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Abstract—Several techniques have been proposed to detect
vulnerable Spectre gadgets in widely deployed commercial
software. Unfortunately, detection techniques proposed so
far rely on hand-written rules which fall short in covering
subtle variations of known Spectre gadgets as well as demand
a huge amount of time to analyze each conditional branch
in software. Moreover, detection tool evaluations are based
only on a handful of these gadgets, as it requires arduous
effort to craft new gadgets manually.

In this work, we employ both fuzzing and deep learning
techniques to automate the generation and detection of
Spectre gadgets. We first create a diverse set of Spectre-V1
gadgets by introducing perturbations to the known gadgets.
Using mutational fuzzing, we produce a data set with more
than 1 million Spectre-V1 gadgets which is the largest
Spectre gadget data set built to date. Next, we conduct
the first empirical usability study of Generative Adversarial
Networks (GANs) in the context of assembly code generation
without any human interaction. We introduce SpectreGAN
which leverages masking implementation of GANs for both
learning the gadget structures and generating new gadgets.
This provides the first scalable solution to extend the variety
of Spectre gadgets.

Finally, we propose FastSpec which builds a classifier
with the generated Spectre gadgets based on a novel high
dimensional Neural Embeddings technique (BERT). For
the case studies, we demonstrate that FastSpec discovers
potential gadgets with a high success rate in OpenSSL
libraries and Phoronix benchmarks. Further, FastSpec offers
much greater flexibility and time-related performance gain
compared to the existing tools and therefore can be used for
gadget detection in large-scale software.

Index Terms—Spectre, Generative Adversarial Networks,
Neural Embeddings, Vulnerability Analysis

1. Introduction

The new era of microarchitectural attacks began with
newly discovered Spectre [1] and Meltdown [2] attacks,
which may be exploited to exfiltrate confidential infor-
mation through microarchitectural channels during spec-
ulative and out-of-order executions. The Spectre attacks
target vulnerable code patterns called gadgets, which leak
information during speculatively executed instructions.
While the initial variants of Spectre [1] exploit conditional
and indirect branches, Koruyeh et al. [3] propose another
Spectre variant by poisoning the entries in Return-Stack-
Buffers (RSBs). Moreover, new Spectre-type attacks [3],

[4] are implemented against the SGX environment and
even remotely over the network [5]. These attacks show
the applicability of Spectre attacks in the wild.

Unfortunately, chip vendors try to patch the leakages
one-by-one with microcode updates rather than fixing
the flaws by changing their hardware designs. Therefore,
developers rely on automated malware analysis tools to
eliminate mistakenly placed Spectre gadgets in their pro-
grams. The proposed detection tools mostly implement
taint analysis [6] and symbolic execution [7], [8] to iden-
tify potential gadgets in benign applications. However,
the methods proposed so far are associated with two
shortcomings: (1) the low number of Spectre gadgets
prevents the comprehensive evaluation of the tools, (2)
time consumption exponentially increases when the binary
files become larger. Thus, there is a need for a robust and
fast analysis tool that can automatically discover potential
Spectre gadgets in large-scale commercial software.

Natural Language Processing (NLP) techniques are
applied to automate challenging natural language and text
processing tasks [9]. Later, NLP techniques have been
used in the security domain, such as network traffic [10]
and vulnerability analysis [11]. Such applications leverage
word [12] or paragraph [13] embedding techniques to
learn the vector representations of the text. The success
of these techniques heavily depends on the large data
sets, which ease training scalable and robust NLP models.
However, for Spectre, for instance, the number of available
gadgets is only 15, making it crucial to create new Spectre
gadgets before building an NLP-based detection tool.

Generative Adversarial Networks (GANs) [14] are a
type of generative models, which aim to produce new
examples by learning the distribution of training instances
in an adversarial setting. Since adversarial learning makes
GANs more robust and applicable in real-world scenarios,
GANs have become quite popular in recent years with
applications ranging from generating images [15], [16] to
text-to-image translation [17], etc. While the early applica-
tions of GANs focused on computer vision, implementing
the same techniques in NLP tasks poses a challenge due
to the lack of continuous space in the text. Various math-
ematical GAN-based techniques have been proposed to
achieve better success in generating human-like sentences
to overcome this obstacle [18], [19]. However, it is
still unclear whether GANs can be implemented in the
context of computer security to create application-specific
code snippets. Additionally, each computer language has
a different structure, semantics, and other features that
make it more difficult to generate meaningful snippets for
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a specific application.
Neural vector embeddings [12], [13] used to obtain

the vector representations of words have proven extremely
useful in NLP applications. Such embedding techniques
also enable one to perform vector operations in high di-
mensional space while preserving the meaningful relations
between similar words. Typically, supervised techniques
apply word embedding tools as an initial step to obtain
the vector embedding of each token and then build a su-
pervised model on top. For instance, BERT [20] was pro-
posed by the Google AI team, which learns the relations
between different words in a sentence by applying a self-
attention mechanism [21]. BERT has exhibited superior
performance compared to previous techniques [22], [23]
when combined with bi-directional learning. Furthermore,
the attention mechanism improves GPU utilization while
learning long sequences more efficiently. Recently, BERT-
like architectures are shown to be capable of modeling
high-level programming languages [24], [25]. However, it
is still unclear whether it will be effective to model a low-
level programming language, such as Assembly language,
and help build more robust malware detection tools, which
is the goal of this paper.

Our Contributions Our contributions are twofold.
First, we increase the diversity of Spectre gadgets with
the mutational fuzzing technique. We start with 15 exam-
ples [26] and produce 1 million gadgets by introducing
various instructions and operands to the existing gadgets.
Then, we propose a GAN-based tool, namely, Spectre-
GAN, which learns the distribution of 1 million Spectre
gadgets to generate new gadgets with high accuracy. The
generated gadgets are evaluated from both semantic and
microarchitectural aspects to verify their diversity and
quality. Furthermore, we introduce novel gadgets that are
not detected by state-of-the-art detection tools.

In the second part, we introduce FastSpec, a high
dimensional neural embedding based detection technique
derived from BERT, to obtain a highly accurate and fast
classifier for Spectre gadgets. We train FastSpec with
generated gadgets and achieve a 0.998 Area Under the
Curve (AUC) score for OpenSSL libraries in the test
phase. Further, we apply FastSpec on Phoronix benchmark
tests to show that FastSpec outperforms taint analysis-
based and symbolic execution-based detection tools as
well as significantly decreases the analysis time.

In summary,
• We extend 15 base Spectre examples to 1 million gad-

gets by applying a mutational fuzzing technique,
• We propose SpectreGAN which leverages conditional

GANs to create new Spectre gadgets by learning the
distribution of existing Spectre gadgets in a scalable
way,

• We show that both mutational fuzzing and SpectreGAN
create diverse and novel gadgets which are not detected
by oo7 and Spectector tools,

• We introduce FastSpec, which is based on supervised
neural word embeddings to identify the potential gad-
gets in benign applications orders of magnitude faster
than rule-based methods.

Outline The paper is organized as follows: First,
the background on transient execution attacks and NLP
are given in Section 2. Then, the related work is given
in Section 3. Next, we introduce both fuzzing-based and

SpectreGAN generation techniques in Section 4. A new
Transformer-based detection tool, namely, FastSpec is pro-
posed in Section 5. Finally, we conclude the paper with
discussions and limitations in Section 6 and conclusion
in Section 7.

2. Background

2.1. Transient Execution Attacks

In order to keep the pipeline occupied at all times,
modern CPUs have sophisticated microarchitectural op-
timizations to predict the control flow and data depen-
dencies, where some instructions can be executed ahead
of time in the transient domain. However, the control-
flow predictions are not 100% accurate, causing them
to execute some instructions wrongly. These instructions
cause pipeline flush once they are detected, and their
results are never committed. Interestingly, microarchitec-
tural optimizations make it possible to leak secrets. The
critical period before the flush is commonly referred to as
the transient domain.

There are two classes of attacks in the transient do-
main [27]. The first one is called Meltdown-type at-
tacks [2], [28]–[32] which exploit delayed permission
checks and lazy pipeline flush in the re-order buffer. The
other class is Spectre-type attacks [1], [3], [33]–[35] that
exploit the speculative execution. As most Meltdown-
type attacks are fixed in latest microarchitectures and
Spectre-type attacks are still applicable to a wide range
of targets [27], i.e., Intel, AMD, and ARM CPUs, we
focus on Spectre-V1 attacks in this study.

Some researchers proposed new designs requiring a
change in the silicon level [36], [37] while others pro-
posed software solutions to mitigate transient execution
attacks [38], [39]. Although these mitigations are effective
against Spectre-type attacks, most of them are not used
because of the drastic performance degradation [40]or the
lack of support in the current hardware. Hence, Spectre-
type attacks are not entirely resolved yet, and finding an
efficient countermeasure is still an open problem.

2.1.1. Spectre. Since a typical software consists of
branches and instruction/data dependencies, modern CPUs
have components for predicting conditional branches’ out-
comes to execute the instructions speculatively. These
components are called branch prediction units (BPU),
which use a history table and other components to make
predictions on branch outcomes.

1 void victim_function(size_t x){
2 if(x < size)
3 temp &= array2[array1[x] * 512];
4 }

Listing 1: Spectre-V1 C Code

‘ In Spectre attacks, a user fills the history table with ma-
licious entries such that the BPU makes a misprediction.
Then, the CPU executes a set of instructions speculatively.
As a result of misprediction, sensitive data can be leaked
through microarchitectural components, for instance, by
encoding the secret to the cache lines to establish a covert
channel. For example, in the Spectre gadget in Listing 1,



the 2nd line checks whether the user input x is in the
bound of array1. In a normal execution environment,
if the condition is satisfied, the program retrieves x th

element of array1, and a multiple of the retrieved value
(512) is used as an index to access the data in array2.
However, under some conditions, thesize variable might
not be present in the cache. In such occurrences, instead
of waiting for size to be available, the CPU executes the
next instructions speculatively. To eliminate unnecessary
stalls in the pipeline. When size becomes available, the
CPU checks whether it made a correct prediction or not. If
the prediction was wrong, the CPU rolls back and executes
the correct path. Although the results of speculatively
executed instructions are not observable in architectural
components, the access to the array2 leaves a footprint
in the cache, making it possible to leak the data through
side-channel analysis.

2.1.2. Program Analysis Techniques. There are two
main program analysis techniques that are commonly used
to detect Spectre gadgets.

Taint Analysis: Taint analysis tracks outside user-
controlled variables that possibly leak any secret data. If
the tainted variables are consumed by a new variable in the
program flow, the latter is also tainted in the information
flow. This technique is commonly used in vulnerability
detection [41], malware analysis , [42], [43] and web
applications [44], [45] where user input misuses are highly
likely. Similarly, in Spectre gadgets, the secret dependent
operations after conditional branches are potential secret
leakage sources. In particular, when the branch decision
depends on the user input, the secret is subject to be
revealed in the speculative execution state. In order to
detect the Spectre-V1 based leakage in benign programs,
the taint analysis technique is used in oo7.

Symbolic Execution: Symbolic execution is a tech-
nique to analyze the program with symbolic inputs. Each
path of the conditional branch is executed symbolically
to determine the values, resulting in unexpected bugs.
The symbolic execution is applied to detect potential
information leakage in benign applications. For instance,
Spectector [8] aims to identify the memory and control
leaks by supplying symbolic inputs to target functions.
While the symbolic execution provides a good understand-
ing of underlying bugs for different input values, it is
challenging to apply for large-scale projects due to high
resource demand.

2.2. Natural Language Processing

2.2.1. seq2seq Architecture. Sequence to sequence map-
ping is a challenging process since the text data set has no
numeric values. First, the text data is converted to numeric
values with embedding methods [12], [46]. Then, a DNN
model is trained with vector representations of the text.

A new approach called seq2seq [22] was introduced to
model sequence-to-sequence relations. The seq2seq archi-
tecture consists of encoder and decoder units. Both units
leverage multi-layer Long Short Term Memory (LSTM)
structures where the encoder produces a fixed dimen-
sion encoder vector. The encoder vector represents the
information learned from the input sequence. Then, the
decoder unit is fed with the encoder vector to predict the

input sequence’s mapping sequence. After the end of the
sequence token is produced by the decoder, the prediction
phase stops. The seq2seq structure is commonly used in
chatbot engine [47] since sequences with different lengths
can be mapped to each other.

2.2.2. Generative Adversarial Networks. A specialized
method of training generative models was proposed by
Goodfellow et al. , [14] called generative adversarial net-
works (GANs). The generative models are trained with a
separate discriminator model under an adversarial setting.
In [14], the training of the generative model is defined as,

min
G

max
D

V (D, G) = Ex p∼ data (x) [log D(x)]

+ Ez p∼ z (z) [log(1 − D(G(z)))].
(1)

In Equation 1, the generator G and the discriminator
D are trained in such a way that D , as a regular binary
classifier, tries to maximize its confidence D(x) on real
data x, while minimizing D(G(z)) on generated samples
by the G. At the same time, G tries to maximize the con-
fidence of discriminator D(G(z)) on generated samples
G(z) and minimize D(x) where x is the real data.

MaskGAN [18] is a type of conditional GAN tech-
nique to establish a good performance out of traditional
GANs. MaskGAN is based on seq2seq architecture with
an attention mechanism which improves the performance
of the fixed-length encoder vectors. Each time a predic-
tion is made by the decoder unit, a part of the input
sequence is used instead of the encoder vector. Hence,
each token in the input sequence has a different weight
on the decoder output. The main difference of MaskGAN
from other GAN-based text generation techniques is the
token masking approach, which helps to learn the missing
texts in a sequence. For this purpose, some tokens are
masked that is conditioned on the surrounding context.
This technique increases the chance of generating longer
and more meaningful sequences out of GANs.

2.2.3. Transformer and BERT. Although recurrent mod-
els with attention mechanisms learn the representations
of long sequences, attention-only models, namely Trans-
former architectures [21], are shown to be highly effective
in terms of computational complexity and performance
on long-range dependencies. Similar to seq2seq architec-
ture, the Transformer architecture consists of an encoder-
decoder model. The main difference of Transformer is that
recurrent models are not used in encoder or decoder units.
Instead, the encoder unit is composed of L hidden layers
where each layer has a multi-head self-attention mecha-
nism with A attention heads and a fully connected feed-
forward network. The input embedding vectors are fed
into the multi-head attention, and the output of the encoder
stack is formed by a feed-forward network, which takes
the output of the attention sub-layer. The decoder unit also
has L hidden layers, and it has the same sub-layers as the
encoder. In addition to one multi-head attention unit and
one feed-forward network, the decoder unit has an extra
multi-head attention layer that processes the encoder stack
output. To process the information in the sequence order,
positional embeddings are used with token embeddings
where both embedding vectors have a size of H .

Keeping the same Transformer architecture, Devlin et
al. [20] introduced a new language representation model



called BERT (Bidirectional Encoder Representations from
Transformers), which surpasses the state-of-the-art scores
on language representation learning. BERT is designed
to pre-train the token representation vectors of deep bidi-
rectional Transformers. For a detailed description of the
architecture, we refer the readers to [20], [21]. The heavy
part of the training is handled by processing unlabeled
data in an unsupervised manner. The unsupervised phase
is called pre-training, which consists of masked language
model training and next sentence prediction procedures.
The supervised phase is referred to as fine-tuning, where
the model representations are further trained with labeled
data for a text classification task. Both phases are further
explained in detail for Spectre gadget detection model
in Section 5.

3. Related Work

3.1. Spectre attacks and detectors

Spectre Variations and Covert Channels In the first
Spectre study [1], two variants were introduced. While
Spectre-V1 exploits the conditional branch prediction
mechanism when a bound check is present, Spectre-V2
manipulates the indirect branch predictions to leak the se-
cret. Next, researchers discovered new variants of Spectre-
based attacks. For instance, a variant of Spectre focuses
on poisoning Return-Stack-Buffer (RSB) entries with the
desired malicious return addresses [3], [35]. Another vari-
ant of Spectre called Speculative Store Bypass [33] takes
advantage of the memory disambiguator’s prediction to
create leakage. Traditionally, secrets are leaked through
cache timing differences. Then, researchers showed that
there are also other covert channels to measure the time
difference: namely using network latency [5], port con-
tention [48], or control flow hijack attack based on return-
oriented programming [49] to leak secret data.

Defenses against Spectre There are various detection
methods for speculative execution attacks. Taint analy-
sis is used in oo7 [6] software tool to detect leakages.
As an alternative way, the taint analysis is implemented
in the hardware context to stop the speculative execu-
tion for secret dependent data [50], [51]. The second
method relies on symbolic execution analysis. Spectec-
tor [8] symbolically executes the programs where the
conditional branches are treated as mispredicted. Further-
more, SpecuSym [52] and KleeSpectre [7] aim to model
cache usage with symbolic execution to detect speculative
interference, which is based on Klee symbolic execution
engine. Following a different approach, Speculator [53]
collects performance counter values to detect mispredicted
branches and speculative execution domain. Finally, Spec-
fuzz [54] leverages a fuzzing strategy to test functions with
diverse set of inputs. Then, the tool analyzes the control
flow paths and determines the most likely vulnerable code
snippets against speculative execution attacks.

3.2. Binary Analysis with Embedding

Binary analysis is one of the methods to analyze the
security of a program. The analysis can be performed
dynamically [55] by observing the binary code running

in the system. Alternatively, the binary can also be ana-
lyzed statically [56]. NLP techniques have been applied to
binary analysis in recent years. Mostly, the studies lever-
age the aforementioned techniques to embed Assembly
instructions and registers into a vector space. The most
common usage of NLP in the binary analysis is to find
the similarities between files. Asm2Vec [57] leverages
a modified version of the PV-DM model to solve the
obfuscation and optimization issues in a clone search. Zuo
et al. [58] and Redmond et al. [11] solve the binary sim-
ilarity problem by NLP techniques when the same file is
compiled in different architectures. SAFE [59] proposes a
combination of skip-gram and RNN self-attention models
to learn the embeddings of the functions from binary files
to find the similarities.

3.3. GAN-based Text Generation

The first applications of GANs were mostly applied
to computer vision to create new images such as hu-
man faces [60], [61], photo blending [62], video gener-
ation [63], and so on. However, text generation is a more
challenging task since it is more difficult to evaluate the
performance of the outputs. An application [64] of GANs
is in the dialogue generation, where adversarial learning
and reinforcement are applied together. SeqGAN [65] in-
troduces gradient policy update with Monte Carlo search.
LeakGAN [66] implements a modified policy gradient
method to increase the usage of word-based features in ad-
versarial learning. RelGAN [67] applies Gumbel-Softmax
relaxation for training GANs as an alternative method to
gradient policy update. SentiGAN [68] proposes multiple
generators to focus on several sentiment labels with one
multi-class generator. However, to the best of our knowl-
edge, the literature lacks GANs applied to the Assembly
code generation. To fill this literature gap, we propose
SpectreGAN in Section 4.2.

4. Gadget Generation

We propose both mutational fuzzing and GAN-based
gadget generation techniques to create novel and diverse
gadgets. In the following sections, details of both tech-
niques and the diversity analysis of the gadgets are given:

4.1. Gadget Generation via Fuzzing

We begin with fuzzing techniques to extend the base
gadgets to create an extensive data set consists of a million
Spectre gadgets in four steps.
• Step 1: Initial Data Set There are 15 Spectre-V1

gadgets written in C by Kocher [26] and two modified
examples introduced by Spectector [8]. For each exam-
ple, a different attacker code is written to leak the entire
secret data completely in a reasonable time.

• Step 2: Compiler variants and optimization levels
Since our target data set is in assembly code format,
each Spectre gadget written in C is compiled into x86
assembly functions using different compilers. We com-
piled each example with GCC, clang, and icc compilers
using -o0 and -o2 optimization flags. Therefore, we ob-
tain 6 different assembly functions from each C function
with AT&T syntax.



Algorithm 1: Gadget generation using muta-
tional fuzzing

Input: An Assembly function A , a set of instructions
Ib and sets of registers Rb for different sizes of
b

Output: A mutated Assembly function A0

1 G := Rb 7→Ib

2 A0 = A
3 MaxOffset = length(A)
4 for 1:Diversity do
5 for Offset=1:MaxOffset do
6 for 1:Offset do
7 ib ← random( I )
8 rb ← random( Rb|G)
9 l ← random(0 : length(A 0))

10 Insert({ ib|rb}, A 0, l)
11 end
12 Test boundary check(A0)
13 Test Spectre leakage(A0)
14 end
15 end

• Step 3: Mutational fuzzing based generation
We generated new samples with an approach inspired
by mutation-based fuzzing technique [69] as introduced
in Algorithm 1. Our mutation operator is the insertion
of random assembly instructions with random operands.
For an assembly function A with length L , we create
a mutated assembly function A0. We set a limit on the
number of generated samples per assembly function A
for each Offset value, denoted as Diversity. We choose
a random instruction i b from the instruction set I , and
depending on the instruction format of ib; we choose
random operands r b, which are compatible with the in-
struction in terms of bit size, b. After proper instruction-
operand selection, we choose a random position l in
A0 and insert { ib|rb} into that location. We repeat the
insertion process until we reach the Offset value. The
randomly inserted instruction and register list are given
in Appendix A.2.

• Step 4: Verification of the generated gadgets
Finally, A0 is tested whether it is still a Spectre-V1
gadget or not. There are two verification tests that are
applied to the generated functions.
The first verification test is applied to make sure that the
function still has the proper array boundary-check for
given user inputs. Since random instructions are inserted
in random locations in the gadget, a new instruction may
alter the flags whose value is checked by the original
conditional jump. Once the flags are broken, the secret
may be leaked without any speculative execution. To test
this case, the PoC Spectre-V1 attacker code [1] is mod-
ified to supply only out-of-bounds inputs to A0, which
prevents mistraining the branch predictor. If the secret
bytes in the PoC code are still leaked, we conclude that
the candidate gadget is broken and exclude it from the
pool.
If a generated function A0 passes from the first test,
we apply the PoC Spectre-V1 attack to the gadget and
exclude it if it does not leak the secret data through
speculative execution. Additionally, the verification code
is modified based on Kocher’s examples since each
example gadget leaks the secret in a different way.
For instance, 4th example shifts the user input by 1,

which affects the leakage mapping in the cache. There-
fore, we modified the PoC code to compile it with the
generated gadgets together to leak the whole secret.
This process is repeated for each example in Kocher’s
gadget dataset [26], which yields 16 different verifica-
tion codes. The secret in the gadgets is only decoded
via implementing the Flush+Reload technique. Other
microarchitectural side-channels are not in the scope of
the verification phase.
Other Spectre variants such as SmotherSpectre [48] and
NetSpectre [5] are not in our scope. Hence, the gen-
erated gadgets that potentially include SmotherSpectre
and NetSpectre variants are not verified with other side-
channel attacks. Our verification procedure only guar-
antees that the extracted gadgets leak secret informa-
tion through cache side-channel attacks. The verification
method can be adjusted to other Spectre variants, which
is explained further in Section 6.

At the end of the fuzzing-based generation, we obtained
a data set of almost 1.1 million Spectre gadgets 1. The
overall success rate of the fuzzing technique is 5% out of
compiled gadgets. The generated gadgets are used to train
SpectreGAN in the next section.

4.2. SpectreGAN: Assembly Code Generation
with GANs

We introduce SpectreGAN, which learns the fuzzing
generated gadgets in an unsupervised way and generates
new Spectre-V1 variants from existing assembly language
samples. The purpose of SpectreGAN is to develop an
intelligent way of creating assembly functions instead
of randomly inserting instructions and operands. Hence,
the low success rate of gadget generation in the fuzzing
technique can be improved further with GANs.

We build SpectreGAN based on the MaskGAN model,
with 1.1 million examples generated in Section 4. Since
MaskGAN is originally designed for text generation, we
modify the MaskGAN architecture to train SpectreGAN
on assembly language. Finally, we evaluate the perfor-
mance of SpectreGAN and discuss challenges in assembly
code generation.

4.2.1. SpectreGAN Architecture. SpectreGAN has a
generator model that learns and generates x86 assembly
functions and a discriminator model that gives feedback to
the generator model by classifying the generated samples
as real or fake as depicted in Figure 1.

Generator The generator model consists of encoder-
decoder architecture (seq2seq) [22] which is composed of
two-layer stacked LSTM units. Firstly, the input assembly
functions are converted to a sequence of tokens T 0 =
{x 0

1, ..., x0
N } where each token represents an instruction,

register, parenthesis, comma, intermediate value or label.
SpectreGAN is conditionally trained with each sequence
of tokens where a masking vector m = (m 1, ..., mN ) with
elements mt  ∈ {0, 1} is generated. The masking rate of

m is determined as r m =
1
N

P N
t=1 mt . m(T 0) is the

1. The attacker codes for each example, the entire data set, Spectre-
GAN, and FastSpec code are available at https://github.com/vernamlab/
FastSpec



pushq %rbp <MASK><MASK><MASK>%rbp
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pushq %rbp

movq %rsp , %rbp

movb %sil , %al

movq %rdi , -8 ( %rbp )

movb %al , -9 ( %rbp )

movq -8 ( %rbp ) , %rdi
...

Input Gadget

Figure 1: SpectreGAN architecture. Blue and red boxes represent the encoder and decoder LSTM units, respectively.
Green boxes represent the softmax layers. The listed assembly function (AT&T format) on the left is fed to the models
after the tokenization process. The critic model and the decoder part of the discriminator get the same sequence of
instructions in the adversarial training.

modified sequence where x0
t is replaced with <MASK>

token for the corresponding positions of mt = 1 . Both
T 0 and m(T 0) are converted into the lists of vectors
T = {x 1, ..., xN } and m(T ) by a lookup in a randomly
initialized embedding matrix of size V ×H , where V and
H are the vocabulary size and embedding vector dimen-
sion, respectively. In order to learn the masked tokens,
T and m(T ) are fed into the encoder LSTM units of the
generator model. Each encoder unit outputs a hidden state
hs which is also given as an input to the next encoder unit.
The last encoder unit ( e6

G in Figure 1) produces the final
hidden state which encapsulates the information learned
from all assembly tokens.

The decoder state is initialized with the encoder’s final
hidden state, and the decoder LSTM units are fed with
m(T ) at each iteration. To calculate the hidden state eht of
each decoder unit, the attention mechanism output and the
current state of the decoder ht are combined. The attention
mechanism reduces the information bottleneck between
encoder and decoder and eases the training [70] on long
token sequences in assembly function data set. The at-
tention mechanism is implemented exactly same for both
generator and discriminator model which is illustrated in
the discriminator part in Figure 1. The alignment score
vector at is calculated as:

at (s) =
eh >

t h s

P N
s0=1 eh >

t h s 0
, (2)

where at describes the weights of hs , for a token x0
t at time

step t , where h>
t hs is the score value between the token

x0
t and T 0. This forces decoder to consider the relation

between each instruction, register, label and other tokens
before generating a new token. The context vector ct is
calculated as the weighted sum of hs as follows:

ct =
NX

s0=1

at (s)hs0. (3)

For a context vector, ct , the final attention-based hid-
den state, eht , is obtained by a fully connected layer with
hyperbolic tangent activation function,

eht = tanh(W c[ct ; ht ]), (4)

where [ct ; ht ] is the concatenation of ct and ht with
the trainable weights Wc. The output list of tokens
eT = ( ex1, ...,exN ) is then generated by filling the masked
positions for m(T 0) where m t = 1 . The probability
distribution p(yt |y1:t−1 , xt ) is calculated as,

p(yt |y1:t−1 , xt ) =
eW s eh t

P
eW s eh t

, (5)

where yt is the output token and attention-based hidden
state eht is fed into the softmax layer which is represented
by the green boxes in Figure 1. It is important to note that
the softmax layer is modified to introduce a randomness
at the output of the decoder by a sampling operation.
The predicted token is selected based on the probability
distribution of vocabulary, i.e. if a token has a probability
of 0.3, it will be selected with a 30% chance. This prevents
the selection of the token with the highest probability
every time. Hence, at each run the predicted token would
be different which increases the diversity in the generated
gadgets.

Discriminator The discriminator model has a very
similar architecture to the generator model. The en-
coder and decoder units in the discriminator model are
again two-layer stacked LSTM units. The embedding
vectors m(T ) of tokens m(T 0), where we replace x0

t with
<MASK> when m t = 1 , are fed into the encoder. The
hidden vector encodings hs and the encoder’s final state
are given to the decoder.

The LSTM units in the decoder are initialized with
the final hidden state of the encoder and hs is given to
the attention layer. The list of tokens eT which represents
the generated assembly function by the generator model
is fed into the decoder LSTM unit with teacher forcing.
The previous calculations for at (s), ct and eht stated
in Equation 2, 3, and 4 are valid for the attention layer in
the discriminator model as well. The attention-based state
value eht is fed through the softmax layer which outputs
only one value at each time step t ,

pD (ex t = x real
t | eT ) =

eW s eh t

P
eW s eh t

, (6)



which is the probability of being a real target token x real
t .

SpectreGAN has one more model apart from the gen-
erator and the discriminator models, which is called the
critic model, and it has only one two-layer stacked LSTM
unit. The critic model is initialized with zero states and
gets the same input eT with the decoder. The output of
the LSTM unit at each time step t is given to the softmax
layer, and we obtain

pC (ex t = x real
t | eT ) =

eW b h t

P
eW b h t

, (7)

which is an estimated version of pD . The purpose of
introducing a critic model for probability estimation will
be explained in Section 4.2.2.

4.2.2. Training. The training procedure consists of two
main phases namely, pre-training and adversarial training.

Pre-training phase. The generator model is first
trained with maximum likelihood estimation. The real
token sequence T 0 and masked version m(T 0) are fed
into the generator model’s encoder. Only the real token
sequence T 0 is fed into the decoder using teacher forc-
ing in the pre-training. The training maximizes the log-
probability of generated tokens, ex t given the real tokens,
x0

t , where mt = 1 . Therefore, the pre-training objective is

1
N

NX

t=1

log p(m(ex t )|m(x 0
t )), (8)

where p(m( ex t )|m(x 0
t )) is calculated only for the masked

positions. The masked pre-training objective ensures that
the model is trained for a Cloze task [71].

Adversarial training phase. The second phase is
adversarial training, where the generator and the dis-
criminator are trained with the GAN framework. Since
the generator model has a sampling operation from the
probability distribution stated in Equation 5, the overall
GAN framework is not differentiable. We utilize the policy
gradients to train the generator model, as described in the
previous works [18], [65].

The reward r t for a generated token ex t is calculated as
the logarithm of pD (ex t = x real

t | eT ). The aim of the gen-
erator model is to maximize the total discounted rewards
Rt = m(

P N
s=t

γsr s) for the fake samples, where γ is the
discount factor. Therefore, for each token, the generator
is updated with the gradient in Equation 9 using the RE-
INFORCE algorithm, where bt = log p C (ex t = x real

t | eT )
is the baseline rewards by the critic model. Subtracting bt

from Rt helps reducing the variance of the gradient [18].

∇ θEG [Rt ] = (R t − bt )∇ θ log Gθ(x̃ t ) (9)

To train the discriminator model, both real se-
quence T and fake sequence eT are fed into the
discriminator. Then, the model parameters are up-
dated such that log pD (ex t = x real

t | eT ) is minimized and
log pD (x t = x real

t |T ) is maximized using maximum log-
likelihood estimation.

4.2.3. Tokenization and Training Parameters. Firstly,
we pre-process the fuzzing generated data set to con-
vert the assembly functions into sequences of tokens,
T 0 = (x 0

1, ..., x0
N ). We keep commas, parenthesis, im-

mediate values, labels, instruction and register names as

separate tokens. To decrease the complexity, we reduce the
tokens’ vocabulary size and simplify the labels in each
function so that the total number of different labels is
minimum. The tokenization process converts the instruc-
tion ”movq (%rax), %rdx” into the list ["movq",
"(", "%rax", ")", ",", "%rdx"] where each
element of the list is a token x0

t . Hence, each token list
T 0 = {x 0

1, ..., x0
N } represents an assembly function in the

data set.
The masking vector has two different roles in the train-

ing. While a random masking vector m = (m 1, ..., mN )
is initialized for the pre-training, we generate m as a
contiguous block with a random starting position in the
adversarial training. In both training phases, the first to-
ken’s mask is always selected as m1 = 0 , meaning that
the first token given to the model is always real. The
masking rate, r m determines the ratio of masked tokens
in an assembly function whose effect on code generation
is analyzed further in Section 4.2.4.

SpectreGAN is configured with the embedding vector
size of d = 64, generator learning rate of ηG = 5 × 10−4 ,
discriminator learning rate of ηD = 5×10 −3 , critic learn-
ing rate of ηC = 5 × 10 −7 and discount rate of γ = 0.89
based on the MaskGAN implementation [18]. We select
the sequences with a maximum length of 250 tokens,
building the vocabulary with a size of V = 419 . We sepa-
rate 10% of the data set for model validation. SpectreGAN
is trained with a batch size of 100 on NVIDIA GeForce
GTX 1080 Ti until the validation perplexity converges
in Figure 2. The pre-training lasts about 50 hours, while
the adversarial training phase takes around 30 hours.

4.2.4. Evaluation. SpectreGAN is based on learning
masked tokens with the surrounding tokens. The masking
rate is not a fixed value, which is determined based
on the context. Since SpectreGAN is the first study to
train on Assembly functions, the masking rate choice is
of utmost importance to generate high-quality gadgets.
Typically, NLP-based generation techniques are evaluated
with their associated perplexity score, which indicates how
well the model predicts a token. Hence, we evaluate the
performance of SpectreGAN with various masking sizes
and their perplexity scores. In Figure 2, the perplexity con-
verges with the increasing number of training steps, which
means the tokens are predicted with a higher accuracy to-
wards the end of the training. SpectreGAN achieves lower
perplexity with higher masking rates, which indicates that
higher masking rates are more preferable for SpectreGAN.

Even though the higher masking rates yield lower
perplexity and assembly functions of high quality in terms
of token probabilities, our purpose is to create functions
which behave as Spectre gadgets. Therefore, as a second
test, we generated 100,000 gadgets for 5 different mask-
ing rates. Next, we compiled our gadgets with the GCC
compiler and then tested them with all the attacker code to
verify their secret leakage. When SpectreGAN is trained
with a masking rate of 0.3, the success rate of gadgets in-
creases by up to 72%. Interestingly, the success rate drops
for other masking rates, demonstrating the importance of
masking rate choice. In total, 70,000 gadgets are generated
with a masking rate of 0.3 to evaluate the performance of
SpectreGAN in terms of gadget diversity in Section 4.3.
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Figure 2: (Above) The validation perplexity decreases
at each training step and converges for all r m . (Below)
Spectre gadget success rates are evaluated when different
masking rates are used to train SpectreGAN. Spectre
gadget success rate shows the percentage of gadgets out
of compiled functions.

To illustrate an example of the generated samples, we
fed the gadget in Listing 2 to SpectreGAN and generated a
new gadget in Listing 3. We demonstrate that SpectreGAN
is capable of generating realistic assembly code snippets
by inserting, removing, or replacing the instructions, reg-
isters, and labels. In the Listing 3, the lines that start with
the instructions written with red color are generated by
SpectreGAN, and they correspond to the masked portion
of Spectre-V1 gadget given in Listing 2.

1 victim_function:
2 .cfi startproc
3 movl size(%rip ) , %eax
4 cmpq %rdi,%rax
5 jbe .L0
6 leaq array1(%rip ) , %rax
7 movzbl (%rdi,%rax),%eax
8 ror $1,%rsi
9 shlq $9,%rax

10 leaq array2(%rip ) , %rcx
11 movss %xmm8,%xmm4
12 movb (%rax,%rcx),%al
13 andb %al,temp(%rip)
14 movd %xmm1,%r14d
15 test %r15,%rcx
16 sbbl %r13d,%r9d
17 .L0:
18 retq
19 cmovll %r8d,%r10d
20 .cfi endproc

Listing 2: Input
Spectre-V1 gadget

1 victim_function:
2 .cfi startproc
3 movl size(%rip ) , %eax
4 cmpq %rdi,%rax
5 jbe .L0
6 leaq array1(%rip ) , %rax
7 movzbl (%rdi,%rax),%eax
8 ror $1,%rsi
9 shlq $9,%rax

10 movb array2(%rdi) , %al
11 andb %al,temp(%rip)
12 .L1:
13 andb %r13b,%al
14 movb array2(%rax),%al
15 andb %al,temp(%rip)
16 sbbl %r13d,%r9d
17 .L0:
18 retq
19 cmovll %r8d,%r10d
20 .cfi endproc

Listing 3: Generated gadget
by SpectreGAN

4.3. Diversity and Quality Analysis of Generated
Gadgets

In total, 1.2 million gadgets are generated by the
mutational fuzzing technique and SpectreGAN. Since the
gadgets are derived from existing examples, it is crucial
to analyze their diversity and quality. The diversity is
measured by syntactic analysis, e.g., counting the number
of unique n-grams in gadgets. For the quality metric,
we monitor performance counters while the gadgets are
executed. 5000 gadgets are randomly selected from each
gadget generation technique to perform syntactic and mi-
croarchitectural analysis. Furthermore, novel gadgets that

are not detected by oo7 [6] and Spectector [8] tools
are given to show that our gadget generation techniques
produce meaningful Spectre-V1 gadgets.

4.3.1. Syntactic Analysis. In NLP applications, the di-
versity of the generated texts is evaluated by counting the
number of unique n-grams. The most common metrics
for the text diversity are perplexity and BLEU scores that
are calculated based on the probabilistic occurrences of
n-grams in a sequence. The higher number of n-grams
indicates that an NLP model learns the data set distribution
efficiently and produces new sequences with high diver-
sity. However, both scores are obtained during the training
phase; thus, making it impossible to evaluate the fuzzing
generated gadgets since there is no training phase. Instead,
we conduct diversity analysis by counting the unique n-
grams introduced by fuzzing and SpectreGAN methods
after all the gadgets are generated.

The number of unique n-grams in generated gadgets
is compared with 17 base examples in Table 1. The
unique n-grams are calculated as follows: First, unique
n-grams produced by fuzzing are identified and stored
in a list. Then, additional unique n-grams introduced by
SpectreGAN are noted. Therefore, the unique n-grams
generated by SpectreGAN in Table 1 represent the number
of n-grams introduced by SpectreGAN, excluding fuzzing
generated n-grams.

TABLE 1: Table shows the number of unique n-grams
for base gadgets and generated gadgets by fuzzing and
SpectreGAN methods. In the last column the total number
of unique n-grams are given as well as the increase factor
that improves with the increasing n-grams.

n Base Fuzzing SpectreGAN Total

2 2069 15,448 7,462 22,910 (× 11)
3 3349 181,606 91,851 273,457 (× 82)
4 4161 639,608 460,317 1,099,925 (× 264)
5 4747 998,279 921,519 1,919,798 (× 404)

In total, the number of unique bigrams (2-grams) is
increased to 22,910 from 2,069, which is more than 10
times raise. While new instructions and registers added
by fuzzing improve the gadgets’ diversity, SpectreGAN
contributes to the gadget diversity by producing unique
perturbations. Since the instruction diversity increases
drastically compared to base gadgets, the unique 5-grams
reach up to almost 2 million, 400 times higher than the
base gadgets. The results show that both fuzzing and
SpectreGAN span the diversity in the generated gadgets.
High diversity in the gadget data set also results in mi-
croarchitectural behavior diversity as well as new Spectre-
V1 gadgets that were not previously considered during the
design process of previous detection mechanisms.

4.3.2. Microarchitectural Analysis. Another purpose of
gadget generation is to introduce new instructions and
operands to create high-quality gadgets. To assess the
quality of the gadgets, we analyze gadgets’ microarchitec-
tural characteristics. The first challenge is to examine the
effects of instructions in the transient domain since they
are not visible in the architectural state. After carefully an-
alyzing the performance counters for Haswell architecture,



Figure 3: The distribution of base (red-triangle), fuzzing
generated (blue-square) and SpectreGAN generated
(green-circle) gadgets is given for issued and retired µops
counters. Both SpectreGAN and fuzzing techniques gen-
erate diverse set of gadgets in Haswell architecture.

we determined that two counters, namely, uops issued :
any and uops retired : any give an insight into gadgets’
microarchitectural behavior. uops issued : any counter
is incremented every time a µop is issued, which counts
both speculative and non-speculative µops. On the other
hand, uops retired : any counter only counts the exe-
cuted and committed µops, which automatically excludes
speculatively executed µops.

The performance counter distribution of generated
gadgets and base gadgets are given in Figure 3. The gadget
quality is measured by the number of instructions in the
transient domain after a gadget passes the verification step.
The exploitable gadgets in the commercial software have
many instructions that are speculatively executed until the
secret is leaked. If our detection tool in Section 5 is only
trained with simple gadgets from Kocher’s examples, the
success rate would be low in large-scale software bina-
ries. Moreover, the gadgets that are detected in the case
studies are very similar to the generated gadgets which
have more instructions in the transient domain. A similar
observation is also shared in [72], where the authors claim
that Spectre gadgets have up to 150 instructions between
the conditional branch and speculative memory access in
the detected gadgets. Since our aim is to create realistic
gadgets by inserting various instructions, we assume that
gadget quality increases in parallel when a gadget is close
to the x-axis and far from the y-axis.

It is more likely to obtain high-quality gadgets with
fuzzing method as new instructions and operands are
randomly added. On the other hand, SpectreGAN learns
the essential structure of the fuzzing generated gadgets,
which yields almost the same number of samples close
to the x-axis in Figure 3. Moreover, the advantage of
SpectreGAN is to automate the creation of gadgets with a
higher accuracy (72%) compared to the fuzzing technique
(5%).

4.3.3. Detection Analysis. Even though the microarchi-
tectural and syntactic analyses show that fuzzing and
SpectreGAN can produce diverse and high-quality sets of
gadgets, we aim to enable a comprehensive evaluation of
detection tools and determine the most interesting gadgets
in our data set. For this reason, the generated gadgets are
fed into Spectector [8] and oo7 [6] tools to determine the
novelty of the gadgets.

oo7 tool leverages taint analysis to detect Spectre-
V1 gadgets. It is based on the Binary Analysis Platform
(BAP) [73] which forwards taint propagation along all
possible paths after a conditional branch is encountered.
oo7 2 is built on a set of hand-written rules which cover
the existing examples by Kocher [26]. Although our data
set size is 1.2 million, we have selected 100,000 samples
from each gadget example uniformly random due to the
immense time consumption of oo7 (150 hours for 100K
gadgets), which achieves a 94% detection rate.

Interestingly, specific gadget types from both fuzzing
and SpectreGAN are not caught by oo7. When a gadget
contains cmov or xchg or set instruction and its variants,
it is not identified as a Spectre gadget. Hence, we in-
troduce these gadgets as novel Spectre-V1 gadgets listed
in Listing 4 and Listing 5. Their corresponding assembly
snippets are also given in Appendix A.1.

1 void victim_function(size_t x){
2 if(global_condition)
3 x = 0;
4 if(x < size)
5 temp &= array2[array1[x] * 512];
6 }

Listing 4: CMOV gadget: An example Spectre gadget in C
format. When it is compiled with gcc-7.5 -o2 optimization
level, CMOVcc gadget bypasses oo7 tool. The generated
assembly version is given in Appendix A.1.

1 size_t prev = 0xff;
2 void victim_function(size_t x) {
3 if (prev < size)
4 temp &= array2[array1[prev] * 512];
5 prev = x;
6 }

Listing 5: XCHG gadget: When a past value, that is
controlled by the attacker, is used to leak the secret in
the Spectre gadget, oo7 cannot detect the XCHG gadget.
This example show that control-flow graph extraction is
not efficiently implemented in oo7 tool.

We identified two potential issues of static taint anal-
ysis method in oo7 tool. First, if a portion of a tainted
variable is modified by an instruction such as cmov or
set, the tainted variable is not tracked by the tool. How-
ever, an attacker still controls the remaining portion of
the variable, which makes it possible to leak the secret
from memory. In some cases, the implementation of static
taint analysis is not sufficiently accurate to track partially
modified tainted variables due to under-tainting. Secondly,
the tainted variables are not tracked between the iterations
of a loop. If an old attacker-controlled variable is used
to access the secret, oo7 tool is not able to taint the
old variable between the iterations of a for loop. Hence,
any old attacker-controlled variable can be used to bypass
the tool. This shows that control flow graphs of multiple
iterations may not be extracted correctly by oo7. Both
weaknesses show that hand-written rules do not generalize
well for Spectre gadget detection when new Spectre-V1
gadgets are discovered.

Spectector [8] makes use of a symbolic execution
technique to detect the potential Spectre-V1 gadgets. For

2. https://gitlab.com/igoto/spectre-detector



each assembly file, Spectector is adjusted to track 25
symbolic paths of at most 5000 instructions each, with a
global timeout of 30 minutes. The remaining parameters
are kept as default.

First, we eliminate the gadgets that include unsup-
ported instructions as these gadgets are never detected by
Spectector. When we analyze the remaining gadgets, 1%
of the gadgets are not detected successfully. Then, unde-
tected gadgets are examined to determine novel gadgets.

We determined two issues in the Spectector tool.
The first issue is related to the barrier instructions. Even
though lfence, sfence and mfence instructions have differ-
ent purposes, the tool treats them as equal instructions.
For instance, if an sfence instruction is present after the
conditional branch, the tool classifies the gadget as safe.
However, sfence instruction has no effect on the load
operation so, the gadget still leaks the secret. Hence,
Spectector’s modeling of fences does not distinguish the
differences between various x86 fence instructions. The
second issue is about 8-bit registers in which a partial
information of the elements in array[x] is stored. When 8-
bit registers are used to modify the elements in Listing 6,
Spectector is no longer able to detect the gadgets. This
second issue is also mentioned in [8], i.e., sub-registers
are currently not supported by the tool. Overall, these
issues are due to the problems in the translation from x86
assembly into Spectector’s intermediate language.

We show that our large-scale diverse gadget data set
establishes a ground truth to evaluate the detection tools
accurately. As shown in the case studies on Spectector and
oo7, the success rate on detecting the gadgets in our 1.1
million sample data set could serve as a generic evaluation
metric while identifying the flaws in the detection tools.

1 victim_function :
2 movl s i z e ( % r i p ) ,%eax
3 cmpq %rax , %rdi
4 j a e .B1.2
5 movzbl a r r a y 1 ( % r d i ) ,%eax
6 s h l q $9 , %rax
7 xorb %al , %al
8 movb a r r a y 2 ( % r a x ) ,%dl
9 andb %dl , t e m p ( % r i p )

10 .B1.2 :
11 r e t

Listing 6: xorb %al, %al is added to 1st example in
Kocher’s examples [26]. Spectector is no longer able to
detect the leakage due to the zeroing %al register.

5. FastSpec: Fast Gadget Detection Using
BERT

In an assembly function representation model, the
main challenge is to obtain the representation vectors,
namely embedding vectors, for each token in a function.
Since the skip-gram and RNN-based training models are
surpassed by the attention-only models in sentence clas-
sification tasks, we introduce FastSpec, which applies a
lightweight BERT version.

5.1. Training Procedures

We adopt the same training procedures with BERT on
assembly functions, namely, pre-training and fine-tuning.

Figure 4: 3-D visualization for the distribution of instruc-
tions and registers after t-SNE is applied to embedding
vectors. Similar instructions and registers have the same
colors. The unrelated instructions are separated from each
other in the three-dimensional space after the pre-training.

5.1.1. Pre-training. The first procedure is pre-training,
which includes two unsupervised tasks. The first task fol-
lows a similar approach to MaskGAN by masking a por-
tion of tokens in an assembly function. The mask positions
are selected from 15% of the training sequence, and the
selected positions are masked and replaced with <MASK>
token with 0.80 probability, replaced with a random token
with 0.10 probability, or kept as the same token with 0.10
probability. While the masked tokens are predicted based
on other tokens’ context, the context vectors are obtained
by the multi-head self-attention mechanism.

The second task is the next sentence prediction, where
the previous sentence is given as input. Since our assembly
code data has no paragraph structure where the separate
long sequences follow each other, each assembly function
is split into pieces with a maximum token size of 50.
For the next sentence prediction task, we add <CLS> to
each piece. For each piece of function, the following piece
is given with the label IsNext, and a random piece of
function is given with label NotNext. FastSpec is trained
with the self-supervised approach.

At the end of the pre-training procedure, each token
is represented by an embedding vector with a size of H .
Since it is impossible to visualize the high dimensional
embedding vectors, we leverage the t-SNE algorithm [74]
which maps the embedding vectors to a three-dimensional
space as shown in Figure 4. We illustrate that the embed-
ding vectors for similar tokens are close to each other in
three-dimensional space, as this outcome shows that the
embedding vectors are learned efficiently. In Figure 4, the
registers with different sizes, floating-point instructions,
control flow instructions, shift/rotate instructions, set in-
structions, and MMX instructions/registers are accumu-
lated in separate clusters. The separation among different
types of tokens enables achieving a higher success rate in
the Spectre gadget detection phase.

5.1.2. Fine-tuning. The second procedure is called fine-
tuning, which corresponds to a supervised sequence clas-
sification in FastSpec. This phase enables FastSpec to
learn the conceptual differences between Spectre gadgets
and general-purpose functions through labeled pieces. The



pieces created for the pre-training phase are merged into
a single sequence with a maximum of 250 tokens. The
disassembled object files, which have more than 250
tokens, split into separate sequences. Each sequence is
represented by a single<CLS> token at the beginning. The
benign files are labeled with 0, and the gadget samples
are labeled with 1 for the supervised classification. Then,
the embedding vectors of the corresponding <CLS> token
and position embedding vectors for the first position are
summed up. Finally, the resulting vector is fed into the
softmax layer, which is fine-tuned with supervised train-
ing. The output probabilities of the softmax layer are the
predictions on the assembly code sequence.

5.2. Training Details and Evaluation

We combine the assembly data set generated in Sec-
tion 4 and the disassembled Linux libraries to train Fast-
Spec. Although Linux libraries may contain Spectre-V1
gadgets, we assume that the total number of hidden Spec-
tre gadgets is negligible, comparing the data set’s total
size. Therefore, the model treats those gadgets as noise,
which does not affect the performance of FastSpec. In
total, a data set of 107 million lines of assembly code
is collected, which consists of 370 million tokens after
the pre-processing. We separate 80% of the data set for
training and validation, and the remaining 20% is used for
FastSpec evaluation. While the same pre-processing phase
in Section 4.2.3 is implemented, we further merge similar
tokens to decrease the total vocabulary size. We replace
all labels, immediate values and out-of-vocabulary tokens
with <label>, <imm> and <UNK>, respectively. After
the pre-processing, the vocabulary size is reduced to 960.

We choose the number of Transformer blocks as
L = 3 , the hidden size as H = 64 , and the number
of self-attention heads as A = 2 . We train FastSpec on
NVIDIA Titan XP GPU. The pre-training phase takes
approximately 6 hours, with a sequence length of 50. We
further train the positional embeddings for 1 hour with a
sequence length of 250. The fine-tuning takes only 20
minutes on the pre-trained model to classify all types
of samples in the test data set correctly. Note that the
training time is less than previous NLP techniques in the
literature since BERT [20] leverages GPU parallelization
significantly. The analysis duration is measured on Intel
Xeon CPU E5-2637 v2 @3.50GHz.

In the evaluation of FastSpec, we obtained 1.3 million
true positives and 110 false positives (99.9% precision
rate) in the test data set, demonstrating the high perfor-
mance of FastSpec. We assume that the false positives are
Spectre-like gadgets in Linux libraries, which need to be
explored deeply in future work. Moreover, we only have
55 false negatives (99.9% recall rate), which yield a 0.99
F-1 score on the test data set.

In the next section, we show that FastSpec achieves
high performance and extremely fast gadget detection
without needing any GPU acceleration since FastSpec is
built on a lightweight BERT implementation.

5.3. Case Study: OpenSSL Analysis

We analyze FastSpec to validate with a separate
ground truth data set other than the one we generate
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Figure 5: Solid line stands for the ROC curve of Fast-
Spec for Spectre gadget class. Dashed line represents the
reference line.

in Section 4. The purpose of this analysis is to mea-
sure the effect of the covariate shift and robustness of
FastSpec against a real-world benchmark. We focus on
OpenSSL v3.0.0 libraries [75], as it is a popular general-
purpose cryptography library in commercial software. We
use a subset of functions from RSA, ECDSA, and DSA
ciphers in the OpenSSL speed benchmark. The function
labels are obtained by running the SpecFuzz tool, which is
a dynamic detection tool to find Spectre-V1 vulnerabilities
using fuzzing [54]. The functions in which the SpecFuzz
tool finds vulnerabilities are labeled as positive, and the
remaining ones are labeled as negative. We also exclude
the functions without any conditional branch instructions
from the positive class and the functions that have a
call to them. In total, 4242 functions are extracted from
the aforementioned cryptography libraries to analyze with
FastSpec. Positive and negative classes include 720 and
2500 functions, respectively.

First, we apply the same pre-processing procedures,
as explained in Section 5.2 to obtain the tokens. The total
number of tokens is more than 4 million. Since the labels
are assigned on function-level, we choose the maximum
confidence rate that we get among all the sliding windows.
The maximum confidence rate is assigned as the predic-
tion of our model for the corresponding input function.
In order to find the optimal sliding window size, we scan
through the functions with various different window sizes
and compare the performances. Figure 5 shows that Fast-
Spec achieves the highest performance to detect functions
with Spectre-V1 vulnerability when the window size is
set to 80 tokens, which corresponds to 0.998 as an area
under the curve (AUC) value. The optimal threshold value
is found as 0.48, which corresponds to the maximum F-
score. The highest F-score is achieved as 0.99, where the
false positive rate (benign functions that are mistakenly
classified as Spectre gadget) is 0.04%, and false negative
rate (functions that are mistakenly classified as benign)
is 2%. We claim that further analysis of the detected
functions by using symbolic execution or taint analysis
tools can reduce the number of false negative samples and
provide an efficient end-to-end security solution against
Spectre-V1 vulnerability.



5.4. Case Study: Phoronix Test Suite Analysis

The performance comparison between FastSpec and
other static analysis tools is evaluated on the Phoronix
Test Suite v5.2.1 [76]. For the ground truth, the SpecFuzz
technique is chosen as the tool that dynamically analyzes
the binaries, and exploitable gadgets can be detected with
a higher success rate compared to static tools. The selected
benign files have source code since it is required to obtain
the assembly files for the Spectector tool. The assembly
files are generated by compiling the source C code with
the GCC compiler. On the other hand, the binary files
are generated at the test installation; therefore, there is no
further processing required before testing the binary files
in oo7. For FastSpec, the disassembled binary files are
given as input. Note that since the larger benchmarks take
more time to be analyzed by oo7, we preferred small size
files to make the comparison with Spectector and FastSpec
easier.

Timing The overall timing results for various bench-
marks are given in Table 2. The analysis time of oo7
and Spectector increases drastically with the number of
conditional branches since the tools analyze both paths
after a conditional branch is encountered. On the other
hand, FastSpec analysis time increases linearly with the
binary size. We observe that the pre-processing phase
takes the major portion in the analysis time of FastSpec
while the inference time is in the order of microseconds.
We fuzz the Crafty benchmark for 24 hours and other
benchmarks for 1 hour using SpecFuzz under the default
configuration 3.

The effect of the increasing number of branches on
time consumption is clear in the Crafty and Clomp bench-
marks in Table 2. Even though the Crafty benchmark has
only 10,796 branches, oo7 and Spectector analyze the file
in more than 10 days (the analysis process is terminated
after 10 days) and 2 days, respectively. In Figure 6,
we show that both tools are not sufficiently scalable to
be used in real-world applications, especially when the
files contain thousands of conditional branches. Especially
oo7 shows an exponential behavior because of the forced
execution approach, which executes every possible path
of the conditional branches. In contrast, FastSpec analyzes
the same Crafty benchmark under 6 minutes, which is a
significant improvement.

Note that the Byte benchmark has a higher number of
branches than most of the remaining benchmarks. How-
ever, it consists of multiple independent files that need to
be tested separately, taking less time to analyze in total.
Consequently, FastSpec is faster than oo7 and Spectector
455 times and 75 times on average, respectively.

Baseline Evaluation The number of gadgets found
by the tools varies significantly. While oo7 and FastSpec
report each Spectre gadget in a binary file, Spectector
outputs whether a function contains a Spectre gadget or
not. To be consistent, if a control or data leakage is found
in a function, it is reported as a vulnerable function by all
three tools.

The precision and recall rates for oo7, Spectector and
FastSpec are given in Table 2. The precision is calculated
as T P/(T P + F P ) . TP is the number of overlapping

3. https://github.com/OleksiiOleksenko/SpecFuzz
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Figure 6: The processing time of FastSpec is independent
of the number of branches whereas for Spectector and oo7
the analysis time increases drastically.

gadgets detected by a tool. FP is the number of functions
that are classified as Spectre gadgets mistakenly. The
recall value is computed as T P/(T P + F N) where FN
is the number of gadgets that are not detected by a tool.

In some cases, oo7 is not able to track the control flow
when the number of function calls increases in a gadget,
which yields high false negatives and low recall. Thus, oo7
suffers from the extraction of complete control flow graph.
Spectector tends to give more false positives compared
to oo7 and FastSpec. This is because some unsupported
instructions are skipped by the tool and the broken Spec-
tre gadgets by specific instructions are still classified as
Spectre gadget. On the other hand, FastSpec has low false
negatives since all the Spectre gadget patterns are detected
with a confidence rate higher than 0.48. When the file
size increases, the false positives may increase in parallel.
However, these gadgets can be verified with other tools
to increase the confidence. As a result, FastSpec scans
the functions extremely quicker than other tools without
sacrificing the precision and recall rates. Our tool also
guarantees the security of the scanned assembly functions
by detecting almost all Spectre gadgets with low FN rates.
FastSpec outperforms all the compared tools in terms of
recall and precision rates by a large margin.

6. Discussion and Limitations

6.1. Gadget Verification

The gadget verification process in Section 4.1 is im-
plemented in an isolated core since the system interrupts
frequently mistrain the targeted branch instructions in the
gadgets, which decreases the gadget verification success
rate significantly. This situation particularly affects the
first step of the verification process where all the inputs
are out-of-bounds, and the target branch is not expected
to be mistrained. Therefore, there is a need for an iso-
lated environment to run the verification code for Spectre
gadgets. Even though the data cache side-channel is used
for the secret decoding, other side-channels can be used
to decode the secret in a Spectre gadget such as TLB
structure. The secret elements in array1 should be mul-
tiplied with a constant to decode the secret into different
cache lines or pages. In the base examples [26], the secret
elements are multiplied by 512 or 4096. The verification
code only selects the Spectre gadgets with these specific
multiplicands, which potentially introduces a bias in the
data set. Since all multipliers in the Spectre gadgets are



TABLE 2: Comparison of oo7 [6], Spectector [8], and FastSpec on the Phoronix Test Suite. The last column shows that
FastSpec is on average 455 times faster than oo7 and 75 times faster than Spectector. (#CB: Number of conditional
branches, #Fc: Number of functions, #DFc: Number of detected functions)

SpecFuzz oo7 Spectector FastSpec

Benchmark
Size
(KB) #CB #Fc #DFc Precision Recall

Time
(sec) Precision Recall

Time
(sec) Precision Recall

Time
(sec)

Byte 183.5 363 83 7 0.70 0.90 400 1.00 0.43 115 1.00 0.86 14
Clomp 79.4 1464 45 1 0 0 17.5 hr 0.05 0.9 2.8 hr 1.00 1.00 35
Crafty 594.8 10796 207 44 1.00 0.54 > 10 day 0.60 0.91 48 hr 0.23 0.80 315
C-ray 27.2 139 11 1 1.00 1.00 395 0.2 0.9 153 0.50 1.00 8
Ebizzy 18.5 104 6 3 0 0 467 0.60 1.00 206 1.00 0.33 3
Mbw 13.2 70 5 1 0 0 145 0.50 1.00 34 0.33 1.00 2
M-queens 13.4 51 4 1 1.00 1.00 136 0.50 1.00 24 1.00 1.00 2
Postmark 38.0 309 49 6 1.00 0.83 3409 0.43 0.95 1202 1.00 1.00 10
Stream 22.0 113 4 3 0 0 231 0 0 63 1.00 0.66 4
Tiobench 36.1 169 19 1 0 0 813 0.25 0.8 201 0.33 1.00 9
Tscp 40.8 651 38 13 0 0 6667 1.00 0.15 972 1.00 0.92 12
Xsbench 27.9 153 32 1 1.00 1.00 1985 0 0 249 0.50 0.90 7

Average 0.47 0.44 0.43 0.67 0.74 0.87

represented with the same token, <imm>, our detection
tool is not affected by the bias introduced by different
multipliers. For instance, in OpenSSL and in Phoronix,
we observed that gadgets with different multiplicands are
detected by our detection tool.

Our verification codes also focus on more complex
leakage snippets in which the secret is not simply leaked
with a simple multiplication. We observed that similar
control-flow statements and more complex encoding tech-
niques are present among Kocher’s examples [26] (Exam-
ples 10-15). After new gadgets are generated from these
examples, we observed that these gadgets can still be
detected by our verification code. However, if the leakage
mechanism in the gadget is altered significantly, it is likely
that the secret in the generated gadget is not recovered
during verification. Unfortunately, this introduces a bias
in our data set as the diversity of the gadgets is limited.
Moreover, our detection tool might not be able to detect
more complex gadgets as these gadgets are not included
in the training data set. To include more complex gadgets
in the data set, the verification code can be changed
dynamically by analyzing each generated assembly code,
which is left as future work.

6.2. Scalability and Flexibility

Other Spectre Variants: Since pre-training teaches
the general assembly syntax and takes a major part in
the training process, our pre-trained FastSpec model can
be used after fine-tuning for any assembly code task. The
modifications are needed only to Step 1 and Step 4 in Sec-
tion 4.1 since we need an initial data set and verification
code to build up a larger data set. For Spectre v1.1 [34],
our verification code can be adapted by adding one more
attacker-controlled input to verify whether a speculative
load is executed or not. Similarly, the speculatively writ-
ten value in Spectre v1.2 [34] can be mapped to cache
lines to verify the generated gadgets. For Spectre v2 [1],
verification procedure needs to be completely changed as
the branch instruction is not a conditional branch anymore.
For this purpose, the verification code can be modified to
mistrain the indirect jumps with attacker known addresses,
and then, the secret bytes in the attacker-controlled func-
tion are mapped to separate cache lines. Since Spectre-

RSB [3] works in a similar way, except ret instruction is
targeted, the same verification procedure can be adapted.
Finally, in Spectre v4 [33], the verification code can
supply attacker-controlled variables to specific registers,
and then, speculatively loaded data can be decoded to a
shared memory to verify the gadgets.

Other Attacks: Our approach can detect the target
SMoTher-gadgets [48] in the code space. The verification
procedure in Section 4.1, specifically Step 4, needs to be
changed to analyze port fingerprints. For this purpose, the
timing of various instructions that are mapped to certain
ports can be measured to detect the leaked secrets as
implemented in [77]. It is highly likely that the verification
takes more time for the generated gadgets since we need
to collect more timings to distinguish the cases between
secret leakage and no secret leakage. In NetSpectre [5],
there are two types of gadgets. The leak gadget is very
similar to Spectre v1 whereas only one bit is transmitted.
Hence, the verification procedure can be modified to pro-
file a single cache line instead of 256 cache lines. The
transmit gadget is used to leak the secret data over the
network and has a different structure than the leak gadget.
To detect the transmit gadgets with our verification code,
the Thrash+Reload technique can be adapted to measure
the timing difference between cached and non-cached
accesses over the network. Again, the verification proce-
dure potentially takes more time to analyze the generated
gadgets since the secret transmission speed is significantly
lower than Spectre V1.

Other Architectures and Applications: Although we
limit the scope of this paper to generating and detecting
the Spectre-V1 gadgets on x86 assembly code, the use
of SpectreGAN and FastSpec can always be extended
to other architectures and applications with only mild
effort. Furthermore, specially designed architectures are
not needed when pre-trained embedding representations
are used [20]. Therefore, the pre-trained FastSpec model
can be used for any other vulnerability detection, cross-
architecture code migration, binary clone detection, and
many other assembly-level tasks.

The fuzzing tool increases the diversity of the gen-
erated gadgets by introducing variations that are later
learned by the FastSpec tool. In addition, the detection



tool learns the generic gadget type rather than training on
small details. In Section 5.2, the evaluation of FastSpec
also shows that the tool can detect the potential Spectre
gadgets with a 99.9% precision rate.

6.3. Comparison of FastSpec with Other Tools

The most significant advantage of FastSpec is the
capability of detecting Spectre gadgets quicker than other
tools. If an instruction is not introduced in the training
phase, the instruction is treated as unknown, and it has
a slight effect on the accuracy of FastSpec since a large
window of instructions is analyzed to decide on the Spec-
tre gadgets. While the unsupported instructions are an
important issue for the Spectector tool, FastSpec can be
deployed to other architectures such as ARM and AMD.
While small modifications in the assembly code increase
the chance of bypassing other tools, our tool is more
robust against small modifications. It is easier to adapt
FastSpec to other Spectre variants as the vector repre-
sentations of assembly instructions can be directly used
to train a separate model for the variants. Moreover, over-
tainting and under-tainting issues decrease the accuracy of
taint-based static analysis techniques. However, FastSpec
tracks the registers, instructions, and memory accesses
with a vector representation, which makes it more reliable
in large-scale projects.

6.4. Scope and Limitations

Scope: Our scope is to generate Spectre-V1 gadgets
by using mutational fuzzing and SpectreGAN methods
as well as to detect potential Spectre gadgets in benign
programs by significantly reducing the analysis time.

Guarantees: Our verification methods in Step 4.1
guarantee that the generated Spectre-V1 gadgets leak the
secret bytes through cache side-channel attacks. Moreover,
the FastSpec tool detects the Spectre gadgets with a high
precision and recall rate by identifying the gadget patterns
at the assembly level. Possible False Positive outputs do
not affect the security guarantee provided by FastSpec.
The analysis time is significantly reduced compared to
rule-based detection tools.

FastSpec generalizes well, i.e., it can recognize similar
patterns that are not in our training dataset. However, it
does not provide assurance of coverage (completeness)
since FastSpec is not based on hand-written rules or
formal analysis. In order to decrease the False Negative
rate, the probabilistic threshold is kept low in the case
studies. In contrast, while FastSpec does not provide such
guarantees, it is much faster and scales to larger code-
bases.

Assembly Code Generation: The challenges faced
in the regular text generation with GANs [18], [65] also
exist in assembly code generation. One of the challenges is
mode collapse in the generator models. Although training
the model and generating the gadgets with masking help
reduce mode collapse, we observed that our generator
model still generates some tokens or patterns of tokens
repetitively, reducing the quality of the generated samples
and compilation and real gadget generation rates.

In regular text generation, even if the position of a
token changes in a sequence, the meaning of the sequence

may change while it would still be somewhat acceptable.
However, if the position of a token in an assembly function
changes, it may result in a compilation error because of the
incorrect syntax. Even if the generated assembly function
has the correct assembly syntax, the function behavior
may be completely different from the expected one due
to the position of a few instructions and registers.

The fuzzing-based gadget generation technique is
based on known gadget examples. Since there are already
15 versions of Spectre-V1, we use these gadgets as the
starting point for fuzzing. On the other hand, the available
gadgets for other variants are significantly lower compared
to Spectre-V1 gadgets. To solve this issue, other detection
tools can be used to detect Spectre gadgets in benign pro-
grams. Then, new gadgets can be generated with fuzzing
technique. We leave the further investigation of generation
other Spectre variants as future work.

Window Size: Since Transformer architecture has no
utilization of recurrent modeling as RNNs do, the max-
imum sequence length is needed to be set before the
training procedures. Therefore, the sliding window size
can be set to at most the maximum sequence length. On
the other hand, our experiments show that using lower
window sizes than maximum sequence length provides
more accurate Spectre gadget detection and provides fine-
grain information on the sequence.

7. Conclusion

This work, for the first time, proposed NLP inspired
approaches for Spectre gadget generation and detection.
First, we extended our gadget corpus to 1.1 million sam-
ples with a mutational fuzzing technique. We introduced
the SpectreGAN tool that achieves a high success rate in
creating new Spectre gadgets by automatically learning the
structure of gadgets in assembly language. SpectreGAN
overcomes the difficulties of training a large assembly
language model, an entirely different domain than natural
language. We demonstrate 72% of the compiled code snip-
pets behave as a Spectre gadget, a massive improvement
over fuzzing based generation. Furthermore, we show that
our generated gadgets span the speculative domain by
introducing new instructions and their perturbations, yield-
ing diverse and novel gadgets. The most exciting gadgets
are also introduced as new examples of Spectre-V1 gad-
gets. Finally, we propose FastSpec, based on BERT-style
neural embedding, to detect the hidden Spectre gadgets.
We demonstrate that for large binary files, FastSpec is 2
to 3 orders of magnitude faster than oo7 and Spectector
while it still detects more gadgets. We also demonstrate
the scalability of FastSpec on OpenSSL libraries to detect
potential gadgets.
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Appendix A.

A.1. Assembly Gadget Examples

In this section, corresponding assembly gadget of
given examples in Section 4 are provided.

1 victim_function :
2 .LFB23 :
3 movl g l o b a l c o n d i t i o n ( % r i p ) ,%eax
4 t e s t l %eax , %eax
5 movl $0 , %eax
6 cmovne %rax , %rdi
7 movslq a r r a y 1 s i z e ( % r i p ) , %rax
8 cmpq %rdi , %rax
9 j b e . L 1

10 l e a q a r r a y 1 ( % r i p ) ,%rax
11 l e a q a r r a y 2 ( % r i p ) ,%rdx
12 movzbl (%rax , % r d i ) , %eax
13 s a l l $12 , %eax
14 c l t q
15 movzbl (%rdx , %rax ) , %eax
16 andb %al , t e m p ( % r i p )
17 . L 1 :
18 r e p r e t

Listing 7: When the C code in Listing 4 compiled
with certain optimizations (gcc 7-4 with O2 enabled),
the generated assembly code contains CMOV instruction
which fools oo7.

1 victim_function :
2 xchg %rdi , %r13
3 cmpl %esp , %esp
4 movl a r r a y 1 s i z e ( % r i p ) ,%eax
5 s h r $1 , %r11
6 cmpq %rdi , %rax
7 j b e .LBB1 1
8 addq %r13 , %r11
9 l e a q a r r a y 1 ( % r i p ) ,%rax

10 movzbl ( % r d i, %rax ) , %edi
11 jmp l e a k B y t e N o i n l i n e F u n c t i o n
12 .LBB1 1 :
13 r e t q
14 l e a k B y t e N o i n l i n e F u n c t i o n :
15 movl %edi , %eax
16 s h l q $9 , %rax
17 l e a q a r r a y 2 ( % r i p ) ,%rcx
18 movb (%rax , %rcx ) , %al
19 andb %al , t e m p ( % r i p )
20 r e t q

Listing 8: While generating gadgets with mutational
fuzzing technique, this code is generated by our algorithm
from Kocher’s example 3 (using clang-6.0 with 02
optimization).

1 victim_function :
2 seta % s i l
3 cmpl $0 , ( % r s i )
4 j e .LBB0 2
5 a d d l %r15d , %r12d
6 s a r q $1 , %r11
7 addb % s i l, %r15b
8 movzbl a r r a y 1 ( % r d i ) ,%eax
9 j a . L 1 3 2 4 3 3 7

10 t e s t w %r10w , %ax
11 s h l q $12 , %rax
12 nop
13 movb a r r a y 2 ( % r a x ) ,%al
14 . L 1 3 2 4 3 3 7 :
15 andb %al , t e m p ( % r i p )
16 .LBB0 2 :
17 r e t q

Listing 9: While generating gadgets with mutational
fuzzing technique, this code is generated by our algorithm
from Kocher’s example 9 (using clang-6.0 with 02
optimization). The seta %sil instruction sets the lowest
8-bit of %rsi register based on a condition which is not
detected by oo7.

A.2. Instructions and registers inserted randomly
in the fuzzing technique

TABLE 3: Instructions and registers inserted randomly in
the fuzzing technique.

Instructions
add cmovll jns movzbl ror subl
addb cmp js movzwl sall subq
addl cmpb lea mul salq test
addpd cmpl leal nop sarq testb
addq cmpq leaq not sar testl
andb imul lock notq sal testq
andl incq mov or sbbl testw
andq ja movapd orl sbbq xchg
call jae movaps orq seta xor
callq jbe movb pop setae xorb
cmova je movd popq sete xorl
cmovaeq jg movdqa prefetcht0 shll xorq
cmovbe jle movl prefetcht1 shlq lfence
cmovbq jmp movq push shr sfence
cmovl jmpq movslq pushq sub mfence
cmovle jne movss rol subb

Registers
rax eax ax al xmm0 ymm0
rbx ebx bx bl xmm1 ymm1
rcx ecx cx cl xmm2 ymm2
rdx edx dx dl xmm3 ymm3
rsp esp sp spl xmm4 ymm4
rbp ebp bp bpl xmm5 ymm5
rsi esi si sil xmm6 ymm6
rdi edi di dil xmm7 ymm7
r8 r8d r8w r8b xmm8 ymm8
r9 r9d r9w r9b xmm9 ymm9
r10 r10d r10w r10b xmm10 ymm10
r11 r11d r11w r11b xmm11 ymm11
r12 r12d r12w r12b xmm12 ymm12
r13 r13d r13w r13b xmm13 ymm13
r14 r14d r14w r14b xmm14 ymm14
r15 r15d r15w r15b xmm15 ymm15
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