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Abstract Purpose Excessive stress experienced by the surgeon can have a neg-
ative effect on the surgeon’s technical skills. The goal of this study is to evaluate
and validate a deep learning framework for real-time detection of stressed surgical
movements using kinematic data.

Methods 30 medical students were recruited as the subjects to perform a
modified peg transfer task and were randomized into two groups, a control group
(n=15) and a stressed group (n=15) that completed the task under deteriorating,
simulated stressful conditions. To classify stressed movements, we first developed
an attention-based Long-Short-Term-Memory recurrent neural network (LSTM)
trained to classify normal/stressed trials and obtain the contribution of each data
frame to the stress level classification. Next, we extracted the important frames
from each trial and used another LSTM network to implement the frame-wise
classification of normal and stressed movements.

Results The classification between normal and stressed trials using attention-
based LSTM model reached an overall accuracy of 75.86% under Leave-One-User-
Out (LOUO) cross-validation. The second LSTM classifier was able to distinguish
between the typical normal and stressed movement with an accuracy of 74.96%
with an 8-second observation under LOUO. Finally, the normal and stressed move-
ments in stressed trials could be classified with the accuracy of 68.18% with a
16-second observation under LOUO.

Conclusion In this study, we extracted the movements which are more likely
to be affected by stress and validated the feasibility of using LSTM and kinematic
data for frame-wise detection of stress level during laparoscopic training. The
proposed classifier could be potentially be integrated with robot-assisted surgery
platforms for stress management purposes.
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1 Introduction

Intra-operative surgical stress is commonly experienced by surgeons. Acute mental
stress can compromise surgical skill and in turn, affect patient safety [3]. During
laparoscopic procedures, it has also been shown that surgeons experience more
stressful conditions than during open surgery due to limitations in visualization,
work space volume, and an increased need for hand-eye coordination [5]. Perform-
ing laparoscopic surgery is a complex motor task. For complex tasks, it has been
shown that external stressors can adversely affect motor performance [23]. The neg-
ative effects of external stress on surgical performance can include a higher number
of errors made, less economy of motion, and increased completion time [2, 19, 12, 3].

Measuring Stress Level Excessive stress can have negative effects on a surgeon’s
technical skills, for example, leading to increased path length and a higher number
of errors [19]. A common established method for measuring human stress levels
involves the use of physiological data. Cortisol levels measured from saliva have
been well studied as indicators of stress [3]. Heart rate, heart rate variability,
and skin conductance level also can be used to quantify stress levels [6, 9, 25, 7].
However, these techniques can be time consuming, are relatively invasive, and
may require surgeons to wear additional sensors on their bodies that may be
cumbersome. Alternatively, in our previous studies, we validated the feasibility
of using features extracted from kinematic data of the laparoscopic instrument
tips (e.g., velocity, acceleration, and jerk) to distinguish between stressed and
non-stressed conditions during laparoscopic training procedures using statistical
analysis. These studies demonstrated that the kinematic data is a powerful tool for
identifying stressed conditions. Additionally, kinematic data measuring techniques
are less invasive than physiological sensing as they require fewer sensors that do
not need to be worn by the surgeon [30, 15].

Demand for Real-time Detection of Stress Level Stress levels can vary during la-
paroscopic surgery and stress may come from different sources [1]. The afore-
mentioned sensing techniques often measurements after the experimental trial.
Continuous stress monitoring, however, could enable more granular stress-related
data. For example, Weenk et al. [28] implemented continuous stress monitoring
using a wearable sensor patch which monitored the heart rate variability (HRV)
of surgeons. HRV analyis requires both time domain and frequency domain tech-
niques, as well as collecting the baseline data from each subject, which can be
computationally challenging. There is an important need to develop methods to
detect stress levels in real-time during surgical procedures to help monitor surgeon
performance and mitigate the potential risk to the patients.

More specifically, with the development of modern robotic-assisted surgical
platforms, the kinematic data can be collected directly from robot joint encoders
without additional sensors. The real-time detection of stress levels using kinematic
data of surgical robot end-effectors can be integrated with the advanced control
techniques on robotic-assisted surgical platforms to provide the surgeon with stress
coping strategies.

Motivation for Recurrent Neural Networks Predictive modeling based on machine
learning or deep learning methods has been widely used in the field of surgical
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skill assessment, such as k-Nearest Neighbors (kNN), logistic regression (LR) and
support vector machines (SVM) [11, 26]. Wang et al. [27] used a convolutional
neural network (CNN) architecture for real-time surgical skill assessment. These
techniques used motion data as input and validated the fact that motion data can
be used for characterizing surgical performance. For stress detection, Pandey [21]
used several machine learning techniques (SVM, Logistic Regression) and heart
rate as the input feature to predict patient acute stress condition.

With recent development in machine learning and deep learning, Recurrent
Neural Networks (RNN), in particular, Long Short Term Memory (LSTM) mod-
els, have been shown to have important advantages in classifying and making pre-
dictions based on time-series data [13]. LSTM is an appropriate tool for temporal
modeling and it is widely used in human activity recognition (HAR) and language
processing due to its inherent structure to “memorize” and “forget” important
points within a sequence of data [18, 20].

The advantages associated with handling time-series data using LSTM has
attracted the attention of researchers in the field of surgical data science. DiPi-
etro et al. [10] applied LSTM to joint segmentation and classification of surgical
activities from robot kinematic data. Kannan et al. [14] presented a model of a
combination of a convolutional neural network (CNN) and an LSTM network to
process the video data for recognition of the type of a laparoscopic surgery (e.g.
adrenalectomy, gastric bypass, cholecystectomy etc.).

Recently, the attention mechanism has also been proposed for sequence mod-
eling. Bahdanau et al. first introduced attention in machine translation where the
output will focus its attention on a certain part of a sequence [4]. Neural networks
have demonstrated performance improvements when integrated with an attention
mechanism. Attention mechanisms has been widely used in variety of sequence
modeling projects, such as machine translation [4, 29], sentiment classification [16],
time-series prediction [22], etc.

As inspired by these studies, we decided to move a step forward to using pre-
dictive modeling techniques and kinematic data to implement a near real-time
detection of surgical stress levels. Our hypothesis is that the surgeon’s stress level
during laparoscopic surgery can be extracted from the instrument handles move-
ments within a short period of observation. In this study, we first implemented
an attention-based LSTM classifier to classify normal/stressed trials as well as
obtained the movements which were most affected by the stress. Then, we imple-
mented another LSTM classifier to detect normal/stress movements based on the
attention obtained from the first step.

2 Background and Preliminary Work
2.1 Experiment and Dataset

We used a portion of the dataset which came from one of our previous stud-
ies [15, 30]. 30 medical students (29 were right-handed and 1 was left-handed) at
the University of Texas Southwestern Medical Center were recruited in this IRB
approved study (UTD #14-57, UTSW STU #032015-053) and informed consent
was obtained.
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Fig. 1: Simulator Setup.

After informed consent, each subject participated in a 10-minute tutorial on the
Fundamentals of Laparoscopic Surgery (FLS) peg transfer drill to be familiarized
with the instruments and the requirements of the experimental task. Subjects were
randomly assigned into a control (n = 15) or stressed (n = 15) group.

During the experiment, each subject was asked to complete a 6-minute peg
transfer task on a FLS box trainer in a high-fidelity simulated operating room (one
trial per subject). The FLS box trainer was placed in the abdominal section of a
medical manikin which was draped. A pair of electromagnetic (EM) trackers were
used to capture the time-series data of motions (Fig. 1a). The EM trackers were
mounted to the handles of the laparoscopic instruments. The data was recorded
at a frequency of 256 Hz from the EM trackers.

The data collected by the EM trackers included xp,—, yn—, zn— positional
coordinates in space and quaternions go—, qg1—, g2—, g3—. The position coordinates
determined the instrument handle positions in space and the quaternions were used
to determine the rotation matrix for calculating the 3 dimensional instrument tip
positions (x:—, y:—, z¢—). The instrument tip positions were calculated using
handle positions, a rigid body transformation obtained by quarternions and the
instrument geometry. Both instrument handle and instrument tip positions were
saved in the dataset.

The stressors in the study included the vital signs of the medical manikin and
the moderator’s feedback during the task. In control group, each subject proceeded
while hearing normal vital signs and with no feedback from the moderator. What
is worthy mentioning is, in stressed group, each subject performed the task under
a period of progressively deteriorating vital signs, with a particular increase in
intensity beginning at the 3-minute mark. The moderator also provided feedback
to the stressed subject and the feedback culminated in 30 seconds of cardiac arrest
and the expiration of the medical manikin.

Besides the kinematic data from EM trackers, other data was collected and
evaluated through video review, such as number of pegs transferred, number of
errors made. Additionally, a blinded, independent reviewer with training in OSATS
scoring graded each subject using a modified OSATS (mOSATS) rubric [17]. The
subjects were also brought to complete the State-Trait-Anxiety-Inventory (STAI)
to measure subjective stress after the experiment [24].

Overall, in this study, we only used the kinematic portion of our previously
collected dataset. The dataset in this study contains the time-series 3-D positional
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data of both instrument handles (xp—, yn—, zn—) of each subject throughout the
6-minute peg transfer task. We removed the data of one subject (in control group,
right-handed) due to sensor failure during experiment. We down-sampled the data
to 5Hz and organized the data of both instrument handles based on each subject’s
handedness, so the overall dataset of 29 subjects resulted in approximately 52,200
samples of six features tnp, YND, ZND, TD, YD, 2D (the subscript D is Dominant
hand and N D is Nondominant hand).

2.2 Previous Results

In our previous studies, we calculated the kinematic metrics of the instrument tips,
such as velocity, acceleration, and jerk. We also analyzed the scores obtained by
mOSATS and STAI. Statistical analysis comparing the metrics between control
and stressed groups was conducted.

According to our previous studies evaluating the experimental data, in general,
the stressed group had higher velocity, acceleration, jerk, indicating less smooth
movements on instrument tips; Smaller numbers of pegs transferred, larger num-
bers of error made, lower mOSATS scores and higher scores for the change from
baseline (trait) to during the scenario (state) in STAI.

The significant differences between control and stressed groups in our previous
studies indicated that kinematic data can be related to increased stress levels. The
detailed results of these evaluations can be found in our previous studies [15, 30].

3 Methods
3.1 Trial-wise Classification and Attention

It was not known if all movements made by the subject within a trial would have
been affected by the external stress. The goal of this step is to find the importance
of each time step within a trial that contributes to the stress representation. In
other words, we want to extract the movements that are more significantly affected
by the stress.

The architecture of the proposed attention-based LSTM classifier is shown in
Fig. 2. The input sequence {x1,x2,...,x7} was the kinematic data of each trial.
As mentioned in Section 3.1, the input kinematic data contains six features of the
3D positional data of both instrument handles (znp, ynD, 28D, D, YD, 2D)-
For each input:

Ti = [wNDhyNDi,ZNDi,l'Di;yDi,ZDi]T7i =1.T (1)

The subscript D is dominant hand side and N D is dondominant hand side. The
ground-truth label y = {0 or 1} was assigned to be control (normal) or stressed
trials. The input sequence {x1, 2, ...,z } was then fed into a Bidirectional LSTM
to get the hidden state sequence h = {h1, ha, ..., hr}.

Then we measured the importance of each time step by computing a tanh
function of hidden states h:

e = tanh(h) = tanh(h1, ha, ..., h1) (2)
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e is called “energy” which can be interpreted as the contribution of the time
step to the final representation of stress levels. The attention weights «; were
obtained by passing e; to a Softmax function, where ensured all attention weights
of a trial sum to 1.

exp(e;)
ST cnplen) )

The attention weight «; indicates how much attention the ground-truth label
y should pay to the i*" time step. Then we can calculate the context vector as a
weighted linear combination of all hidden states h:

Qg =

context = Z aih; (4)
i=1

Finally, two fully connected layers with activation functions of ReLU and
Softmax were added. The context vector passed through the final layers and
gave a prediction of .

Through model training and testing, we obtained the attention vector of each
trial which was able to tell us which time steps were more important for classifying
the trials as control (normal) or stressed.

3.2 Movement Extraction

After obtaining the attention vector of each trial, we used a sliding window with a
50% overlap to organize the attention sequence and the input sequence into frames
(Fig. 3). For each trial, we calculated the sum of each attention frame:

Ap = (@i, Qi1 oy Qigm—1) (5)

m is the frame length. We also tested the performance of frame-wise classifier with
different frame lengths (1s, 2s, 4s, etc.) in the following sections.
Then we calculated the third quartile of all A;’s in a trial as the threshold:

threshold = Q3(A1, Az, ..., Ay) (6)

n is the number of frames for each trial. @3 is the third quartile. We considered
any frame with an A; > threshold to be “important” to reflect the effect of stress.

More specifically, a frame with an A; > threshold in a control (normal) trial
was considered to be a “representative” normal movement. Similarly, a frame with
an A: > threshold in a stressed trial was considered to be a “representative”
stressed movement.

Then, a subset of the original dataset containing the “representative” normal
and stressed movements could be extracted based on the “important” frames for
further classification (Fig. 2).
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Fig. 2: Model architecture of attention-based LSTM classifier for trial-wise classi-
fication and movement extraction based on attention.
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Fig. 3: Example of using sliding windows to organize the sequential data. The
purple rectangles indicate the frames and an overlap of 50% between dashed (frame
t — 1) and solid (frame t) rectangles.

3.3 Frame-wise Classification

The training dataset of frame-wise classification is the “representative” normal
and stressed movements extracted from Section 3.2.

The frame-wise classifier is a simple LSTM classifier which has an LSTM layer,
a fully connected layer with the activation function of ReLU and a fully connected
layer with the activation function of softmax to output the probability of a given
data frame belonging to each of the 2 stress levels (normal or stressed).

We implemented the architectures of both models using Keras library based on
Python 3.7 [8]. We tested the hyperparameters of the proposed networks by trial-
and-error. The models were trained by minimizing the categorical cross entropy
loss function between the predicted and ground-truth labels at a learning rate of
0.001, first and second momentum of 0.9 and 0.999, and weight decay of 10~5.



Title Suppressed Due to Excessive Length 9

3.4 Model Training and Validation

It is a standard practice to test the model by leaving aside a portion of the data as
testing dataset, using the remaining portion for training. To evaluate the perfor-
mance of our proposed classifiers, we adopted Leave-One-User-Out cross-validation
(LOUO). We used LOUO to test if the classifiers were generalized enough for un-
seen data. Our LOUO used the i'" subject as testing dataset and the rest for
training, and iterated throughout all the 29 subjects. The mean values of all 29
iterations’ performance metrics were reported and will be shown in the following
sections.

3.5 Performance Metrics

In classification, there are four common metrics for evaluating the performance
of a classifier - Accuracy, Precision, Recall and F1-score. Accuracy is the ratio of
correct predictions (T, + T ) to the total predictions (Tp + Fp + Ty + Fr); Precision
is the ratio of correct positive predictions (7)) to the total positive results (Tp+Fp)
predicted by the classifier; Recall is the ratio of correct positive predictions (Tp) to
the total actual results (T + F»). Fl-score is a measure of a classifier’s accuracy
which takes the harmonic mean of the precision and recall.

Ty +Tn

A = P

ccuracy Ty ¥ Fy + Tn £ By’ (7
T,

Precision = —2—, 8
Tp +Fp ( )

T,
Recall = —2 9

2(Recall x Precision)

F1— = .
seore Recall + Precision

4 Results

To test the effectiveness of the proposed methods, we conducted the following
analysis: (1) we evaluated the performance of our attention-based trial-wise clas-
sifier for evaluating the stress level of each trial; (2) we validated the attention
vectors that were obtained from trial-wise classification and interpreted the prac-
tical meaning of attention based on the experimental designs; (3) we extracted the
“representative” movements based on the attention vectors, and tested if these ex-
tracted movements were able to train the frame-wise classifier for detecting normal
and stressed movements.

4.1 Trial-wise Classification and Attention

According to the experiment, each subject finished one 6-minute peg transfer trial
under either control (normal) condition or stressed condition. We remove the data
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Fig. 4: Visualization of attention of an example stressed trial. Top: a heat map
colorizes the magnitude of attention at each time step. Bottom: the time-series
positions of both instrument handles.

of one subject from the control group (right-handed) due to sensor failure during
experiment, therefore resulting in a dataset of 14 subjects (or trials) in control
group and 15 subjects (or trials) in stressed group.

First, we implemented the attention-based LSTM classifier to distinguish be-
tween control (normal) and stressed trials. We annotated the control (normal)
trials as “0” and stressed trials as “1”. The input data was the kinematic data of
each trial. After hyperparameter tuning, we obtained the performance metrics of
this classifier under LOUO cross-validation scheme (Accuracy: 75.86%, Precision:
75.48%, Recall: 77.02%, Fl-score: 76.24%).

In addition, we also obtained the attention vector of each trial which indicated
the contribution of each time step to the classification. We used the sliding-window
to organized the attention into frames. The sum of attention of each frame was
computed. The frames which had an attention sum greater than the 3rd quartile
in each trial were considered to be representative normal or stressed movements.
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Fig. 5: Comparison between the attention of first and second 3 minutes in control
(normal) and stressed trials. The second 3 minutes in stressed trials are associated
with higher attention.

4.2 Validation of Attention Mechanism

We also divided the attention vector in stressed trials into first-3-minute and
second-3-minute halves. We took the attention sums of these two halves and ran
the ANOVA test. The results showed that the attention sum of the second half
in stressed trials was significantly greater than the attention sum of the first half
in stressed trials (p = 0.0386), which means the movements in second half con-
tributed more to the classification of “stressed” and were more affected by the
stressors.

The same experiment was also conducted on the attention vector in control
trials. The results showed that the attention sums of the first and second 3 minutes
in control trials were not significantly different (p = 0.2812), as shown in Fig. 5.

This finding is also consistent with our experimental design: the stressed group
experienced increasingly intensive stressors in the second 3 minutes of each trial,
therefore, validating the feasibility of the attention mechanism in this study.
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Table 1: Performance summary of classification between “representative” normal
and stressed movements under different frame sizes using LOUO cross-validation.
Bold column denotes the best results.

Metrics 1s 2s 4s 8s 16s

Accuracy 60.91 64.73 7224 74.96 70.85
Precision 60.92 64.70 72.21 75.03 71.21
Recall 60.93 64.59 7222 75.04 71.04
F1-score 60.93 64.65 72.22 75.04 71.13

4.3 Movement Extraction and Classification

We implemented another simple LSTM model to classify the representative nor-
mal and stressed movements extracted from each trial based on attention. The
training dataset contained the representative (high-attention) frames in control
and stressed groups. Any frame had an attention sum greater than the 3rd quar-
tile in a control trial was considered to be representative normal movements and
any frame had an attention sum greater than the 3rd quartile in a stressed trial
was considered to be representative stressed movements.

The frame sizes in classification using data streams play an important role as
they need to contain enough information. In order to optimize the performance of
our classifier, we repeated the training and LOUO cross-validation process with
the data of four different frame sizes (1s, 2s, 4s, 8s, 16s).

Under LOUO cross-validation, the classification performance metrics were ob-
tained. The frame size of 8 seconds showed the best results, as shown in Table 1:
(Accuracy: 74.96%, Precision: 75.03%, Recall: 75.04%, Fl-score: 75.04%).

4.4 Frame-wise Classification in Stressed Trials

As we mentioned in previous sections, the movements are not equally affected by
the stressful condition which means that normal movements can still exist while the
surgeon operating under stress. We have extracted “representative” normal and
stressed movements from both control and stressed groups based on the attention
vectors, and validated a classifier that could be used to distinguish between normal
and stressed movements in Section 4.3. For this step, we test if these “represen-
tative” movements are applicable to classification between different movements in
stressed trials.

The training dataset contains the normal and stressed movements extracted
from control and stressed trials, as mentioned in Section 4.3.

The testing dataset only contained the data of stressed trials. For ground-truth
labeling in stressed trial (Fig 6), we annotated the frame which had an attention
sum greater than the third quartile of all attention sums in a trial as “stressed
(1)?, and the frame which had an attention sum less than the first quartile of all
attention sums in a trial as “normal (0)”.

We used the LOUO cross-validation to test the performance of frame-wise
classifier. The i*h subject in stressed trial was used for testing. The training dataset
should not include the data of the i'h subject. And the same process iterated
throughout all 15 subjects in stressed group.
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Table 2: Performance summary of classification between normal and stressed move-
ments in stressed trials under different frame sizes using LOUO cross-validation.

Bold column denotes the best results.

Metrics 1s 2s 4s 8s 16s

Accuracy 61.46 65.33 65.08 66.77 68.18
Precision 61.51 65.33 65.26 67.01 68.30
Recall 61.46 65.33 65.09 66.77 68.18
Fl-score 61.48 65.33 65.17 66.89 68.24

The LOUO cross-validation results are summarized in Table 2. The frame size
of 16 seconds showed the best results (Accuracy: 68.18%, Precision: 68.30%, Recall:

68.18%, F1-score: 68.24%).

5 Discussion

Although many studies have been investigated surgeon stress levels and cognitive
load during training, none of these studies have implemented stress detection in
near real-time, to our knowledge. Prior studies have also included the recording

and analysis of physiological data, for example, heart rate, heart rate variability,
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eye movements and skin conductance level in ways that can reflect subject stress
levels directly; however, these methods require external sensors and are also not
real-time. The goal of our study is to validate the feasibility of a neural network
approach to enable near-real time stress level detection using only kinematic data.

LSTM Recurrent Neural Networks have been widely used for prediction with
time-series data as the input. More specifically, the LSTM with attention mech-
anism has gained its popularity recently in the field of sequence to sequence
(seq2seq) modeling, such as machine translation and semantic analysis. We started
with an attention-based LSTM architecture to distinguish between the control
(normal) and stressed trials as well as getting the attention vector for movement
extraction and used another simple LSTM classifier to distinguish normal and
stressed movements.

We validated our classifiers using a common cross-validation method: LOUO
cross-validation. The goal of LOUO cross-validation is to test if the model is gen-
eralized for unseen data, i.e. having a high accuracy with the data from a new
(unseen) subject. For trial-wise classification, we obtained the accuracy of 75.86%
under LOUO as well as the attention vector of each trial.

In terms of the frame sizes, we tested different frame sizes (1s, 2s, 4s, 8s, 16s)
for frame-wise classification. A larger frame size can have an improved perfor-
mance in classification. But the classifier performance decreases when the frame
size continuously increases due to the fact that the LSTM can face challenges
when handling longer sequences. Our proposed frame-wise classifier was able to
distinguish between the “representative” normal and stressed movements with an
accuracy of 74.96%; and an accuracy of 68.18% when the frame-wise classifier was
applied to detecting normal and stressed movements within the stressed trials.

One limitation of this study is that we only tested a fixed size data frame.
However, a surgical procedure consists of different surgical gestures, for example,
moving, lifting and grasping, with different lengths of time period. Different kinds
of surgical gestures could be affected by the surgical stressors differently. One
direction of our future work is to overlap the attention vector on the recorded
video, and extracted the surgical gestures that are significantly affected by the
stressors. The second limitation of this study is the number of features. We only
had 3D positional data as the input (xnxD, YyND, 2ND, TD, YD, 2D). Especially,
when we transplant this method to robot-assisted surgical systems where more
information can be streamed, for example, rotation matrix, linear velocities and
angular velocities, recruiting a variety of kinematic data may help improve the
overall performance of our proposed method. Another limitation of the experiment
is the lack of expertise levels and baseline data collection. We only had medical
students recruited and only one trial (control or stressed) for each subject in the
study. A better generalization can be made if subjects included attending, fellow,
and resident surgeons in a large number, as well as baseline trials prior to the
experiment to wash out the individual’s inherent psychomotor skills.

It is worthy noting that we used the kinematic data on instrument handles
(zn—, yn—, zn—) in this study. There are several reasons why we used the data on
instrument handles: First, handles motion could better capture the hands motion
as shown in Fig. 1a; Second, our long term goal is to provide stress coping strategies
on robot-assisted surgical platforms where we can provide haptics on surgeon-
side manipulators based on the kinematic data of hands motion. Therefore, one
direction of future work is to conduct a similar experiment using a robot-assisted
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surgical platform, such as da Vinci Research Kit (dVRK), to study the differences
of identifying stressed conditions between conventional laparoscopic surgery and
robot-assisted laparoscopic surgery.

6 Conclusion

In this study, we developed a deep learning model to extract and detect stressed
movements from kinematic data during laparoscopic surgical training tasks. We
first validated an attention-based LSTM model for classification of normal/stressed
surgical training trials. Based on the attention, we were able to extract the typical
movements that contributed to the classification of each trial. Finally, we validated
another simple LSTM classifier and we were able to distinguish between the normal
and stressed movements using a short period of data. We tested the model under
LOUO cross-validation scheme, and it showed that the model was generalized to
unseen data.

Our proposed method has the following advantages for surgical stress detec-
tion: First, only kinematic data was used. Unlike physiological sensing techniques,
kinematic sensing does not require the subject to wear sensors, especially in robot-
assisted surgical systems. Second, our frame-wise classifier takes a short period of
movement as input and outputs its stress level. This frame-wise classification en-
ables near real-time detection of stress level during surgical procedures. Finally,
our model avoids feature extraction prior to feeding data to the model. Using the
raw data can potentially expedite detection to near real-time.

Our proposed model has the ability of high accuracy and fast computational
speed which is suitable for near real-time detection of surgical stress level using
kinematic data. Future experiments should be done to study the detection of stress
on a robot-assisted surgical platform due to the inherent differences between con-
vention laparoscopic surgery and robot-assisted laparoscopic surgery, for example,
motion scaling and fulcrum effects. We believe that this study paved way for con-
tinued research on mitigating the negative effect of surgical stress on robot-assisted
surgical systems where the kinematic data can be streamed directly.
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