

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Wavefunction Control of Charge-Separated Excited State Lifetimes

Journal:	<i>Journal of the American Chemical Society</i>
Manuscript ID	ja-2018-13011b.R1
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Tichnell, Christopher; North Carolina State University, Department of Chemistry Daley, David; North Carolina State University, Department of Chemistry Stein, Benjamin; University of New Mexico, Chemistry and Chemical Biology Shultz, David; North Carolina State University, Department of Chemistry Kirk, Martin; University of New Mexico, Chemistry Danilov, Evgeny; North Carolina State University, Chemistry

SCHOLARONE™
Manuscripts

Wavefunction Control of Charge-Separated Excited State Lifetimes

Christopher R. Tichnell,^{1†} David R. Daley,¹ Benjamin W. Stein,^{2‡} David A. Shultz,^{*1} Martin L. Kirk,^{*2} and Evgeny O. Danilov¹

¹Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204.

²Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001.

[†]Present address: Dyna-Tech Adhesives, Grafton, WV 26354.

[‡]Present address: Los Alamos National Laboratory, Los Alamos, New Mexico.

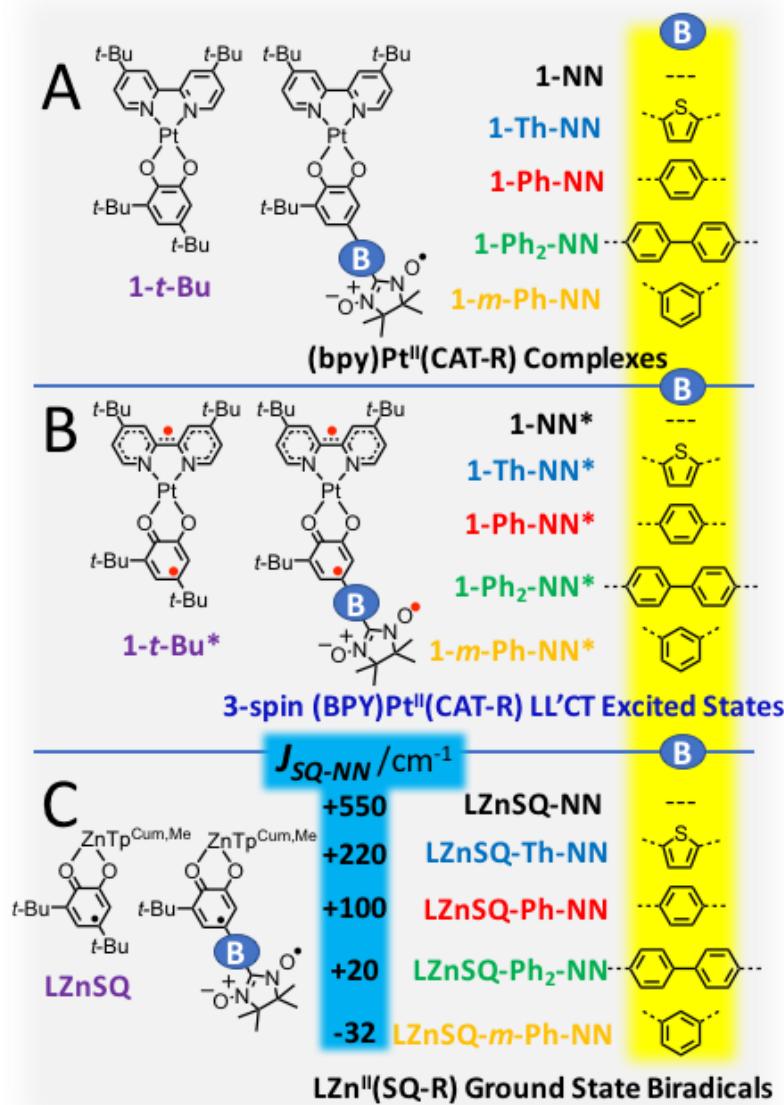
KEYWORDS. charge transfer, dioxolene, diimine, exchange coupling, donor-acceptor, non-radiative decay, trion

Supporting Information Placeholder

Abstract: Control of excited state processes is crucial to an increasing number of important device technologies that include displays, photocatalysts, solar energy conversion devices, photovoltaics, and photonics. However, the manipulation and control of electronic excited state lifetimes and properties continue to be a challenge for molecular scientists. Herein, we present the results of ground state and transient absorption spectroscopies as they relate to magnetic exchange control of excited state lifetimes. We describe a novel mechanism for controlling these excited state lifetimes, which involves varying the magnetic exchange interactions between a stable organic radical and the unpaired electrons present in the open shell configuration of a charge-separated excited state. Specifically, we show that the excited state lifetime can be controlled in a predictable manner based on an *a priori* knowledge of the pairwise magnetic exchange interactions between excited state spins. These magnetic exchange couplings affect the excited state electronic structure in a manner that introduces variable degrees of spin forbiddenness into the nonradiative decay channel between the excited state and the electronic ground state.

INTRODUCTION

Although electronic excited states have been studied by a myriad of spectroscopic techniques that have been complemented by theoretical investigations, the ability to control and manipulate excited state processes and lifetimes remains an important challenge.¹⁻³


Electronic relaxation between singlet and triplet excited states occurs via spin-orbit mediated intersystem crossing (ISC), and this allows access to long-lived excited states that promote

1
2
3 photoredox reactions,⁴ large spin-polarizations,⁵⁻⁶ and photo-/electroluminescence.^{3, 7}
4
5

6 Recently, we developed new molecular donor-acceptor chromophores that possess a
7 covalently-attached stable organic radical in order to generate multiple unpaired electron
8 spins in photoexcited states.⁸ These spin centers exchange couple to generate excited state
9 spin polarizations that are a function of both the sign and magnitude of the pairwise exchange
10 interactions and allow for ground state magneto-optical activity to arise. The same magnetic
11 exchange interactions that determine variable excited state spin polarizations also promote
12 magnetic exchange dependent excited state wavefunction mixing,⁸ and this provides a novel
13 way to control and manipulate excited state lifetimes via the radical-chromophore exchange
14 interaction. Understanding these exchange interactions is important, as they figure
15 prominently in the exciton-polaron interaction present in trion quasiparticles.⁹⁻¹¹ The
16 dynamics of these trions have recently been studied in carefully charge-doped single-walled
17 carbon nanotubes following photoexcitation and exciton formation,¹² and excited state
18 exchange interactions are expected to affect the lifetimes of trion and higher-order
19 multipartite quasiparticles.
20
21

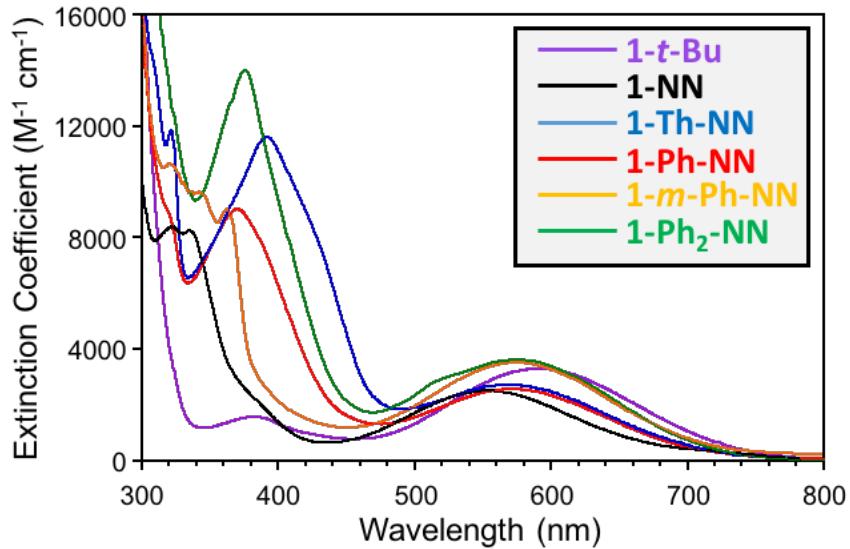
22 While several studies have demonstrated how electron spin affects photophysical
23 properties,^{11, 13-28} the evaluation of multiple pairwise exchange interactions and their effect
24 on photoexcited states remain relatively unexplored. Our prior work has focused on using a
25 combination of spectroscopy and magnetometry to determine the nature of exchange-
26 dependent wavefunction mixing between the spin doublet donor-acceptor charge transfer
27 excited states of these radical-elaborated molecules.⁸ To continue our study of magnetic
28 exchange effects on the excited states of donor-acceptor chromophores, we desire specific
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 chromophores that produce excited states with a high degree of biradical character.³ An
4 excellent chromophoric scaffold for our studies are square planar ligand-to-ligand charge
5 transfer (LL'CT) complexes of the general formula (BPY)Pt^{II}(dichalcogenolene)
6 (dichalcogenolene = benzene-1,2-dithiolate, catecholate, etc.; BPY = 2,2'-bipyridine), which
7 are characterized by LL'CT transitions to excited states that are either short-lived and non-
8 emissive ($\tau \leq 1$ ns; e.g. catecholate (CAT) complexes),^{1, 29} or long-lived and emissive ($\tau \geq 10$ ns;
9 e.g., benzene-1,2-dithiolate complexes).^{1, 30-31} The short-lived, non-emissive excited states of
10 (BPY)Pt^{II}(CAT-R) complexes (Fig. 1A,B) allow us to investigate the effects of excited state
11 radical-chromophore exchange interactions on non-radiative excited state decay rates. Our
12 choice of this chromophore is based not only on its short-lived, non-emissive LL'CT excited
13 state, but also on the charge- and spin distribution of the LL'CT excited state^{1, 3} (Fig. 1B) and
14 the resemblance of the excited state SQ-NN interaction to those in our fully-characterized
15 ground-state L_nSQ-B-NN complexes (Fig. 1C).^{8, 32-38} Ground state magnetic exchange
16 couplings between nitronylnitroxide radical (NN) and semiquinone (SQ) in L_nSQ-B-NN
17 complexes^{33-36, 38} very closely approximate the corresponding exchange couplings in the LL'CT
18 excited states of the NN-elaborated platinum complexes since a full unit of charge is
19 transferred in the LL'CT excited states (Fig. 1B,C).³ Moreover, we recently demonstrated how
20 these excited state wavefunctions can be determined from an a priori knowledge of the
21 experimentally-determined exchange parameters.⁸ In this report, we show that radical-
22 elaborated donor-acceptor (D-A) dyads reveal a remarkable relationship between excited
23 state lifetimes and wavefunction mixing, which derives from the pairwise excited state
24 magnetic exchange couplings between R, D, and A spins.

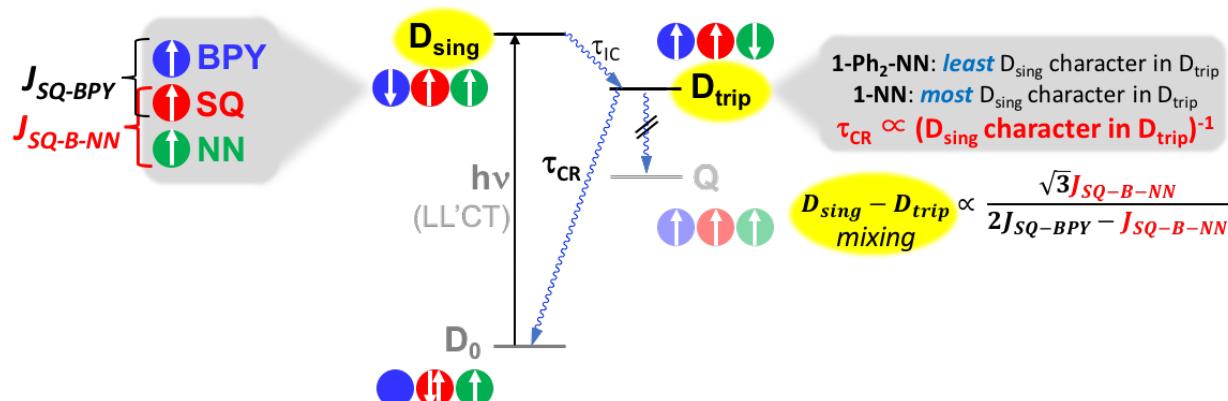
Figure 1. A: Platinum(II) catecholate complexes used in this study. As the *tert*-butyl groups on the bipyridine ligand have a negligible effect on both the spectroscopy and electronic structure of our complexes, they are ignored in the discussion. B: CAT \rightarrow BPY charge-separated (LL'CT) excited states for Pt^{II} complexes in A. C: Ground state SQ-B-NN biradical complexes corresponding to the donor half of the LL'CT excited states in B. Values for $J_{SQ-B-NN}$ determined by magnetic susceptibility, and approximate the corresponding J -values in the LL'CT excited states in B.

RESULTS AND DISCUSSION

CAT \rightarrow BPY Charge Transfer, 3-Spin LLCT Excited States, and Excited State Doublet


Wavefunction Mixing. The synthesis of radical-elaborated **1-NN**, **1-Th-NN**, and **1-Ph-NN** has

been reported previously,⁸ and the new compounds, **1-m-Ph-NN** and **1-Ph₂-NN**, that have


1
2
3 been prepared for this study and are characterized as described in the SI (Fig. 1A). The bridge
4 fragments, B, for the (BPY)Pt^{II}(CAT-B-NN) complexes were selected because they correspond
5 to those in our donor-acceptor biradical complexes, LZnSQ-B-NN, Fig. 1, and thus provide a
6 range in both the magnitude and sign of J_{SQ-NN} values.³³⁻⁴⁰ This choice results in the greatest
7 range of wavefunction mixing allowed by this particular spin system (*vide infra*).
8
9

10 These complexes feature a broad, solvatochromic CAT → BPY LL'CT transition spanning the
11 450 – 800 nm region (Fig. 2). The unit charge transfer results in the LL'CT excited state of the
12 NN radical-containing complexes possessing excited state triradical character (BPY•)Pt^{II}(SQ•-
13 B-NN•) (B = bridge; Fig. 1B; “•” on NN and on SQ omitted hereafter for brevity). Two pairwise
14 magnetic exchange interactions play a crucial role in defining the (BPY•)Pt^{II}(SQ-B-NN) LL'CT
15 triradical excited state energies and photophysics: that between the BPY• and SQ radicals ($J_{SQ-
16 BPY} = 1400 \text{ cm}^{-1}$ and constant within the series),⁸ and that between the SQ and NN radicals ($J_{SQ-
17 B-NN} = \text{variable} - \text{depending on the bridge, B: } -32 \text{ to } +550 \text{ cm}^{-1}$, Fig. 1C).^{32-36, 38} The J_{BPY-NN}
18 exchange interaction is expected to be markedly smaller than the adjacent $J_{SQ-B-NN}$ and J_{SQ-BPY}
19 couplings due to the long NN-BPY distance and poor BPY-NN orbital overlap. We therefore
20 ignore the effects of J_{BPY-NN} in our analysis.⁴¹⁻⁴⁵ The J_{SQ-BPY} and $J_{SQ-B-NN}$ couplings give rise to two
21 doublets and one quartet state in the excited state LL'CT manifold: D_{sing} , D_{trip} , and Q ,
22 respectively, Fig. 3. Importantly, D_{sing} and D_{trip} are admixed by the J_{SQ-BPY} and $J_{SQ-B-NN}$ exchange
23 interactions,⁸ and the degree of this admixture is controlled by the variable $J_{SQ-B-NN}$ exchange
24 interaction as per Eqs. (1-3).⁸ It is important to note that the $J_{SQ-B-NN}$ exchange mediated by the
25 meta-phenylene bridge in **1-m-Ph-NN** is *antiferromagnetic*, and this results in the dark Q state
26 lying energetically between the D_{sing} and the D_{trip} states. The quartet state, Q , does not mix
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 with these doublets and is therefore unaffected by the degree of $D_{\text{sing}} - D_{\text{trip}}$ exchange mixing.⁸
4
5 The $\cos\lambda$ and $\sin\lambda$ coefficients in Eqs. (1) and (2) define the degree of pure D_{sing} and D_{trip} doublet
6
7 ($|S_1,1/2\rangle$ and $|T_1,1/2\rangle$, respectively) character that is admixed to form the magnetic exchange
8 perturbed wavefunctions. In these equations, S_1 and T_1 represent the singlet and triplet
9 excited states of the (BPY)Pt^{II}(CAT) core chromophore. The pairwise excited state exchange
10 coupling constants, $J_{\text{SQ-B-NN}}$ ^{33, 35, 46} and $J_{\text{SQ-BPY}}$,⁸ are related to this wavefunction mixing through
11 λ as defined in Eq. (3), and the wavefunction mixing coefficients ($\sin \lambda$, $\cos \lambda$) are listed in Table
12
13 1. Although the Q state is included in Fig. 2, there is no evidence of intersystem crossing (ISC)
14 to Q, and this is consistent with the lack of doublet-quartet exchange mixing and the absence
15 of ISC to the excited $^3\text{LL}'\text{CT}$ in the parent complex, **1-t-Bu** (*vide supra*).¹ With respect to
16 wavefunction control of the excited state lifetimes, our focus is solely on the excited LL'CT
17
18 doublets, D_{sing} and D_{trip} , and their bridge-modulated admixture.
19
20
21
22
23
24
25
26
27
28
29
30
31
32

51 **Figure 2.** Electronic absorption spectra of (BPY)Pt^{II}(CAT-R) complexes recorded in CH_2Cl_2 solutions.
52
53
54
55
56
57
58
59
60

Figure 3. *Left:* Definitions of exchange parameters, J . *Middle:* Jablonski diagram. D_{sing} and D_{trip} are the admixed $^2\text{LL}'\text{CT}$ states for the NN-substituted complexes, τ_{CR} is the charge recombination event synonymous with $\text{LL}'\text{CT}$ lifetime, while τ_{IC} is the internal conversion lifetime. *Right:* The two $\text{LL}'\text{CT}$ doublets, D_{sing} and D_{trip} undergo exchange mixing which is controlled by the bridge. The greater D_{sing} character present in D_{trip} accelerates charge recombination back to D_0 . Note that $J_{SQ-B-NN}$ is antiferromagnetic (negative) for **1-m-Ph-NN**, and this results in D_{trip} being lower in energy than Q .

Table 1. Wavefunction parameters and D_{trip} lifetimes for (BPY) \bullet Pt^{II}(CAT-B-NN) Complexes.

Complex	$J_{SQ-B-NN}$ (cm ⁻¹) ^a	λ ^b	%($\sin \lambda$) ²	D_{trip} Lifetime, τ_{CR} (ps) ^c
1-NN	550	11.5	3.97	250 ± 30
1-Th-NN	220	4.25	0.55	410 ± 80
1-Ph-NN	100	1.83	0.102	640 ± 30
1-m-Ph-NN	-32	-0.63	0.012	790 ± 20
1-Ph₂-NN	20	0.36	0.004	1010 ± 30

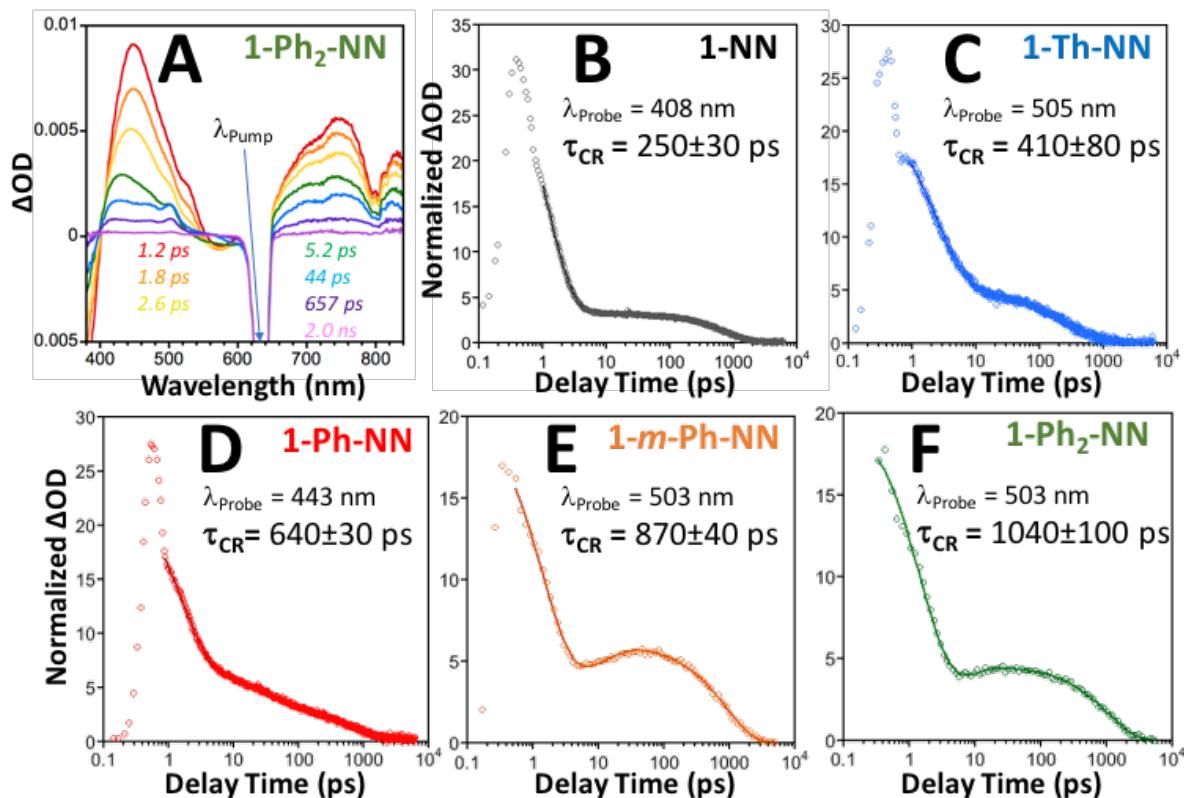
^aExchange coupling parameters for LZnSQ-B-NN complexes determined by variable temperature magnetic susceptibility,^{33, 47-48} see text. ^b λ calculated using Eq. (3) with $2J_{SQ-BPY} = 2800$ cm⁻¹.⁸ ^c τ_{CR} lifetimes are averages of multiple experiments, see SI for details.

$$D_{trip} = \cos \lambda \left| T_1, \frac{1}{2} \right\rangle + \sin \lambda \left| S_1, \frac{1}{2} \right\rangle \quad (1)$$

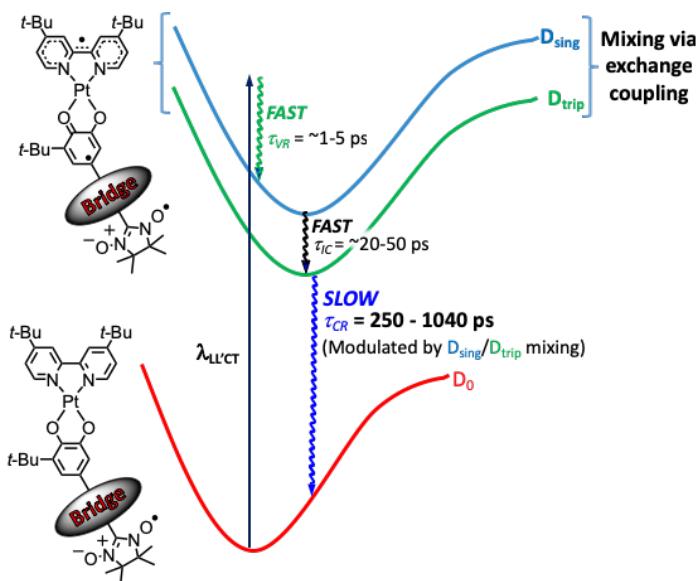
$$D_{sing} = \cos \lambda \left| S_1, \frac{1}{2} \right\rangle - \sin \lambda \left| T_1, \frac{1}{2} \right\rangle \quad (2)$$

$$\lambda = \frac{1}{2} \tan^{-1} \frac{\sqrt{3}J_{SQ-B-NN}}{2J_{SQ-BPY} - J_{SQ-B-NN}} \quad (3)$$

An important consequence of $D_{sing} - D_{trip}$ mixing in (BPY \bullet)Pt^{II}(SQ-B-NN) LL'CT excited states results in a spin- and dipole-allowed $D_0 \rightarrow D_{sing}$ transition⁸ that relaxes by rapid internal conversion (IC) to the D_{trip} state (Fig. 3). With respect to the (BPY)Pt^{II}(CAT) core chromophore (the “red” and “blue” spins in Fig. 3), this IC represents a localized $S_1 \rightarrow T_1$ spin conversion


within the chromophore that is inaccessible to **1-t-Bu** and its non-radical elaborated catecholate-containing derivatives.⁸ Thus, the core chromophore triplet character present in the D_{trip} excited state predicts that the non-radiative $D_{trip} \rightarrow D_0$ lifetime will be dependent on the magnitude of $\sin\lambda$, and longer $D_{trip} \rightarrow D_0$ lifetimes are expected as this wavefunction mixing decreases due to the increase in chromophore spin triplet character now present in D_{trip} . Summarizing, the magnitude of the bridge-dependent $J_{SQ-B-NN}$ exchange interaction will determine the degree of D_{sing} character admixed into D_{trip} , resulting in the NN-chromophore spin exchange functioning as a molecular rheostat to modulate excited state lifetimes.

LL'CT Excited State Transient Absorption Spectroscopy. Transient absorption spectra (ΔOD > 0 for transient absorption and ΔOD < 0 for bleaching of ground state absorption bands; OD = optical density), recorded following photoexcitation into the low-energy envelope of the LL'CT bands for **1-NN**, **1-Th-NN**, **1-Ph-NN**, **1-m-Ph-NN** and **1-Ph₂-NN** display transient features between 415-550 nm and 650-800 nm (e.g., Fig. 4A; see SI) that are characteristic of LL'CT excited states having a (BPY•)Pt^{II}(SQ-B-NN) charge and spin distribution.^{1, 8, 38} As an example, the transient absorption spectra for **1-Ph₂-NN** are shown in Fig. 4A, and these data are characteristic of the spectra for the other radical-elaborated complexes (see SI). As seen in Fig. 4A, these spectra exhibit bleaching of both the ground state UV band ~380 nm and the LL'CT band ~575 nm, as well as transient absorptions in the visible region of the spectrum (~550 and 750 nm). Transient absorption spectral features are in good agreement with the optical transitions observed in the ground state absorption spectra of the L_nSQ-B-NN complexes.³³


1
2
3 possess distinctly different spectral band shapes. This observation suggests that more than
4
5 two electronic states contribute to the transient absorption spectral envelope, and we assign
6
7 these states to D_0 , D_{sing} , and D_{trip} (Fig. 3). The D_{sing} and D_{trip} LL'CT excited states possess the
8
9 same electronic configuration⁸ and are therefore expected to exhibit nearly identical excited
10
11 state distortions relative to the electronic ground state. This results in highly nested D_{sing} and
12
13 D_{trip} excited state potential energy surfaces and very similar transient absorption features.
14
15

16
17 The kinetic traces of the spectral transients for each radical-substituted complex are
18
19 shown in Figs. 4B-F. These data may be fit with as many as four kinetic decay components on
20
21 the order of hundreds of femtoseconds (τ_{SR} ; solvent reorganization), ~1 ps (τ_{VR} ; vibrational
22
23 relaxation), tens of ps (τ_{IC} ; internal conversion), and hundreds of ps (τ_{CR} ; charge
24
25 recombination), (Fig. 5; Global analysis kinetic fits give charge recombination lifetimes that
26
27 agree with those from single-wavelength kinetics, see SI for a complete fit analysis of the
28
29 kinetic data). The short-lived components τ_{SR} and τ_{VR} can be assigned to solvent
30
31 reorganization, and vibrational relaxation and redistribution, as has been reported previously
32
33 for **1-t-Bu**.²⁹ The τ_{IC} is tentatively assigned to $D_{\text{sing}} \rightarrow D_{\text{trip}}$ internal conversion. Finally, the
34
35 longest lifetime component is easily assignable as the $D_{\text{trip}} \rightarrow D_0$ charge recombination step
36
37 (τ_{CR}). Since the measured charge recombination time constant, τ_{CR} , is markedly longer than
38
39 any of the other time constants, it is not convoluted with the short-lived components included
40
41 in our analysis of the kinetic data. A Jablonski diagram that shows only doublet states and
42
43 summarizes the photophysical events with their characteristic time constants is shown in Fig.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

– D_{trip} mixing and therefore the ensuing discussion will focus on this important exchange-dependent relaxation process.

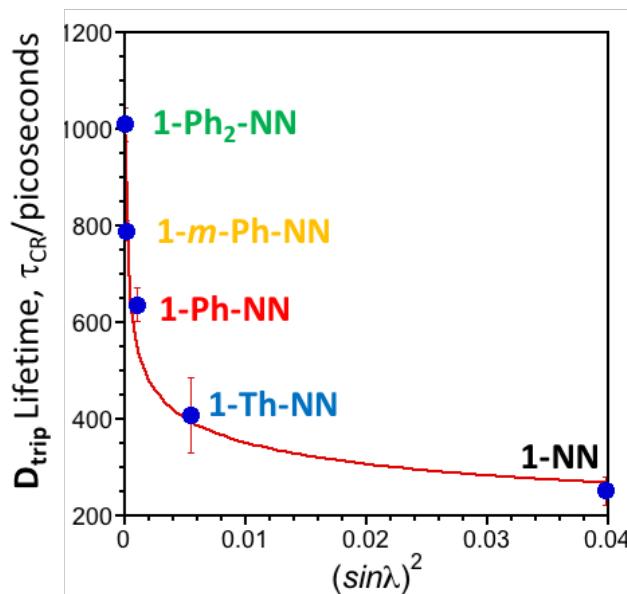

Figure 4. A: Transient absorption spectra of **1-Ph₂-NN** recorded at various delay times following a 100 fs, 630 nm excitation pulse (λ_{Pump} , 0.55 μ J/pulse). Spectra for other complexes display similar features (see SI). B-F: Representative normalized ΔOD traces obtained for wavelengths in the 400-550 nm probe region. Wavelengths for kinetic fits correspond to either absorption of the ground state LL'CT (\sim 575 nm), or strong excited state absorptions (\sim 450 nm or $>$ 650 nm). The latter wavelength is characteristic of the semiquinone chromophore which is present in the LL'CT excited state. Averaged charge recombination lifetimes (τ_{CR}) are shown as insets. For details see SI.

Figure 5. Representations of doublet potential energy surfaces for (BPY)Pt^{II}(CAT-Bridge-NN) complexes. The fastest process is vibrational relaxation (τ_{VR}) followed by internal conversion (τ_{IC}), with the slowest process being charge recombination (τ_{CR}) back to the ground doublet state, D_0 . The vertical doublet is D_{sing} since it, like the ground state, possesses singlet (BPY)Pt^{II}(CAT) chromophoric character. Excited doublets, D_{sing} and D_{trip} are expected to be highly nested since they have the same orbital parentage and differ only in their spin wavefunctions.

Exchange-Modulated LL'CT Lifetimes. As predicted from our understanding of the excited state $D_{sing} - D_{trip}$ interdoublet mixing in (BPY \bullet)Pt^{II}(SQ-B-NN),⁸ the charge recombination lifetimes (τ_{CR}) vary as a function of the $J_{SQ-B-NN}$ exchange interaction. Plotting τ_{CR} as a function of the $D_{sing} - D_{trip}$ interdoublet mixing ($\sin\lambda$)² for radical elaborated **1-NN** (250 ± 30 ps), **1-Th-NN** (410 ± 80 ps), **1-Ph-NN** (640 ± 30 ps), **1-m-Ph-NN** (790 ± 30 ps), and **1-Ph₂-NN** (1010 ± 100 ps) clearly shows that there is a marked increase in lifetime as the excited state exchange coupling between the SQ and NN radical centers decreases ($J_{SQ-B-NN}$, Table 1 and Fig. 6). The observed increase in the $D_{trip} \rightarrow D_0$ charge recombination lifetime is counter to what is predicted by the energy gap law,⁴⁹ using LL'CT energies observed in the electronic absorption spectra and the results of our electrochemical studies (see SI). Additionally, the observed lifetime increase is also inconsistent with a vibrational “loose bolt” effect⁴⁹ whereby **1-Th-NN**,

1
2
3 **1-Ph-NN, 1-*m*-Ph-NN, and 1-Ph₂-NN** would be expected to undergo more rapid relaxation to
4 D₀ resulting from the increase in the vibrational density of states relative to **1-NN**. Finally, the
5 observed lifetimes are inconsistent with a decay process that occurs via an NN-localized
6 excited state, since the observed lifetime for the lowest energy **Ar-NN** (Ar = 3,4-dimethoxy-5-
7 *tert*-butyl-phenyl) excited state is 70 ± 5 ps and there are marked differences between the **Ar-**
8 **NN** and (BPY)Pt^{II}(CAT-B-NN) transient absorption spectra (see SI).
9
10
11
12
13
14
15
16

37 **Figure 6.** Plot of D_{trip} lifetimes vs. the square of the mixing coefficients, $(\sin \lambda)^2$. The solid line is a power law
38 function fit to the data that serves as a phenomenological guide to the eye.
39
40

41 The analysis presented above points to exchange-mediated D_{trip}→D₀ relaxation as the
42 dominant mechanism that accounts for the observed differences in ground state recovery
43 rates between **1-Ph₂-NN**, **1-*m*-Ph-NN**, **1-Ph-NN**, **1-Th-NN**, and **1-NN** (Fig. 6). This excited state
44 exchange mechanism reveals itself in the form of a dramatic power-law dependence of the
45 charge recombination lifetimes, τ_{CR} , as a function of $(\sin \lambda)^2$, the latter of which is the amount
46 of D_{sing} character admixed into the D_{trip} wavefunction by the $J_{SQ-B-NN}$ exchange interaction (Eq.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 wavefunction tends toward the “pure” $D_{trip} = |T_1, \frac{1}{2}\rangle$ that has zero D_{sing} character. Thus, as
4
5 $(\sin\lambda)^2 \rightarrow 0$, the $D_{trip} \rightarrow D_0$ charge recombination event takes on a larger degree of spin
6
7 forbiddenness due to the increased chromophore triplet character (e.g., **1-Ph₂-NN**). This leads
8
9 to dramatic exchange-modulated increases in the charge recombination lifetime. Conversely,
10
11 an increase in D_{sing} character admixed into the D_{trip} function (e.g., **1-NN**), reduces the spin
12
13 forbiddenness and the D_{trip} lifetime is observed to decrease. Importantly, the covalently
14
15 attached NN radical provides a mechanism for these complexes to attain lifetimes
16
17 characteristic of the chromophoric triplet state, *but without spin-orbit mediated ISC*. The new
18
19 excited state exchange interactions that result from covalent attachment of a radical spin to a
20
21 chromophore have previously been shown to be important in changing excited state spin
22
23 dynamics,^{16, 21-22, 50-52} and it was suggested⁸ that this could be used as a strategy to exert wave
24
25 function control over excited state lifetimes, including the charge recombination process
26
27 observed here. In our prior work, we used MCD spectroscopy and magnetic susceptibility
28
29 measurements to determine excited state magnetic exchange couplings that between the
30
31 electron spins in the excited states of these molecules, and that there was no direct spin-orbit
32
33 coupling matrix element that connects the D_{sing} and D_{trip} functions. Mixing between D_{sing} and
34
35 D_{trip} was shown to occur via the exchange interaction. Our results therefore provide a unique
36
37 example of creating entangled triad of electron spins with concomitant spin polarization using
38
39 visible light. These results are of interest to efforts in molecule-based quantum information
40
41 science since this excited state spin polarization may be transmitted to the recovered ground
42
43 state. $D_{trip} \rightarrow D_0$ charge recombination is supported by the functional form of the D_{trip} lifetime
44
45 vs. $(\sin\lambda)^2$ plot and the fact that that D_{trip} lies *below* the Q state in **1-m-Ph-NN**. Thus, the effect
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 of excited state exchange on lifetime can be described as a non-radiative decay counterpart
4 to the exchange mechanism that activates spin forbidden electronic transitions, originally
5 proposed by Tanabe,⁵³ indicating that spin-orbit coupling using heavy metals is not required
6 to access the core chromophore triplet state when multiple exchange interactions are
7 operative.
8
9
10
11
12
13
14

15 CONCLUSIONS 16 17

18 We have presented a time-resolved kinetic and spectroscopic study of NN radical-
19 substituted (BPY)Pt^{II}(CAT-B-NN) complexes with charge recombination lifetimes that are
20 inversely proportional to the magnitude of the excited state $D_{\text{sing}} - D_{\text{trip}}$ mixing. This
21 wavefunction mixing and lifetime modulation is a direct consequence of the radical-
22 chromophore magnetic exchange coupling. We show that τ_{CR} represents an exchange-
23 mediated $T_1 \rightarrow S_0$ ISC process that is not present in the (BPY)Pt^{II}(CAT) core chromophore. Our
24 study provides an important mechanism for precise control of charge-separated excited state
25 lifetimes, including IC ground state recovery rates without the stringent requirement of spin-
26 orbit coupling. Exchange-mediated wavefunction mixing⁸ and its effects on excited state
27 lifetimes may play an important role in charge-doped materials including conjugated organic
28 polymers and carbon nanotubes. More specifically, the implications for further manipulation
29 of these exchange coupled excited states is tremendous, and the concepts detailed here will
30 translate to furthering our understanding of spin-coupled trion states, such as those found in
31 hole-doped carbon nanotubes.¹² This is impactful, for it suggests that exchange coupling of a
32 singlet exciton with a hole polaron could result in the formation of a triplet exciton without
33 the need for SOC. We note that the $J_{\text{SQ-NN}}$ values ($|J_{\text{SQ-NN}}| \sim 30\text{-}550 \text{ cm}^{-1}$) are small compared
34 to the exchange coupling of the core chromophore ($|J_{\text{core}}| \sim 1000 \text{ cm}^{-1}$), which is consistent with the
35 results of the spin-orbit coupling calculations. The small magnitude of the exchange coupling
36 suggests that the exchange mechanism is not the primary source of spin-orbit coupling in these
37 systems. The exchange mechanism is likely to be a minor source of spin-orbit coupling, and the
38 primary source of spin-orbit coupling is likely to be the spin-orbit coupling of the core chromophore.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 to most excited state singlet triplet gaps ($>1000\text{ cm}^{-1}$ depending on the chromophore), and
4
5 small compared to heavy transition metal spin orbit coupling constants ($\sim 1000\text{ cm}^{-1}$).
6
7 Remarkably, the magnitude of the excited state exchange interaction will not have to be large
8
9 to affect the $D_{\text{sing}} - D_{\text{trip}}$ spin interconversion and have a dramatic and predictable effect on
10
11 lifetimes. We have shown that $J_{\text{SQ-B-NN}}$ exchange interactions as small as 20 cm^{-1} in **1-Ph₂-NN**
12
13 can dramatically affect charge recombination lifetimes relative to **1-NN**. The data presented
14
15 in Fig. 6 clearly show that even smaller **1-B-NN** exchange interactions will lead to markedly
16
17 longer charge recombination lifetimes. Importantly, the $J_{\text{SQ-B-NN}}$ exchange interaction must be
18
19 large enough to enable conversion from D_{trip} to D_{sing} , but small enough to maximize the
20
21 chromophore triplet character in D_{trip} .
22
23

24
25
26
27
28
29 **AUTHOR INFORMATION**

30 *Corresponding Author

31 All correspondence should be directed to M.L.K. and D.A.S.

32
33
34 **Supporting Information.**

35 Synthesis and characterization of **1-m-Ph-NN** and **1-Ph₂-NN** and transient absorption decay
36 kinetic analyses. This material is available free of charge via the Internet at
37 <http://pubs.acs.org>.
38

39
40 **ACKNOWLEDGMENTS**

41 M.L.K. acknowledges NSF (CHE 1565930 and NSF Grant No. IIA-1301346) for financial support.

42 D.A.S. acknowledges financial support from NSF (CHE-1464085).

43
44 **COMPETING INTERESTS**

45 The authors declare no competing interests.

46
47
48 **REFERENCES**

49
50 1. Yang, J.; Kersi, D. K.; Giles, L. J.; Stein, B. W.; Feng, C. J.; Tichnell, C. R.; Shultz, D. A.; Kirk,
51 M. L., Ligand Control of Donor-Acceptor Excited-State Lifetimes. *Inorg. Chem.* **2014**, *53* (10),
52 4791-4793.
53
54 2. Castellano, F. N., Altering Molecular Photophysics by Merging Organic and Inorganic
55 Chromophores. *Acc. Chem. Res.* **2015**, *48* (3), 828-839.

1
2
3. Yang, J.; Kersi, D. K.; Richers, C. P.; Giles, L. J.; Dangi, R.; Stein, B. W.; Feng, C.; Tichnell,
4 C. R.; Shultz, D. A.; Kirk, M. L., Ground State Nuclear Magnetic Resonance Chemical Shifts
5 Predict Charge-Separated Excited State Lifetimes. *Inorg. Chem.* **2018**, 57 (21), 13470-13476.

6. Sartor, S. M.; McCarthy, B. G.; Pearson, R. M.; Miyake, G. M.; Damrauer, N. H.,
7 Exploiting Charge-Transfer States for Maximizing Intersystem Crossing Yields in Organic
8 Photoredox Catalysts. *J. Am. Chem. Soc.* **2018**, 140 (14), 4778-4781.

9. Tait, C. E.; Neuhaus, P.; Peeks, M. D.; Anderson, H. L.; Timmel, C. R., Transient EPR
10 Reveals Triplet State Delocalization in a Series of Cyclic and Linear pi-Conjugated Porphyrin
11 Oligomers. *J. Am. Chem. Soc.* **2015**, 137 (25), 8284-8293.

12. Kamata, Y.; Akiyama, K.; Tero-Kubota, S., Anisotropic intersystem crossing from the
13 upper excited triplet states of anthracenes: Two-laser time-resolved EPR study. *J. Phys. Chem.*
14 **A** **1999**, 103 (12), 1714-1718.

15. Gong, S. L.; Yang, C. L.; Qin, J. G., Efficient phosphorescent polymer light-emitting
16 diodes by suppressing triplet energy back transfer. *Chem. Soc. Rev.* **2012**, 41 (14), 4797-4807.

17. Stein, B. W.; Tichnell, C. R.; Chen, J.; Shultz, D. A.; Kirk, M. L., Excited State Magnetic
18 Exchange Interactions Enable Large Spin Polarization Effects. *J. Am. Chem. Soc.* **2018**, 140 (6),
19 2221-2228.

20. Kadamchuk, A.; Arkhipov, V. I.; Kim, C. H.; Shinar, J.; Lee, D. W.; Hong, Y. R.; Jin, J. I.;
21 Heremans, P.; Baessler, H., Localized trions in conjugated polymers. *Physical Review B* **2007**,
22 76 (23).

23. Kadamchuk, A.; Arkhipov, V. I.; Heremans, P.; Blonsky, I.; Nespurek, S.; Bassler, H.,
24 Localized trions as metastable charged states in conjugated polymers. *Mol. Cryst. Liq. Cryst.*
25 **2007**, 467, 33-45.

26. Teki, Y.; Matsumoto, T., Spin dynamics on photoexcited state of functionality π -radical
27 via quantum-mixed state: Theoretical study of the spin polarized state generation using the
28 mechanism via quantum-mixed state. *Synth. Met.* **2013**, 173, 35-39.

29. Bai, Y.; Olivier, J.-H.; Bullard, G.; Liu, C.; Therien, M. J., Dynamics of charged excitons in
30 electronically and morphologically homogeneous single-walled carbon nanotubes.
31 *Proceedings of the National Academy of Sciences* **2018**.

32. Buchachenko, A. L.; Berdinsky, V. L., Electron spin catalysis. *Chem. Rev.* **2002**, 102 (3),
33 603-612.

34. Tobita, S.; Arakawa, M.; Tanaka, I., The Paramagnetic Metal Effect on the Ligand
35 Localized S1-T1 Intersystem Crossing in the Rare-Earth-Metal Complexes with Methyl
36 Salicylate. *J. Phys. Chem.* **1985**, 89 (26), 5649-5654.

37. Guo, D.; Knight, T. E.; McCusker, J. K., Angular Momentum Conservation in Dipolar
38 Energy Transfer. *Science* **2011**, 334 (6063), 1684-1687.

39. Colvin, M. T.; Carmieli, R.; Miura, T.; Richert, S.; Gardner, D. M.; Smeigh, A. L.; Dyar, S.
40 M.; Conron, S. M.; Ratner, M. A.; Wasielewski, M. R., Electron Spin Polarization Transfer from
41 Photogenerated Spin-Correlated Radical Pairs to a Stable Radical Observer Spin. *J. Phys. Chem.*
42 **A** **2013**, 117 (25), 5314-5325.

43. Scott, A. M.; Ricks, A. B.; Colvin, M. T.; Wasielewski, M. R., Comparing Spin-Selective
44 Charge Transport through Donor-Bridge-Acceptor Molecules with Different Oligomeric
45 Aromatic Bridges. *Angew. Chem.-Int. Edit.* **2010**, 49 (16), 2904-2908.

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

18. Colvin, M. T.; Giacobbe, E. M.; Cohen, B.; Miura, T.; Scott, A. M.; Wasielewski, M. R., Competitive Electron Transfer and Enhanced Intersystem Crossing in Photoexcited Covalent TEMPO-Perylene-3,4:9,10-bis(dicarboximide) Dyads: Unusual Spin Polarization Resulting from the Radical-Triplet Interaction. *J. Phys. Chem. A* **2010**, *114* (4), 1741-1748.

19. Chernick, E. T.; Mi, Q. X.; Vega, A. M.; Lockard, J. V.; Ratner, M. A.; Wasielewski, M. R., Controlling electron transfer dynamics in donor-bridge-acceptor molecules by increasing unpaired spin density on the bridge. *J. Phys. Chem. B* **2007**, *111* (24), 6728-6737.

20. Mi, Q. X.; Chernick, E. T.; McCamant, D. W.; Weiss, E. A.; Ratner, M. A.; Wasielewski, M. R., Spin dynamics of photogenerated triradicals in fixed distance electron donor-chromophore-acceptor-TEMPO molecules. *J. Phys. Chem. A* **2006**, *110* (23), 7323-7333.

21. Chernick, E. T.; Mi, Q. X.; Kelley, R. F.; Weiss, E. A.; Jones, B. A.; Marks, T. J.; Ratner, M. A.; Wasielewski, M. R., Electron donor-bridge-acceptor molecules with bridging nitronyl nitroxide radicals: Influence of a third spin on charge- and spin-transfer dynamics. *J. Am. Chem. Soc.* **2006**, *128* (13), 4356-4364.

22. Weiss, E. A.; Chernick, E. T.; Wasielewski, M. R., Modulation of radical ion pair lifetimes by the presence of a third spin in rodlike donor-acceptor triads. *J. Am. Chem. Soc.* **2004**, *126* (8), 2326.

23. Teki, Y.; Miyamoto, S.; Iimura, K.; Nakatsuji, M.; Miura, Y., Intramolecular Spin Alignment Utilizing the Excited Molecular Field between the Triplet ($S = 1$) Excited State and the Dangling Stable Radicals ($S = 1/2$) as Studied by Time-Resolved Electron Spin Resonance: Observation of the Excited Quartet ($S = 3/2$) and Quintet ($S = 2$) States on the Purely Organic π -Conjugated Spin Systems. *J. Am. Chem. Soc.* **2000**, *122* (5), 984-985.

24. Teki, Y.; Matsumoto, T., Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state. *Phys. Chem. Chem. Phys.* **2011**, *13* (13), 5728-5746.

25. Teki, Y.; Miyamoto, S.; Nakatsuji, M.; Miura, Y., π -Topology and spin alignment utilizing the excited molecular field: Observation of the excited high-spin quartet ($S=3/2$) and quintet ($S=2$) states on purely organic π -conjugated spin systems. *J. Am. Chem. Soc.* **2001**, *123* (2), 294-305.

26. Chernick, E. T.; Casillas, R.; Zirzlmeier, J.; Gardner, D. M.; Gruber, M.; Kropp, H.; Meyer, K.; Wasielewski, M. R.; Guldi, D. M.; Tykwiński, R. R., Pentacene Appended to a TEMPO Stable Free Radical: The Effect of Magnetic Exchange Coupling on Photoexcited Pentacene. *J. Am. Chem. Soc.* **2015**, *137* (2), 857-863.

27. Green, S.; Fox, M. A., Intramolecular Photoinduced Electron Transfer from Nitroxyl Radicals. *J. Phys. Chem.* **1995**, *99*, 14752-14757.

28. Ito, A.; Shimizu, A.; Kishida, N.; Kawanaka, Y.; Kosumi, D.; Hashimoto, H.; Teki, Y., Excited-State Dynamics of Pentacene Derivatives with Stable Radical Substituents. *Angew. Chem.-Int. Edit.* **2014**, *53* (26), 6715-6719.

29. Best, J.; Sazanovich, I. V.; Adams, H.; Bennett, R. D.; Davies, E. S.; Meijer, A.; Towrie, M.; Tikhomirov, S. A.; Bouganov, O. V.; Ward, M. D.; Weinstein, J. A., Structure and Ultrafast Dynamics of the Charge-Transfer Excited State and Redox Activity of the Ground State of Mono- and Binuclear Platinum(II) Diimine Catecholate and Bis-catecholate Complexes: A Transient Absorption, TRIR, DFT, and Electrochemical Study. *Inorg. Chem.* **2010**, *49* (21), 10041-10056.

1
2
3 30. Cummings, S. D.; Eisenberg, R., Luminescence and Photochemistry of Metal Dithiolene
4 Complexes. In *Progress in Inorganic Chemistry: Synthesis, Properties, and Applications*, 2004;
5 Vol. 52, pp 315-367.
6
7 31. Paw, W.; Cummings, S. D.; Mansour, M. A.; Connick, W. B.; Geiger, D. K.; Eisenberg, R.,
8 Luminescent Platinum Complexes: Tuning and Using the Excited State. *Coord. Chem. Rev.*
9 **1998**, 171, 125-150.
10
11 32. Stasiw, D. E.; Zhang, J. Y.; Wang, G. B.; Dangi, R.; Stein, B. W.; Shultz, D. A.; Kirk, M. L.;
12 Wojtas, L.; Sommer, R. D., Determining the Conformational Landscape of σ and π Coupling
13 Using para-Phenylene and "Aviram-Ratner" Bridges. *J. Am. Chem. Soc.* **2015**, 137 (29), 9222-
14 9225.
15
16 33. Kirk, M. L.; Shultz, D. A.; Stasiw, D. E.; Lewis, G. F.; Wang, G. B.; Brannen, C. L.; Sommer,
17 R. D.; Boyle, P. D., Superexchange Contributions to Distance Dependence of Electron
18 Transfer/Transport: Exchange and Electronic Coupling in Oligo(para-Phenylene)- and
19 Oligo(2,5-Thiophene)-Bridged-Donor-Bridge Acceptor Biradical Complexes. *J. Am. Chem. Soc.*
20 **2013**, 135 (45), 17144-17154.
21
22 34. Kirk, M. L.; Shultz, D. A.; Stasiw, D. E.; Habel-Rodriguez, D.; Stein, B.; Boyle, P. D.,
23 Electronic and Exchange Coupling in a Cross-Conjugated D-B-A Biradical: Mechanistic
24 Implications for Quantum Interference Effects. *J. Am. Chem. Soc.* **2013**, 135 (39), 14713-14725.
25
26 35. Kirk, M. L.; Shultz, D. A., Transition metal complexes of donor-acceptor biradicals.
27 *Coord. Chem. Rev.* **2013**, 257, 218-233.
28
29 36. Kirk, M. L.; Shultz, D. A.; Depperman, E. C.; Habel-Rodriguez, D.; Schmidt, R. D.,
30 Spectroscopic Studies of Bridge Contributions to Electronic Coupling in a Donor-Bridge-
31 Acceptor Biradical System. *J. Am. Chem. Soc.* **2012**, 134 (18), 7812-7819.
32
33 37. Kirk, M. L.; Shultz, D. A.; Habel-Rodriguez, D.; Schmidt, R. D.; Sullivan, U., Hyperfine
34 Interaction, Spin Polarization, and Spin Delocalization as Probes of Donor-Bridge-Acceptor
35 Interactions in Exchange-Coupled Biradicals. *J. Phys. Chem. B* **2010**, 114 (45), 14712-14716.
36
37 38. Kirk, M. L.; Shultz, D. A.; Depperman, E. C.; Brannen, C. L., Donor-acceptor biradicals as
38 ground state analogues of photoinduced charge separated states. *J. Am. Chem. Soc.* **2007**, 129
39 (7), 1937-1943.
40
41 39. Stasiw, D. E.; Zhang, J. Y.; Wang, G. B.; Dangi, R.; Stein, B. W.; Shultz, D. A.; Kirk, M. L.;
42 Wojtas, L.; Sommer, R. D., Determining the Conformational Landscape of σ and π Coupling
43 Using para-Phenylene and "Aviram-Ratner" Bridges. *J. Am. Chem. Soc.* **2015**, 137 (29), 9222-
44 9225.
45
46 40. Kirk, M. L.; Shultz, D. A., Donor Acceptor Biradicals. *Coord. Chem. Rev.* **2012**.
47
48 41. Bencini, A.; Gatteschi, A., *EPR of Exchange Coupled Systems*. Springer-Verlag: New
49 York, 1990.
50
51 42. Kahn, O., *Molecular Magnetism*. VCH: New York, 1993.
52
53 43. Malamatari, D. A.; Hitou, P.; Hatzidimitriou, A. G.; Inscore, F. E.; Gourdon, A.; Kirk, M.
54 L.; Kessissoglou, D. P., First Example of a Mixed-Valence Mn(III)Mn(II)Mn(III) Schiff-Base
55 Polymeric Complex Having a Trimeric Repeat Unit : Crystal-Structure of [Mn-
56 3(Hsaladhp)(2)(Acetato)(2)(5-Cl-Salicylato)(2)](N). *Inorg. Chem.* **1995**, 34 (10), 2493-2494.
57
58 44. Baldwin, M. J.; Kampf, J. W.; Kirk, M. L.; Pecoraro, V. L., Structural and Magnetic Studies
59 of Manganese(II) Complexes of the Imidazole-Containing Ligand 5-NO₂-salimH [5-NO₂-
60

1
2
3 salimH2 = 4-(2-((5-Nitrosalicylidene)amino)ethyl)imidazole] with Varying Nuclearity. *Inorg. Chem.* **1995**, *34* (21), 5252.

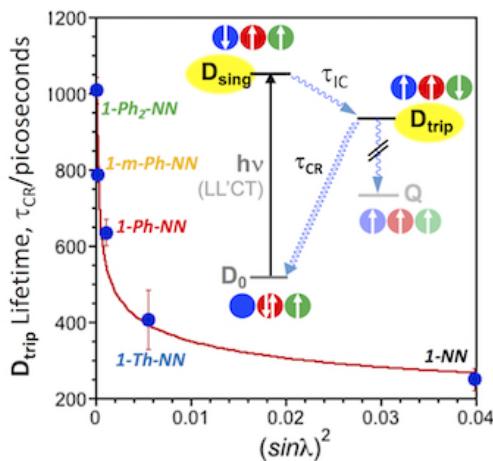
4 45. Kirk, M. L.; Chan, M. K.; Armstrong, W. H.; Solomon, E. I., Ground-State Electronic-
5 Structure of the Dimer-of-Dimers Complex $[(\text{MnO}_2)_2(\text{TpHpn})_2]^{4+}$: Potential Relevance to the
6 Photosystem-II Water Oxidation Catalyst. *J. Am. Chem. Soc.* **1992**, *114* (26), 10432-10440.

7 46. Shultz, D. A.; Vostrikova, K. E.; Bodnar, S. H.; Koo, H. J.; Whangbo, M. H.; Kirk, M. L.;
8 Depperman, E. C.; Kampf, J. W., Trends in metal-biradical exchange interaction for first-row
9 M-II(nitronyl nitroxide-semiquinone) complexes. *J. Am. Chem. Soc.* **2003**, *125* (6), 1607-1617.

10 47. Shultz, D. A.; Bodnar, S. H.; Vostrikova, K. E.; Kampf, J. W., Synthesis and Structure of a
11 Complex Having a Quartet Ground State with Three Entirely Different Spin Carriers: Nitronyl
12 Nitroxide, *ortho*-Semiquinone, and Cull. *Inorg. Chem.* **2000**, *39*, 6091-6093.

13 48. Kirk, M. L.; Shultz, D. A.; Stasiw, D. E.; Lewis, G. F.; Wang, G.; Brannen, C. L.; Sommer,
14 R. D.; Boyle, P. D., Superexchange Contributions to Distance Dependence of Electron
15 Transfer/Transport: Exchange- and Electronic Coupling in Oligo(para-Phenylene)- and
16 Oligo(2,5-Thiophene)-Bridged Donor-Bridge-Acceptor Biradical Complexes. *J. Am. Chem. Soc.*
17 **2013**, *135*, 17144-17154.

18 49. Turro, N. J.; Ramamurthy, V.; Sciano, J. C., *Modern Molecular Photochemistry of*
19 *Organic Molecules*. University Science Books: 2010.


20 50. Zarea, M.; Ratner, M. A.; Wasielewski, M. R., Spin polarization transfer by the radical
21 pair mechanism. *J. Chem. Phys.* **2015**, *143* (5), 054101.

22 51. Matsumoto, T.; Teki, Y., Theoretical study of dynamic electron-spin-polarization via the
23 doublet-quartet quantum-mixed state (II). Population transfer and magnetic field dependence
24 of the spin polarization. *Phys. Chem. Chem. Phys.* **2012**, *14* (29), 10178-10186.

25 52. Teki, Y.; Tamekuni, H.; Haruta, K.; Takeuchi, J.; Miura, Y., Design, synthesis, and
26 uniquely electron-spin-polarized quartet photo-excited state of a [small pi]-conjugated spin
27 system generated via the ion-pair state. *J. Mat. Chem.* **2008**, *18* (4), 381-391.

28 53. Ferguson, J.; Guggenheim, H. J.; Tanabe, Y., Effects of Exchange Interactions in Spectra
29 of Octahedral Manganese (II) Compounds. *J. Phys. Soc. Jpn.* **1966**, *21* (4), 692-704.

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

TOC Graphic

57x44mm (300 x 300 DPI)