[HIGHLIGHTS]

Abu Bakar, Alexander G. Ross Northwestern University, Evanston, IL, USA
Kasim Sinan Yildirim University of Trento, Trento, TN, Italy
Josiah Hester Northwestern University, Evanston, IL, USA

Editors: Nicholas D. Lane and Xia Zhou

HEURISTIC
ADAPTATION
FORy
INTE ﬁMJIJ’ INLYE
?OYWERED
BATTERYLESS
SENSOHS

Excerpted from “REHASH: A Flexible, Developer Focused, Heuristic Adaptation Platform for Intermittently Powered Computing,’
from Proceedings of the ACM on IMWUT with permission. https://dl.acm.org/doi/abs/10.1145/3478077 ©ACM 2021

This research is based upon work supported by the National Science Foundation under award numbers CNS1850496, CNS-2032408,
CNS-2038853, CNS-2030251, and CNS-2107400. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

attery-free sensing devices harvest energy from their surrounding environment to perform sensing,
computation, and communication. A core challenge for these devices is maintaining usefulness despite
erratic, random, or irregular energy availability, which causes inconsistent execution, loss of service,
and power failures. Adapting execution (degrading or upgrading) based on available or predicted
power/energy seems promising to stave off power failures, meet deadlines, or increase throughput. However,
due to constrained resources and limited local information, deciding what and when exactly to adapt is
challenging. This article explores the fundamentals of energy-aware adaptation for intermittently powered
computers and proposes heuristic adaptation mechanisms to dynamically modulate the program complexity
at run-time to enable higher sensor coverage and throughput. While we target battery-free, intermittently
powered, resource-constrained sensors, we see a general application to all energy harvesting devices.

Photo, istockphoto.com

20 GetMobile June 2022 | Volume 26, Issue 2

Realizing the vision of smart dust [2],

TerraSwarm, and ubiquitous computing
requires sensors to harvest ambient energy
to ensure long lifetimes and scalable deploy-
ments with low maintenance costs. By leaving
the batteries behind, the environmental
impact of disposal is reduced, and sensor
lifetimes are further increased since all
batteries, even rechargeables, must eventually
be replaced. Instead of batteries, these devices
collect harvested energy into a capacitor and
run programs only when the capacitor charge
is sufficient to keep the device operating.
When the stored energy is consumed, the
device switches off until the next charging
cycle is complete, resulting in very short active
periods (e.g., a few milliseconds) and usually
extended power outages (e.g., hours). When
the energy is fully drained from the capacitor
during computation, the device dies, resetting
the volatile state (registers, stack, program
counter, peripherals, time, etc.), preventing
forward progress of computation and
potentially corrupting memory.

CURRENT RESEARCH IN
INTERMITTENT COMPUTING
Software systems for intermittent com-
puting preserve forward progress and
ensure memory consistency by inserting
checkpoints throughout program code [3].
At each checkpoint, or when a power failure
approaches, the volatile content is pushed
to non-volatile storage (usually a FRAM).
Other approaches employ task-based
programming models [4, 5], where developers
are expected to manually define tasks that are
guaranteed to execute atomically. Tasks have
all-or-nothing semantics, i.e., they either

run to completion by committing their output
to the non-volatile memory or have no effect
on the program state if their execution is
interrupted by a power failure. The design
goal of all these systems is to ensure forward
progress while maintaining memory
consistency, but when power failures and
the length of power outages are higher than
usual, these systems fail to produce useful
outputs within a reasonable time and waste
vital energy on saving the current program
state. What is needed is a mechanism for

Stored Energy

“Charging (OFF) Execution (ON)

High Energy
Task Sample _____Send Send
Scheduler | . -{EIE| EEsE
track SO e i
energy ™ : . -
v R iedium Energy
Heuristics dTnigf_’ Sample ~ Fllter Filter Send
adaptation --__ ;]
energy p\ ! - 2 skip samples| : 2l E.>| .|
Signals Low Energy
T Sample Infer . infer Send
- =g e
High Medium > Low roomelfp {feut i [Resu]
Energy Energy Energy

No Adaptation

i ERBEEN S

FIGURE 1. A simple sense and send application reads the temperature sensor five times and
sends data to a base station. Energy harvesting causes power outages. Without adaptation
(bottom), the application fails to report full information. Adaptive execution (top) quickly
adapts to changing environmental conditions and finishes off quickly — using harvested energy

efficiently by gracefully modifying execution.

adaptation so that computation complexity
can be degraded or upgraded depending on
the available energy to ensure that some-
thing useful happens.

ADAPTATION FOR

INTERMITTENT COMPUTING
Adaptation is not a new concept in mobile
computer systems; it is a core factor of
numerous classes of devices. Concepts like
imprecise computation and approximate
computing in real-time systems are highly
related and have been explored since at least
the early 1990s [6]. More recent examples
include throttling background apps on
android [7] and wearable devices that
discard video frames or reduce resolution
when battery life is low [8]. Adaptation in
intermittent computing devices faces different
challenges than those listed, as they suffer
from frequent power failures, have severely
constrained resources compared to any other
adaptive system, and are usually limited in
capability because of optimizing for cost.

June 2022 | Volume 26, Issue 2 GetMobile

Challenge 1: When to Adapt

The practicality of deciding when to adapt
is crucial. It is hard to estimate the overall
energy availability in an environment,
much less predict future energy, even

for repetitive harvesting situations, since
intermittent devices are operating on the
margins of energy. While every environment
has different energy harvesting modes or
trends [9] (e.g., diurnal shifts, activity-
based kinetic harvesting), finding a general
method to discern the energy environment
is challenging because of the diversity of
devices. Implementing things like maximum
power point tracking and advanced circuitry
and computation to record and analyze
trends at run-time in the energy harvesting
environment requires significant energy,
space, and time. Critically, these methods
are not power failure resilient, meaning that
data cannot be sampled regularly due to the
power failures that could lead to incorrect
predictions about the energy harvesting
environment.

21

Challenge 2: What to Adapt
Responding to energy availability (by
degrading or upgrading performance)
should be configurable to provide flexibility
and control to the programmer. Program-
mers should have the freedom to change
(or not) any task or task variable, at once or
in sequence. For instance, rather than de-
grading one variable, e.g., the number of sen-
sor samples, the programmer might prefer
an adaptation scheme where the number

of samples is increased, but the parameter
related to the radio’s transmission power is
decreased. Also, the notion of performance
is different for every application. For example,
many battery-free sensing applications

can be seen as composed of a SENSE —
COMPUTE — SEND loop. In a high-energy
mode, the application can perform SENSE

— SEND type execution without any
adaptation. When the energy is moderate,
the application can switch to SENSE —
FILTER — SEND type execution (Figure 1).
Fine-grained adaptation can be supported
in this mode by decreasing the number of
samples, filtering out data, etc. And finally,
the application can switch to SENSE = INFER
— SEND — INFERENCE type execution in

a low-energy mode. Providing a general
framework for enabling this broad array

of adaptation techniques is challenging.
Having numerous options gives decision
fatigue and, more importantly, obscures the
difference in performance from different
selections.

REHASH: Heuristic

Adaptation Platform

We have devised REHASH, a software
framework, runtime system, and user-
facing tool for developing intermittent appli-
cations that respond to dynamic energy
availability and provide the best quality of
service. One of the main features of REHASH
is employing heuristic adaptation, which uses
signals stemming from intermittent execution
caused by energy arrivals and dynamic energy
availability in the environment. Based on these
signals, REHASH uses a preset or developer-
defined heuristic function to estimate the
current energy availability of the environment
with low overhead. The output of the heuristic
function gives the adapt-up or adapt-down
decision (Figure 2). Based on these decisions,
the REHASH task scheduler triggers the
adaptation strategy that implements the

22 GetMobile

Adaptation Signals

’ Power meas. I Completed Tasks
11T
on Time il Program stats
Off Time ...others
; Signal Select ;
Knobs developer’s heuristic function

Sample Rt. f(s,,,s,)€{0,1}
Peripherals
Compute adapt up / down

Task Scheduler-__s

T*T Time | Energy
Heuristic Adaptation

>

Source Task Graph
0;10::0,0
' ()
Energy
@ Cost
@ Low

Current Task

FIGURE 2. Overview of our REHASH framework for heuristic adaptation. The hardware measures
signals of the state of the energy harvesting environment, such as on-time, off-time, task count,
and recent events. A developer-defined heuristic function takes these signals into a logic equation
that decides whether to adapt up (increasing energy use) or degrade performance (decreasing
energy use). The heuristic function embodies the developers'application goals. The next adapted
task replica is chosen, while the task scheduler executes the next (adapted) task.

necessary task upgrade/degrade operation
accordingly. Adaptation takes into account
the various knobs that are indicated by the
developer. Then, the task scheduler executes
the next (adapted) task: ensuring the forward
progress of the computation and, mean-
while, responding to the energy dynamics.
Application developers have the domain
knowledge to specify an adaptation strategy,
which will guide how tasks change based
on the up/down signal.

Goals and Design Features

of REHASH

REHASH aims to enable adaptation for
intermittent systems in four key ways.

1. Portable energy approximation: It is
difficult to provide a general model to esti-
mate energy consumption and harvesting,
considering various hardware and energy
harvesting circuitry. Heuristic adaptation
offers an all-around and portable way to
estimate energy availability and make
adaptation decisions.

2. Many signals: REHASH allows the
selection and integration of many signals
for adaptation. These signals can be inputs
into a transform to account for history, for
example, using functions like min/max/
average/EWMA to get the best decision
for the adaptation.

3. Many knobs: REHASH allows the
programmer to select among many krnobs to
change based on energy availability. These

June 2022 | Volume 26, Issue 2

knobs include sampling rates, transmit
power, neural network depth, peripherals
configuration, etc.

4. Flexible and fine-grained adaptation
control: REHASH allows the programmer
to control the overall adaptation strategy,
including the type and level of code
degradation, the particular tasks to adapt or
not, and the signals to trigger adaptation.
When, where, and how to adapt (or not) is
completely controlled by the programmer.

Signals: Tracking the E

nergy Dynamics

Before a system can adapt, it has to have
some reliable mechanism for understanding
the energy harvesting environment. REHASH
relies on signals that are a statistical measure
or count of the last execution before a power
failure. These signals change in response to
the energy harvesting environment and the
energy demand of the application. Many
adaptation signals can be integrated into
our REHASH framework. The time interval
length from the time the capacitor is fully
charged and the device starts operating to
the time the device fails (i.e., the on-time)
can be exploited as an adaptation signal.
On-time captures the relation between

the incoming energy rate and the energy
demand of the application. If the incoming
energy is high or the tasks of the application
require less energy to execute, one can
expect a longer on-time. The inverse is true

Maximum Harvestable Power (MPP)

w

————————— Heuristic Signals— — = = = — — — =

Off-Time ',

On-Time

Task Coun

FIGURE 3. REHASH uses heuristics derived from program execution patterns to track the maximum
power harvestable from an energy environment, providing a useful estimate of energy availability trends.

for off-time, which measures how long it
takes to charge an empty capacitor - if
short, energy is high. A similar adaptation
signal can be task-count with more tasks
completed, meaning more energy available.
All these signals track MPP (Figure 3),

are maintained through power failures by
REHASH, and are very lightweight, requiring
little or no extra circuitry and little to no
computation to derive.

Heuristic Function: When to Adapt
In REHASH, a heuristic function is a
developer-defined logic statement that
takes an equation composed of measured
signals and calculates a binary outcome,
i.e., adapt-up, or adapt-down. The outcome
of the heuristic function decides when to
adapt tasks. As depicted in Figure 2, the
REHASH heuristic is a function denoted by
f. The inputs of the heuristic function are
the adaptation signals, denoted by s in the
figure. REHASH can accept any heuristic
function that can use many or only one
adaptation signal to output the adaptation
decision, e.g., only on-time or on-time and
the task-count, etc. REHASH also records
past history, i.e., it holds the values of the
adaptation signal in the previous active
cycles before the most recent power failure.
Integrating more history means taking

the signal values of previous active cycles
into account. The heuristic function can
be any equation or relation expressed in

a mathematical form (with the constraint
that excessively complicated heuristics will

take longer to compute and may become
less interpretable). For example, a heuristic
function can be created that compares the
latest measured value of a single adaptation
signal, e.g. the task-count, with the average
value of the corresponding adaptation signal
stored in the history. If the current value of the
signal is less than the average, the application
should adapt-down, since fewer tasks are
completed, which likely means the energy
environment is trending low. Otherwise,
the application should adapt-up since more
energy is available to execute more tasks.

Knobs: What to Adapt

In REHASH, knobs are application-specific
variables controlling internal/external periph-
erals and sensors, compute, and communica-
tion that can be tuned to use more/less energy
based on the outcome of a heuristic function.
Battery-free energy-harvesting devices
support various applications. A single up/
down adaptation routine cannot be general-
ized for every application. The choice of the
adaptation strategy, i.e., what to adapt, must
be decided by the developer instead of the
runtime. REHASH provides appropriate
APIs to define these knobs and allows devel-
opers to write adaptation routines so that
these knobs can be tuned to provide the best
quality of service.

Fine-tuning Heuristics and Knobs
Too many choices and flexibility can lead to
an increased tradeoff space. Programmers
may become overwhelmed with the knobs,

[HIGHLIGHTS]

heuristics, and possible configurations. For
example, when choosing between degrading
the sample rate or the communication rate
when energy is low, the developer might

be wondering what the impact of a certain
decision will be on performance. The
developer has little insight into how well the
program will perform in the wild, or even if
the program as written can get things done
under the most likely energy harvesting
environment. We, therefore, develop a
simulation tool, REHASH-explorer’, with
visual feedback that helps developers
conceptualize the impact of design decisions
on energy efficiency and application perfor-
mance. It allows users to analyze different
adaptation strategies, i.e., the knobs, with
either REHASH's pre-defined or user-defined
custom heuristics in various energy harvest-
ing conditions and reports different statistics
like i) total available energy, ii) total energy
consumed, iii) the number of tasks executed,
iv) the number of app completions, v) the
number of power failures, and vi) average
accuracy of inferences performed.

Bringing it all Together:

How to Adapt

Finally, the application developers can take
adaptation signals, the heuristic function
that takes transformed adaptation signals
to make an adapt-up or down decision, the
knobs and variables they want to change,
and then designate tasks adapted within the
program. At this point, the programmer

is merely making connections (glue code)
between the heuristic adaptation approach
and the tasks themselves as REHASH
controls everything else.

EVALUATION: DOES HEURISTIC
ADAPTATION REALLY WORK?

We evaluated REHASH intending to
understand the benefits and drawbacks of
adaptation in terms of performance (defined
differently by each application), platform's
flexibility and generality, overhead, and user
experience. We explore heuristic adaptation
with varied energy harvesting modalities
and diverse applications: machine learning,
activity recognition, and greenhouse
monitoring, and find that the adaptive
version of our ML app performs up to 46%

! https://adaptationprofiler.github.io/
adaptation-profiler/

June 2022 | Volume 26, Issue 2 GetMobile 23

more classifications with only a 5% drop

in accuracy; the activity recognition app
provides 76% better coverage with only
nominal down-sampling; and find that
heuristic adaptation leads to higher throughput
versus non-adaptive in all cases. While the full
paper [1] presents a comprehensive evaluation
of our system, here we highlight some general
lessons that we learned from our evaluation.

Choice of adaptation signal matters:

Both on-time- and off-time-based heuristics
perform better than non-adaptive executions
in all energy harvesting environments,
meaning that they capture changes in energy
harvesting conditions. However, task-count
shows different behavior in each application.
Since the neural network-based classifier is
just a computational application and does
not involve any real sensor or camera, task-
count works better as the size of the task
remains fixed, whereas activity recognition
and greenhouse monitoring applications

use sensor and radio modules involving I/O
operations. A SEND task can take 1000x more
energy than a COMPUTE task. The task-count
signal treats both these tasks the same,
triggering adaptation at the wrong time, and
therefore is not a good signal for tracking
MPP in all kinds of applications.

Adaptation is triggered at the right time:
As stated earlier, the signals used by REHASH
efficiently capture MPP. With the diverse set of
applications that we use in our measurement
study, where I/O and high energy radio
operations are involved, heuristics may trigger
adaptation at the wrong time when it is not
needed. Therefore, we wanted to see when
adaptation is triggered with REHASH. While
task-count-based heuristic does not trigger
adaptation at all desired points because of
its inability to capture the effect of high
energy I/O operations, we find that both
on-time and off-time-based heuristics
accurately trigger down-adaptation when
power decreases, and up-adaptation when
power increases.

Heuristics are lightweight and give better
sensor coverage: Throughput does not
always correlate to application quality. Ten
samples, all gathered within one second, are
not very useful, or worse, are redundant and
a waste to gather. Often one sample is enough
for every period of a few seconds, minutes,

24 GetMobile

or even hours, depending on the application.

We use sensor coverage as a measure of how
spread out samples are. We look at the time
between two app completions/classifications
as a way to measure sensor coverage. This
sensor coverage metric is important for
motion event detection or continuous
monitoring applications like those seen in
infrastructure monitoring. We find that

all heuristic-based adaptive executions of
REHASH show a smaller time difference,
indicating better sensor coverage than non-
adaptive runs of the same applications.

The full paper [1] includes an in-depth
evaluation of heuristic adaptation and
offers more insights into how the ability to
develop custom heuristics using the signals
offered by REHASH makes application
development flexible for programmers, and
why REHASH’s adaptation signals may
not capture MPP if the frequency of the
harvested energy signal is low.

SUMMARY

Intermittently powered energy-harvesting
computers and sensing devices have great
potential for revolutionizing sensor networks
and the Internet of Things. This article has
explored the challenges of developing robust
energy-aware adaptation for batteryless
sensors. We aimed to give developers the
flexibility to account for the broad range of
applications, hardware, and energy harvesting
scenarios that could be encountered. We
made heuristic functions from easily gathered
signals, explored heuristic adaptation over
various applications in multiple energy-
harvesting scenarios, and found that more
consistent and reliable data delivery can be
realized by programmer-informed runtime
adaptation to the energy environment. H

Abu Bakar is a Ph.D. candidate in the Depart-
ment of Computer Science at Northwestern
University. His work focuses on making battery-
less systems robust, and resilient to dynamic
energy-harvesting conditions. He explores

new hardware designs, builds efficient runtime
systems, and develops tools to create functional
and intelligent applications capable of real-time
inference and self-adaptation in extreme energy
harvesting conditions. http://abubakar.info/

Alexander Gregory Ross is a Bachelor's/
Master’s dual degree student at Northwestern
University, studying Biomedical Engineering and
Electrical Engineering. His recent work focuses
on intermittent computing, machine learning,
wearable devices, battery-free devices, and
dynamic resource allocation.

June 2022 | Volume 26, Issue 2

Kasim Sinan Yildirim is an assistant professor at
the Department of Information Engineering and
Computer Science, University of Trento, Italy. He
works on low-power and networked embedded
systems, including intermittent computing,
operating systems and runtimes, computer
architectures, and low-power wireless protocols.
http://sinanyil81.github.io/.

Josiah Hester is the Breed Chair of Design and
an assistant professor of Computer Engineering
at Northwestern University. He designs computer
systems resilient to power failures, applied to
health wearables and large-scale sensing for
sustainability and conservation. He works toward
a sustainable future for computing informed by
his Native Hawaiian heritage. josiahhester.com

REFERENCES

[1] Abu Bakar, Alexander G. Ross, Kasim Sinan
Yildirim, and Josiah Hester. 2021. REHASH: A
flexible, developer focused, heuristic adaptation
platform for intermittently powered computing.
Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies, 5, 3, Article 87.

[2] .M. Kahn, R.H. Katz, and K.S.J. Pister. Next
century challenges: Mobile networking for “smart
dust” Proceedings of the 5™ Annual ACM/IEEE
International Conference on Mobile Computing
and Networking (MobiCom °99).

[3] Vito Kortbeek, Kasim Sinan Yildirim, Abu Bakar,
Jacob Sorber, Josiah Hester, and Przemystaw
Pawelczak. Time-sensitive intermittent computing
meets legacy software. Proceedings of the Twenty-
Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS ’20).

[4] Kasim Sinan Yildirim, Amjad Yousef Majid,
Dimitris Patoukas, Koen Schaper, Przemyslaw
Pawelczak, and Josiah Hester. 2018. Ink: Reactive
kernel for tiny batteryless sensors. Proceedings of
the 16" ACM Conference on Embedded Networked
Sensor Systems.

[5] Bashima Islam and Shahriar Nirjon. 2020. Zygarde:
Time-sensitive on-device deep inference and
adaptation on intermittently powered systems.
Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies, 4, 3, Article 82.

[6] Jane W.S. Liu, Wei-Kuan Shih, Kwei-Jay Lin,
Riccardo Bettati, and Jen-Yao Chung. 1994. Impre-
cise computations. Proceedings of the IEEE 82, 1.

[7] Marcelo Martins, Justin Cappos, and Rodrigo
Fonseca. 2015. Selectively taming background
android apps to improve battery lifetime. 2015
USENIX Annual Technical Conference.

[8] Saman Naderiparizi, Pengyu Zhang, Matthai
Philipose, Bodhi Priyantha, Jie Liu, and Deepak
Ganesan. 2017. Glimpse: A programmable
early-discard camera architecture for continuous
mobile vision. Proceedings of the 15" Annual
International Conference on Mobile Systems,
Applications, and Services.

[9] Abu Bakar and Josiah Hester. 2018. Making sense
of intermittent energy harvesting. Proceedings of
the 6'h International Workshop on Energy
Harvesting & Energy-Neutral Sensing Systems.

