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It has been shown that intraoperative stress can have a negative e↵ect on surgeon surgical skills during laparoscopic procedures.
Stressful conditions can lead to significantly higher velocity, acceleration, and jerk of the surgical instrument tips, resulting in faster
but less smooth movements. However, it is still not clear which of these kinematic features (velocity, acceleration, or jerk) is the
best marker for identifying the normal and stressed conditions. Therefore, in order to find the most significant kinematic feature
that is a↵ected by intraoperative stress, we implemented a spatial attention-based Long-Short-Term-Memory (LSTM) classifier. In
a prior IRB approved experiment, we collected data from medical students performing an extended peg transfer task who were
randomized into a control group and a group performing the task under external psychological stresses. In our prior work, we
obtained “representative” normal or stressed movements from this dataset using kinematic data as the input. In this study, a
spatial attention mechanism is used to describe the contribution of each kinematic feature to the classification of normal/stressed
movements. We tested our classifier under Leave-One-User-Out (LOUO) cross-validation, and the classifier reached an overall
accuracy of 77.11% for classifying “representative” normal and stressed movements using kinematic features as the input. More
importantly, we also studied the spatial attention extracted from the proposed classifier. Velocity and acceleration on both sides
had significantly higher attention for classifying a normal movement (p <= 0.0001); Velocity (p <= 0.015) and jerk (p <= 0.001)
on non-dominant hand side had significant higher attention for classifying a stressed movement, and it is worthy noting that the
attention of jerk on non-dominant hand side had the largest increment when moving from describing normal movements to stressed
movements (p = 0.0000). In general, we found that the jerk on non-dominant hand side can be used for characterizing the stressed
movements more e↵ectively.
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1. Introduction

Excessive intraoperative stress can have a negative e↵ect on
surgeon technical skills and therefore compromise patient
safety [1–4]. Laparoscopic surgery, in particular, represents
a very complex motor control learning task [5], and it has
been shown that external stressors can adversely a↵ect mo-
tor performance [6]. Detecting the presence of operative
stress and its potential detrimental e↵ect on motor perfor-
mance is an important problem for the surgical training
community. Conventional methods for measuring human
stress have included physiological sensing techniques such
as measuring cortisol levels, heart rate, heart rate variabil-
ity, and skin conductance levels [7–11]. In practice, physio-
logical sensing techniques can be invasive, time consuming,
and may require surgeons to wear sensors on their bodies
that could interfere with the technical performance.

Alternatively, kinematic data promises to be a less
invasive measurement technique than physiological sens-
ing techniques as this data can be measured directly from
robotic encoders in the case of robotic surgery, or through
the use of computer vision [12] or other simple sensors [13].
Kinematic data has also been shown to be a powerful tool
in other types of surgical skill evaluation [14–16]. For exam-
ple, Wang et al. implemented a convolutional neural net-
work and used kinematic data as input for real-time surgi-
cal skill assessment [17]. In our recent studies, we have val-
idated the feasibility of using kinematic features of the la-
paroscopic instrument tips (velocity, acceleration and jerk)
to distinguish between stressed and non-stressed (normal)
conditions during laparoscopic training tasks using statis-
tical analysis. The results indicated that the subjects had
significantly higher velocity, acceleration, and jerk in both
non-dominant and dominant hand sides when they were
under stressed conditions [13, 18]. However, it is not clear
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which kinematic features can best characterize stressed con-
ditions. In other words, our goal in this study is to find the
kinematic feature which is most a↵ected by external stres-
sors as this data stream could hold the most promise for
real-time stress detection and mitigation measures.

Deep learning algorithms, such as the attention mech-
anism with Recurrent Neural Networks (RNN) and, in
particular, Long-Short-Term-Memory (LSTM) models [19]
could help identify the best metrics for stress identifica-
tion. LSTM can overcome the limitations in traditional
RNNs, for example, traditional RNNs have a problem of
vanishing gradients and thus are not able to capture long-
term dependencies [20]. The attention mechanism in LSTM
can select more critical information from numerous input
features [21]. Recently, the attention mechanism has been
widely used in variety of sequence modeling projects, such
as machine translation [22, 23] and sentiment classifica-
tion [24]. Qin et al. introduced a dual-stage attention-based
Long-Short-Term-Memory (LSTM) model for time-series
forecasting [25]. According to this study, the first stage
was an input attention mechanism, or spatial attention
mechanism, to adaptively extract relevant input features at
each time step. Li et al. implemented a novel RNN-based
spatial attention model for human manipulation skill as-
sessment from video input. The attention in videos helped
them focus on critically important video regions for bet-
ter skill assessment [26]. In the field of robotic-assisted
surgery, Qin et al. implemented a dual-stage attention-
based LSTM model for predicting surgical movements and
surgical states [27]. As inspired by these studies using at-
tention mechanism on input features, we chose to imple-
ment a spatial attention-based LSTM classifier to extract
the most important kinematic features for characterizing
either a normal or a stressed movement.

With the recent development of robotics-assisted sur-
gical platforms, the kinematic data can be streamed di-
rectly from encoders on robot joints without any additional
sensors. More importantly, the actuated surgeon side end-
e↵ectors could be used for advanced control techniques to
provide the surgeon with stress coping strategies in the
form of force feedback applied by the surgeon side end-
e↵ectors to the surgeon’s hands while the surgeon side end-
e↵ectors are controlled by surgeons to teleoperate the pa-
tient side end-e↵ectors [28], for example, slowing down or
pausing [29]. Once we are able to find the kinematic feature
which can describe the stressed movements most signifi-
cantly, the slowing down haptic strategies for coping with
external stress can be designed based on this significant
kinematic feature.

2. Background and Previous Work

We have raised a question before the study: “What char-
acterizes a stressful movement and how do we detect it?”
In order to answer this question, we conducted an experi-
ment in which subjects were provided with commonly ex-
perienced intraoperative stressors while performing surgi-

cal training tasks in a randomized fashion [13, 18]. Then
we studied the negative e↵ect of stressors as well as im-
plementing a deep learning algorithm to extract and detect
the stressed movements. The details of this experiment will
be summarized in Section 2.1.

2.1. Identifying Stress

2.1.1. Experimental Design

In this experiment, 30 medical students (29 were right-
handed and 1 was left-handed) at the University of Texas
Southwestern Medical Center were recruited. The study
was IRB approved and informed consent was obtained (ap-
proved by UTD IRB o�ce (UTD # 14-57) and UTSW IRB
o�ces (STU #032015-053)). Each subject completed a 10-
minute tutorial on the FLS peg transfer task to be familiar-
ized with the instruments and the requirements of the ex-
periment. Then the subjects were randomly divided into a
control (n = 15) group or stressed (n = 15) group. greenThe
random number sequence for control/stressed group assign-
ment was generated using the random number generator in
R programming language. The subject recruiter and the
person who analyzed the data were separate. Therefore, it
prevented the individuals analyzing the data from knowing
which group a subject was assigned to in advance.

During the experiment, each subject was required to
finish a 6-minute peg transfer task on the FLS trainer
which was placed in the abdominal section of a medical
manikin. A pair of electromagnetic (EM) trackers were
mounted to the handles of the laparoscopic instruments to
capture the time-series data of movements. redWe used the
trakSTARTM electromagnetic 6 DoF tracking system from
Ascension Technology Corporation. The data collected by
the EM trackers included xh, yh, zh positional coordinates
in space and quaternions q0, q1, q2, q3 at a frequency of 256
Hz. The instrument tip positions were calculated using the
handle positions (xh, yh, zh), a rigid body transformation
obtained by handle rotations (q0, q1, q2, q3) and the instru-
ment geometry.

The stressors in this study included the vital signs of
the medical manikin and the moderator’s feedback during
the task. In the control group, each subject proceeded while
hearing normal vital signs and with no feedback from the
moderator. In the stressed group, each subject performed
the task under a period of progressively deteriorating vital
signs, with an distinct increase in intensity beginning at the
3-minute mark (the middle point of the 6-minute task). The
moderator provided feedback to the stressed group and the
feedback culminated in 30 seconds of cardiac arrest and the
expiration of the medical manikin.

Besides the kinematic data from EM trackers, other
data was collected and evaluated through video review,
such as the number of pegs transferred and the number
of errors made. Additionally, a blinded independent re-
viewer with training in OSATS scoring graded each sub-
ject using a modified OSATS (mOSATS) rubric [30]. red-
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mOSATS is a subsection of OSATS including respect for
tissue (RFT), time and motion (TM), instrument handling
(IH) and the total score (TOT). The subjects also com-
pleted a State-Trait-Anxiety-Inventory (STAI) to measure
subjective stress after the experiment [31].

2.1.2. Previous Results

We removed the data of one subject (in the control
group, right-handed) due to redthe loss of connections be-
tween sensors and computer during experiment. We down-
sampled the kinematic data to 5Hz redto remove noise and
smooth the data and organized the data of both instru-
ment tips based on each subject’s handedness, so the over-
all dataset of 29 subjects resulted in approximately 52,200
samples of six features xND, yND, zND, xD, yD, zD (the
subscript D indicates data from the dominant hand and
ND is non-dominant hand) [32]. redAfter down-sampling
the data, the kinematic metrics velocity (V ), acceleration
(A) and jerk (J) of the instrument tips were also calculated:
red

Vt =

p
(Pt+1 � Pt)T (Pt+1 � Pt)

Tt+1 � Tt
(1)

redPt is the 3-D position at time t, and Tt is the time
stamp at time t.

redThe Acceleration (A) and the jerk (J) were time
series data calculated in the similar way: red

At =
Vt+1 � Vt

Tt+1 � Tt
, Jt =

At+1 �At

Tt+1 � Tt
(2)

redThe stressed group had significantly higher veloc-
ity, acceleration, and jerk than the control group for both
hands. redIn stressed group, the second 3-minute half of
the experiment had significantly higher velocity, accelera-
tion, jerk, path length and lower economy of volume than
the first 3-minute half for both hands. Other standard met-
rics were also analyzed, for example, the stressed group
had smaller numbers of peg transferred and larger num-
bers of errors made, indicating worse performance under
stressful conditions red [13]. Lower mOSATS scores and
higher scores for the change from baseline (trait) to during
the scenario (state) in STAI were found to be significant
in the stressed group (Fig 1). These significance di↵erences
between control and stressed groups in our studies indi-
cated that the kinematic data can be related to increased
stress levels.

We also extracted the movements that were more
significantly a↵ected by the stress using an temporal
attention-based LSTM classifier in another study [33]. We
first implemented a trial-wise classifier with the attention
mechanism which took the time-series instrument tips po-
sitional data (xND, yND, zND, xD, yD, zD) of each trial
as the input, and returned y = 0 :control (normal) or

y = 1 : stressed as the output. The classifier returned the
temporal attention for each trial, which was a vector con-
taining the importance of each time step within a trial that
contributed to classification of control or stressed trial. Af-
ter obtaining the temporal attention vector of each trial, we
used a sliding window to organize the temporal attention
sequence and the input sequence into frames. We calculated
the sum of each attention frame and considered any frame
with an attention greater than the third quartile to be “im-
portant”: a frame with an attention sum greater than the
third quartile in a control (normal) trial was considered to
be a “representative” normal movement; A frame with an
attention sum greater than the third quartile in a stressed
trial was considered to be a “representative” stressed move-
ment.

Fig. 1: The change from trait to state. Higher scores in the
stressed group.

Finally, a subset of the original dataset containing the “rep-
resentative” normal and stressed movements could be ex-
tracted based on the temporal attention.

2.2. Goals of This Study

With the first question mentioned in the first paragraph of
Section 2.1 answered by our studies in Section 2.1.2, we de-
cided to move forward to finding the answers of the second
question:“Which type of haptic cues on telerobotic plat-
form could improve the stressful movements significantly?”

Even through the results in Section 2.1.2 indicate that
stress leads to significantly higher velocity, acceleration and
jerk, it is still not clear that which kinematic feature has
more contribution to identifying the stressed movements
and therefore, should be improved using haptic cues.

3. Methods

Based on the results in Section 2.1.2, we aim to find the
kinematic feature that was mostly a↵ected by the stress.
In the studies described in Section 2.1.2, we first found
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that the velocity, acceleration and jerk of the instrument
movement were higher when the subject experienced
intra-operative stress, but it is not clear which feature
has the best potential to characterize the stress. Then, we
implemented a temporal attention-based LSTM classifier
and used position data of the instrument tips as the input
to distinguish between control (normal) and stressed trials.
We also obtained the “representative” control (normal) and
“representative” stressed surgical movements from each
trial based on the attention mechanism since the attention
could tell us the importance of each time step to the final
classification of control/stressed.

In this study, the kinematic features (velocity, accel-
eration and jerk) of the obtained “representative” move-
ments were used as the input of our newly proposed spatial
attention-based LSTM classifier.

The classifier returns: first, whether a movement is
a normal or a stressed movement; second, the spatial at-
tention vector that describes the importance of each input
feature (velocity, acceleration and jerk) that contributes to
the classification of a normal/stressed movement. Instead of
capturing the importance of each time step, namely tem-
poral attention as described in previous sections, spatial-
attention calculates the importance of each input feature
at each time step for classification [25].

3.1. Model Architecture

The architecture of proposed spatial attention-based LSTM
classifier is illustrated in Fig 2. The input sequence
{x1, x2, ..., xT } was the kinematic features of each “rep-
resentative” movement. As mentioned above, each x con-
tained six kinematic features extracted from both in-
strument tips, velocity, acceleration and jerk, respectively
(VND, AND, JND, VD, AD, JD). For each input:

xj = [VNDj , ANDj , JNDj , VDj , ADj , JDj ]
T , j = 1...T (3)

The subscript D is dominant hand side and ND is non-
dominant hand side. The ground truth label y = 0or1 was
assigned to be either a “representative” control (normal)
movement or a “representative” stressed movement.

We measured the importance of each input feature by
computing a tanh function of input x with units = 6 :

eij = tanh(xj) = tanh(x1j , x2j , ..., x3j), i = 1, ..., 6 (4)

eij was called “energy” which calculated the contribu-
tion of each feature at each time step j to the final classi-
fication of control (normal) or stressed movement.

Then, the spatial attention weights �ij at each time
step j were obtained by passing eij to a Softmax function
to ensure all spatial attention weight as each time step sum
to 1:

�ij =
exp(eij)Pn
i=1 exp(eij)

(5)

The spatial attention weight �ij indicates how much
attention the final output label y should pay to the ith input
feature at time step j.

Next, we calculated the context vector (c1, c2, ..., cT )
as a weighted linear combination of all input features at
each time step xi:

ci =
6X

i=1

�ijxij (6)
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Fig. 2: Model architecture of proposed spatial attention-
based LSTM classifier for “representative” movements clas-
sification and the extraction of input feature importance.
The input had 6 features including time-series velocity, ac-
celeration and jerk of both instrument tips.

Finally, we passed the context vector to an LSTM
(units = 100). The final output of LSTM was sent to
two fully-connected layers with activation functions of
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ReLU, units = 20 and Softmax, units = 2 to output the
prediction ŷ. redThe hyperparameters in the model were
selected through grid search. During grid search, we shuf-
fled and split the data into training set and testing set us-
ing 70/30 split. Then, we chose the set of hyperparameters
which showed the best accuracy in grid search for classifier
design.

greenDi↵erent from grid search, we adopted Leave-
One-User-Out cross-validation to evaluate the performance
of our proposed model which will be described in Section
3.2.

We obtained two outputs from the proposed classifier.
First, reda classification result of the input movement de-
ciding whether the input movement was normal or stressed;
Second, the spatial attention vector that could tell the im-
portance of each input feature to classify the movements as
normal or stressed movements.

3.2. Cross-Validation

It is standard to test the deep learning model by leaving
aside a portion of the data as the testing dataset and use
the remaining portion to train the model.

To evaluate the performance of our proposed classifier,
we adopted Leave-One-User-Out (LOUO) cross-validation.
The LOUO used the ith subject as testing dataset and the
rest for training, and iterated throughout all the 29 sub-
jects. The mean values of all 29 iterations’ performance
metrics were reported and will be shown in the following
sections. LOUO was designed to test if the classifiers were
generalized enough for unseen data.

3.3. Model Performance Metrics

To evaluate the performance of our proposed classifier, four
commonly used metrics were used in our study - Accu-
racy, Precision, Recall, and F1-score. Accuracy is the ratio
of correct predictions (Tp + Tn) to the total predictions
(Tp + Fp + Tn + Fn); Precision is the ratio of correct posi-
tive predictions (Tp) to the total positive results (Tp + Fp)
predicted by the classifier; Recall is the ratio of correct pos-
itive predictions (Tp) to the total actual results (Tp + Fn).
F1-score is a measure of a classifier’s accuracy which takes
the harmonic mean of the precision and recall.

Accuracy =
Tp + Tn

Tp + Fp + Tn + Fn
, (7)

Precision =
Tp

Tp + Fp
, (8)

Recall =
Tp

Tp + Fn
, (9)

F1� score =
2(Recall ⇤ Precision)

Recall + Precision
. (10)

4. Results and Discussion

To investigate which kinematic features can potentially
characterize either a normal movement or a stressed move-
ment, we used the kinematic features of the “represen-
tative” movements as the input of our proposed spatial
attention-based LSTM model.

The dataset we used in this study was from our pre-
vious experiment which has been discussed in Section 2.1.
In order to validate our approach, first, the performance of
our proposed spatial attention-based LSTM classifier was
evaluated. Second, the spatial attention of all six kinematic
features were obtained from the proposed classifier. Data
analysis was carried out to determine the significant dif-
ferences among the spatial attention of all six kinematic
features.

4.1. Classifier Performance

In this study, we aimed to classify between the “representa-
tive” normal/stressed movements using the kinematic fea-
tures (velocity, acceleration and jerk). The input of our clas-
sifier was the kinematic features of each “representative”
normal or stressed movement. And the output returned if
the input was a normal movement (y = 0) or a stressed
movement (y = 1) as well as the spatial attention vector
describing the contribution of each kinematic feature.

Based on the previous study, the input movement
length was 16 secondsred [33]. Under LOUO cross-
validation, we used the movements of the ith subject
as the testing dataset and the remaining for training
the model. And the same process iterated throughout all
29 subjects red(11 movements from each subject). Accu-
racy was obtained through averaging throughout LOUO
cross-validation red(Mean: 77.11%, Standard Deviation:
17.32%). redSince we were using LOUO and each User’s
movement could only be either normal or stressed, it was
not appropriate to calculate Precision, Recall and F1-score
individually. Instead, we added the confusion matrix of
all LOUO iterations and used the summed confusion ma-
trix for calculations (Precision: 77.26%, Recall: 77.23%, F1-
score: 77.24%).

4.2. Spatial Attention of Kinematic Features

The classifier also returned the spatial attention vector � of
each input feature that contributed to the classification. In
other word, the spatial attention tells us which kinematic
features had the most potential to characterize either a nor-
mal or a stressed movement.

As described in Section 3.1, the classifier returns a vec-
tor of attention at each time step j for a given input move-
ment ([�1j ,�2j ,�3j ,�4j ,�5j ,�6j ]T ). In order to compare the
attention among di↵erent kinematic features, we then took
the average of the spatial attention across all time steps for
each input movement. As a result, the averaged spatial at-
tention of each kinematic feature across all time steps was
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(a) An example showing the spatial attention of all
kinematic features in a randomly selected stressed
movement. In statistical analysis, the spatial attention
was averaged across all time step, therefore resulting
in a vector of six numbers for each movement.
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(b) The means and standard deviations of averaged
spatial attention across all normal and stressed move-
ments were plotted.

Fig. 3: Comparing the spatial attention of di↵erent kinematic features in normal and stressed movements.

used in statistical analysis to determine significant di↵er-
ences in the six kinematic features in normal and stressed
movements. The normality test to identify a normal distri-
bution in the averaged spatial attention was rejected and
thus, the Kruskal Wallis test was used to identify the sig-
nificance.

The spatial attention of each kinematic feature to de-
scribe a normal movement is shown in the blue lines in
Fig. 3b. The results of statistical analysis to determine the
di↵erences among the six features are summarized in Ta-
ble. 1. As shown in Fig. 3b and Table. 1, the velocity and
acceleration for both non-dominant (VND, AND) and domi-
nant (VD, AD) hand sides had significantly higher attention
than the jerk (JND and JD) in normal movements. It means
that the velocity and acceleration have more potential to
describe a normal movement.

However, in stressed movements, as shown in the red
lines in Fig. 3b and Table. 2, velocity and jerk on non-
dominant hand side (VND, JND) had significantly higher
attention than acceleration on non-dominant hand side
(AND), velocity and jerk on the dominant hand side (VD

and JD). Besides, according to Table. 2, acceleration on the
dominant hand side (AD) also showed significantly higher
attention than jerk on the dominant hand side (JD). The re-
sults indicate that velocity and jerk on non-dominant hand
side and acceleration on the dominant hand side have a
better potential to describe a stressed movement.

redWhen comparing the kinematic feature attentions
between normal movements and stressed movements in
Fig. 3b, we noticed that the attention values of VND, VD

and JD did not show a clear di↵erence between normal and
stressed movements. However, the attention value of JND

had an clear increment from describing normal movements
to describing stressed movements. It means that JND re-
ceived a higher attention from the classifier when describing
a stressed movement. Similarly, the attention values ofAND

and AD had an clear increment from describing stressed
movements to describing the normal movements. It means
that AND and AD received a higher attention when de-
scribing a normal movement. Then, we used a Wilcoxon
rank sum test to compare each kinematic feature between
normal and control movements in Table. 3. Therefore, we
can say that JND was mostly a↵ected by the stress, and
it can be used to characterize the stress more e↵ectively;
AND and AD can be used to characterize the normal move-
ments.

4.3. Spatial Attention of non-dominant and

Dominant Hand Sides

We also examined the importance of hand sides to char-
acterize the normal or stressed movement. Instead of ana-
lyzing the spatial attention of each kinematic feature sep-
arately, we took the sum of the spatial attention of kine-
matic features of both non-dominant hand side and domi-
nant hand side.

As shown in Fig. 4a and the last row of Table. 1, no
significant di↵erence between non-dominant hand side and
dominant hand side can be found. It means the movement
on both sides has equal importance for describing a nor-
mal condition. This finding is easy to be explained since
in normal movements, the subjects were performing under
normal conditions and the movements on both sides were
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ND D
0.45

0.5

0.55
Control (Normal) Movements

(a) Comparing the sum of attention between non-
dominant hand side and dominant hand side in normal
movements.

ND D
0.45

0.5

0.55
Stressed Movements

(b) Comparing the sum of attention between non-
dominant hand side and dominant hand side in normal
movements.

Fig. 4: Comparing the sum of spatial attention between non-dominant hand side and dominant hand side for character-
izing a normal and stressed movement. In stressed movements, the non-dominant hand size received more attention than
dominant hand side.

not a↵ected by the intraoperative stressors, so there is no
di↵erence between the two hands.

However, in stressed movements, where the subjects’
performance was negatively a↵ected by the stressors, the
importance of both sides to characterize the stressed move-
ments has changed. As shown in Fig. 4b and the last row of
Table. 2, the non-dominant hand side showed significantly
higher attention than the dominant hand side which means
the kinematic features on the non-dominant hand side have
more potential to characterize the stressed movements. The
reason behind this finding is that the movement on the
non-dominant hand side is less skilled and less dexterous.
redInterestingly, recent work from our lab has also shown
that when two hands are moving simultaneously, the non-
dominant hand actually su↵ers in performance relative to
if it was moving alone [34]. We think these results could in-
dicate that because the non-dominant hand is arguably the
weaker of the two hands, studying its movements is useful
as it is more prone to performance degradations in chal-
lenging conditions. Therefore, the movement on the non-
dominant hand side is more likely to be negatively a↵ected
by the intraoperative stressors and it is reflected as a higher
attention on non-dominant hand side during classification
of stressed movements.

Table 1: Normal movements: statistical analysis summary
of the spatial attention of six kinematic features.

Significance p� value

Kinematic VND > JND, JD p < 0.0001
Features AND > JND, JD p = 0.0001

VD > JND, JD p = 0.0001
AD > JND, JD p < 0.0001

ND vs. D N/A p = 0.8198

Table 2: Stressed movements: statistical analysis summary
of the spatial attention of six kinematic features.

Significance p� value

Kinematic VND > AND, VD, JD p < 0.015
Features JND > AND, VD, JD p < 0.001

AD > JD p = 0.0002

ND vs. D ND > D p < 0.0001

red

Table 3: Comparisons of the spatial attention of kinematic
features between normal and stressed movements.
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Kinematic Features Significance p� value

VND N/A p = 0.9821
AND Normal > Stressed p = 0.023
JND Normal < Stressed p = 0.0000
VD N/A p = 0.0724
AD Normal > Stressed p = 0.0002
JD N/A p = 0.8388

5. Conclusion

In this study, we implemented a spatial attention-based
LSTMmodel and used kinematic features (velocity, acceler-
ation and jerk) as input for the classification of “representa-
tive” normal and stressed movements which were obtained
from our previous studies [13, 33].

Our proposed classifier was able to distinguish between
“representative” normal and stressed movement with an
accuracy of 77.11% under LOUO cross-validation, and it
showed that our classifier was generalized to unseen data.
More importantly, the classifier also returned the spatial
attention vector which was able to tell us the contribution
of each kinematic feature to the final classification labels.

We also conducted statistical analysis to study the ob-
tained spatial attention of six kinematic features. In nor-
mal movements, velocity and acceleration on both non-
dominant and dominant hand sides had significantly higher
attention than jerk. It means that velocity and acceleration
contributed more to the classification of a normal move-
ment, and therefore, can be used for characterizing a nor-
mal movement.

In stressed movements, velocity and jerk on the non-
dominant hand side had significantly higher attention than
acceleration on non-dominant hand side, velocity and jerk
on dominant hand side. Although it is not significant,
the jerk also had higher attention than velocity on non-
dominant hand side.

redWhen comparing the kinematic feature attentions
between normal and stressed movements in Fig. 3b and
Table. 3, we noticed that the attention of the jerk on non-
dominant hand side had the significant change when mov-
ing from normal movement to stressed movement. It means
that jerk on the non-dominant hand side was the most sig-
nificant kinematic feature to be a↵ected by stress, therefore,
had the best potential for characterizing a stressed move-
ment. Similarly, in normal movements, the acceleration on
both hand sides also had significantly higher spatial atten-
tions than stressed movements, which means the acceler-
ations had the best potential for characterizing a normal
movement.

We also conducted analysis based on non-dominant
and dominant hand sides. In normal movements, the spatial
attention sums on both sides did not show any significant
di↵erences. However, in stressed movements, non-dominant
hand side had significantly higher spatial attention than
dominant hand side which means the kinematic features on

non-dominant hand side had better potential to describe a
stressed movement and the performance of non-dominant
hand is more likely to be negatively a↵ected by intraoper-
ative stress.

redOne limitation of this study is the lack of expertise
levels. We only had medical students recruited and only
one trial (control or stressed) for each subject. A better
generalization of this deep learning approach can be made
if subjects could include a wider range of expertise levels,
for example, attending, fellow and resident surgeons in a
large number, therefore, reduce the probability of overfit-
ting the model.

In general, in this paper, we answered the question
raised in Section 2.2: “Which type of haptic cues on teler-
obotic platform could improve the stressful movements
significantly?”. redBased on the results, the jerk on non-
dominant hand and the accelerations on both hand sides
are most likely to be a↵ected by stress. And according to
our previous study, the stress led to significant greater val-
ues of jerk meaning less smooth movements under stressed
conditions. These findings can be integrated to create hap-
tic cues based on jerk, especially on non-dominant hand
side on telerobotic platforms to help surgeons cope with
intraoperative stress and therefore, mitigate the negative
e↵ect of stress. In future work, we will need to determine
how to develop an e↵ective haptic feedback cue that can
mitigate changes in movement jerk. This is not a trivial
problem as jerk-based measurements are prone to noise and
it is not clear how to provide jerk-based haptic feedback in
a stable way.
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