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Abstract— Surgical movements have an important stylistic
quality that individuals without formal surgical training can
use to identify expertise. In our prior work, we sought to
characterize quantitative metrics associated with surgical style
and developed a near-real-time detection framework for stylistic
deficiencies using a commercial haptic device. In this paper, we
implement bimanual stylistic detection on the da Vinci Research
Kit (dVRK) and focus on one stylistic deficiency, “Anxious”,
which may describe movements under stressful conditions. Our
goal is to potentially correct these “Anxious” movements by
exploring the effects of three different types of haptic cues
(time-variant spring, damper, and spring-damper feedback) on
performance during a basic surgical training task using the da
Vinci Research Kit (dVRK). Eight subjects were recruited to
complete peg transfer tasks using a randomized order of haptic
cues and with baseline trials between each task. Overall, all
cues lead to a significant improvement over baseline economy
of volume and time-variant spring haptic cues lead to significant
improvements in reducing the classified “Anxious” movements
and corresponded with significantly lower path length and
economy of volume for the non-dominant hand. This work is
the first step in evaluating our stylistic detection model on a
surgical robot and could lay the groundwork for future methods
to reduce the negative effect of stress actively and adaptively
in the operating room.

Index Terms— Human Performance Augmentation, Surgical
Robotics: Laparoscopy, Haptics and Haptic Interfaces

I. INTRODUCTION
There is a direct relationship between surgical outcomes

and surgeon skill level [1]–[7]. Thus, providing useful and
meaningful feedback to the trainee is critical for patient
safety. Traditional surgical skill assessment methods involve
an observational approach where a senior surgeon observes
a trainee and provides verbal feedback [8]. In recognizing
surgical mastery, you often “know it when you see it” - an
observation that has led to innovative developments for using
crowd-sources to quantify surgical skill assessment [9]–[11].
Other quantitative and data-driven tools are also enabling the
next phase of research in surgical skill assessment [12]–[16].

Beyond skill assessment, surgical simulators have long
been developed to enhance basic skills outside of the oper-
ating room [17]; however, there are concerns that simulators
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lack meaningful feedback on how trainees should modify
their movements to improve performance [18]. The addition
of haptic feedback or cue has shown some benefits to
simulator-based training [19]–[21], as well as training other
human movements [22], [23]; however, this haptic cue is
typically task-based (e.g., indicating instrument or tissue
collisions) as well as static - meaning that it does not change
as a function of trainee learning.

There is an opportunity to design more adaptive and
personalized methods of haptic cues. For example, Enayati
et al. used haptic guidance to enhance performance in a ring-
and-rail following task by providing haptic cues related to
optimal orientation of the ring [24]. We aim to adopt a similar
strategy for haptic cues; however, our approach is designed
to be more global and task-independent. We accomplish this
by focusing on the stylistic behaviors that are associated
with expert or novice-like movements (e.g., Fluid/Viscous,
Crisp/Jittery, Calm/Anxious, among others); a method that
was developed through the use of crowd-sourced assessment
of surgical styles [11], [25], [26].

In this paper, we focus on a single type of stylistic be-
havior, namely “Calm/Anxious”. This style could potentially
be useful to detect, in near-real-time, stressful intra-operative
events that could potentially negatively impact surgical per-
formance and thus compromise patient safety [27]–[30].

As a first step in correcting the “Anxious” movements, we
implement three stylistic haptic cues (described in Section
II) on a open-source telerobotic platform, specifically, the da
Vinci Research Kit (dVRK) and associated open-source soft-
ware [31]–[34] to determine which cue is best at improving
performance. This paper builds on our prior work [26] to
perform kinematic-based stylistic detection by implementing
the method on the dVRK and performing detection on both
the dominant and non-dominant hand kinematic data.

II. BACKGROUND AND PRIOR WORK
A. Surgical Skill Assessment Using Stylistic Behavior

In prior work, we presented a novel surgical skill assess-
ment method based on the surgeon’s stylistic behavior [11].
We proposed a lexicon of surgical styles, informed by expert
surgeons, including stylistic adjectives such as Fluid/Viscous,
Smooth/Rough, and Calm/Anxious. We evaluated the ability
of stylistic descriptors to differentiate between expertise
levels using metrics correlated to crowd-sourced assessments
of surgical styles obtained from training videos [25]. We also
proposed an automatic, near-real-time method for detecting
the quality of performance, based on these behavioral styles
and within 0.25 seconds of movement data [26].20
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Fig. 3: (a) User interface showing user interacting with simulated environment using the Geomagic Touch haptic device. The
reaching task was initiated by the user moving the virtual stylus to the red doughnut and would end by reaching the specified
target. (b) Target layout.
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Fig. 4: An example of an experiment protocol for one subject. The protocol consists of six blocks, each related to one stylistic
behavior detection algorithm that was activated for that block. For each block, the user first performed a set of reaching
movements with no feedback to enable a baseline computation of style, followed by a set of trials with feedback that was
provided, based on measured stylistic deficiencies. For each subject, a single feedback method was provided throughout the
whole experiment, but at different points of time, depending on the style detection algorithm for that subject. Hence, a unique
feedback relevant to style was provided to each subject.

to that trial. For each style (i.e., each block in the protocol
(Fig 4)), the first section of the block where no feedback is
applied is used as a baseline for that style. For each trial, the
performance of the user was evaluated by the sum of number
of times a one was detected (good performance), divided by
the total number of detections in that trial. This was done
for the baseline trials for each style and averaged over all
force-feedback trials for the same style.

p =
∑N=40

i (num positive WF/num total WF)/N
∑M=16

j (num positive NF/num total NF)/M
(4)

Where: num positive WF is the number of good performance
detected in a trial with feedback, num total WF is the number
of total detections in a trial with feedback, i is the trial
index for feedback trials, and N is the total number of
trials with feedback for one style. In the denominator, we
defined:num positive NF as the number of good performance
detected in the baseline trial (no feedback), num total NF
as the number of total detections in the baseline trial (no

feedback), j as the trial index for baseline trials, and M as
the total number of baseline trials.

G. Task Performance Evaluation Metrics
To compare the effect of the three types of feedback on the

task performance, three metrics were calculated including: (1)
time taken to reach the target, (2) needle trajectory straightness
(the distance traveled by the needle divided by a straight line
to the target), and (3) the needle position error (the distance
between the needle and the target at the end of the trial).

V. RESULTS AND DISCUSSION

We collected a total of 7056 trials (21 subjects, 336 each).
Data analysis was carried out for all trials. The results include
the evaluation of stylistic behavior improvement, as well as an
evaluation of task performance as a function of the different
types of haptic force feedback. A NASA Task Load index
survey was also conducted to show how users percieved the
feedback provided to them in terms of workload.

(b) Experimental Setup
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Fig. 1: Preliminary work to compare the effects of three
different types of haptic cues on six distinct stylistic behav-
iors detected with our previously developed near-real-time
detection algorithm [26], [35]

B. Preliminary Experimental Study of Stylistic Haptic Cues

Most recently, we developed a preliminary adaptive train-
ing method consisting of the following elements: (1) a
near-real-time detection of stylistic deficiencies in movement
based on a crowd sourced assessment of style and a dictio-
nary learning method, optimized for time and computational
efficiency using principle component analysis and sparse
coding [26] and (2) based on the detection, simple haptic
cues (e.g., time-variant spring, damper, and spring-damper
haptic cues based on current and prior user positions and
velocities) are provided to the human operator to improve
style (Fig 1) [35].

We evaluated three different haptic cues: (1) time-variant
spring, (2) time-variant damper, and (3) time-variant spring-
damper feedback (Fig 1a) across these six behavioral styles
in a small human subject study using a commercial haptic
device (Geomagic Touch, 3D Systems, SC) and a trajectory
following task [36] (Fig 1b).

A generalized metric was developed to compare the per-
formance improvements of the haptic cues over baseline
movement trials. Results showed significant differences in
changing performance for certain combinations of styles and
types of haptic cues, e.g., time-variant spring led to better flu-
idity, time-variant damper improved crispness, time-variant
spring-damper improved “Anxious” movements (Fig 1c).
However, the simplistic nature of these uni-manual target
reaching tasks could have obscured the potential training
benefit of these haptic cues.

Therefore, in this paper, we decide to focus on only one
pair of stylistic behavior - “Calm/Anxious” and aim to find
the best haptic cue to improve this style during a more
challenging and surgically relevant bimanual task.

III. METHODS

We developed a method to recognize the quality of move-
ment through stylistic behavior and apply appropriate near-
real-time haptic cues for correcting the “Anxious” move-
ments using a surgical robot platform and a simulated task.

A. Data Acquisition

The da Vinci Research Kit (dVRK) was used in this study
for both kinematic movement data acquisition and haptic
feedback. Position, linear velocity, and angular velocity from
dVRK surgeon-side manipulator (MTMs) were recorded and
sent to the detection algorithms using an integrated Robot
Operating System (ROS) communication tool [37]. The
stylistic detection algorithm was fed a data window of 30
samples. To enable near-real-time detection, the incoming
data from the dVRK was read at a frequency of 30Hz
through ROS nodes. The detection was performed with the
continuously updated data window at the same frequency.

B. Detecting Anxious Movements

The stylistic behavior performance was detected using our
previously published method [26]. In order to integrate this
method with the dVRK, the proposed classifier was trained
using the kinematic data from the MTMs of a da Vinci skill
simulator from the JHU-ISI Gesture and Skill Assessment
Working Set (JIGSAWS) [38]. JIGSAWS contained the
kinematic data and the corresponding video of 8 subjects
performing 3 different surgical training tasks with 5 repe-
titions. The ground-truth in training was obtained through
crowd-sourcing - a video clip in JIGSAWS was provided
to the participant and the participant was required to select
an adjective (“Anxious/Calm”) to describe the video clip.
Our classifier returns 0 if a poor performance (“Anxious”) is
detected and returns 1 otherwise (“Calm”). These detection
algorithms were implemented in MATLAB.

C. Providing Haptic Cues to Correct Anxious Movements

To improve user’s performance, haptic cues were provided
based on near-real-time style classification. In our study,
the cisst library and ROS interfaces [31] were used to
read kinematic data, as well as publish haptic cues (i.e.,
the calculated wrench) to the MTMs. When an “Anxious”
movement is detected, the haptic cue is turned on. The three
types of haptic cues are described below:

• Time-Variant Spring (S): This haptic cue was calcu-
lated by using the difference between the position of
the MTMs at time t (Pt) and the position at time t− 1
(Pt−1).

Fs = Ks(Pt − Pt−1) (1)

The gain Ks was selected as 90 through pilot study
where Ks = 90N/m could be noticeably felt and
didn’t introduce instability nor violate the passivity of
the system [24].

• Time-Variant Damper (D): This haptic cue was cal-
culated using the difference between the velocity of the
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Fig. 2: System Block Diagram: (a) The dVRK and the training environment. (b) The dictionary of stylistic feature codes and
a classifier generated to predict stylistic deficiencies [25], [26]. (c) Each window of kinematic measurements is represented as
stylistic behaviors by projecting it on the learned dictionary. (d) The quality of the user’s style is detected using a classifier.
(e) Haptic cues are provided to the user if negative style (i.e., “Anxious” movement) is detected.

Fig. 3: A photo of standard peg transfer task taken by the
endoscope on dVRK.

MTMs at time t (Vt) and the position at time t − 1
(Vt−1).

Fd = Bd(Vt − Vt−1) (2)

The gain Bd was chosen to be 15 in this experiment. In
pilot study, Bd = 15N.s/m could be perceived by the
user and didn’t create instabilities nor violate passivity.

• Time-Variant Spring-Damper (SD): This haptic cue
was calculated using the difference between position
and velocity of the MTMs at time t (Pt, Vt) and time
t− 1 (Pt−1, Vt−1)

Fsd = Ksd(Pt − Pt−1) +Bsd(Vt − Vt−1) (3)

The gains Ksd and Bsd were selected as Ksd =
90N/m, Bsd = 15N.s/m to stay consistent with Ks

and Bd.

IV. EXPERIMENTAL SETUP

A. Subject Recruitment
Eight subjects participated in this study. The subjects were

engineering students and staff at the University of Texas at
Austin. All subjects were de-identified. Four out of eight
subjects had prior experiences in haptics, but none were
formally trained in robotic surgery. The study protocol was
approved by UT Austin IRB office (#STUDY00000278).

Participants had no previously reported muscular-skeletal
injuries or diseases, or neurological disorders. Seven subjects
were right-hand dominant and one subject was left-hand
dominant. The data was analyzed based on “Dominant hand”
and “Non-dominant hand” based on self-report.

B. Surgical Training Task

A bimanual peg transfer task was used in this study
(Fig 3). The peg transfer task requires subjects to control
the Patient Side Manipulators (PSMs) to pick up each block
from the left side of the board, complete a mid-air transfer
of the block between hands, and place it onto the right side.
Then, all blocks need to be moved back to the left side, with
a mid-air transfer [39]. This is considered a single “round
trip” for the blocks.

C. Experiment Protocol

Each subject was required to finish 6 trials in total. As
illustrated in Fig 4, one subject first performed a baseline
trial containing an one-round-trip peg transfer task with no
haptic cue, followed by a trial containing a two-round-trip
peg transfer task with a haptic cue. This procedure was
repeated three times for all three types of haptic cues which
was presented to each subject in a randomized order. We
assigned each type of haptic cues with a number from 1 to
3 (S: 1, D: 2, SD: 3). Then we used randperm() function
in MATLAB to generate a uniform pseudo-random order of
[1,2,3] for each subject. When the subjects were recruited,
the order of the haptic cues was generated and concealed
from the subjects - the experimenter did not know the order
in advance as it was generated automatically for each subject
so there was no possibility of selection bias. The baseline
trials were designed to wash out training effects throughout
the experiment.

D. User Performance Metric

To quantify performance for each type of haptic cue, we
developed a user performance metric, I . For each trial, the
performance, R, of the subject was evaluated by the total
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sum of ‘1’s’ or good performance as being detected (i.e.,
good performance = Calm style), divided by the total number
of detections in that trial.

R =
num good detections

num total detections
(4)

The performance metric I of one type of haptic cue is
then obtained by

I =
Rhaptic

Rbaseline
(5)

The metric I describes the improvement of performance in
the trial with haptic cues over its own baseline trial without
haptic cues.

E. Task Performance Metrics
We also included two metrics to quantify task level per-

formance: path length (PL) and economy of volume (EV ).
Both PL and EV metrics are a single number for each side
during each trial.

PL describes the spatial distribution of the MTMs move-
ments in the workspace of the task. A compact “distribution”
for path length is a known characteristic of an expert [40]:

PL =
Tend∑

Tstart

√
(Pt+1 − Pt)T (Pt+1 − Pt) (6)

P is the 3 dimensional position of the movement. EV
indicates the efficiency of occupying the space [41], and a
larger value of EV indicates better performance:

EV =
3
√

(xmax − xmin)(ymax − ymin)(zmax − zmin)

PL
(7)

Moreover, to compare improvement over each baseline
trial, we introduced two metrics: path length improvement
(PLimp) and economy of volume improvement (EVimp).

PLimp =
PLhaptic

PLm−baseline
, EVimp =

EVhaptic

EVm−baseline
(8)

As our experimental design required the subject to finish
one round trip of a peg transfer task for the baseline trials
but two round trips for trials with haptic cues, we needed a
modified path length for the baseline trials (PLm−baseline).
This was calculated as the path length of baseline trial
multiplied by two. The EVm−baseline was similarly modified
by using the PLm−baseline.

Both metrics were calculated by dividing the PL or
EV of the trial with haptic cues by the PLm−baseline or

EVm−baseline for each individuals baseline trial for a given
cue. PLimp < 1 and EVimp > 1 indicate an improvement
over baseline trial. In hindsight, requiring two baseline round
trips would have simplified our post-experimental analysis;
however, it was important to also the limit the overall
duration of the experiment.

F. Analysis Methods

We examined the distribution properties of all the metrics
mentioned above. We chose different statistical analysis
methods based on the normality test on different metrics.
Since we are examining the differences among different types
of haptic cues, if the normality test was not rejected for a
metric, the ANOVA would be used; If the normality test was
rejected, then the Kruskal Wallis test was used to identify the
significance (Table. I).

V. RESULTS AND DISCUSSION

To investigate which type of haptic cues can potentially
correct user’s “Anxious” movements based on stylistic be-
havior detections, we collected 48 trials (8 subjects, 6 trials
each) in total. Data analysis was carried out for all trials.
The results include the evaluation of user performance with
different types of haptic cues based on “Calm/Anxious”
movement detection, as well as a statistical analysis to
identify differences between the different haptic cues.

A. Effect of Haptic Cues on Anxious Movements

The effect of each type of haptic cues on “Calm/Anxious”
movements is shown in Fig 5. The mean and standard
deviation of the quantity associated with good performances
(I) for the three types of haptic cues are shown. This is
the number of good performances detected in the trials
with haptic cues normalized to the number of good per-
formances detected in its baseline trial. The values above
the horizontal line crossing at 1 show the improvement of
the “Calm/Anxious” style when applying haptic cues with
respect to the baseline (no haptic cues).

This plot shows that the S haptic cue has the highest value
of I for both hands. This indicates that S haptic cues have a
better potential to correcting “Anxious” movements than the
other haptic cues tested.

A post-hoc statistical analysis (Table I) was done to
determine significant differences in the three types of haptic
cues. The normality test to identify a normal distribution in
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Fig. 5: Comparing the effect of three types of haptic cues on
Calm/Anxious style using the user performance metric I .

the data was rejected and thus, the Kruskal Wallis test was
used to identify significantly different groups.

The results from the statistical analysis indicate that for the
style “Calm/Anxious”, the S haptic cues showed significant
difference in improving the user performance compared to
the other two types of haptic cues. S haptic cues resulted in
a significantly higher I than D in non-dominant hand (p =
0.0375) and a significantly higher I than SD in dominant
hand (p = 0.0334).

However, not every I has a value greater than 1. One
reason behind this could be the experimental design: the
baseline only contained a single round trip of peg transfer
task, while the following trial (with haptic cues) contained
two round trips. The fatigue in the extended trial could have
had a negative effect on subject’s performance, therefore,
resulting in a lower value of I . We implemented further
analysis on accumulated negative style detections to support
this hypothesis. At each time step for each trial, we counted
the accumulated number of “Anxious” movements detected,
therefore, indicating the growth of negative style movements
throughout time. To ensure consistency, the baseline trials
were normalized to have the length of 5 and the haptic trials
were normalized to have the length of 10 (this is an arbitrary
choice of numbers to enable illustration. The only important
relationship is to normalize the baseline trials to 1/2 of the
experimental trial normalization number). We then took the
average across all baseline trials and the average across
all trials with haptic cues. Since the growth of “Anxious”
movements was found to be linear, we linearly fit the data
and recorded the slopes, i.e., the speed of growth. The results
in Fig 6 indicate that for the non-dominant hand the first
round trip in haptic trials had the lowest slope while the
second round trip had the highest slope; similar results were
found in dominant hand. This greater slope indicates a faster
growth of the number of “Anxious” movements, and thus a
worse performance for the second round trip.

Overall, the S haptic cues had a better effect on reducing
anxious movements than the other haptic cues, especially for
dominant hand.

Time
0

100

200

300

400

500

600

Ac
cu

m
ul

at
ed

 N
um

be
r o

f A
nx

io
us

 M
ov

em
en

ts

Non-dominant hand

Time
0

100

200

300

400

500

600

700

800

900

1000
Dominant hand

B
B Fit
H1
H1 Fitted
H2
H2 Fitted

KB = 52.5

KH1 = 49.7

KH2 = 57.4

KB = 100.9

KH2 = 98.6

KH1 = 88.7
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trials. The slopes (K) indicate user performance for each trial
(KB : slope of baseline trials, KH1: slope in first round trip
of experiment trials, KH2: slope in second round trip).

B. Effect of Haptic Cues on Task Performance
We also analyzed the effect of haptic cues on task per-

formance using two commonly used metrics: path length,
and economy of volume, as well as their improvements over
baseline. The results are shown in Fig. 7.

Based on the normality test which was not rejected, we
used the ANOVA to test PLimp and EVimp. No significant
differences were found between the haptic cues (Table I).

We then analyzed PL and EV with all haptic cues. As
shown in Fig 8a, S haptic cues show the lowest PL for both
dominant and non-dominant hands, indicating the best task
performance among all three types of haptic cues.

Similar results were found in the analysis of EV where S
haptic cues show the highest EV values for both dominant
and non-dominant hands, indicating the best task perfor-
mance among all three types of haptic cues (Fig 8b).

A post-hoc statistical analysis was done. The normality
test to identify a normal distribution in PL and EV was
rejected, and the Kruskal Wallis test was used. The results
indicate that S haptic cues showed significant differences
in PL and EV for the non-dominant hand. S haptic cues
resulted in a significantly lower PL than D and SD in non-
dominant hand (p = 0.0494) and a significantly higher EV
than SD in the non-dominant hand (p = 0.0174). Inter-
estingly, these results seemingly contradict our initial work
where SD feedback appeared to lead to best improvements
of movements classified as anxious. These two experiments
do represent vastly different tasks (i.e., unimanual trajectory
following vs. bimanual peg transfer). Further study is needed
to better understand the relationships between task difficulty
and appropriate and effective feedback strategies for human-
in-the-loop systems.

C. Subject Survey
Subjects generally reported a perception of better move-

ments when S haptic cues were applied. They also reported
an unpleasant feeling with the D haptic cue. Moreover, four
out of eight subjects reported fatigue and arm soreness during
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Fig. 7: Comparing the effect of three different types of
haptic cues on Calm/Anxious style using improvement in
task performance metrics.

two round trips trials and asked for extended break time
between trials. This could explain why we saw differences
in the growth of accumulated “Anxious” movements in the
second round trip (shown in Fig. 6). This could also explain
why some of the haptic cues did not result in performance
improvements over baseline trials, particularly if the feed-
back was tiring and distracting.

Based on the analysis of I , PL and EV , the significant
differences in these metrics suggested that S haptic cues
showed a better performance for correcting “Anxious” move-
ments than the other two types of haptic cues.

VI. CONCLUSIONS
In this study, we proposed a training framework which

detects user’s “Anxious” movements and applied haptic cues
to potentially correct the movements based on our prior
work in near-real-time stylistic detection. We focused on
the style of “Calm/Anxious” as stressful conditions have
known, serious consequences on surgical performance and
patient outcomes. Correcting these “Anxious” movements
could potentially improve patient safety. We conducted a
human-user study to evaluate the effects of different types
of haptic cues (Time-variant Spring, Damper, and Spring-
Damper) on improving user’s performance.
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Fig. 8: Comparing the effect of three haptic cues on
Calm/Anxious style using task performance metrics.

Overall, the time-variant spring haptic cues resulted in
better improvement in performance over time-variant damper
and time-variant spring-damper, as determined by several
quantitative metrics. Four metrics showed significant dif-
ferences and the common trends in our metrics suggest
time-variant spring haptic cues have the potential to correct
“Anxious” movement and improve performance in the non-
dominant and dominant hand.

One limitation of stylistic behavior detection is the ground
truth labeling before training the algorithm. The ground truth,
whether a movement is “Calm/Anxious” as well as other
adjective pairs, was obtained by video reviewing through
crowd sourcing. The subjects in JIGSAWS did not experience
external stressors when they were performing the tasks,
therefore, making the “Anxious” movements detected in
JIGSAWS less representative.

The findings in this paper also have practical application
values. Although it is debatable whether doctors should
continue the operation in this situation, these findings provide
groundwork for providing preventative control strategies to
reduce the unwanted effect of stress during surgical train-
ing, consequently, improving surgical training outcomes and
patient safety.

This study, which is the first of its kind using a dVRK
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TABLE I: Statistical analysis on the effect of haptic cues on
correcting Anxious movements. N/A indicates the difference
is not significant; ND: Non-dominant hand, D: Dominant
hand.

Metric Handedness Significance pvalue Methods

I
ND S >D 0.0375 Kruskal-Wallis
D S >SD 0.0334 Kruskal-Wallis

PLimp
ND N/A 0.9632 ANOVA
D N/A 0.7818 ANOVA

EVimp
ND N/A 0.9955 ANOVA
D N/A 0.2486 ANOVA

PL
ND S <D, SD 0.0494 Kruskal-Wallis
D N/A 0.5307 Kruskal-Wallis

EV
ND S >SD 0.0174 Kruskal-Wallis
D N/A 0.0594 Kruskal-Wallis

platform, paves the way for continued research on adaptively
improving user performance using task-independent stylistic
behavior detection. In future studies, we will expose subjects
to commonly experienced stressors and explore the impor-
tance of haptic feedback gains on user-reported experience
and performance, as well as start to evaluate different types
of haptic cues for other types of surgical movement styles.
We will also study more challenging surgical training tasks
such as suturing and pattern cutting.
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