 

and new data processing approaches must be developed to extract scientifically useful information. 

 

In our current projects, we perform in situ and operando experiments on a Thermo Fisher Titan 

environmental transmission electron microscope (ETEM) fitted with a Gatan K3 direct electron 

detector. We typically run the detector between 40 and 100 frames per second so our data is often 

in the form of large movies featuring metal or ceramic nanoparticles. Techniques such as blob 

detection are reasonably robust in the presence of noise and have been employed to determine 

atomic column locations and intensities [1]. As the temperature and gas environment are varied, a 

nanoparticle may undergo changes in shape, orientation and composition. The system is often 

stochastic with periods of relative stability punctuated with periods of intense structural dynamics. 

To provide a quantitative description of dynamic evolution, event detection algorithms must be 

developed that can function with noisy data. Exponential weighted averaging combined with time 

derivatives is a promising approach to rapidly identify the onset of structural instability (see 

Gilankar et al in these proceedings).  

 

Machine learning offers more wholistic and diverse approaches for processing large datasets. The 

convolutional neural networks that we are developing required extensive training. If prior 

information is available on the images, for example, they show metal atomic columns, supervised 

networks can provide impressive performance when they work. Training requires a large number 

of simulated images from likely structures and defects in the system of interest. To denoise images 

of Pt nanoparticles supported on CeO2, we have developed a network trained on a series of almost 

20,000 images from 900 structures. The image simulations (performed with Dr. Probe) are 

implemented on HPC systems to provide high throughput. The network performance can be 

benchmarked against subsets of the simulated structures and statistical metrics (likelihood maps) 

can be generated to provide quantitative confidence levels in the output from experimental datasets 

[2].   



 

One advantage of supervised networks is that they do not require large volumes of real data. One 

weakness is the concern that the simulated training data may not accurately capture the underlying 

ground truth for the experiment. However, if very large experimental datasets are available, it 

becomes possible to train networks directly on experimental data. This unsupervised approach to 

training has the potential to denoise TEM images from any structure provided enough experimental 

data is available. We are testing the performance of unsupervised networks for denoising large in 

situ image time series. During a typical in situ experiment, terabytes of data may be recorded from 

samples under nominally identical conditions. The potential value of the unsupervised approach is 

that, with large enough datasets, the network is train directly on the material of interest and no 

external biases from simulation are present.  The preliminary output from such networks appears 

encouraging although it is necessary to develop criteria to objectively evaluate their performance 

(see Morales et al these proceedings).  

 

The purpose of microscopy is to solve materials problems and segmentation can be helpful to 

translate EM signals into higher level models of materials structure, microstructures or 

compositions. We have an interest in complex oxides where dynamic distributions of oxygen 

vacancies may evolve in ways that are not easy to predict. For example, during surface oxygen 

exchange, the oxygen vacancy creation changes at different rates with time according to the 

location. Interpreting the anion and cation column intensity variations in time can be challenging 

because they depend on thickness, tilt, and defocus as well as column occupancy. Effects, such as 

channeling, cause non-linear intensity variations which are in general different for anions and 

cations. We have been developing a segmentation approach to translate image intensity from 

cations and anions directly to column occupancy. This is accomplished using a supervised neural 

network which is trained on structural models with different point defect configurations and 

corresponding simulated images covering a wide range of thickness, tilt and defocus. Such an 

approach allows local cation and anion dynamics to be rapidly quantified in long time series on 

samples of varying thickness. The network is able to manage the moderate variation in tilt and 

defocus and performs well even when the data is very noisy (see Leibovich et al these 

proceedings). The advantages and disadvantages of this image segmentation approach will be 

discussed.  
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