
GetMobile    June 2022 | Volume 26, Issue 220

[HIGHLIGHTS]

Battery-free sensing devices harvest energy from their surrounding environment to perform sensing, 
computation, and communication. A core challenge for these devices is maintaining usefulness despite 
erratic, random, or irregular energy availability, which causes inconsistent execution, loss of service, 
and power failures. Adapting execution (degrading or upgrading) based on available or predicted 

power/energy seems promising to stave off power failures, meet deadlines, or increase throughput. However, 
due to constrained resources and limited local information, deciding what and when exactly to adapt is 
challenging. This article explores the fundamentals of energy-aware adaptation for intermittently powered 
computers and proposes heuristic adaptation mechanisms to dynamically modulate the program complexity 
at run-time to enable higher sensor coverage and throughput. While we target battery-free, intermittently 
powered, resource-constrained sensors, we see a general application to all energy harvesting devices. 

Excerpted from “REHASH: A Flexible, Developer Focused, Heuristic Adaptation Platform for Intermittently Powered Computing,”  
from Proceedings of the ACM on IMWUT with permission. https://dl.acm.org/doi/abs/10.1145/3478077 ©ACM 2021 

Abu Bakar, Alexander G. Ross Northwestern University, Evanston, IL, USA 
Kasim Sinan Yildirim University of Trento, Trento, TN, Italy
Josiah Hester Northwestern University, Evanston, IL, USA

Editors: Nicholas D. Lane and Xia Zhou 

HEURISTIC 
ADAPTATION  
FOR 
INTERMITTENTLY 
POWERED 
BATTERYLESS 
SENSORS

Ph
ot

o,
 is

to
ck

ph
ot

o.
co

m

This research is based upon work supported by the National Science Foundation under award numbers CNS1850496, CNS-2032408, 
CNS-2038853, CNS-2030251, and CNS-2107400. Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the authors and do not necessarily reflect the views of the National Science Foundation.



21June 2022 | Volume 26, Issue 2   GetMobile

[HIGHLIGHTS]

Challenge 1: When to Adapt
The practicality of deciding when to adapt 
is crucial. It is hard to estimate the overall 
energy availability in an environment, 
much less predict future energy, even 
for repetitive harvesting situations, since 
intermittent devices are operating on the 
margins of energy. While every environment 
has different energy harvesting modes or 
trends [9] (e.g., diurnal shifts, activity-
based kinetic harvesting), finding a general 
method to discern the energy environment 
is challenging because of the diversity of 
devices. Implementing things like maximum 
power point tracking and advanced circuitry 
and computation to record and analyze 
trends at run-time in the energy harvesting 
environment requires significant energy, 
space, and time. Critically, these methods 
are not power failure resilient, meaning that 
data cannot be sampled regularly due to the 
power failures that could lead to incorrect 
predictions about the energy harvesting 
environment.

adaptation so that computation complexity 
can be degraded or upgraded depending on 
the available energy to ensure that some- 
thing useful happens.

ADAPTATION FOR  
INTERMITTENT COMPUTING
Adaptation is not a new concept in mobile 
computer systems; it is a core factor of 
numerous classes of devices. Concepts like 
imprecise computation and approximate 
computing in real-time systems are highly 
related and have been explored since at least 
the early 1990s [6]. More recent examples 
include throttling background apps on 
android [7] and wearable devices that 
discard video frames or reduce resolution 
when battery life is low [8]. Adaptation in 
intermittent computing devices faces different 
challenges than those listed, as they suffer 
from frequent power failures, have severely 
constrained resources compared to any other 
adaptive system, and are usually limited in 
capability because of optimizing for cost.

Realizing the vision of smart dust [2], 
TerraSwarm, and ubiquitous computing 
requires sensors to harvest ambient energy  
to ensure long lifetimes and scalable deploy- 
ments with low maintenance costs. By leaving  
the batteries behind, the environmental 
impact of disposal is reduced, and sensor 
lifetimes are further increased since all 
batteries, even rechargeables, must eventually 
be replaced. Instead of batteries, these devices 
collect harvested energy into a capacitor and 
run programs only when the capacitor charge 
is sufficient to keep the device operating. 
When the stored energy is consumed, the 
device switches off until the next charging 
cycle is complete, resulting in very short active 
periods (e.g., a few milliseconds) and usually 
extended power outages (e.g., hours). When 
the energy is fully drained from the capacitor 
during computation, the device dies, resetting 
the volatile state (registers, stack, program 
counter, peripherals, time, etc.), preventing 
forward progress of computation and 
potentially corrupting memory. 

CURRENT RESEARCH IN 
INTERMITTENT COMPUTING 
Software systems for intermittent com- 
puting preserve forward progress and 
ensure memory consistency by inserting 
checkpoints throughout program code [3]. 
At each checkpoint, or when a power failure 
approaches, the volatile content is pushed  
to non-volatile storage (usually a FRAM).  
Other approaches employ task-based 
programming models [4, 5], where developers 
are expected to manually define tasks that are 
guaranteed to execute atomically. Tasks have 
all-or-nothing semantics, i.e., they either  
run to completion by committing their output 
to the non-volatile memory or have no effect 
on the program state if their execution is 
interrupted by a power failure. The design 
goal of all these systems is to ensure forward 
progress while maintaining memory 
consistency, but when power failures and 
the length of power outages are higher than 
usual, these systems fail to produce useful 
outputs within a reasonable time and waste 
vital energy on saving the current program 
state. What is needed is a mechanism for 

FIGURE 1. A simple sense and send application reads the temperature sensor five times and 
sends data to a base station. Energy harvesting causes power outages. Without adaptation 
(bottom), the application fails to report full information. Adaptive execution (top) quickly 
adapts to changing environmental conditions and finishes off quickly – using harvested energy 
efficiently by gracefully modifying execution.



GetMobile    June 2022 | Volume 26, Issue 222

[HIGHLIGHTS]

necessary task upgrade/degrade operation 
accordingly. Adaptation takes into account 
the various knobs that are indicated by the 
developer. Then, the task scheduler executes 
the next (adapted) task: ensuring the forward 
progress of the computation and, mean- 
while, responding to the energy dynamics. 
Application developers have the domain 
knowledge to specify an adaptation strategy, 
which will guide how tasks change based  
on the up/down signal.

Goals and Design Features  
of REHASH
REHASH aims to enable adaptation for 
intermittent systems in four key ways.
1. Portable energy approximation: It is  
difficult to provide a general model to esti- 
mate energy consumption and harvesting, 
considering various hardware and energy 
harvesting circuitry. Heuristic adaptation 
offers an all-around and portable way to 
estimate energy availability and make 
adaptation decisions. 
2. Many signals: REHASH allows the 
selection and integration of many signals 
for adaptation. These signals can be inputs 
into a transform to account for history, for 
example, using functions like min/max/
average/EWMA to get the best decision  
for the adaptation.
3. Many knobs: REHASH allows the 
programmer to select among many knobs to 
change based on energy availability. These 

knobs include sampling rates, transmit 
power, neural network depth, peripherals 
configuration, etc.
4. Flexible and fine-grained adaptation 
control: REHASH allows the programmer 
to control the overall adaptation strategy, 
including the type and level of code 
degradation, the particular tasks to adapt or 
not, and the signals to trigger adaptation. 
When, where, and how to adapt (or not) is 
completely controlled by the programmer.

Signals: Tracking the E 
nergy Dynamics
Before a system can adapt, it has to have 
some reliable mechanism for understanding 
the energy harvesting environment. REHASH 
relies on signals that are a statistical measure 
or count of the last execution before a power 
failure. These signals change in response to 
the energy harvesting environment and the 
energy demand of the application. Many 
adaptation signals can be integrated into 
our REHASH framework. The time interval 
length from the time the capacitor is fully 
charged and the device starts operating to 
the time the device fails (i.e., the on-time) 
can be exploited as an adaptation signal. 
On-time captures the relation between 
the incoming energy rate and the energy 
demand of the application. If the incoming 
energy is high or the tasks of the application 
require less energy to execute, one can 
expect a longer on-time. The inverse is true 

Challenge 2: What to Adapt
Responding to energy availability (by  
degrading or upgrading performance) 
should be configurable to provide flexibility 
and control to the programmer. Program-
mers should have the freedom to change  
(or not) any task or task variable, at once or 
in sequence. For instance, rather than de-
grading one variable, e.g., the number of sen-
sor samples, the programmer might prefer 
an adaptation scheme where the number 
of samples is increased, but the parameter 
related to the radio’s transmission power is 
decreased. Also, the notion of performance  
is different for every application. For example,  
many battery-free sensing applications 
can be seen as composed of a SENSE  ➞  
COMPUTE  ➞  SEND loop. In a high-energy 
mode, the application can perform SENSE  
➞  SEND type execution without any 
adaptation. When the energy is moderate, 
the application can switch to SENSE  ➞  
FILTER  ➞  SEND type execution (Figure 1). 
Fine-grained adaptation can be supported 
in this mode by decreasing the number of 
samples, filtering out data, etc. And finally, 
the application can switch to SENSE  ➞  INFER  
➞  SEND  ➞  INFERENCE type execution in 
a low-energy mode. Providing a general 
framework for enabling this broad array 
of adaptation techniques is challenging. 
Having numerous options gives decision 
fatigue and, more importantly, obscures the 
difference in performance from different 
selections.

REHASH: Heuristic  
Adaptation Platform
We have devised REHASH, a software 
framework, runtime system, and user- 
facing tool for developing intermittent appli- 
cations that respond to dynamic energy 
availability and provide the best quality of 
service. One of the main features of REHASH 
is employing heuristic adaptation, which uses 
signals stemming from intermittent execution 
caused by energy arrivals and dynamic energy 
availability in the environment. Based on these 
signals, REHASH uses a preset or developer-
defined heuristic function to estimate the 
current energy availability of the environment 
with low overhead. The output of the heuristic 
function gives the adapt-up or adapt-down 
decision (Figure 2). Based on these decisions, 
the REHASH task scheduler triggers the 
adaptation strategy that implements the 

FIGURE 2. Overview of our REHASH framework for heuristic adaptation. The hardware measures 
signals of the state of the energy harvesting environment, such as on-time, off-time, task count,  
and recent events. A developer-defined heuristic function takes these signals into a logic equation 
that decides whether to adapt up (increasing energy use) or degrade performance (decreasing 
energy use). The heuristic function embodies the developers’ application goals. The next adapted 
task replica is chosen, while the task scheduler executes the next (adapted) task.



23June 2022 | Volume 26, Issue 2   GetMobile

[HIGHLIGHTS]

for off-time, which measures how long it 
takes to charge an empty capacitor – if 
short, energy is high. A similar adaptation 
signal can be task-count with more tasks 
completed, meaning more energy available. 
All these signals track MPP (Figure 3), 
are maintained through power failures by 
REHASH, and are very lightweight, requiring 
little or no extra circuitry and little to no 
computation to derive.

Heuristic Function: When to Adapt
In REHASH, a heuristic function is a 
developer-defined logic statement that 
takes an equation composed of measured 
signals and calculates a binary outcome, 
i.e., adapt-up, or adapt-down. The outcome 
of the heuristic function decides when to 
adapt tasks. As depicted in Figure 2, the 
REHASH heuristic is a function denoted by 
f. The inputs of the heuristic function are 
the adaptation signals, denoted by s in the 
figure. REHASH can accept any heuristic 
function that can use many or only one 
adaptation signal to output the adaptation 
decision, e.g., only on-time or on-time and 
the task-count, etc. REHASH also records 
past history, i.e., it holds the values of the 
adaptation signal in the previous active 
cycles before the most recent power failure. 
Integrating more history means taking 
the signal values of previous active cycles 
into account. The heuristic function can 
be any equation or relation expressed in 
a mathematical form (with the constraint 
that excessively complicated heuristics will 

take longer to compute and may become 
less interpretable). For example, a heuristic 
function can be created that compares the 
latest measured value of a single adaptation 
signal, e.g. the task-count, with the average 
value of the corresponding adaptation signal 
stored in the history. If the current value of the 
signal is less than the average, the application 
should adapt-down, since fewer tasks are 
completed, which likely means the energy 
environment is trending low. Otherwise, 
the application should adapt-up since more 
energy is available to execute more tasks.

Knobs: What to Adapt
In REHASH, knobs are application-specific 
variables controlling internal/external periph-
erals and sensors, compute, and communica-
tion that can be tuned to use more/less energy 
based on the outcome of a heuristic function. 
Battery-free energy-harvesting devices 
support various applications. A single up/
down adaptation routine cannot be general-
ized for every application. The choice of the 
adaptation strategy, i.e., what to adapt, must 
be decided by the developer instead of the 
runtime. REHASH provides appropriate 
APIs to define these knobs and allows devel-
opers to write adaptation routines so that 
these knobs can be tuned to provide the best 
quality of service.

Fine-tuning Heuristics and Knobs
Too many choices and flexibility can lead to 
an increased tradeoff space. Programmers 
may become overwhelmed with the knobs, 

heuristics, and possible configurations. For 
example, when choosing between degrading 
the sample rate or the communication rate 
when energy is low, the developer might 
be wondering what the impact of a certain 
decision will be on performance. The 
developer has little insight into how well the 
program will perform in the wild, or even if 
the program as written can get things done 
under the most likely energy harvesting 
environment. We, therefore, develop a 
simulation tool, REHASH-explorer1, with 
visual feedback that helps developers 
conceptualize the impact of design decisions 
on energy efficiency and application perfor- 
mance. It allows users to analyze different 
adaptation strategies, i.e., the knobs, with 
either REHASH’s pre-defined or user-defined  
custom heuristics in various energy harvest- 
ing conditions and reports different statistics 
like i) total available energy, ii) total energy 
consumed, iii) the number of tasks executed, 
iv) the number of app completions, v) the 
number of power failures, and vi) average 
accuracy of inferences performed.

Bringing it all Together:  
How to Adapt
Finally, the application developers can take 
adaptation signals, the heuristic function 
that takes transformed adaptation signals 
to make an adapt-up or down decision, the 
knobs and variables they want to change, 
and then designate tasks adapted within the 
program. At this point, the programmer 
is merely making connections (glue code) 
between the heuristic adaptation approach 
and the tasks themselves as REHASH 
controls everything else.

EVALUATION: DOES HEURISTIC 
ADAPTATION REALLY WORK?
We evaluated REHASH intending to 
understand the benefits and drawbacks of 
adaptation in terms of performance (defined 
differently by each application), platform's 
flexibility and generality, overhead, and user 
experience. We explore heuristic adaptation 
with varied energy harvesting modalities 
and diverse applications: machine learning, 
activity recognition, and greenhouse 
monitoring, and find that the adaptive 
version of our ML app performs up to 46% 

FIGURE 3. REHASH uses heuristics derived from program execution patterns to track the maximum 
power harvestable from an energy environment, providing a useful estimate of energy availability trends.

1 https://adaptationprofiler.github.io/ 
adaptation-profiler/



GetMobile    June 2022 | Volume 26, Issue 224

[HIGHLIGHTS]

more classifications with only a 5% drop 
in accuracy; the activity recognition app 
provides 76% better coverage with only 
nominal down-sampling; and find that 
heuristic adaptation leads to higher throughput 
versus non-adaptive in all cases. While the full 
paper [1] presents a comprehensive evaluation 
of our system, here we highlight some general 
lessons that we learned from our evaluation.

Choice of adaptation signal matters:  
Both on-time- and off-time-based heuristics 
perform better than non-adaptive executions 
in all energy harvesting environments, 
meaning that they capture changes in energy 
harvesting conditions. However, task-count 
shows different behavior in each application. 
Since the neural network-based classifier is 
just a computational application and does 
not involve any real sensor or camera, task-
count works better as the size of the task 
remains fixed, whereas activity recognition 
and greenhouse monitoring applications 
use sensor and radio modules involving I/O 
operations. A SEND task can take 1000x more 
energy than a COMPUTE task. The task-count  
signal treats both these tasks the same, 
triggering adaptation at the wrong time, and 
therefore is not a good signal for tracking 
MPP in all kinds of applications.

Adaptation is triggered at the right time:  
As stated earlier, the signals used by REHASH 
efficiently capture MPP. With the diverse set of 
applications that we use in our measurement 
study, where I/O and high energy radio 
operations are involved, heuristics may trigger 
adaptation at the wrong time when it is not 
needed. Therefore, we wanted to see when 
adaptation is triggered with REHASH. While 
task-count-based heuristic does not trigger 
adaptation at all desired points because of  
its inability to capture the effect of high 
energy I/O operations, we find that both  
on-time and off-time-based heuristics 
accurately trigger down-adaptation when 
power decreases, and up-adaptation when 
power increases.

Heuristics are lightweight and give better 
sensor coverage: Throughput does not 
always correlate to application quality. Ten 
samples, all gathered within one second, are 
not very useful, or worse, are redundant and 
a waste to gather. Often one sample is enough 
for every period of a few seconds, minutes, 

or even hours, depending on the application. 
We use sensor coverage as a measure of how 
spread out samples are. We look at the time 
between two app completions/classifications 
as a way to measure sensor coverage. This 
sensor coverage metric is important for 
motion event detection or continuous 
monitoring applications like those seen in 
infrastructure monitoring. We find that 
all heuristic-based adaptive executions of 
REHASH show a smaller time difference, 
indicating better sensor coverage than non-
adaptive runs of the same applications.

The full paper [1] includes an in-depth 
evaluation of heuristic adaptation and 
offers more insights into how the ability to 
develop custom heuristics using the signals 
offered by REHASH makes application 
development flexible for programmers, and 
why REHASH’s adaptation signals may 
not capture MPP if the frequency of the 
harvested energy signal is low. 

SUMMARY
Intermittently powered energy-harvesting 
computers and sensing devices have great 
potential for revolutionizing sensor networks 
and the Internet of Things. This article has 
explored the challenges of developing robust 
energy-aware adaptation for batteryless 
sensors. We aimed to give developers the 
flexibility to account for the broad range of 
applications, hardware, and energy harvesting 
scenarios that could be encountered. We 
made heuristic functions from easily gathered 
signals, explored heuristic adaptation over 
various applications in multiple energy-
harvesting scenarios, and found that more 
consistent and reliable data delivery can be 
realized by programmer-informed runtime 
adaptation to the energy environment. n
Abu Bakar is a Ph.D. candidate in the Depart- 
ment of Computer Science at Northwestern 
University. His work focuses on making battery- 
less systems robust, and resilient to dynamic 
energy-harvesting conditions. He explores 
new hardware designs, builds efficient runtime 
systems, and develops tools to create functional 
and intelligent applications capable of real-time 
inference and self-adaptation in extreme energy 
harvesting conditions. http://abubakar.info/

Alexander Gregory Ross is a Bachelor‘s/
Master’s dual degree student at Northwestern 
University, studying Biomedical Engineering and 
Electrical Engineering. His recent work focuses 
on intermittent computing, machine learning, 
wearable devices, battery-free devices, and 
dynamic resource allocation.

Kasim Sinan Yildirim is an assistant professor at 
the Department of Information Engineering and 
Computer Science, University of Trento, Italy. He 
works on low-power and networked embedded 
systems, including intermittent computing, 
operating systems and runtimes, computer 
architectures, and low-power wireless protocols.  
http://sinanyil81.github.io/.

Josiah Hester is the Breed Chair of Design and 
an assistant professor of Computer Engineering 
at Northwestern University. He designs computer 
systems resilient to power failures, applied to 
health wearables and large-scale sensing for 
sustainability and conservation. He works toward  
a sustainable future for computing informed by  
his Native Hawaiian heritage. josiahhester.com

REFERENCES
[1] Abu Bakar, Alexander G. Ross, Kasim Sinan 

Yildirim, and Josiah Hester. 2021. REHASH: A 
flexible, developer focused, heuristic adaptation 
platform for intermittently powered computing. 
Proceedings of the ACM on Interactive, Mobile, Wear- 
able and Ubiquitous Technologies, 5, 3, Article 87.

[2] J.M. Kahn, R.H. Katz, and K.S.J. Pister. Next 
century challenges: Mobile networking for “smart 
dust.” Proceedings of the 5th Annual ACM/IEEE 
International Conference on Mobile Computing 
and Networking (MobiCom ’99).

[3] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar, 
Jacob Sorber, Josiah Hester, and Przemysław 
Pawełczak. Time-sensitive intermittent computing 
meets legacy software. Proceedings of the Twenty-
Fifth International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS ’20).

[4] Kasım Sinan Yıldırım, Amjad Yousef Majid, 
Dimitris Patoukas, Koen Schaper, Przemyslaw 
Pawelczak, and Josiah Hester. 2018. Ink: Reactive 
kernel for tiny batteryless sensors. Proceedings of 
the 16th ACM Conference on Embedded Networked 
Sensor Systems.

[5] Bashima Islam and Shahriar Nirjon. 2020. Zygarde: 
Time-sensitive on-device deep inference and 
adaptation on intermittently powered systems. 
Proceedings of the ACM on Interactive, Mobile, Wear- 
able and Ubiquitous Technologies, 4, 3, Article 82.

[6] Jane W.S. Liu, Wei-Kuan Shih, Kwei-Jay Lin,  
Riccardo Bettati, and Jen-Yao Chung. 1994. Impre-
cise computations. Proceedings of the IEEE 82, 1.

[7] Marcelo Martins, Justin Cappos, and Rodrigo 
Fonseca. 2015. Selectively taming background 
android apps to improve battery lifetime. 2015 
USENIX Annual Technical Conference.

[8] Saman Naderiparizi, Pengyu Zhang, Matthai 
Philipose, Bodhi Priyantha, Jie Liu, and Deepak 
Ganesan. 2017. Glimpse: A programmable  
early-discard camera architecture for continuous 
mobile vision. Proceedings of the 15th Annual 
International Conference on Mobile Systems, 
Applications, and Services. 

[9] Abu Bakar and Josiah Hester. 2018. Making sense  
of intermittent energy harvesting. Proceedings of  
the 6th International Workshop on Energy 
Harvesting & Energy-Neutral Sensing Systems.




