2010.01083v1 [cs.RO] 2 Oct 2020

arxiv

Annu. Rev. Control Robot. Auton. Syst.
2021. 2021. 4:1-30

Copyright (© 2021 by Annual Reviews.
All rights reserved

Caelan Reed Garrett !, Rohan Chitnis !, Rachel
Holladay !, Beomjoon Kim !, Tom Silver !,
Leslie Pack Kaelbling ! and Tomas
Lozano-Pérez !

1CSAIL, MIT, Cambridge, USA, 02139; email: caelan@csail.mit.edu

Keywords

task and motion planning, robotics, automated planning, motion
planning, manipulation planning

Abstract

The problem of planning for a robot that operates in environments con-
taining a large number of objects, taking actions to move itself through
the world as well as to change the state of the objects, is known as
task and motion planning (TAMP). TAMP problems contain elements
of discrete task planning, discrete-continuous mathematical program-
ming, and continuous motion planning, and thus cannot be effectively
addressed by any of these fields directly. In this paper, we define a class
of TAMP problems and survey algorithms for solving them, character-
izing the solution methods in terms of their strategies for solving the
continuous-space subproblems and their techniques for integrating the
discrete and continuous components of the search.
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1. INTRODUCTION

Robots are playing an increasingly important role in society, and their range of applications
is rapidly expanding. These applications have traditionally been in structured environments,
such as factories, where the robot’s interactions are limited and a behavior can be directly
specified by a human. However, many of the most exciting potential applications of robots
are in highly unstructured human environments such as homes, hospitals, or construction
sites. In these applications, the robot will generally be tasked with a specific goal, such as
cooking and delivering a meal to an elderly resident, but the actions necessary to achieve
the goal will vary enormously depending on the state of the environment. For example, the
robot might need to open cupboards and remove objects in order to retrieve a bowl that is
necessary for preparing the meal (Figure 1). Directly specifying the full behavior policy for
a robot operating in these unstructured environments is not practical because the required
policy is too complex.

Since the earliest days of robotics, there has been an interest in automated planning,
developing algorithms for deciding what sequence of commands the robot should execute in
order to accomplish some goal (1, 2). The first class of planning problems that arises is to
move the robot from one state to another without colliding with objects in the world. This
motion planning problem was formulated by Lozano-Pérez (3) as a search for paths through
the robot’s configuration space, a space with dimensions representing the controllable joints
of the robot, and has been the focus of a great deal of algorithmic development. The most
effective methods are based on sampling (4, 5) or constrained optimization (6, 7).

Collision-free robot motion is important but does not enable the robot to alter the
world. In order for the robot to, for example, move objects by picking them up and placing
them, planning needs to consider a much larger space that encompasses the entire state of
the world, which includes any objects the robot has grasped, the grasps it is using, and the
poses of the other objects. Conceptually, it makes sense to try to directly extend motion
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Figure 1: The specified goal is for the contents of the blue cup to end up in the white bowl.
Because the green block obstructs reachable grasps for the blue cup, a TAMP algorithm
automatically plans to relocate the green block before picking up the blue cup and pouring
its contents into the white bowl. From left-to-right and top-to-bottom: the robot picking up
the green block, the robot placing the green block, the robot picking up the blue cup, and
the robot pouring the blue cup’s contents into the white bowl (8).

planning methods to apply to entire world states, but this approach fails algorithmically.
The entire world state, seen as a single kinematic system, is highly under-actuated, in the
sense that from any configuration, most of the degrees of freedom cannot be changed at
will. The robot can only change the position of an object by moving over and touching it.

It is critical to understand the underlying topology of these spaces in order to plan
in them. Work by Alami et al. (9, 10), Branicky et al. (11, 12), and Hauser et al. (13,
14) observed that the configuration space of the world has important modal structure:
depending on where the objects are placed and how they are grasped, the legal changes to
the world are in a different mode or feasible submanifold of the full space. Furthermore, it
is only possible to change modes by moving to an intersection of the feasible space of the
current mode and a new one, which is in general an even lower-dimensional subspace. For
these reasons, planning is best viewed as a hybrid discrete-continuous search problem, of
selecting a finite sequence of discrete mode types (e.g., which objects to pick and place),
continuous mode parameters (such as the poses and grasps of the movable objects), and
continuous motion paths within each mode to a configuration that is in the intersection
with the subsequent mode.

The artificial intelligence (AI) community has addressed problems of planning in very
large discrete domains (15). Their techniques derive leverage from factoring, a source of
combinatorial structure in planning problems. Factoring is used to decompose the state
space of the world into the Cartesian product of several subspaces, represented in terms
of different state variables. Factoring enables compact representation of the actions that
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can be performed on a state: these are generally described in terms of a small set of state
variables that can be changed (while the others are held constant), as well as a condition on
other variables that must be satisfied in order for the action to be executed. Furthermore,
the Al planning community has developed a repertoire of very effective, domain-independent
search algorithms that exploit this type of action representation (16, 17, 18).

Research in task and motion planning (TAMP) seeks to combine Al approaches to task
planning and robotics approaches to motion planning. A critical requirement for gener-
ality in approaches to TAMP actually lies between discrete “high-level” task planning and
continuous “low-level” motion planning: an intermediate level of selecting the real-valued
mode parameters, such as how to grasp and where to place an object, which govern legal
continuous motions of the system. This class of problems is computationally difficult in
theory (19, 20) and requires algorithmic sophistication in practice.

1.1. Example

An essential component of TAMP problems is the interdependence of the motion-level and
task-level aspects of the problem. Approaches that treat these independently, without con-
sidering their complex interplay, are unable to solve the general class of problems. Consider
a problem in which the robot’s goal is for a particular pot (named A) to be placed on one
of the burners of the stove. If the planner ignores the geometric aspects, it might select a
high-level plan “skeleton” of the form:

[moveF(qo, T1, q17p0)7 Ple [A] (QI7P07 g)y moveH [A] (97 q1, 72, q2)7 place [A] (q27 p1, g)]

where the moveF action involves robot movement when its hand is free, and the moveH[A]
action involves robot movement when holding object A'. This plan skeleton has free param-
eters involving robot configurations (qo, g1, g2), a grasp pose (g), placement poses (po,p1),
and paths (71, 72). The skeleton imposes constraints on the choices of those values that will
enable the plan to achieve the goal. Given this skeleton, it is now necessary to find values
for all of these parameters that satisfy the constraints. It may be that there is no satisfying
set of values; for instance, a kettle could be occupying the target burner, preventing any
safe placement of the pot. In this case, a new skeleton is necessary: the robot will need to
first move away the kettle and then place the pot on the stove. This example demonstrates
a change in the high-level plan that is necessitated by the low-level geometry.

1.2. Scope

To keep the scope of this survey manageable, we limit the class of problems addressed,
and discuss a variety of extensions in Section 4. In particular, we assume that: 1) actions
are deterministic, 2) the state of the world is completely known, 3) the robot and every
object in the environment is a kinematic assembly of rigid bodies with known shapes, 4) the
robot is holonomic, and 5) the goal is specified as a set of requirements on the final robot
configuration, object poses, and possibly other state variables such as the cooked state of
a dish. This class of problems encompasses a number of problems studied in the robotics
community: pick-and-place planning (21), manipulation planning (22), navigation among
movable obstacles (NAMO) (23), and rearrangement planning (24). An important related

1See Figure 7 for a complete definition of these actions.
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line of work uses linear temporal logic (LTL) to provide high-level specifications for TAMP
problems with temporally extended goals (25, 26), but it is beyond the scope of this survey.

We begin with basic background in motion planning, multi-modal motion planning,
and task planning (Section 2). Next, we draw from components of these fields in order to
formalize TAMP in a manner that allows for many existing approaches to be studied (Section
3.1). We then describe a framework for understanding a broad class of TAMP algorithms in
terms of combining (Section 3.3) a search over discrete plan structures with a search over
continuous values satisfying constraints (Section 3.2) induced by the discrete structure. We
conclude with a short discussion of a rich array of extensions and generalizations of this
basic problem class and the approaches to solve them (Section 4).

2. BACKGROUND

TAMP rests on foundations in robot motion planning (Section 2.1), multi-modal motion
planning (Section 2.2), and AI task planning (Section 2.3). In this section, we give a
compact overview of each of these planning problem classes.

2.1. Motion planning

The problem of planning motions for a robot with d degrees of freedom can be framed as find-
ing a trajectory for a point representing the robot’s configuration through a d-dimensional
configuration space. More formally, a motion-planning problem is specified by a configu-
ration space @ C R?, a constraint F : Q — {0,1}, an initial configuration ¢o € Q, and a
goal set of configurations Q. C Q. The feasible configuration space is a subset of Q that
satisfies the constraint: Qr = {¢ € Q | F(q) = 1}. The objective is to find a continuous
path 7 : [0,1] — Q such that 7(0) = qo, 7(1) € Q«, and VX € [0,1] 7(A) € Qr. The simplest
motion-planning problems involve free-space motion, in which the robot simply needs to
move through space without colliding. Given a set of objects, defined by their shapes and
poses in the world, the constraint F'(q) requires that the robot not collide with any object.

Motion planning is PSPACE-hard, but there are exact algorithms that leverage alge-
braic geometry to solve problems using only polynomial space (proving motion planning is
PSPACE-complete) (27). Despite this, the two most widely used approaches are sampling-
based motion planning (4, 5) and trajectory optimization (6, 7). Both classes of algorithms
are useful in practice, but are not complete due to the fact that they cannot identify infeasi-
ble problems. Many sampling-based motion planning algorithms can however, under some
robustness conditions, be shown to be probabilistically complete, meaning that the probabil-
ity that they will fail to find a solution, if one exists, converges to zero as the running time
increases. LaValle (28) provides a comprehensive overview of motion planning algorithms.

2.2. Multi-modal motion planning

Multi-modal motion planning (MMMP) extends the problem space of planning to include
changing the state of other objects in the world (13, 29, 14, 30). To formalize MMMP
problems, we need to model changes in the kinematics of the system, extend motion planning
to handle constraints beyond collision avoidance, and integrate these components.

2.2.1. Kinematic graphs. One way to represent the geometric state of many environments
is to encode the state variables collectively as a kinematic graph (28), which makes their
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dependencies explicit. In a kinematic graph, vertices represent bodies and the robot’s
controllable joints, and edges represent attachments. Each edge has an associated relative
transformation between the child body and parent body, which is a pose in SE(3). If each
body is connected to at most one parent body and the graph is acyclic, this is a kinematic
tree, for which the full state of the world can be derived from just the joint values of the
robot ¢ through forward kinematics. The attachments can be of several kinds. The most
straightforward is a rigid attachment, which models an object resting stably on a surface

or a robot grasping an object in a fixed grasp.
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Figure 2: The change to a kinematic tree due to picking up the plate. Square nodes are
bodies, and round nodes are robot joints. Lines encode attachments; solid ones are fixed,
and dotted ones may be changed. The robot has two joints (j1, j2), whose current state is
given by configuration q.

Figure 2 represents a kinematic tree for an example kitchen environment that contains
a robot manipulator with two joints (ji, j2), a fixed Table and Stove, and movable objects
Plate, Pizza, and Book. Initially, Pizza rests on the Plate, which itself rests on the Table.
When the robot picks up the Plate, it also transitively picks up Pizza. This change in the
kinematic graph is referred to as a kinematic switch, which is a type of mode switch. After
the switch, as the manipulator moves, the poses of both the Plate and Pizza change with
respect to the world; we move through this mode using the same actuators as before, but
the feasible configuration space has changed.

2.2.2. Constrained motion planning. When the robot interacts with objects in the world,
the effective configuration space is no longer the degrees of freedom of the robot: it cor-
responds to the state of the whole system; we denote this space V. This state can be
described by the discrete structure encoded in a kinematic graph, as well as continuous
values of the transformations on the edges, which encode static relationships. However,
these systems are generally under-actuated, meaning that they cannot be locally controlled
in arbitrary directions, because we can only directly actuate the robot’s degrees of freedom.
Despite this, we can indirectly manipulate these objects by controlling the robot.

We begin by considering a simple “single-mode” problem in which the kinematic graph
is fixed. Figure 3 (left) illustrates a robot gripper pulling a drawer where the gripper pose is
fixed relative to the drawer. Although normally the gripper can translate generally in x, z,
the drawer only has a single degree of freedom, denoted by joint j. The combined config-
uration space of the gripper and the drawer is a three-dimensional space with coordinates
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Figure 3: Constrained motion planning for a system in which a gripper pulls a drawer. The
pose of the gripper relative to the drawer handle induces the 1D mode constraints o1, o2.

(z, z,j), but they are constrained by the need to keep the gripper attached to the drawer.

In this and many other manipulation problems, the constraint function F'(w), which now
applies to the whole world configuration w € W, includes both the collision-free constraint
and a kinematic constraint, which causes Wr, the subspace of W for which F holds, to be
lower dimensional than W. As a result, sampling W randomly will have zero probability of
producing a sample in Wr, rendering standard sampling-based motion planning methods
ineffective. This difficulty of sampling motivated the development of constrained motion
planners, which explicitly take these constraints into account and plan within the low-
dimensional space Wp.

Dimensionality-reducing constraints are often expressed using a mode parameter o, a
fixed value that affects the constraint Fi,(w). In general, o is real-valued. Here, we illustrate
the effect of two different choices of this value, o1 and o2. Each stipulates a different rigid
attachment pose between the gripper and the drawer handle. Figure 3 (right) illustrates
the combined configuration space and the feasible spaces Wg,, and W, , which are lines.
The modes o1 and o2 allow motion of the gripper along different 1D lines in this 3D space,
depending on the grasp of the drawer handle.

The most general approach for constrained motion planning defines sampling and con-
necting operations that project values onto the constraint surface. This is typically done
by starting at a sampled point W and performing local descent on the constraint violation
until convergence. Because this is a numeric optimization, the constraint will generally
never be exactly satisfied, but the samples can get e-close to the surface for any € > 0. Sev-
eral approaches have provided probabilistically complete methods for constrained motion
planning using projection (31, 32) and atlas-based techniques (33, 34, 35). See (36, 37) for
a comprehensive survey of these techniques.

When the kinematic graph is a tree, the planning problem is much easier. The set of
pairwise rigidity constraints specify all poses of objects relative either to the world frame
(fixed objects) or to the robot (grasped objects). This collection of poses collectively consti-
tutes a mode o. We can sample full configurations for the system that exactly satisfy these
constraints by simply sampling the robot’s degrees of freedom ¢, and performing forward
kinematics to derive the full configuration w.

2.2.3. Multi-modal motion-planning. Constrained motion planning provides a framework
for reasoning about systems with many degrees of freedom, but few actuators. However,
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it assumes that the constraints themselves remain constant, and therefore is not expressive
enough to model multi-step manipulation problems in which the robot must make and
break contact, changing the kinematic graph, and therefore the active constraints on its
motions. In order to model such problems, we must allow the mode to undergo discrete
changes (13, 29, 14, 30). The state of the system is s = (w, o), where we can think of
w € W as the collective configurations of the robot and all other objects or mechanisms in
the environment and o as the additional mode information, indicating for example which
objects are currently attached to which others. The control theory community analyzes
reachability for a similar class of hybrid systems, except that they typically address problems
with a finite set of modes but more complex continuous-time dynamics (38, 39, 40). For
the most common cases of MMMP, we can refactor this representation, so that s = (g, K),
where ¢ € Q is the robot configuration and K is a kinematic graph which contains the mode
information and implies poses of all the bodies in the system, but we will make our general
presentation in terms of (w, o).

More formally, a MMMP problem consists of a finite set {X1,..., X} of mode families,
each of which has a real-valued parameter vector 6. Associated with each mode o = 3(6)
is a constraint function F, on full system configurations. At any given time, the system
state (w, o) is in a single mode o, but whenever w € F,/, the system may execute a mode
switch, typically represented by a change to the kinematic tree, into mode o’. The goal
of an MMMP is typically a set of full system configurations W,, and a solution has the
form [o0, 70,01, 71, ..., 0k, Tk|, where sg = {(wo, 00) is the initial state of the system, 7; is a
trajectory in Fy,, 70(0) = wo, 7(0) = 7i—1(1) for ¢ € {1, ..., k}, and 7 (1) € Wi..

As an example, we model pick and place tasks in this framework. Modes in which
the robot is not grasping any objects are transit modes, and modes in which the robot is
holding an object are transfer modes (10, 9, 22). For a robot with a single gripper, there
is a transit mode family for free motion and a transfer mode family for each object that
it can grasp. In the transit mode family, the mode parameter is comprised of the fixed
world poses of every movable object. In the transfer mode family for a particular object,
the mode parameter contains the grasp pose as well as the fixed world poses of every other
movable object. Thus, although the system can only operate according to a single mode at
a time, the mode parameter is high-dimensional because it contains constraints involving
every movable object. For interactions with cyclic kinematic graphs, such as manipulating a
drawer or opening a door, a constrained motion-planner (Section 2.2.2) is generally required
in order to plan within the mode.

A key challenge in multi-modal motion planning is identifying configurations that are
in the intersection of the constraint sets for two modes and thus allow the system to switch
between them. This intersection is often lower dimensional than the feasible space @, of
either mode. In a pick-and-place domain, in order to perform a kinematic switch between a
transit and transfer mode, the robot’s gripper must be in contact with the involved object at
a particular pose. This requirement imposes 6 constraints on the robot’s configuration, and
as a result, the set of solutions is (d — 6)-dimensional. Fortunately, solutions can often be
found using inverse kinematics (1K) either by projecting random samples into the constraint
set using optimization (41) or by analytically solving for the solutions to a reparameterized
set that captures its underlying dimensionality (42).

Figure 4 demonstrates a 1D robot (R) acting in the presence of a single movable object
(). The two plots visualize the 2D combined configuration space of the robot and the
movable object. The left plot demonstrates the robot moving during a transit mode. The
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Figure 4: The feasible configuration space for two transit modes 01,02 and two transfer
modes o}, 05 modes. Mode switches between o1 +> o5 occur at configuration gf. Mode
switches between oo <+ 03 occur at configuration ¢3.

two 1D blue lines indicate the space for which the system can change, which depends on
the current mode o1 or o2. These modes correspond to different placements of the movable
object, which remains constant. The yellow region corresponds to infeasible states where
the robot and the object are in collision. Because the object can be placed anywhere on the
interval, there are infinitely many possible transit modes. The center plot demonstrates the
robot and object moving during a transfer mode. The robot can attach itself either to the left
or right side of the object. As a result, there are two possible transfer modes ¢}, o3, indicated
by the 1D red lines. The relative pose between the robot and object remains constant
during a transfer mode. The robot can switch between transit and transfer modes at a
zero-dimensional (point) intersection between both lines (g7, g5 ). The right figure visualizes
legal mode transitions as a directed graph. The transit modes {01,071, ...} correspond to
the robot being on the left of the object, whereas the transit modes {02, %, ...} correspond
to the robot being on the right of the object. In order to switch to a new transit mode,
the robot must first enter the appropriate transfer mode. Finally, note that the graph is
disconnected because the robot is unable to move to the other side of the object.

2.3. Task planning

Within the AI community, there has been a long-standing focus on planning in discrete
domains, generally with very large state spaces, but made tractable by using representations
and algorithms that exploit underlying regularities in the structure of the domain. Ghallab
et al. (15) provide a comprehensive discussion of task planning from the AI perspective,
and Karpas and Magazzeni (43) survey task planning for robotics.

The simplest formalization of Al planning is to specify a set of states (state space) S, a
set of transitions 7 C S x S that describe legal changes to the state, an initial state so € S,
and a set of goal states S, C S. Each directed transition ¢t = (s, s’) € T moves the system
from state s to state s’. The objective for a planner is to find a plan m, a sequence of
transitions, that advances the initial state sg into a goal state s, € S.. This problem can be
reduced to a graph traversal problem, where the vertices are states and directed edges are
transitions, and solved using standard graph-search algorithms. However, the state spaces
considered are very large, so it is critical to use a functional representation of 7 to “reveal”
states incrementally, for example by working forward from the initial state.
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The first step toward compact representations and efficient algorithms is to factor the
state representation into a collection of state variables. More formally, states can be rep-
resented using a set of variables V = {1,...,m}, each of which has a finite domain A’.
States are assignments of values x, € X, for variables v € V. This induces a state space
S = X X ... x X, that is the Cartesian product of each variable’s domain. Consider a vari-
ation on the example in Figure 2, involving a single robot, a movable pizza, and a movable
book. Each state specifies the locations of the robot, the pizza and the book, and the object
that the robot is holding (or None), as well as whether or not the pizza has been cooked.
The set of possible locations are: Box, Plate, Table and Oven. The robot can move between
any pair of locations, pick up an object at the robot’s current location if it is not holding
anything, and place an object at the robot’s current location. We can describe a state as
an assignment of values to the variables atRob (4 possible values), at[Pizza] (5 domain
values), at [Book] (5 domain values), holding (3 domain values), and cooked[Pizza] (2
domain values). A state in this domain can then be defined as

{atRob=Plate, holding=None, at [Book] =Table, at [Pizza] =Box, cooked [Pizza] =False}.

Although in total the variables have 19 possible values, there are 600 possible states re-
sulting from the possible combinations of variable values. Generally, the size of the state
space grows exponentially in the number of variables.

Next, we need to encode the set of transitions compactly. In many domains, due to
locality of effect or other underlying domain properties, transitions change the value of only
a small number of the state variables at a time, which allows us to describe large sets of
transitions compactly using a single action that encodes the difference between the two
states. These changes can be described by a set of effects eff: {v1 + c1,..., v + cx} that
list the variables that are modified (v1,...,v;) and their resulting values (ci,...,cx). This
set of effects describes a large set of state-pairs in the transition: one corresponding to each
possible assignment to the values of the unchanged variables.

moveF [locl,1lo0c2]
pre: atRob=1locl
eff: atRob <« loc2
moveH[locl,loc2]
pre: atRob=1ocl, holding = obj
eff: atRob < loc2
pick[obj,loc]
pre: atRob =1loc, holding =Nomne, at[obj] =1loc
eff: at[obj] < None, holding < obj
place[obj,loc]
pre: atRob=1oc, holding = obj
eff: at[obj] < loc, holding < Nomne
cook [obj]
pre: at[obj] =Stove
eff: cooked[obj] + True
Figure 5: A template specification of moveF, moveH, pick, place, and cook actions.

Another structural property of many domains, which can be used to more compactly
express legal transitions, is that each action may correctly be executed in only certain
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states. For example, a pick action cannot be performed if the robot is already holding
an object. We can express this by specifying, for each action, a set of preconditions pre :
{zy,=c1, ..., Ty, =ci } that describe the set of states in which that action can be executed in
terms of values of some of the state variables.

One final important structural property is an “object-centric” abstraction: in most
problems, the state variables correspond to properties of objects in the domain (e.g., the
location or color of a particular cup) or relations among them (e.g., whether a particular cup
is inside a particular box). We can take describe the possible actions of a domain generically,
via templates that are parameterized by a choice particular objects that are present in a
domain instance. This form of abstraction allows the size of the domain description to be
independent of the number of state variables in the domain.

We illustrate the basic principles of task planning via an example in Figure 5, which
specifies the preconditions and effects of the moveF, moveH, pick, place, and cook actions.
This specification needs to be coupled with a listing of the actual entities in any domain
instance, such as the names of objects (Pizza and Book) and locations (Box, Plate, Oven,
and Table), to yield a complete transition-system specification. Then, the state variables
are holding, atRob, along with cooked[obj] and at[obj] for each actual object name
obj. Similarly, the actual possible actions are generated by substituting all combinations of
object and location constants in for the template variables. For example, with two objects
and four locations, there are 8 instances of the place action.

To clarify the use of template variables, note the pick action description: it is a template
describing a finite number of action instances, one for each discrete value of obj and loc.
But note that these two variables play different roles. As the number of possible values of
obj increases, the dimensionality of the state of the problem (characterized by the number
of state variables) increases; as the number of possible values of loc increases, the domains
of the at[obj] variables increases but the number of variables does not.

The final component of a planning problem is a description of the set of goal states,
which has the same form as an action precondition, as a conjunction of values of some
state variables, where all unmentioned state variables may have any arbitrary value. For
example, the following goal description encodes the entire set of states in which the pizza
is cooked and on the plate: {at[Pizzal=Plate, cooked[Pizza]=True}. The solution to
a task-planning problem is a sequence of action instances ai,...,ar, that induces a state
sequence So, ..., Sk, where each s; is a state expressed as an assignment of values to state
variables, so is the initial state of the planning problem, s; satisfies the preconditions of
ai+1, Si4+1 is the result of executing a; in s;, and sy satisfies the goal conditions.

To finish our example, let the initial state be

so = {holding=None, atRob=Table, at [Pizza] =Box, at [Book] =Table, cooked [Pizza] =False}.

Solving this task requires first placing the pizza on the oven to cook it and then relocating
it to the plate:

7 = [moveF [Table,Box], pick [Pizza],moveH [Box,0ven], place [Pizza],

cook[Pizzal, pick[Pizzal,moveH[Oven,Plate],place[Pizzal].

One focus of AI planning has been to define languages for specifying planning prob-
lems. The one shown in Figure 5 is similar to a lifted version of simplified action specifica-
tion (sAs+) (44). The most widely-used formalism is planning domain definition language
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(pDDL) (45), which can be seen as a transition system where state variables are Boolean
facts. The Al planning community has developed domain-independent algorithms that can
operate on any problem written in a planning language, without any additional information
about the problem. A factored planning representation enables efficient algorithms for solv-
ing relazed problems, simplified versions of the original problem, and using their solutions
to estimate the distance to a goal state (18).

Finally, there are several extensions to the basic task planning formalism (46, 47, 48)
that are relevant to TAMP. One of these is numeric planning, which involves planning
with real-valued variables such as time, fuel, or battery charge. Recent approaches support
planning with convex dynamics (49) and non-convex dynamics by discretizing time (50).
Although these methods have many use-cases, they currently cannot be directly applied to
most TAMP problems because they assume the set of actions is finite.

3. TASK AND MOTION PLANNING

To find solutions to TAMP problems, we need to integrate aspects of motion planing, multi-
modal motion planning, and task planning. In this section, we introduce a framework for
describing TAMP problems and algorithms that allows us to describe most of the broad range
of existing methods within a unified framework, and which we hope elucidates modeling and
algorithmic trade-offs among them. We begin by providing a formalism for describing TAMP
problems, then characterize solution methods in terms of their strategies for sequencing
actions, for selecting their continuous parameters, and for integrating these methods.

3.1. TAMP problem description

Informally, TAMP problems use compact representational strategies from task planning to
describe and extend a class of MMMP problems. TAMP is an extension of MMMP in that there
may be additional state variables that are not geometric or kinematic, such as whether the
lights are on or the pizza is cooked. We begin by articulating a generic MMMP, using an
extension of a task-planning formulation, in Figure 6. There are two extensions of the task-
planning formalism visible here. First, there are continuous action parameters. Second, in
addition to preconditions and effects we have a new type of clause, called con for constraint.
It is a set of constraints that all must hold true among the continuous parameters of the
action in order for it to be a legal specification of a transition of the system.

moveWithin [i] (4, w, T, w")
con: 7(0)=w, 7(1) =w’, (Vt € [0,1] Fx,0)(7(t)))
pre: mode =3;(f), conf=w
eff: conf « w'
switchModes [i,j] (w,0,6)
con: inwl)(w), ng(gz)(’w)
pre: mode =X;(f1), conf=w
eff: mode + X;(02)
Figure 6: A formalization of MMMP in the style of task planning. There is a moveWithin
action for each mode family ¥; and a switchModes action for each mode family pair X;, ¥;.

This formulation does not extend to the basic formulation of MMMP, but it provides
a clear articulation of the overall system dynamics. In a domain with a large number of
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objects, there will be a large number of mode families, each of which requires specifying a
constraint on a very high-dimensional world configuration space. What TAMP adds is the
ability to “unpack” the entities in the problem description into sub-parts that are simpler to
describe and that reveal substructure in the problem that enables algorithmic insights. We
will illustrate this process in a TAMP generalization of the “cooking” domain from Section
2.3 using one particular formalization style, shown in Figure 7.

Consider an example which has five movable objects, A through E. We decompose the
system configuration w into state variables atRob, holding, at[A], at[B], at[C], at[D],
and at[E]. The discrete state variable holding can take values ranging over {None, A,
B, C, D, E} and specifies the current mode family . The variable atRob is now a robot
configuration, and at [obj] is the pose of object obj relative to either the world coordinate
frame (when holding # obj) or the robot hand coordinate frame (when holding = obj).

The moveF (move while the gripper is free) and moveH (move while the gripper is holding)
actions describe transit and transfer motion within modes. The pick action corresponds to
a switch from a transit mode to a transfer mode, while the place action corresponds to a
switch from a transfer mode to a transit mode.

The sparsity of effect of planning action descriptions is a good match for articulating
which state variables are changed (and, implicitly, which ones stay the same). We can see
that, in each action description, the eff: clause indicates just the variables that change.
When the preconditions involve discrete constant values (such as None), they are being used
to specify the mode family of the initial state of the transition. The advantage of being
able to use templates is apparent: the moveH action has a template parameter obj, meaning
that there is a mode family for each object being held.

moveF (¢, 7,¢,p*, ..., p%)
con: Motion(q,7,q¢'), CFreeW(7), CFreeA(p’,7), ..., CFreeE (D7)
pre: holding = None, atRob=g¢q, atA:pA s e atE:pE
eff: atRob «+ ¢
moveH [obj1(g,q,7,¢,p", ..., p")
con: Motion(q,7,q'), CFreeW[objl(g,7),
CFreeA[objl(p* g,7), ..., CFreeE[objl(p% g,7)
pre: holding =obj, at[objl=g¢g, atRob=q, atA=p"', ..., atE=7pF
eff: atRob «+ ¢
pick[objl (g, p,g)
con: Stable[objl(p), Grasplobjl(g), Kinlobjl(g,p,¢)
pre: holding = None, atRob=g¢q, atl[objl=p
eff: holding <+ obj, atlobjl+ g
place[objl (gq,p,g)
con: Stable[objl(p), Grasplobjl(g), Kinl[objl(g,p,g)
pre: holding =obj, atRob=g¢q, atl[objl =g
eff: holding < None, at[objl+« p
cook[obj](p)
con: Stable[objl(p), OnStovel[obj]l (p)
pre: at[objl=p
eff: cooked[obj] < True
Figure 7: One formalization of TAMP for an environment that contains the movable objects A,
B, C, D, and E. Actions now have real-valued parameters and constraints on these parameters.

Just as we have decomposed the configuration and the mode, we can decompose con-
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straints, expressing them as conjunctions of constraints with smaller arity. For example,
the pick action has the constraint Kin[objl(g,p, g). For any particular value of obj, repre-
senting an actual object in the domain, this represents a kinematic constraint, saying that
if the robot is in configuration ¢ and holding object obj in grasp g, then obj will be at pose
p. In moveF and moveH, the Motion(q,7,q’) constraint specifies the relationship between
a trajectory 7 and two robot configurations, asserting that 7(0) = ¢, 7(1) = ¢/, and 7 is
continuous. Notice that the trajectory 7 appears neither in the preconditions nor effects of
these actions; they are auxiliary parameters that describe motion within the modes. The
Stable[obj](p) constraint requires that p be a pose representing a stable placement for ob-
ject obj on a static object in the world. Similarly, the OnStove [obj](p) constraint requires
that p be a stable placement where obj is specifically on a stove. The Grasp[obj](g) con-
straint defines stable grasp poses (transforms between the hand frame and object frame)
g for object obj. This set may be finite if there only a few known grasps but could be
uncountably infinite, in general. The collision-free constraint CFreeA[objl(p, g, T) asserts
that if object A is at pose p, the robot is holding obj in grasp g, and it executes trajectory 7,
no collision will occur. The constraint CFreeW[obj] (g, 7) is defined similarly except that it
involves the fixed objects in the world (indicated by the abbreviation W). Finally, although
not pictured, because the p*,...,p" parameters in the moveF and moveH actions are each
only mentioned in a single constraint and precondition, they can be compiled away using
state constraints (51) or inference rules (axioms) (52), resulting in these actions templates
being independent of the number of objects in the problem instance.

3.1.1. The form of solutions. In preparation for studying algorithms for solving TAMP prob-
lems, it is useful to examine the form of a solution, which is a finite sequence of action
instances m = [a1,...,ax], where each a; includes assigned values for all parameters that
satisfy that action’s constraints. These actions induce a state sequence [so, s1, . . ., Sg], where
each s; is a state expressed as an assignment of values to state variables, so is the initial
state of the problem, s;_1 satisfies the preconditions of a;, s; is the result of executing a;
in s;_1, and si satisfies the goal conditions. Selecting the action templates and values for
the template variables specifies the form of a solution, which we call a plan skeleton. If
the skeleton is fixed, the set of variables for which values must be selected is determined,
and the problem that remains is one of selecting those values so that the constraints of the
actions in the skeleton are satisfied.

Consider a TAMP problem with a single movable object A. Suppose the initial state
is so = {atRob=qg, at [A]=po, holding=None, cooked[A]=False}, where the bold math-
ematical symbols qo, po are real-valued constants. The set of goal states can be defined
using conditions and constraints, such as cookedA=True. One possible plan skeleton is:

7 = [moveF(qo, T1,q1), pick[Al(q1, Po, 92), (1)
moveH[Al(q1, 73, q3), place [Al(gs, pa, g2), cook [A] (p4)].

where q1, 71, g2, q2, T3, pa are the free parameters. Plan skeletons can be visualized graphi-
cally by enumerating the sequence of |7| 4+ 1 values of each state variable, as well as motion
parameters 71,73, and associating the constraints of the ith action with the appropriate
i — 1 and 7 state variables. Figure 8 illustrates this plan skeleton in the form of a dynamic
factor graph (53). Round nodes represent state variables, and rectangular nodes represent
constraints. Gray nodes have constant values, and colored nodes represent variables. Each
vertical column corresponds to a state; the actions in the skeleton, which are responsible
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for the state changes are shown between the state columns, at the top. Multiple nodes of
the same color represent a single variable that is constrained to maintain its current value
across multiple steps of the plan. Each constraint is connected to the variables it constrains.
Any assignment of values to the variables that satisfies all the constraints “fills out” the
skeleton into a complete legal plan that is guaranteed to achieve the goal. However, it may
be the case that no satisfying assignment exists.

moveF pick[A] moveH [A] place[A] cook [A]

cooked [A]

Figure 8: The plan skeleton from Equation (1). Grey values are constants. Thick black
lines display equality constraints that persist over time.

3.2. Hybrid constraint satisfaction

Finding an assignment of values to the parameters of a plan skeleton that satisfy the as-
sociated constraints is a hybrid constraint satisfaction problem (H-CsP). Although many
parameters are inherently continuous, some may have discrete domains. For example, there
might be a finite set of stable resting surfaces for a particular object. Figure 9 compresses
the plan skeleton in Figure 8 into a constraint network, a bipartite graph from parameters to
constraints, by removing redundant constraints, constants, and parameters (54). Although
TAMP is decidable via computational-geometry algorithms, just as in motion planning, most
practical approaches use optimization or sampling to solve the underlying H-CSPs. Another
dimension of variability in solution approaches is whether the method attempts to satisfy
the entire constraint set at once or not: methods vary dramatically in their high-level control
structure for handling the search over skeletons and parameter values, and make different
demands on constraint satisfaction methods.

3.2.1. Joint Satisfaction. The most straightforward strategy for approaching an H-CSP is to
reduce it to a constrained mathematical program and solve for values for all the free param-
eters at once. Although there is a vast literature on mathematical programming, solving
programs corresponding to TAMP H-CSPs is often very difficult due to high dimensionality
in continuous parameter space, the inclusion of discrete parameters, and the non-convexity
of the constraints. There is no efficient, general solution method for these mathematical
programs. There are, nonetheless, some approaches of practical value.

When all decision variables are real-valued, a common solution strategy is to minimize
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[Motion] [Kin [A]] [Motion] [Kln [A]

(cFreew] [Grasp [A] [CFreeW[A] [CFreel)(Stable [A] [OnStove [A]

Figure 9: A simplification of the constraint network in Figure 8.

an objective function, which incorporates both the hard constraint violation and any soft
action cost penalties, using local-descent methods, though these are guaranteed to reach
only a local optimum of the objective function, which may not satisfy the constraints.
Equation (2) displays a mathematical program corresponding to the constraint network in
Figure 9. The trajectories 71, 73 are approximated as a sequence of robot configurations
7[0], 7[1], ..., 7[T] where T is a hyperparameter. Each constraint is associated with a real-
valued (and often once or twice differentiable) function, which is expressed either in an
equality (g(...)) or inequality (h(...)) constraint for the mathematical program. Although
it is not a focus of this survey, optimization can also fluidly incorporate action costs, enabling
it to identify a solution that is not only feasible but also low-cost. For example, Equation (2)
minimizes the combined cost of moving through a moveF mode (fuover(...)) and a moveH[A]
(fuovenra (...)) mode, each of which are sums of a function defined on adjacent configurations
that comprise trajectory parameter 71 or 73. More generally, mized-integer programming
(Mm1P) techniques are required. One prominent algorithm for solving MiIPs is branch-and-
bound, which performs a discrete search over assignments to the integer variables; then,
conditioned on an assignment for each integer variable, the resulting mathematical program
is real-valued and can be addressed by descent.

minimize ZL faover (T1[t], T1[t — 1]) + Zle Juoventa1 (g1, T3[t], T3[t — 1])

41,71,92,73,93,P4

SUbjeCt to gGrasp [A] (91) - 07 Jstable[A] (p4) = 07 thStove [A] (p4) S 0
Gxinta1 (91, Po, 92) = 0, Grinta1 (g3, P4, 91) = 0

hyotion (T1[t], T1[t — 1]) <0, huotion(Ts[t], 5[t — 1]) <0 for t € [T
herreeu(T1[t]) < 0, hcrreea(Po, T1[t]) < 0 for ¢t € [T
herreeu(T3[t]) < 0, hcrreewral (91, T3[t]) < for t € [T

Tl[O] = qo, ’7’1[T] = T3[0] =q1, T3[T} =q3
(2)

3.2.2. Individual Satisfaction. An alternative approach to solving H-CSPs is to generate
small groups of parameter values that satisfy a single constraint or a small set of constraints,
and combine them. A sampler takes one or more constraints and generates a sequence of
assignments of values to the free parameters, where each assignment that is generated is
guaranteed to satisfy the constraints.

A challenge when designing samplers is dealing with constraints whose set of satisfying
values has lower dimension than combined domains of the free parameters. For example, the
Stable[objl(p) constraint requires object obj to rest perpendicular to a 2D plane within a
3D pose space, so this constraint lies in SE(2) despite the set of object poses being in SE(3).
The rejection-sampling strategy of sampling at random from a bounded region of SE(3) will
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have zero probability of producing a value satisfying this constraint. However, samples can
be produced by directly sampling Stable rather than SE(3). Low-dimensional constraints
remain problematic when attempting to produce values that also satisfy other constraints.
For example, consider solving for values of ¢,p,g that satisfy both Stable[obj](p) and
Kin[objl(q,p,g). Here, the difficulty is finding a pose p that satisfies Stable while also
admitting values of ¢, g that satisfy Kin. One solution is to explicitly design samplers that
operate on larger collections of constraints; this approach generally reduces to the joint
satisfaction approach (Section 3.2.2).

Alternatively, one can design conditional samplers that take in input values for some
of the parameters in the constraint(s) and produce satisfying output values for the rest of
the parameters. Intuitively, these samplers consume values already known to satisfy some
constraints and find completing values that are compatible for additional constraints. In the
above example, a conditional sampler for Kin[obj] that takes in p, g as inputs can consume
a placement pose sampled by Stable[obj] and produce configurations ¢ through finding
inverse kinematics (IK) solutions. In the event that no IK solution exists, the conditional
sampler returns an empty sequence, effectively rejecting the input values. Boolean tests for
a constraint can also be represented within this framework as degenerate “samplers” that
perform a check on the input values but do not generate any output values. For example,
the collision-free constraints CFreeW, CFreel, and CFreeW[A] can be evaluated by querying
a collision checker. In some applications, it may be beneficial to specify several conditional
samplers for an individual constraint, which represent different partitions into input and
output parameters. For example, an alternative sampler for Kin[obj] takes in ¢, g and
performs forward kinematics to produce a pose for obj that satisfies the constraint.

OnStove [A]

Figure 10: A sampling network for the constraint network in Figure 9.

More generally, several conditional samplers can be composed to form a sampling net-
work (55), a directed acyclic graph defined on free parameters and conditional samplers. A
directed edge from a parameter to a sampler indicates that the parameter is an input to the
sampler. A directed edge from a sampler to a parameter indicates that the parameter is an
output of the sampler. Each parameter is required to be the output of exactly one sampler.
This process is similar in spirit to converting a factor graph (constraint network) into a
directed acyclic Bayesian network (53). Figure 10 gives an example sampling network for
the factor graph in Figure 9.

3.2.3. Comparison. There is a trade-off between satisfying constraints individually versus
jointly. Individual satisfaction allows particular constraint types to be addressed using

a special-purpose procedure, which is well equipped for that constraint, and provides a
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framework for modularly combining them. For example, efficient algorithms for inverse
kinematics and motion planning can be used to respectively generate robot configurations
and trajectories. Often, values generated in an attempt to satisfy one H-CSP can be reused
in other, related H-CSPs. In fact, values can even be usefully generated without a particular
H-CSP in mind as shown in Section 3.3.2.

When jointly solving the complete set of constraints for a plan skeleton, only a single
solution is required because, by construction, it has satisfied all relevant constraints. In
comparison, when constructing samplers and conditional samplers, it is important that
they, in the limit as the number of samples goes to infinity, cover the complete space
of feasible solutions, because some samples may be ruled out by other constraints in the
problem. Another advantage of joint satisfaction is that constraints on one parameter can
transitively influence the selection of values for other parameters, directing the search. Many
methods for joint satisfaction requires the constraints to be made available in analytic form,
enabling fast and accurate computation of derivatives used in descent methods. However,
some constraints, such as collision constraints, are difficult to define in a differentiable
form. In such cases, sampling, which only requires black-box access to the constraint for
use in rejection sampling, can be a more effective strategy, although its success is strongly
dependent on the volume of solutions within the sampled space.

Finally, although we contrast these techniques, one can integrate both strategies. For ex-
ample, an algorithm could use individual sampling to generate values that satisfy Stable [A],
Grasp[A], and Kin[A] but use joint satisfaction to solve for trajectories 7 that satisfy
Motion, CFreeW, CFreeA, and CFreeW[A].

3.3. Combining action sequence and parameter search

We now have the tools to search for action sequences (Section 2.3) and to solve H-CSPs
(Section 3.2). In this section, we discuss strategies for combining them into integrated
TAMP algorithms. We would like to order the decision-making in a way that minimizes the
overall runtime of the algorithm, for a problem distribution. There are several intuitive
principles for organizing the search, which are sometimes in conflict with one another. One
way to reduce search effort is to prune infeasible decision branches as quickly as possible
(which is sometimes called failing fast (56)). We would also prefer to postpone expensive
computations until most of the rest of a potential solution is found. For example, in many
manipulation applications, collision checking is expensive, due to the geometric complexity
of 3D meshes and the need to check at a fine resolution to ensure safety, so we might wish
to lazily postpone this operation (57, 58). At the same time, we would like to balance the
computational effort spent on each component, for example, by not spending too much
time trying to satisfy the H-CSP associated with a single skeleton or even single constraint,
in case it is unsatisfiable. Additionally, information gained in one branch of a high-level
search, such as the solution or infeasibility of a subproblem, can often be re-used to make
another branch of the search more efficient.

We begin by focusing on the overall control flow of TAMP algorithms, which determines
the relative ordering of action-sequencing and H-CSP (sub) problem solution. There are
three predominant classes of strategies: sequence before satisfy, in which we find whole plan
skeletons and then try to satisfy all of their constraints; satisfy before sequence, in which we
find sets of satisfying assignments for individual constraints and attempt to assemble actions
that use those values into complete plans; and interleaved, in which actions are added to the
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plan and additional constraints are satisfied incrementally. We conclude by addressing an
important aspect of making these approaches efficient, which is to take advantage of previous
subproblem assignments or failures, in order to avoid re-addressing related subproblems.
Figure 11 illustrates the first two classes of TAMP strategies as flowcharts.

Sequence Before Joint Satisfy

Search for Solve Plan Ye: Return
Next Plan Skeleton’s =i Satisfiable?
Skeleton H-CSP
No
A\ J

Individual Satisfy Before Sequence

Sample New Search for Yes Rewn
M Values from Plan Using
Constraints Samples

No

\ J

Figure 11: Flowcharts for two representative TAMP algorithms. Top: an algorithm that
iteratively searches in the space of unbound plans and jointly satisfies the set of constraints
(Section 3.3.1). Bottom: an algorithm that iteratively performs individual sampling before
searching in the space of fully-bound plans (Section 3.3.2).

Throughout the discussion of control structures, it is important to remember that sam-
pling and optimization techniques are typically only semi-complete, in that they are not
able to certify that a problem instance is infeasible—they simply fail to find a solution in
the time available to them. Even for feasible H-CSPs these algorithms may still need to be
run for an extremely long time if, for example, a feasible problem only admits a tiny volume
of solutions. Handling this is complicated by the fact that we might be forced to consider
a possibly unbounded number of H-CSPs simultaneously. To simplify the discussion, we
can think about this process happening non-deterministically, where intuitively a separate
thread is created for each H-CSP. We can always simulate this behavior in a single process
by appropriately revisiting the threads, making sure that none are starved.

3.3.1. Sequencing first. The earliest algorithms for TAMP committed to a strict hierarchy of
first finding an action sequence, and then finding continuous parameter values. For example,
Shakey (2) performed STRIPS planning over high-level abstract actions, such as which room
to move to, and then planned low-level motions that realized the high-level plan, with no
mechanism for finding an alternative high-level plan if the lower-level motions were not
possible. So, Shakey aggressively assumed that problems satisfy the downward refinement
property. More formally, a two-level hierarchy satisfies the downward refinement property if
every solution to the high level can be refined into a solution at the low level (59). When this
property holds, problems can be completely disentangled into separate task planning and
motion planning problems, so an algorithm that determines a plan skeleton based on values
of discrete template arguments strictly before solving the associated constraint-satisfaction
problem is complete. In TAMP problems in practice, downward refinement rarely holds.
As soon as geometric or kinematic considerations make some high-level plans infeasible
(because, for example, three objects do not actually fit into the box we planned to put
them in, or because the grasp needed to remove an object from a shelf will not work
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to place it on the stove and there is no surface available to use for regrasping), then we
cannot inflexibly commit to any abstract plan without knowing its geometric and kinematic
feasibility.

However, even when downward refinement does not hold, a top-down problem decom-
position can be very effective, as long as there is a mechanism for “backtracking” and trying
alternative high-level plans when the lower-level solver fails (60, 61, 55). Figure 11 (top)
illustrates this approach, in which there is an outer loop representing a search over legal
plan skeletons; for each plan skeleton, we attempt to solve the associated H-CSP and if
we succeed, we return the complete solution, otherwise, we return to the outer loop and
try another skeleton. In many everyday TAMP applications, action sequencing is relatively
inexpensive, making it advantageous to find a plausible action sequence before satisfying
constraints. Furthermore, solving H-CSPs can be computationally expensive, so by only at-
tempting to solve H-CSPs that correspond to viable plan skeletons, we can potentially save
substantial computation time.

3.3.2. Satisfaction first. An alternative strategy is motivated by the fact that task planning
in finite domains can often be very efficient in even very large problem instances, and
therefore seeks to reduce the hybrid problem of TAMP to one or more discretized planning
problems by generating values of continuous quantities, such as poses and configurations,
and computing in advance which constraints they satisfy (22, 14, 21, 55). For example,
one might sample, for an environment with some fixed support surfaces, a set of values p;
such that Stable[A](p;) holds. Approaches that perform satisfaction first almost always
use individual satisfaction (Section 3.2.2), which is typically implemented using sampling,
because they aim to generate values that are useful for a variety of plan skeletons. A single
round of sampling will in general not suffice. When the discrete planning problem given a
particular set of values is infeasible, it is necessary to generate more samples and try again,
as illustrated in Figure 11 (bottom).

Satisfying before sequencing is advantageous when the computational effort of repeat-
edly sequencing and failing to satisfy the associated H-CSP outweighs the computational
effort of eagerly generating values that satisfy constraints upfront. This often is the case
when one or more of the following are true: 1) sampling is efficient and does not result in
a combinatorial explosion of sampled values, 2) each discrete action sequencing search has
non-negligible overhead, and 3) sampled values are unlikely to satisfy critical constraints.

3.3.3. Interleaved. There are many ways to interleave the searches for the action sequence
and parameter values. In some cases, we would like to pre-sample state variable values, such
as robot configurations and object poses, but defer the computation of motion parameter
values, such as collision-free trajectories between two robot configurations. In this case, the
domains of the state variables have already been discretized. Conditioned on an assignment
of values to every non-motion parameter (state variable) for an action instance, each motion
parameter is only affected by the constraints of that particular action, which means that the
problem of finding satisfying values for its parameters is independent of finding parameters
for other actions. Thus, the existence of a satisfying assignment to the motion parameters
can be evaluated online during action sequencing in order to only compute values for action
instances encountered during the search. The strategy was first applied to TAMP under the
name of semantic attachments (62, 63, 64). Although this strategy limits the amount of
interleaving that is possible, it is appealing in that the state space is fixed during sequencing;
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it only identifies that some transitions are infeasible.

Interleaved action and parameter search can also aid the search for plan skeletons when
sequencing first. One source of search control is to observe that, in order for a plan skeleton
to admit a satisfying assignment, all of its subsequences must also have satisfying assign-
ments. Thus, a partial plan skeleton can be pruned from the search if its H-CSP is infeasible.
Some approaches even solve relaxations of the induced H-CSPs that omit certain constraints
such as motion constraints with many decision variables, which are often satisfiable and
thus are uninformative (65, 66, 67, 61, 68, 69).

A more general control structure is to perform a tree search, with layers alternating
between selecting an action template and sampling parameter values for that action that
satisfy the partial skeleton constraints. A substantial difficulty in this approach is that
tree nodes may have infinitely many successor nodes due to the possibly infinitely many
satisfying parameter values and action instances that could be performed. Thus, it is
important that the search be persistent (70, 71), in the sense that it will revisit previous
search nodes indefinitely in order to generate additional samples for continuous parameters.

3.4. Communication between subproblems

TAMP strategies require solving multiple H-CSP subproblems. These problems often have
shared substructure that can be exploited, resulting in substantial reductions in compu-
tation. The primary algorithmic question is whether to share information about sets of
constraints that can be satisfied (positive) or about sets of constraints that cannot be satis-
fied (negative). Algorithms that satisfy constraints individually typically take the positive
approach, and algorithms that satisfy constraints jointly typically take the negative ap-
proach. Although we will discuss these approaches separately, it is possible to develop
algorithms that use both, possibly to handle different types of constraints.

3.4.1. Positive methods. Positive methods are straightforward: whenever any H-CSP is
solved, whether it contains one or many constraints, they add each constraint in the H-
osp, along with its satisfying assignment, to a database of constraint elements, known
solutions to constraints. For methods that satisfy before sequencing (Section 3.3.2), this
database is used to instantiate action instances before sequencing. If action sequencing fails
to find a solution, the feedback is that the current database is insufficient and more values
must be sampled. Some methods that sequence before satisfying (Section 3.3.1) also use
positive feedback. The focused algorithm presented in (72, 55, 73) plans using a mixed set
of sampled values and free parameters (optimistic values), which represent values that are
not yet available, but that might potentially be generated by a sampler.

3.4.2. Negative methods. Alternatively, instead of recording solutions to constraints, an
algorithm could identify unsatisfiable counterezample H-CSPs. Because any H-CSP that con-
tains an unsatisfiable subproblem is itself unsatisfiable, any H-CSP that contains a recorded
counterexample can be pruned; this can, in turn, prevent action sequencing from exploring
plan skeletons that are as-yet unexplored, but have the same failure case as a previously
explored skeleton. Since most H-CSP solvers are only semi-decision procedures, they can
never determine with certainty that a problem is infeasible. One way to handle this prob-
lem is to assume unsatisfiability initially, but, as discussed in Section 3.3, allocate a thread
to each H-CSP that continually searches for a solution in case one exists. If one of these
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threads returns with a solution, the H-CSP is removed from the counterexample set.

A key algorithmic concern here is identifying informative counterexamples. The smaller
a counterexample is, the more H-CSPs and thus plan skeletons it can prune. For example,
consider the constraint network in Figure 9 and suppose that placement po is on a tall
shelf that the robot cannot reach. If we could isolate constraint Kin[A](q1, po, g2) as the
bottleneck, rather than the full H-CSP, any plan skeleton that attempts to pick A at its
initial placement will be pruned, informing the planner that A cannot be manipulated.

The problem of identifying small counterexamples can itself be time-consuming, requir-
ing the original H-CSP to be decomposed into smaller H-CSPs, each of which is individually
tested for unsatisfiability. Several TAMP approaches have proposed heuristic methods for
diagnosing failure and repairing the problem (74, 75, 76, 60). There are also several good
domain-independent strategies. For problems in which the state variables are pre-sampled
(3.3.3), the remaining H-CSP is often disconnected, and thus each unsatisfiable connected
component can be independently added as a counterexample (77, 78, 79). There are meth-
ods from the discrete SAT literature that, for unsatisfiable propositional formulas, identify
unsatisfiable cores (80), small subsets of constraint that cause unsatisfiability. These ideas
can be extended to continuous mathematical programs, where real-valued constraint viola-
tion feedback can improve the efficiency of the search for counterexamples (81, 82, 83).

3.5. Taxonomy

Table 1 illustrates a representative set of MMMP and TAMP algorithms, categorized in terms
of how they solve for continuous parameter values and how they combine searching for the
mode-family or task-level structure of a plan with searching for continuous values. This
table is meant to provide broad coverage, but is not exhaustive. Each row lists one of three
strategies for integrating constraint satisfaction and action sequencing: satisfaction first
(Section 3.3.2), interleaved satisfaction and sequencing (Section 3.3.3), and sequencing first
(Section 3.3.1). Each column lists one of three strategies for performing constraint satisfac-
tion: assuming the state variables are pre-discretized and solving for motion parameters,
individual sampling (Section 3.2.2), and joint optimization (Section 3.2.1).

4. EXTENSIONS

There are many ways to extend the basic TAMP problem class and associated algorithms;
these are areas of current active research and future interest.

4.1. Kinodynamic systems

We have focused on domains with quasi-static dynamics (after the robot executes an action,
the objects end in a stable state which persists until the robot’s next action) and simple
rigid-body kinematics. Extending TAMP to handle deformable objects and liquids as well
as to full dynamics, such as throwing, are important directions. Several TAMP approaches
have already demonstrated the ability to plan for kinodynamic systems (100, 68, 69).

4.2. State and action uncertainty

A critical issue when acting in the real world is uncertainty. In the presence of future-
state uncertainty, a planning algorithm might need to take into account multiple possible
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Pre-discretized Sampling Optimization
Siméon' (22)
Hauser! (13, 29, 14)
Satisfaction N Garrett™ (86, 21
First Ferrer-Mestres™ (84, 85) Krontiris*( (87, 8)8)
Akbari* (89)
Vega-Brown' (90)
Gravot™ (96, 97)
Stilman' (23, 98, 99)
Plaku® (100)
Dornhege™ (62, 63, 91) Kaelbling™ (101, 102)
Interleaved | Gaschler” (92, 93, 94) Barry! (103, 30, 104) | Fernandez-Gonzalez* (109)
Colledanchise™ (95) Garrett™ (70, 71)
Thomason™ (105)
Kim* (106, 107)
Kingston' (108)

Nilsson™ (2)
Erdem™ (74, 75)

Sequence Lagriffoul” (65, 66, 67) Wolfe* (114) Toussaint™ (61, 68, 69)
First Pandey™ (110, 111) Srivastava™ (76, 60) Shoukry™ (81, 82, 83)
Lozano-Pérez* (112) Garrett™ (55, 73) Hadfield-Menell™ (115)
Dantam™ (77, 78, 79)
Lo (113)

Table 1: A table that categorizes MMMP and TAMP approaches, based on how they solve HC-
sps and how they integrate with constraint satisfaction with action sequencing. Approaches
for MMMP are designated with T, and approaches for TAMP are designated with *. Each table
cell is listed chronologically.

outcomes of an action and ensure that there are actions it can take in response, to avoid
unlikely but disastrous outcomes. More difficult, but pervasive, is uncertainty about the
present state. In this case, the problem can be treated as a “belief-space” planning problem,
in which the planner reasons explicitly about the agent’s state of information about the
world and takes actions both to gain information and to drive the world into a desired
belief state. Several approaches for deterministic observable TAMP have been extended to
handle these challenges. (102, 116, 117, 118)

4.3. Planning and learning

A critical question to ask is where TAMP models come from. Most work in TAMP assumes
perfect observability, control actuation, and knowledge of the kinematics and shape of
objects. Machine learning methods can help with the process of acquiring models in non-
ideal domains as well as speeding computation. In particular, learning methods can improve
TAMP in several ways:

e Learning models. Given a controller, whether acquired via learning or hand-built,
the constraints that allow us to characterize successful executions for the TAMP plan-
ner may not be obvious, but they, too, can be learned from experience (8).

e Learning search guidance. Classic task-planning algorithms derive domain-
independent search heuristics from the action descriptions, but there are opportu-
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nities to automatically learn domain-dependent search heuristics (119, 120), in the
form of policies or value function estimates (121) or action-orderings as well (122).
Learning search guidance has been hugely influential in games like Go (123). In TAMP
problems, it is more difficult because it is much less clear how to encode the state
of the problem (object shapes and poses) in a way that affords generalization from
current function approximation methods, and because the goal must be encoded into
the prediction as well, but there is initial progress in this area (106, 124, 125).

Learning sampling guidance. Many TAMP planners use conditional samplers as
part of their strategy for solving underlying H-CSPs. Learning can make sampling
much more effective, in two different ways, one in which the learning happens during a
single search process and one in which the learning happens across problem instances.
In the forward-search algorithms that interleave selection of action and parameters,
we can derive inspiration from Monte Carlo tree search (MCTS) (126, 127), in which
experience with trying to expand nodes in a branch of the tree is used to form local
estimates of the likelihood that a solution lies along that branch. Sampling for contin-
uous parameter values can itself be similarly guided, using techniques for optimistic
global optimization (128, 107). Samplers can also be learned from previous experience
using generative models such as Generative adversarial networks (GANs) (129).

. TAMP selects the sequence of high-level actions that the robot should take, the

hybrid parameter values that determine how the action is performed, and the low-
level motions that safely execute the action.

. TAMP approaches build on research in motion planning, multi-modal motion plan-

ning, and task planning.

. Many TAMP approaches can be seen as integrating a search over plan skeletons

(partially specified plans) and the satisfaction of constraints over hybrid action
parameters.

. Existing approaches can be usefully categorized according to how they address and

integrate these two types of decisions.

. Further investigation is needed of strategies that combine sampling and optimization

approaches to TAMP.

. TAMP methods should be extended to plan in more realistic environments that, for

example, involve deformable objects, time, dynamics, liquids and other agents.

. Uncertainty is central to all real-world robot applications; future TAMP methods

should consider both future-state and present-state uncertainty.

. Incorporating learning-based methods into planning will enable planners to reason

with learned action models, requiring less human-provided domain knowledge.
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