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Abstract11

A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past12

several years, due to its close connection to circuit complexity and to the Minimum Circuit Size13

Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the14

problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK15

(Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete.16

Recently, some hardness results for MKTP were proved that are not (yet) known to hold for17

MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ≤NC0
m reductions.18

In this paper, we improve this, to show that MKTP is hard for the (apparently larger) class NISZKL19

under not only ≤NC0
m reductions but even under projections. Also MKTP is hard for NISZK under20

≤P/poly
m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs,21

and NISZKL is the non-interactive version of the class SZKL that was studied by Dvir et al.22

As an application, we provide several improved worst-case to average-case reductions to problems23

in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP).24
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1 Preface31

Peter Gács has made important contributions to the study of Kolmogorov complexity. Thus32

we are pleased to be able to present this investigation into the computational complexity33

of time-bounded Kolmogorov complexity, as part of a special issue celebrating his research34

career.35

2 Introduction36

The study of time-bounded Kolmogorov complexity is tightly connected to the study of37

circuit complexity. Indeed, the measure that we study most closely in this paper, denoted38

KT, was initially defined in order to capitalize on the framework of Kolmogorov complexity in39

investigations of the Minimum Circuit Size Problem (MCSP) [4]. If f is a bit string of length40

2k representing the truth-table of a k-ary Boolean function, then KT(f) is polynomially41

related to the size of the smallest circuit computing f . Thus the problem of computing KT42

complexity (denoted MKTP) was initially viewed as a more-or-less equivalent encoding of43

MCSP, and it is still the case that all theorems that have been proved about the complexity44

of MCSP hold also for MKTP (such as those in [5, 9, 10,17,21–24,30,31,33,35]).45

In recent years, however, a few hardness results were proved for MKTP that are not yet46

known to hold for MCSP [7, 8]. We believe that these results can be taken as an indication47

of what is likely to be true also for MCSP. The present work gives significantly improved48

hardness results for MKTP.49

Reducibility and completeness are the most effective tools in the arsenal of complexity50

theory for giving evidence of intractability. However, it is not clear whether MCSP or MKTP51

is NP-complete; neither can be shown to be NP-complete — or even hard for ZPP — under52

the usual ≤P
m reductions without first showing that EXP 6= ZPP, a long-standing open53

problem [17,31].54

The strongest hardness results that have been proved thus far for MCSP and MKTP are55

that both are hard for SZK under BPP-Turing reductions [5]. SZK is the class of problems56

that have Statistical Zero Knowledge Interactive Proofs, and contains many problems of57

interest to cryptographers. Indeed, if MCSP (or MKTP) is in P/poly, then there are no58

cryptographically-secure one-way functions [26].59

Our main results involve improving the hardness results for MKTP, by reducing the60

number of queries from polynomially-many, to one. In the paragraphs that follow, we explain61

the sense in which we accomplish this goal. Along the way, we also obtain a new circuit lower62

bound for MKTP; it remains unknown whether this circuit lower bound also holds for MCSP.63

SZK is not known to be contained in NP; until such a containment can be established,64

there is no hope of improving the BPP-Turing reduction of [5] to a ≤P
m reduction. But65

we come close in this paper. NISZK is the “non-interactive” subclass of SZK; it contains66

intractable problems if and only if SZK does [18]. We show that MKTP is hard for NISZK67

under ≤P/poly
m reductions. (Thus, instead of asking many queries, as in [5], a single query68

suffices.1) Our proof also shows that MKTP is hard for NISZK under BPP reductions that69

ask only one query. Combined with [18], this shows that MKTP is hard for SZK under70

non-adaptive BPP reductions, yielding a modest improvement over [5]; this has implications71

1 Some readers may have mistakenly believed that we view our work as a step toward showing that MKTP
(or MCSP) is hard for SZK under (uniform) ≤P

m reductions. We do not. In fact, some of us doubt that
hardness under uniform deterministic reductions holds.
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regarding the study of worst-case to average-case reductions. (See Section 2.1.)72

But ≤P/poly
m reductions are still quite powerful. There is great interest currently in73

proving lower bounds for MCSP, MKTP, and related problems such as MKtP (the problem74

of computing a different kind of time-bounded Kolmogorov complexity, due to Levin [28]) on75

very limited classes of circuits and formulae, as part of the “hardness magnification” program.76

For instance, if modest lower bounds can be shown on the size required to compute MKtP77

on de Morgan formulae augmented with PARITY gates at the leaves, then EXP is not78

contained in non-uniform NC1 [32]. Also, there is great interest in finding lower bounds79

against a variety of other models, such as depth-three threshold gates, or circuits consisting80

of polynomial threshold gates [27]. If a lower bound is known against one of these limited81

classes of circuits for some problem A that is reducible to, say, MKTP or MKtP under ≤P/poly
m82

reductions, it implies nothing about the complexity of MKTP or MKtP, since the circuitry83

involved in computing the reduction is much more powerful than the circuitry in the class of84

circuits for which the lower bound is known.85

Thus there is a great deal of interest in considering reductions that are much less powerful86

than ≤P/poly
m reductions. For extremely weak (uniform) notions of reducibility (such as87

log-time reductions), it is known that MCSP and MKTP are not hard for any complexity88

class that contains the PARITY function [31]. However, this non-hardness result relies89

on uniformity; it was later shown that MKTP is hard for the complexity class DET under90

nonuniform ≤NC0

m reductions [8].91

However, even ≤NC0

m reductions are too powerful a tool, when one is interested in lower92

bounds against the classes of circuits discussed above, since they do not seem to be closed93

under ≤NC0

m reductions. This motivates consideration of the most restrictive type of reduction94

that we will be considering: projections.95

A projection is a reduction that is computed by a circuit consisting only of wires and96

NOT gates. Each output bit is either a constant, or is connected by a wire to a (possibly97

negated) input bit. All of the classes of circuits mentioned above (and – indeed – most98

conceivable classes of circuits) are closed under projections.99

Prior to our work, the result of [8] showing that MKTP is hard for DET under ≤NC0

m100

reductions was improved, to show that MKTP is hard for DET even under projections [3].101

Since DET is a subclass of P, this provides little ammunition when one is seeking to prove102

that MKTP is intractable. One of our main contributions is to show that MKTP is hard for103

NISZKL under projections. As a corollary, we obtain that MKTP cannot be computed by104

THRESHOLD◦MAJORITY circuits of size 2no(1) . This lower bound relies on the fact that105

MKTP is hard under projections.106

The reader will not be familiar with NISZKL; this complexity class makes its first ap-107

pearance in the literature here. It is the “non-interactive” counterpart to the complexity108

class SZKL that was studied previously by Dvir et al. [15], and was shown there to contain109

several important natural problems of interest to cryptographers (such as Discrete Log and110

Decisional Diffie-Hellman). NISZKL contains intractable problems if and only if SZKL does111

(see Section 3). Thus, for the first time, we show that MKTP is hard under projections for112

a complexity class that is widely believed to contain intractable problems. Our hardness113

results carry over immediately to MKtP and to similar problems defined in terms of general114

Kolmogorov complexity; no hardness results under projections had been known previously115

for those problems. We present some complete problems for NISZKL and establish some116

other basic facts about this class in Section 5.117

CVIT 2016
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2.1 Average-Case Complexity118

Building on the techniques introduced in [20], we are able to establish new insights regarding119

the relationship between worst-case and average-case complexity. In Theorem 46, capitalizing120

on the fact that essentially every circuit complexity class C is closed under projections, we121

show that if NISZKL does not lie in OR ◦ C, then there are problems A in NP that cannot122

be solved in the average case by errorless heuristics in C. For instance, if one were able123

to show that there is any problem NISZKL (including, but not limited to, some of the124

candidate one-way functions believed to reside there) that cannot be solved in the worst125

case by depth-four ACC0 circuits, it would follow that there are problems in NP that are126

hard-on-average for depth-three ACC0 circuits. Such conclusions would not follow if our127

reductions to MKTP had merely been computable in AC0 or NC0.128

We are also able to shed more light on worst-case to average-case reductions, in the form129

that they were studied by Bogdanov and Trevisan [14]. Bogdanov and Trevisan showed that130

there were severe limits on the complexity of problems whose worst-case complexity could131

be reduced to the average-case complexity of problems in NP via non-adaptive reductions;132

all such problems lie in NP/poly ∩ coNP/poly. But it was not known how large this class of133

problems could be. Hirahara showed that every problem in SZK has an adaptive worst-case to134

average-case reduction to a problem in NP [20], but the upper bound of NP/poly∩ coNP/poly135

proved by Bogdanov and Trevisan does not apply for adaptive reductions. As a consequence136

of our Corollary 19, showing that MKTP is hard for SZK under nonadaptive BPP reductions,137

we are able to show (in Corollary 49) that the class identified by Bogdanov and Trevisan lies138

in the narrow range between SZK and NP/poly ∩ coNP/poly.139

Remark: This is an illustration of the utility of studying MKTP, as an example of a140

theorem that does not explicitly mention MKTP or MCSP, but which was proved via the141

study of MKTP. No such argument based on MCSP is known. We believe that MKTP can142

in fact be viewed as a particularly convenient formulation of MCSP, since (a) KT complexity143

is closely related to circuit size, (b) essentially all theorems known to hold for MCSP also144

hold for MKTP, (c) some arguments that one might intend to formulate in terms of MCSP145

elude current approaches, but can instead be successfully carried through by use of MKTP.146

Furthermore, theorems proved for MKTP may serve as an indication of what is likely to be147

true for MCSP as well.148

The rest of the paper is organized as follows: Our ≤P/poly
m -hardness theorem for MKTP is149

proved in Section 4. Then, after establishing some basic facts about NISZKL in Section 5, in150

Section 6 we show that MKTP is hard for NISZKL under projections. We present applications151

of our reductions and implications for average-case complexity in Section 7.152

3 Preliminaries153

3.1 Complexity Classes and Reducibilities154

We assume familiarity with the complexity classes P, NP, L, BPP, and P/poly. We also make155

use of the circuit complexity classes AC0 and NC0. For the purposes of this paper, AC0 can156

be understood as the set of problems for which there is a family of circuits {Cn : n ∈ N}157

with unbounded-fan-in AND and OR gates (and NOT gates of fan-in 1) of polynomial size158

and constant depth. NC0 is defined similarly, but with AND and OR gates of bounded fan-in159

(and thus each output bit depends on only a constant number of bits of the input). We deal160

primarily with the “nonuniform” versions of these complexity classes (which means that the161

mapping n 7→ Cn need not be computable).162
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Branching programs are a circuit-like model of computation that can be used to charac-163

terize logspace computation. A branching program is a directed acyclic graph with a single164

source and two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled165

with a variable in {x1, . . . , xn} and has two edges leading out of it: one labeled 1 and one166

labeled 0. A branching program computes a Boolean function f on input x = x1 . . . xn by167

first placing a pebble on the source node. At any time when the pebble is on a node v labeled168

xi, the pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if xi = 1169

(or by the edge labeled 0 if xi = 0). If the pebble eventually reaches the sink labeled b, then170

f(x) = b. Branching programs can also be used to compute functions f : {0, 1}m → {0, 1}n,171

by concatenating n branching programs p1, . . . , pn, where pi computes the function fi(x) =172

the i-th bit of f(x). For more information on the definitions, backgrounds, and nuances of173

these complexity classes, circuits, and branching programs, see the text by Vollmer [37].174

A promise problem Π is a pair of disjoint sets (ΠYES,ΠNO). A solution to a promise175

problem is any set A such that ΠYES ⊆ A and ΠNO ⊆ A. A don’t-care instance of Π is any176

string that is not in ΠYES ∪ΠNO. A language A can be viewed as a promise problem that177

has no don’t-care instances.178

Given any class C of functions, there is an associated notion of m-reducibility or many-one179

reducibility: For two languages A and B, we say that A≤CmB if there is a function f in180

C such that x ∈ A iff f(x) ∈ B. This notion of reducibility extends naturally to promise181

problems, mapping yes-instances to yes-instances, and no-instances to no-instances. The182

most familiar notion of m-reducibility is Karp reducibility: ≤P
m; NP-completeness is most183

commonly defined in terms of Karp reducibility. However, in this paper, we will frequently184

be reducing problems that are not known to reside in NP to MKTP, which does lie in NP.185

Thus it is clear that a more powerful notion of reducibility is required. Some of our results186

are most conveniently stated in terms of ≤P/poly
m reductions (i.e., reductions computed by187

nonuniform polynomial-size circuits). We also consider restrictions of ≤P/poly
m reductions,188

computed by nonuniform AC0 and NC0 circuits: ≤AC0

m and ≤NC0

m . Finally we also consider189

projections (≤proj
m ), which are functions computed by NC0 circuits that have only NOT gates.190

That is, in a projection, each output bit is either a constant 0 or 1, or is connected by a wire191

to an input bit or its negation.192

We will also make reference to various types of Turing reducibility, which are defined in193

terms of oracle Turing machines, or in terms of circuit families that are augmented with194

“oracle gates”. For instance, we say that A≤BPP
T B if there is a probabilistic polynomial time195

oracle Turing machine M with oracle B that accepts every x ∈ A with probability 2
3 and196

rejects every x ∈ A with probability 2
3 . Note that the computation tree of such a BPP-Turing197

reduction can contain an exponential number of queries to different elements of B. Just as198

BPP ⊆ P/poly, it also holds that A≤BPP
T B implies A≤P/poly

T B. Thus, on any input x, the199

circuit computing the P/poly-Turing reduction queries only a polynomial number of elements200

of B. It was shown in [5] that every problem in SZK (that is, every problem with a statistical201

zero knowledge proof system) is ≤BPP
T -reducible (and hence ≤P/poly

T -reducible) to MCSP and202

to MKTP. The question of interest to us here is: Is it necessary to ask so many queries?203

What can we do if we ask only one query? What can be reduced to MKTP via a ≤P/poly
m204

reduction?205

The complexity class with which we are primarily concerned in this paper is the class of206

problems that have non-interactive statistical zero knowledge proof systems: NISZK. NISZK207

was originally defined and studied by Blum et al. [13]. The definition below (in terms of208

promise problems) is due to Goldreich et al. [18].209

I Definition 1. A non-interactive statistical zero-knowledge proof system for a promise210

CVIT 2016
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problem Π is defined by a triple of probabilistic machines P , V , and S, where V and S are211

polynomial-time and P is computationally unbounded, and a polynomial r(n) (which will212

give the size of the random reference string σ), such that:213

1. (Completeness:) For all x ∈ ΠYES, the probability that V (x, σ, P (x, σ)) accepts is at least214

1− 2−|x|.215

2. (Soundness:) For all x ∈ ΠNO, the probability that V (x, σ, P ′(x, σ)) accepts is at most216

2−|x|, for any prover P ′.217

3. (Zero Knowledge:) For all x ∈ ΠYES, the statistical distance between the following two218

distributions bounded by 1/β(|x|)219

(A) Choose σ uniformly from {0, 1}r(|x|), sample p from P (x, σ), and output (p, σ).220

(B) S(x) (where the coins for S are chosen uniformly at random.)221

where β(n) is superpolynomial, and the probabilities in Conditions 1 and 2 are taken over222

the random coins of V and P , and the choice of σ uniformly from {0, 1}r(n).223

NISZK is the class of promise problems for which there is a non-interactive statistical224

zero knowledge proof system.225

NISZK is not known to be closed under complementation; co-NISZK is defined as the class226

of promise problems Π = (ΠYES,ΠNO) such that (ΠNO,ΠYES) is in NISZK. It is known that227

SZK = NISZK iff NISZK = co-NISZK, and that every promise problem in SZK efficiently (and228

non-adaptively) Turing-reduces to a problem in NISZK [18]. Thus NISZK contains intractable229

problems if and only if SZK does. See Fig. 1.230

A subclass of SZK, which we will denote by SZKL, in which the verifier V and simulator231

S are restricted to being logspace machines, was defined and studied by Dvir et al. [15].232

Among other things, they showed that many of the important natural problems in SZK lie233

in SZKL, including Graph Isomorphism, Quadratic Residuosity, Discrete Log, and Decisional234

Diffie-Hellman. The non-interactive version of SZKL, which we denote by NISZKL, has not235

been studied previously, but it figures prominently in our results.236

I Definition 2. The formal definition of NISZKL is obtained by replacing each occurrence of237

“polynomial-time” in Definition 1 with “logspace”. (It is important to note that, in this model,238

the logspace-bounded verifier V and simulator S are allowed two-way access to the reference239

string σ and to their polynomially-long sequences of probabilistic coin flips.)240

The reduction presented in [18] carries over directly to the logspace setting, showing that241

NISZKL contains intractable problems if and only if SZKL does. In particular, we have:242

I Proposition 3. Every promise problem in SZKL is non-adaptively AC0-Turing-reducible to243

a problem in NISZKL.244

3.2 KT Complexity245

The measure KT was defined in [4]. We provide a reproduction of that definition below.246

I Definition 4 (KT). Let U be a universal Turing machine. For each string x, define KTU (x)247

to be248

min{|d|+ T : (∀σ ∈ {0, 1, ∗}) (∀i ≤ |x|+ 1) Ud(i, σ) accepts in T steps iff xi = σ}249

We define xi = ∗ if i > |x|; thus, for i = |x|+ 1 the machine accepts iff σ = ∗. The notation250

Ud indicates that the machine U has random access to the description d. We fix one universal251

Turing machine U , and define KT(x) to be KTU (x).252
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Figure 1 Diagram showing the classes NISZK, co-NISZK, and SZK. The shaded oval represents
NP. Every problem in co-NISZK is ≤P/poly

m -reducible to MKTP.

To understand the motivation for this definition, see [4]. Briefly: KT is a version of time-253

bounded Kolmogorov complexity that (in contrast to other notions of resource-bounded254

Kolmogorov complexity that have been considered) is polynomially-related to circuit com-255

plexity. The minimum KT problem, henceforth MKTP, is defined below.256

I Definition 5 (MKTP). Suppose y ∈ {0, 1}n and θ ∈ N \ {0}, then

MKTP = {(y, θ) | KT(y) ≤ θ}.

In this paper when we view MKTP as a promise problem, yes-instances will be considered257

those that are in the language, and no-instances those that are not in the language.258

3.3 Discrete Probability and Entropy259

I Definition 6. Discrete Random Variables and Distributions260

A random variable R : S → T is a function where S is a finite set with a probability261

distribution on its elements. We will refer to S as the sample space. R with a uniform262

distribution on S will induce a distribution p on T .263

The support of a distribution X, denoted Supp(X), is the set of elements in the distribu-264

tion with positive probability. Alternatively, the support of a random variable R can be265

understood as the set Im(R).266

In an abuse of notation, often given a distribution X, we will refer to X as both the267

random variable that induces the distribution, and the distribution itself.268

Given a distribution X, we will use the notation Xk to denote the k−fold direct product269

of X. Alternatively, this can be understood as the concatenation of k independent copies270

of X.271

CVIT 2016
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Given a function f : {0, 1}m → {0, 1}n we write Um to denote the uniform distribution272

on m bits, and f(Um) for the output distribution of f when evaluated on a uniformly273

chosen element of {0, 1}m. Throughout this paper, our random variables, and in turn the274

distributions they induce, will be of the form C(Um), where C is a multi-output Boolean275

circuit C : {0, 1}m → {0, 1}n.276

The entropy of a distribution can be understood informally as measuring how much277

“randomness” is present in the distribution.278

I Definition 7. Suppose X is a distribution. The Shannon entropy of X (denoted H(X)) is279

the expected value of log(1/Pr[X = x]).280

4 MKTP is Hard For NISZK281

In this section, we prove our first hardness result for MKTP; MKTP is hard for co-NISZK282

under ≤P/poly
m reductions. In order to prove hardness, it suffices to provide a reduction from283

the entropy approximation problem: EA, which is known to be complete for NISZK under284

≤P
m reductions [18].285

I Definition 8 (Promise-EA). Let a circuit C : {0, 1}m → {0, 1}n represent a probability
distribution X on {0, 1}n induced by the uniform distribution on {0, 1}m. We define Promise-
EA to be the promise problem

EAYES = {(C, k) | H(X) > k + 1}
EANO = {(C, k) | H(X) < k − 1}

where H(X) denotes the entropy of X.286

We will make use of some machinery that was developed in [7], in order to relate the287

entropy of a distribution to the KT complexity of samples taken from the distribution.288

However, these tools are only useful when applied to distributions that are sufficiently “flat”.289

The next subsection provides the necessary tools to “flatten” a distribution.290

4.1 Flat Distributions291

A distribution is considered flat if it is uniform on its support. Goldreich et al. [18] formalized292

a relaxed notion of flatness, termed ∆-flatness, which relies on the concept of ∆-typical293

elements. The definitions of both concepts follow:294

I Definition 9 (∆-typical elements). Suppose X is a distribution with element x in its support.295

We say that x is ∆-typical if296

2−∆ · 2−H(X) < Pr[X = x] < 2∆ · 2−H(X).297

I Definition 10 (∆-flatness). Suppose X is a distribution. We say that X is ∆-flat if for298

every w > 0 the probability that an element of the support, x, is w · ∆-typical is at least299

1− 2−w2+1.300

I Lemma 11 (Flattening Lemma). [18] Suppose X is a distribution such that for all x in301

its support Pr[X = x] ≥ 2−m. Then Xk is (
√
k ·m)-flat.302

Observe that if X is a distribution represented by a circuit C : {0, 1}m → {0, 1}n, then the303

hypothesis of the Flattening Lemma holds for m. Note also that, for any distribution X,304

H(Xk) = k ·H(X). Thus the entropy of the distribution Xk grows linearly with respect to305

k, while the deviation from flatness diminishes much more rapidly with respect to k.306
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4.2 Encoding and Blocking307

The Encoding Lemma is the primary tool that was developed in [7] to give short descriptions308

of samples from a given distribution. Below, we give a precise statement of the version309

of the Encoding Lemma that is stated informally as Remark 4.3 of [7]. (Although the310

statement there is informal, the proof of the Encoding Lemma that is given there does yield311

our Lemma 13.) First, we need to define Λ-encodings.312

IDefinition 12 (Λ-encodings). Let R : S → T be a random variable that induces a distribution313

X. The Λ-heavy elements of T are those elements λ such that Pr[X = λ] > 1/2Λ. A Λ-314

encoding of R is given by a mapping D : [N ] → S such that for every Λ-heavy element315

λ, there exists i ∈ [N ] such that R(D(i)) = λ. We refer to dlog(N)e as the length of the316

encoding. The function D is also called the decoder for the encoding.317

I Lemma 13 (Encoding Lemma). [7, Lemma 4.1] Consider an ensemble {Rx} of random318

variables that sample distributions on strings of some length poly1(|x|), where there are319

circuits Cx of size poly2(|x|) representing each Rx. Then there is a polynomial poly3 such320

that, for every integer Λ, each Rx has a Λ-encoding of length Λ + log(Λ) + O(1) that is321

decodable by circuits of size poly3(|x|).322

By itself, the Encoding Lemma says nothing about KT complexity. The other important323

ingredient in the toolbox developed in [7] is the Blocking Lemma, which refers to the process324

of chopping a string into blocks. Let y be a string of length tn, which we think of as being the325

concatenation of t samples yi of a distribution X on strings of length n. Thus y = y1 . . . yt.326

Let r = dt/be. Equivalently, we consider y to be equal to z1 . . . zr where each zi is a string of327

length bn sampled according to Xb. (In the case when |y| is not a multiple of b, zr is shorter;328

this does not affect the analysis. We call the strings zi the blocks of y.)329

I Lemma 14 (Blocking Lemma). [7, Lemma 3.3] Let {Tx} be an ensemble of sets of strings330

such that all strings in Tx have the same length poly(|x|). Suppose that for each x ∈ {0, 1}∗331

and for each b ∈ N there is an integer Λb and a random variable Rx,b whose image contains332

(Tx)b, and such that Rx,b is computable by a circuit of size poly(|x|, b) and has a Λb-encoding333

of length s′(x, b) decodable by a circuit of size poly(|x|, b). Then there are constants c1 and334

c2 so that, for every constant α > 0, every t ∈ N, every sufficiently large x, and every335

dtαe-suitable y ∈ (Tx)t,336

KT(y) ≤ t1−α · s′(x, dtαe) + tα·c1 · |x|c2 .337

Here, we say that y ∈ (Tx)t is b-suitable if each block of y (of length bn) is Λb-heavy.338

With the Encoding and Blocking Lemmas in hand, we can now show how to give upper339

and lower bounds on the KT complexity of concatenated samples from a distribution. The340

following lemma gives the upper bound.341

I Lemma 15. Suppose X is a distribution sampled by a circuit Cx : {0, 1}m → {0, 1}n of342

size polynomial in |x|. For every polynomial w = w(|x|) with |x| ≤ w, there exist constants343

c0, c2, and α0 such that for every sufficiently large polynomial t and for all large x, if y is344

the concatenation of t samples from X, then with probability at least (1− 1/22|x|),345

KT(y) ≤ tH(X) + wm(t1−α0/2) + t1−α0 |x|c0+c2346

Proof. Pick c0 so that |x|c0 > m + wm + |x|, and observe that for all large x we have347

|x|c0 > H(X) + wm+O(log(|x|)). Let t = t(|x|) be any polynomial. Let b ∈ N with b < t,348
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and let Λb = bH(X) +wm
√
b. Then, by the Encoding Lemma Xb = ⊗bX has a Λb-encoding349

of length Λb + log(Λb) +O(1) that is decodable by circuits of size poly(b|x|). Let r = dt/be.350

Recall that y = y1 . . . yt where each yi is a string of length n sampled according to the351

distribution X. Equivalently, we can consider y to be equal to z1 . . . zr where each zi is352

a string of length bn sampled according to Xb; the strings zi are the blocks of y. By the353

Flattening Lemma, the probability that any given zb is not Λb-heavy is at most 2−w2+1.354

Thus, by the union bound, the probability that y is not b-suitable (i.e., the probability that355

there is at least one block that is not Λb-heavy) is at most r · 2−w2+1 < t · 2−w2 . Since356

w ≥ |x| and t is polynomial in |x|, it follows that for all large x, with probability at least357

(1− 1/22|x|), each of the r blocks is Λb-heavy and hence, by the Encoding Lemma, each block358

has an encoding of length s′(n, b) = Λb + log(Λb) +O(1). Thus, by the Blocking Lemma, for359

certain constants c1 and c2 (which do not depend on t), for any constant α > 0 (for all large360

enough y),361

KT(y) ≤ t1−α · s′(x, dtαe) + tα·c1 · |x|c2362

= t1−α · (Λdtαe + log(Λdtαe) +O(1)) + tα·c1 · |x|c2363

= t1−α · (dtαeH(X) + wm
√
dtαe+ log(Λdtαe) +O(1)) + tα·c1 · |x|c2364

≤ t1−α · (tαH(X) + |x|c0 + wm
√
tα) + tα·c1 · |x|c2365

366
367

Recall that the inequality above holds for all α > 0. If we now pick α0 ≤ 1/(1 + c1), we
obtain the claimed inequality

KT(y) ≤ tH(x) + wmt1−α0/2 + t1−α0(|x|c0+c2).

J368

We now turn to a lower bound on KT(y).369

I Lemma 16. Let poly(|x|) denote some fixed polynomial in |x| (where ∀n poly(n) ≥ 1),370

and let α0 be such that 0 < α0 < 1/2. For all large x, if X is a distribution sampled by a371

circuit Cx : {0, 1}m → {0, 1}n of polynomial size, then it holds that for every w and every372

t > w4, if y is sampled from Xt, then with probability at least 1− 2−w2 ,373

KT(y) ≥ tH(X)− wm
√
t− t1−α0poly(|x|)374

Proof. Consider the distribution Xt = ⊗tX and sample y from it. Recall that H(Xt) =375

tH(x). By the Flattening Lemma, Xt is
√
t ·m-flat. Therefore, the probability that y is376

wm
√
t-typical is at least 1− 2−w2+1. We would like to bound the probability that KT(y) <377

tH(X)− wm
√
t− t1−α0 · poly(|x|). To bound this probability, note that Pr[KT(y) < k] is378

equal to379

Pr[KT(y) < k ∧ y is typical] + Pr[KT(y) < k ∧ y is atypical]380

≤ Pr[KT(y) < k ∧ y is typical] + Pr[y is atypical]381
382

where we are interested in k = tH(x)− wm
√
t− t1−α0 · poly(|x|) and “y is typical” means383

“y is wm
√
t-typical.” We have already observed above that the second term is bounded by384
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2−w2+1. For the first term, we have385

Pr[KT(y) < k ∧ y is typical] =
∑

{y:KT(y)<k∧y is typical}

Pr[Xt = y]386

≤
∑

{y:KT(y)<k∧y is typical}

2wm
√
t · 2−H(Xt)

387

≤ 2k · 2wm
√
t · 2−H(Xt)

388

= 2tH(x)−wm
√
t−t1−α0 ·poly(|x|) · 2wm

√
t · 2−tH(X)

389

= 2−t
1−α0 ·poly(|x|)

390

391
392

where the first inequality follows from the definition of typicality, and the second inequality393

follows since there are only
∑k−1
i=0 2i < 2k descriptions of strings with complexity less than k.394

Summarizing, we conclude that the probability that KT(y) < tH(x)− wm
√
t− t1−α0 ·395

poly(|x|) is at most396

2−t
1−α0 ·poly(|x|) + 2−w

2+1.397

To show that the above probability is less than 1/2w2 is equivalent to showing that398

2−t
1−α0 ·poly(|x|) < 2−w

2+1.399

Thus we must show that w2 − 1 < t1−α0 · poly(|x|). This holds, since400

w2 − 1 < w2
401

< (t1/4)2
402

=
√
t403

≤ t1−α0404

≤ t1−α0 · poly(|x|).405
406

J407

4.3 Reducing co-NISZK to MKTP408

I Theorem 17. MKTP is hard for co-NISZK under P/poly many-one reductions.409

Proof. We prove the claim by reduction from the NISZK-complete problem EA. Let410

x = (Cx, k) be an arbitrary instance of Promise-EA, where Cx : {0, 1}m → {0, 1}n is a circuit411

that represents distribution X. Let w = 2|x|, and let α0, c0, and c2 be the constants from412

Lemma 15. Let λ = wmt1−α0/2. Pick the polynomial t so that t(|x|) > 2(λ+ t1−α0 |x|c0+c2)413

and w4 < t (and note that all large polynomials have this property). Construct y as t samples414

from X. Let θ = tk + λ+ t1−α0 |x|c0+c2 . We claim that, with probability at least 1− 1
22|x| , if415

(X, k) ∈ EAYES, then (y, θ) ∈ MKTPNO and if (X, k) ∈ EANO, then (y, θ) ∈ MKTPYES.416

417

If (X, k) ∈ EANO, then H(X) < k. Then by Lemma 15, we have that, with high418

probability,419

KT(y) ≤ tH(X) + λ+ t1−α0 |x|c0+c2420

< tk + λ+ t1−α0 |x|c0+c2421

= θ422
423
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thus KT(y) ≤ θ, and thus (y, θ) ∈ MKTPYES.424

If (X, k) ∈ EAYES, then H(X) > k + 1. Then by Lemma 16, with probability at least425

1− 2−w2
> 1− 22|x|, we have that426

KT(y) ≥ tH(X)− wm
√
t− t1−α0 |x|c0+c2 ,427

> tH(X)− λ− t1−α0 |x|c0+c2 (since α0 < 1/2)428

> t(k + 1)− λ− t1−α0 |x|c0+c2429

> tk + λ+ t1−α0 |x|c0+c2 (since t > 2(λ+ t1−α0 |x|c0+c2))430

= θ431
432

thus KT(y) > θ, and thus (y, θ) ∈ MKTPNO.433

We have shown that there is a polynomial-time-computable function f , such that, if434

x ∈ EAYES, then with high probability (for random r) f(x, r) = (y, θ) is in MKTPNO, and435

if x ∈ EANO, then with high probability f(x, r) = (y, θ) is in MKTPYES. By a standard436

counting argument (similar to the proof that BPP ⊆ P/poly), since the probability of success437

for either bound is greater than (1−1/22n), we can fix a sequence of random bits to hardwire438

in to this reduction and obtain a family of circuits computing a ≤P/poly
m reduction from any439

problem in NISZK to MKTP. J440

I Corollary 18. MKTP is hard for NISZK under BPP reductions that make at most one441

query along any path of the BPP machine.442

Proof. This follows from the proof of Theorem 17. Namely, on input x = (Cx, k), construct443

the string y consisting of t random samples from Cx and query the oracle on (y, θ). On444

Yes-instances, y will have KT complexity greater than θ (with high probability), and on445

No-instances, y will have KT complexity less than θ (with high probability). J446

I Corollary 19. MKTP is hard for SZK under non-adaptive BPP-Turing reductions.447

Proof. Recall from [18] that SZK reduces to Promise-EA via non-adaptive (deterministic)448

reductions. The result is now immediate, from Corollary 18. J449

5 A Complete Problem for NISZKL450

Having established a hardness result for MKTP under ≤P/poly
m reductions, we now establish451

an analogous hardness result under the much more restrictive ≤proj
m reductions. For this, we452

first need to present a complete problem for NISZKL.453

Recall that the NISZK-complete problem EA deals with the question of approximating454

the entropy of a distribution represented by a circuit. In order to talk about NISZKL, we455

shall need to consider probability distributions that are represented using restricted class of456

circuits. In particular, we shall focus on a problem that we denote EANC0 .457

I Definition 20 (Promise-EANC0). Promise-EANC0 is the promise problem obtained from458

Promise-EA, by considering only instances (C, k) such that C is a circuit of fan-in two gates,459

where no output gate depends on more than four input gates.460

It is not surprising that EANC0 is complete for NISZKL. The completeness proof that we461

present owes much to the proof presented by Dvir et al. [15] (showing that an NC0-variant of462

the SZK-complete problem EntropyDifference is complete for SZKL) and to the proof463

presented by Goldreich et al. [18] showing that EA is complete for NISZK. We will need to464
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make use of various detailed aspects of the constructions presented in this prior work, and465

thus we will present the full details here.466

First, we show membership in NISZKL.467

5.1 Membership in NISZKL468

I Theorem 21. Promise-EANC0 ∈ NISZKL469

Proof. In order to show membership, we must show the existence of a non-interactive proof470

system where the verifier and simulator are both in logspace. To do this, we adapt the471

protocol that is used in [18] to show that EA is in NISZK. Their protocol works by first472

transforming an instance (C, k) of EA, of length s, (where C represents a distribution X)473

into a representation of a distribution Z on ` bits. The transformation consists of four steps:474

1. Take poly(s) samples from X and concatenate them. Call this distribution X ′ and let475

CX′ be the circuit representing X ′.476

2. Hash the output of X ′ with a hash function h chosen at random from a 2-universal family477

of hash functions. (The parameters of the hash function depend on the value k of the EA478

instance.) Let this distribution be Y , represented by CY .479

3. Take poly(s) copies of Y and concatenate their output. Call this distribution Y ′, repre-480

sented by CY ′ .481

4. Hash a sample of Y ′ with a hash function h′ chosen at random from a 2-universal family482

of hash functions. Let this distribution be Z, represented by CZ .483

Section 2 and Appendix C of [18] give a careful proof of the fact that, with Z defined as484

above from the EA instance (C, k), a NISZK protocol for EA is given by:485

1. With reference string σ, the prover selects a string r uniformly at random from the set486

{r′ : Z(r′) = σ}.487

2. The verifier accepts if CZ(r) = σ and rejects otherwise.488

They also show that the following simulator satisfies the required zero-knowledge proper-489

ties:490

1. Select an input r to Z uniformly at random and let σ = CZ(r).491

2. return (σ, r).492

It suffices for us to show that, if (C, k) is an instance of EANC0 , then the tasks of the493

verifier and the simulator in the protocol above can be implemented in logspace.494

First, we observe that, given (C, k), a branching program PZ realizing the distribution495

Z can be constructed in logspace. Indeed, it is trivial to construct a branching program496

PX that realizes X (since each output bit of the NC0 circuit Z has an easy-to-compute497

branching program of constant size). Then a branching program PX′ realizing X ′ consists498

of several copies of PX concatenated together (where each copy uses independent random499

input bits). The hash functions h considered in [18] are represented by Boolean matrices500

Mh, where computing h(w) is simply multiplying Mh by the vector w. Since Boolean matrix501

multiplication is easy to compute in NC1 ⊆ L, and since the composition of two logspace-502

computable functions is also logspace-computable, it is easy to build a branching program PY503

representing the distribution Y (That is, given a branching program for computing Mh · w,504

for any node v that queries a bit of w, replace the pair of edges leaving v by a branching505

program that computes that bit of w (as a sample from X ′).) In the same way, branching506

programs for Y ′ and Z are easy to construct, given PY .507

CVIT 2016



23:14 Cryptographic Hardness under Projections for Time-Bounded Kolmogorov Complexity

Hence a logspace verifier, with access to r, σ, and an EANC0 instance (C, k), can construct508

the branching program PZ and compute PZ(r) and check if the output is equal to σ. It509

is equally easy to see that the simulator can be implemented in logspace. This establishes510

membership in NISZKL. J511

The following corollary is a direct analog to [18, Proposition 1].512

I Corollary 22. If Π is any promise problem that is ≤L
m reducible to EANC0 , then Π ∈ NISZKL.513

We close this section by presenting an example of a well-studied natural problem in514

NISZKL. (A graph is said to be rigid if it has no nontrivial automorphism.)515

I Corollary 23. The Non-Isomorphism Problem for Rigid Graphs lies in NISZKL516

Proof. First note that the proof of Theorem 21 carries over to show that a problem that517

we may call EABP (defined just as EANC0 but where the distribution is represented as a518

branching program instead of as an NC0 circuit) also lies in NISZKL. Now observe that519

the reduction given in Section 3.1 of [7] shows how to take as input two rigid graphs on n520

vertices (G0, G1) and build a branching program that takes as input a bitstring w of length t521

and t permutations π1, . . . , πt and output the sequence of t permuted graphs πi(Gwi). It is522

observed in [7] that this distribution has entropy t(1+log n!) if the graphs are non-isomorphic,523

and has entropy at most t log n! otherwise. J524

5.2 Hardness for NISZKL525

In order to re-use the tools developed in [18], we will follow the structure of the proof526

given there, showing that EA is hard for NISZK. Namely, we introduce the problem SDU527

(Statistical Distance from Uniform) and its NC0 variant, and prove hardness for528

SDUNC0 .529

I Definition 24 (SDU and SDUNC0). Consider Boolean circuits CX : {0, 1}m → {0, 1}n
representing distributions X. The promise problem

SDU = (SDUYES, SDUNO)

is given by530

SDUYES
def= {CX : ∆(X,Un) < 1/n}531

SDUNO
def= {CX : ∆(X,Un) > 1− 1/n}532

where ∆(X,Y ) = Σα|Pr[X = α]− Pr[Y = α]|/2.533

SDUNC0 is the analogous problem, where the distributions X are represented by NC0
534

circuits where no output bit depends on more than four input bits.535

It is shown in [18, Lemma 4.1] that CX is in SDU if and only if (CX , n− 3) is in EA. This536

yields the following corollary:537

I Corollary 25. SDUNC0 ≤proj
m EANC0 .538

Proof. This is trivial if we assume an encoding of SDUNC0 instances, such that the NC0
539

circuits CX : {0, 1}m 7→ {0, 1}n are encoded by strings of length given by the standard540

pairing function m2+3m+2mn+n+n2

2 , so that the length of an instance of SDUNC0 completely541

determines n. (An NC0 circuit with m inputs and n outputs has a description of size542

O(n logm), and thus it is easy to devise a padded encoding of this much larger length.)543
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Thus, in the projection circuit computing the reduction CX 7→ (CX , n− 3), the output bits544

encoding n−3 are hardwired to constants, and the input bits encoding CX are copied directly545

to the output. J546

I Theorem 26. Promise-EANC0 and Promise-SDUNC0 are hard for NISZKL under ≤proj
m547

reductions.548

Proof. By Corollary 25, it suffices to show hardness for SDUNC0 . In order to establish549

hardness, we need to develop the machinery of perfect randomized encodings, which were550

developed by Applebaum et al. [12] and then were applied in the setting of SZKL by Dvir et551

al. [15].552

5.2.1 Perfect Randomized Encodings553

I Definition 27. Let f : {0, 1}n → {0, 1}` be a function. We say that f̂ : {0, 1}n×{0, 1}m →554

{0, 1}s is a perfect randomized encoding of f with blowup b if it is:555

Input independent: for every x, x′ ∈ {0, 1}n such that f(x) = f(x′), the random556

variables f̂(x, Um) and f̂(x′, Um) are identically distributed.557

Output Disjoint: for every x, x′ ∈ {0, 1}n such that f(x) 6= f(x′), Supp(f̂(x, Um)) ∩558

Supp(f̂(x′, Um)) = Ø.559

Uniform: for every x ∈ {0, 1}n the random variable f̂(x, Um) is uniform over Supp(f̂(x, Um)).560

Balanced: for every x, x′ ∈ {0, 1}n |Supp(f̂(x, Um))| = |Supp(f̂(x′, Um))| = b561

The following property of perfect randomized encodings is established in [15].562

I Lemma 28 (entropy). Let f : {0, 1}n → {0, 1}` be a function and let f̂ : {0, 1}n ×563

{0, 1}m → {0, 1}s be a perfect randomized encoding of f with blowup b. Then H(f̂(Un, Um)) =564

H(f(Un)) + log b565

The following two properties are given in Applebaum et al. [12].566

I Lemma 29 (concatenation). For i = 1, . . . , ` let fi : {0, 1}n → {0, 1} be the Boolean function567

computing the i−th bit of f : {0, 1}n → {0, 1}`. If f̂i : {0, 1}n×{0, 1}mi → {0, 1}si is a perfect568

randomized encoding of fi, then the function f̂ : {0, 1}n × {0, 1}m1+...,m` → {0, 1}s1+...+s`569

defined by f̂(x, (r1, . . . , r`))
def= (f̂1(x, r1), . . . , f̂`(x, r`)) is a perfect randomized encoding of570

f .571

I Lemma 30 (composition). Let g(x, rg) be a perfect randomized encoding of f(x) and572

let h((x, rg), rh) be a perfect randomized encoding of g(x, rg) (viewed as a single argument573

function). Then, the function f̂(x, (rg, rh)) def= h((x, rg), rh) is a perfect randomized encoding574

of f .575

5.2.2 Constructing an NC0 perfect randomized encoding576

The first step in showing completeness of EANC0 is to use the following construction of perfect577

randomized encodings of functions computed by branching programs, from [12].578

I Definition 31. Let Q be a branching program of size ` computing a Boolean function579

f : {0, 1}n → {0, 1}. Fix some topological ordering of the vertices of Q where the source580

vertex is labelled 1 and the terminal vertex is labelled `. Let A(x) be the ` × ` adjacency581

matrix of Gx where entry (i, j) is a degree-1 polynomial qi,j ∈ {xk, (1− xk), 1, 0}, such that582

the transition from node i to node j queries variable xk and proceeds if qi,j(xk) = 1. Define583

L(x) as the submatrix of A(x)− I obtained by deleting the first column and last row.584
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
∗ ∗ ∗ ∗ ∗
−1 ∗ ∗ ∗ ∗
0 −1 ∗ ∗ ∗
0 0 −1 ∗ ∗
0 0 0 −1 ∗

585

Let r(1), and r(2) be vectors over GF(2) of length
(
`−1

2
)
and `− 2 respectively. Let R1(r(1))586

be an `× ` matrix with 1’s on the main diagonal, 0’s below it and the elements of r(1) in the587

remaining
(
`−1

2
)
entries above the main diagonal. Let R2(r(2)) be an `× ` matrix with 1’s on588

the main diagonal, 0’s below it, and the elements of r(2) in the last column.589 
1 r

(1)
1 r

(1)
2 · r

(1)
`−1

0 1 · · ·
0 0 1 · ·
0 0 0 1 r

(1)
(`−1

2 )
0 0 0 0 1




1 0 0 0 r

(2)
1

0 1 0 0 ·
0 0 1 0 ·
0 0 0 1 r

(2)
`−2

0 0 0 0 1

590

The following lemma appears as [12, Lemma 4.15].591

I Lemma 32. Let Q be a branching program of size ` computing a Boolean function f :
{0, 1}n → {0, 1}. Let the function f̂(x, (r(1), r(2))) produce as output the

(
`
2
)
entries on or

above the main diagonal of the matrix

R1(r(1))L(x)R2(r(2)).

Then f̂ is a perfect randomized encoding of f .592

I Lemma 33. There is a function computable in AC0 (in fact, it can be a projection) that593

takes as input a branching program Q of size ` computing a function f : {0, 1}n → {0, 1},594

and produces as output a list (q1, . . . , q(`2)) of degree-three polynomials over GF(2), where595

qi(x, (r(1), r(2))) produces the i-th output bit of f̂(x, (r(1), r(2))). The blowup of the encoding596

f̂ is 2(`2)−1.597

Proof. The claim regarding blowup follows from inspection of f̂ in Definition 31. Constructing598

the three matrices L(x), R1 and R2 can clearly be done in AC0, given any reasonable encoding599

of the branching program Q. Their product cannot be computed in AC0 (since this involves600

computing PARITY), but it is easy to compute an encoding of the expression for entry (i,m)601

of the product, which is given by the degree-three polynomial
∑
j,k R1 (i,k)L(k,j)R2 (j,m). To602

see that this can be a projection, note that the entries of the matrices R1 and R2 are entirely603

determined by the size ` (and thus they depend only on the length of the encoding of the604

branching program). The entries of L(x) are essentially the entries of the adjacency matrix605

encoding the branching program Q, and thus they can be copied directly via a projection.606

Then, given the encodings of the matrices, the encodings of the terms of each polynomial607

qi are simply copied from the encodings of the matrices, and thus this can be done via a608

projection also. J609

Note that each polynomial qi in the statement of the preceding lemma is most conveniently610

expressed as a sum of terms. We now show how to replace each qi with NC0 circuitry, using611

the following lemma from [12, Lemma 4.17].612
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I Lemma 34. Let f(x) = T1(x) + . . .+ Tk(x) where f, T1, . . . , Tk : GF(2)n → GF(2), and613

summation is over GF(2), and each term Ti has degree at most 3. Let the local encoding f̂ :614

GF(2)n+(2k−1) → GF(2)2k be such that f̂(x, (r1, . . . , rk, r
′
1, . . . , r

′
k−1)) is equal to615

(T1(x)− r1, T2(x)− r2, . . . , Tk(x)− rk,
r1 − r′1, r′1 + r2 − r′2, . . . , r′k−2 + rk−1 − r′k−1, r

′
k−1 + rk)616

Then f̂ is a perfect randomized encoding of f where each bit of the output depends on at most617

4 bits of (x, (r1, . . . , rk, r
′
1, . . . , r

′
k−1)).618

I Lemma 35. There is a function computable in AC0 (in fact, it can be a projection) that619

takes as input a branching program Q of size ` computing a function f : {0, 1}n → {0, 1},620

and produces as output a list pi of NC0 circuits, where pi computes the i-th bit of a function621

f̂ that is a perfect randomized encoding of f that has blowup 2((`2)−1)(2(`−1)2−1). Each pi622

depends on at most four input bits from (x, r) (where r is the sequence of random bits in the623

randomized encoding).624

Proof. This follows immediately by applying the construction of Lemma 34 to the degree-625

three polynomials for each entry in the product matrix given by AC0-computable function626

given by Lemma 33. Each of those polynomials has (`− 1)2 terms, and it is apparent from627

Lemma 34 that each such entry gives rise to 2(`− 1)2− 1 new random bits in the randomized628

encoding. The assertion regarding blowup now follows from inspection of the construction.629

The assertions regarding the bits upon which each pi depends follows from inspection. The630

construction of Lemma 34 can clearly be accomplished via a projection, and composing that631

projection with the projection from Lemma 33 again yields a projection. J632

5.2.3 SDUNC0 is Complete for NISZKL633

We now have all of the tools required to complete the proof of Theorem 26.634

Let
∏

be an arbitrary promise problem in NISZKL with proof system (P, V ) and simulator635

S and let x be an instance of
∏
. Recall that the job of the simulator S is to take a string x636

and some uniformly-generated random bits as input, and produce as output a transcript of637

the form (σ, p), such that the probability that any transcript (σ, p) is output by S is very close638

to the probability that, on input x with shared randomness σ, the prover P sends message639

p to the verifier V . Let Mx(s) denote a routine that simulates S(x) with randomness s to640

obtain a transcript (σ, p); if V (x, σ, p) accepts, then Mx(s) outputs σ, otherwise it outputs641

0|σ|. (We can assume without loss of generality that |σ| = |x|k, for some k.) It is shown642

in [18, Lemma 4.2] that the map x 7→Mx is a reduction of Π to SDU:643

B Claim 36. If x ∈
∏

YES, then ∆(Mx, U|x|k)) < 1/|x|k, and x ∈
∏

NO implies ∆(Mx, U|x|k)) >644

1− 1/|x|k.645

The proof of the preceding claim in [18, Lemma 4.2] actually shows a stronger result. It646

shows that, if the statistical difference between the output distribution of the simulator and647

the distribution of true transcripts is at most 1/e(n), then the statistical difference of Mx648

and the uniform distribution is at most 1/e(n) + 2−n on inputs of length n. Thus, using649

Definition 1 (which is equivalent to the definition of NISZK given in [18]), the simulator650

produces a distribution that differs from the uniform distribution by only 1/nω(1). Thus we651

have the following claim:652

B Claim 37. Let c ∈ N. Then for all large x, if x ∈
∏

YES, then ∆(Mx, U|x|k)) < 1/|x|kc,653

and x ∈
∏

NO implies ∆(Mx, U|x|k)) > 1− 1/|x|kc.654

CVIT 2016



23:18 Cryptographic Hardness under Projections for Time-Bounded Kolmogorov Complexity

Furthermore, it is also shown in [18, Lemma 3.1] that EA has a NISZK protocol in which655

the completeness error, soundness error, and simulator deviation are all at most 2−m on656

inputs of length m. Furthermore, that proof carries over to show that EABP ∈ NISZKL with657

these same parameters. Thus we obtain the following fact, which we will use later in Section 7.658

659

B Claim 38. Let c ∈ N. Then for all large x, if x is a Yes-instance of EABP, then660

∆(Mx, U|x|k)) < 1/2|x|−1, and if x is a No-instance of EABP, then ∆(Mx, U|x|k)) > 1−1/2|x|−1.661

Since S runs in logspace, each bit of Mx(s) can be simulated with a branching program662

Qx. Furthermore, it is straightforward to see that there is an AC0-computable function that663

takes x as input and produces an encoding of Qx as output, and it can even be seen that664

this function can be a projection. (To see this, note that in the standard construction of a665

Turing machine from a logspace-bounded Turing machine S (with input (x, s)) each node666

of the branching program has a name that encodes a configuration of the machine, a time667

step, and the position of the input head. This branching program can be constructed in AC0,668

given only the length of x. In order to construct Qx, it suffices merely to hardwire in the669

transitions from any node that is “scanning” some bit position xi. That is, if the transition670

out of node v goes to node v0 if xi = 0 and to node v1 if xi = 1, then in the adjacency matrix671

for Qx, entry (v, v1) = xi and entry (v, v0) is ¬xi. This is clearly a projection.)672

Now apply the projection of Lemma 35 to (each output bit of) the branching program673

Qx of size `, to obtain an NC0 circuit Cx computing a perfect randomized encoding with674

blowup b = 2|x|
k((`2)−1)(2(`−1)2−1). (Cx has log b+ |x|k output bits.)675

Now consider |H(Cx)−H(Ulog b+|x|k)|. By Lemma 28 this is equal to |H(Qx) + log b−676

H(Ulog b+|x|k)|. Since H(Qx) = H(Mx) and H(Ulog b+|x|k) = log b+H(U|x|k), we have that677

|H(Cx)−H(Ulog b+|x|k)| = |H(Mx)−H(U|xk|)|. The proof of Theorem 26 is now complete,678

by appeal to Claim 37. J679

6 Hardness of MKTP under Projections680

I Theorem 39. MKTP is hard for co-NISZKL under nonuniform ≤AC0

m reductions.681

Proof. We build on the proof of Theorem 17, and present a reduction from the NISZKL-682

complete problem EANC0 . Let x = (Cx, k) be an arbitrary instance of Promise-EANC0 , where683

Cx : {0, 1}m → {0, 1}n is an NC0 circuit that represents distribution X. Let |x| < w < 4
√
t,684

and let α0, c0, and c2 be the constants from Lemma 15. Let λ = wmt1−α0/2 and construct y685

as t samples from X. Let θ = tk + λ+ t1−α0 |x|c0+c2 .686

As in the proof of Theorem 17, we have that, with probability at least 1− 1
22|x| , if (X, k)687

is a Yes-instance of EANC0 , then (y, θ) ∈ MKTPNO and if (X, k) is a No-instance of EANC0 ,688

then (y, θ) ∈ MKTPYES.689

Thus we have shown that there is a uniform AC0-computable function f , such that, if690

x ∈ EAYES, then with high probability (for random r) f(x, r) = (y, θ) is in MKTPNO, and691

if x ∈ EANO, then with high probability f(x, r) = (y, θ) is in MKTPYES. (Namely, the AC0
692

function takes x = (Cx, k) and r as input, computes θ from k and |x|, and computes y by693

feeding t segments of r into the NC0 circuit Cx.)694

As in the proof of Theorem 17, we can fix a sequence of random bits to hardwire in to695

this reduction and obtain a (nonuniform) ≤AC0

m reduction from EANC0 to MKTP. J696

An immediate corollary (making use of the “Gap Theorem” of [1]) is that MKTP is hard697

for co-NISZKL under ≤NC0

m reductions. Below, we improve this, showing hardness under698

projections.699
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I Corollary 40. MKTP is hard for co-NISZKL under nonuniform ≤NC0

m reductions.700

Proof. Corollary 22, combined with the NISZKL-completeness of EANC0 , implies that co-NISZKL701

is closed under ≤L
m reductions. It is shown in the “Gap Theorem” of [1] that, for any class C702

closed under ≤L
m reductions, any set that is hard for C under ≤AC0

m reductions is also hard703

under ≤NC0

m reductions. Thus from Theorem 39, we have that MKTP is hard for co-NISZKL704

under ≤NC0

m reductions. J705

I Corollary 41. MKTP is hard for co-NISZKL under nonuniform ≤proj
m reductions.706

Proof. We now need to claim that the AC0-computable reduction of Theorem 39 can be707

replaced by a projection. Note that, since SDUNC0 is complete for NISZKL under projections,708

and since the reduction from SDUNC0 to EANC0 given in Corollary 25 always uses the same709

entropy bound n− 3, we have that it suffices to consider EANC0 instances x = (Cx, k) where710

the bound k depends only on the length of x. Thus the bound θ produced by our AC0
711

reduction also depends only on the length of x, and hence can be hardwired in.712

We now need only consider the string y. The ≤AC0

m reduction presented in the proof of713

Theorem 39 takes as input Cx and r and produces the bits of y by feeding bits of r into Cx.714

Let us recall where the NC0 circuitry producing the i-th bit of y comes from.715

Lemma 33 shows how to take an arbitrary branching program and encode the problem716

of whether the program accepts as a question about the entropy of a distribution repre-717

sented as a matrix of degree-three polynomials. Each term in this matrix is of the form718 ∑
j,k R1 (i,k)L(k,j)R2 (j,m), where the matrices R1 and R2 are the same for all inputs of the719

same length. Thus we need only concern ourselves with the matrix L.720

In Section 5.2.3, it is observed that, given an instance x of a promise problem in NISZKL,721

the branching program Qx that is used, in order to build the matrix L, can be constructed722

from x by means of a projection. The “input” to this branching program Qx is a sequence723

of random bits (part of the random sequence r that is hardwired in, in order to create the724

nonuniform AC0 reduction in the proof of Theorem 39). Thus, the only entries of the matrix725

L that depend on x are entries of the form (u, v) where u and v are configurations of a726

logspace machine, where the machine is scanning xi in configuration u, and it is possible727

to move to configuration v. Lemma 35 then shows how to construct NC0 circuitry for each728

term in the degree-three polynomial constructed from Qx in the proof of Lemma 33. The729

important thing to notice here is that each output bit in the NC0 circuit depends on at most730

one term of one of the degree-three polynomials, and hence it depends on at most one entry731

of the matrix L – which means that it depends on at most one bit of the string x.732

Thus, consider any bit yi of the string y produced by the nonuniform AC0 reduction from733

Theorem 39. Either yi does not depend on any bit of x, or it depends on exactly one bit xj of734

x. In the latter case, either yi = xj or yi = ¬xj . This defines the projection, as required. J735

The following corollary was pointed out to us by Rahul Santhanam.736

I Corollary 42. MKTP does not have THRESHOLD◦MAJORITY circuits of size 2no(1) .737

Proof. This is immediate from the lower bound on the Inner Product mod 2 function that738

is presented in [16]. (See also [11] for a slightly stronger lower bound.) J739

It should be noted that it remains unknown whether MCSP has THRESHOLD◦MAJORITY740

circuits of polynomial size.741
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7 An Application: Average-Case Complexity742

The efficient reductions that we have presented have some immediate applications regarding743

worst-case to average-case reductions. First, we recall the definition of errorless heuristics:744

I Definition 43. Let A be any language. An errorless heuristic for A is an algorithm (or745

oracle) H such that, for every x, H(x) ∈ {Yes, No, ?}, and746

H(x) = Yes implies x ∈ A.747

H(x) = No implies x 6∈ A.748

I Definition 44. A language A has no average-case errorless heuristics in C if, for every749

polynomial p, and every errorless heuristic H ∈ C for A, there exist infinitely many n such750

where Prx∈Un [H(x) =?] > 1− 1/p(n).751

In order to state our first theorem relating to average-case complexity, we need the752

following circuit-based definition:753

I Definition 45. Let C be any complexity class. (Usually, we will think of C being a class754

defined in terms of circuits, and the definition is thus phrased in terms of circuits, although it755

can be adapted for other complexity classes as well.) The class OR ◦ C is the class of problems756

that can be solved by a family of circuits whose output gate is an unbounded fan-in OR gate,757

connected to the outputs of circuits in the class C.758

If problems in NISZKL are hard in the worst case, then there are problems in NP that are759

hard on average:760

I Theorem 46. Let C be any complexity class that is closed under ≤proj
m reductions. If761

NISZKL 6⊆ OR ◦ C, then there is a set A in NP that has no average-case errorless heuristics762

in C.763

Proof. Consider the reduction from EANC0 to MKTP given in the proof of Corollary 41. This764

reduction takes as input a pair (C, n− 3) where C is an NC0 circuit that produces output765

of length n. The reduction produces as output a string of length tn where t = t(n) is a766

polynomial in n. The proof of Corollary 41 shows that, if (C, n − 3) is a No-instance (a767

low-entropy instance) of EANC0 , then concatenating t samples from C(r) (for independent768

uniformly random samples r) produces output that, with probability exponentially-close to769

1, has KT-complexity less than θ < (n− 2)t(n) for all large n. Let f be a function computed770

as follows: On input d of length m′, compute the smallest n such that m′ < (n − 2)t(n),771

and then simulate the universal Turing machine U on d for t(n)2 steps, and produce as772

output the first nt(n) bits of output that U(d) produces in this amount of time. Let773

A = {y : ∃d f(d) = y} be the range of f . Note that A contains all strings y of length nt(n)774

such that KT(y) ≤ (n− 2)t(n). Clearly, A ∈ NP. We will show that if A has an average-case775

errorless heuristic in C, then NISZKL ∈ OR ◦ C.2776

If A has an average-case errorless heuristic in C, then there is a family {Cm : m ∈ N} of777

C circuits (or other algorithms, if C is not a circuit family) with the property that, for all778

large n, for all strings x of length n, Cn(x) ∈ {Yes,No,?}, where779

Cn(x) = Yes implies x ∈ A.780

2 In fact, A can be taken to be any set in NP that contains all strings of KT complexity below a certain
threshold, while still containing only a small fraction of the strings of any length n.
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Cn(x) = No implies x 6∈ A.781

Prx[Cn(x) =?] < 1− 1
p1(n)782

for some polynomial p1.783

Since there are three possible outputs, there must be two output bits, which we can call a784

and b. The encoding of Yes, No and ? below is chosen in order to simplify the statement of785

our results. If a different encoding is chosen, then the form of the circuits for NISZKL might786

be slightly different.787

a b
1 0 Yes
0 1 No
0 0 ?
1 1 Illegal

788

Now consider the family {C ′m : m ∈ N}, where C ′m is just like Cm but has only output789

bit b.790

For any m = nt(n),791

Pr
x

[C ′m(x) = 1] = 1− Pr[Cm(x) = Yes]− Pr[Cm(x) =?]792

≥ 1− |A ∩ {0, 1}
m|

2m − (1− 1
p1(m) )793

≥ 1− 2(n−2)t(n)

2nt(n) − (1− 1
p1(m) )794

= 1
p1(nt(n)) −

1
22t(n))795

>
1

p2(n)796

797
798

for some polynomial p2.799

We now present efficient circuits for promise problems in NISZKL.800

Since the NISZKL-complete problem EANC0 is a special case of EABP, we know that EABP801

is also complete for NISZKL (say, under ≤L
m reductions). Thus it follows from Claim 38802

that, for any problem
∏
∈ NISZKL, and for any instance x ∈

∏
YES, the distribution Mx803

introduced in Section 5.2.3 can actually be assumed to have statistical difference at most804

1/2|x|ε from the uniform distribution, for some ε > 0. This in turn implies that the NC0
805

circuit Cx (which is constructed in the paragraphs right after Claim 38) also has statistical806

difference at most 1/2|x|ε from the uniform distribution (again, if x ∈
∏

YES). We highlight807

this fact, so that we can refer to it more easily later:808

B Claim 47. If x ∈
∏

YES, then the NC0 circuit Cx has statistical difference at most 1/2|x|ε809

from the uniform distribution.810

Now consider the circuit family {Dn0 : n0 ∈ N} that has the following form: The input is811

a string x of length n0. Recall that the NC0 circuit Cx from Section 5.2.3 takes “random”812

inputs r of length polynomial in |x| and produces output of length n which is also polynomial813

in |x|. Let {En : n ∈ N} be a circuit family that takes (x, r) as input and computes Cx(r).814

(The family En can in fact be chosen to be very efficient, but we do not need that; it will815

turn out later that En can be replaced by a single wire connected to a possibly-negated bit816

of x, or by a constant.) The “bottom layer” of Dn0 consists of n2
0p

2
2(n)t(n) copies of En,817
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using n2
0p

2
2(n)t(n) independent random strings r1, . . . , rn2

0p
2
2(n)t(n), and producing a string818

of length n2
0p

2
2(n)t(n)n, which is then fed into n2

0p
2
2(n) copies of C ′t(n)n. Finally, the output819

gate of each of the copies of C ′t(n)n is fed into an OR gate, which is the output gate of Dn0 .820

If x ∈
∏

NO then, as in the proof of Theorem 39, with probability (over the random821

inputs) exponentially close to 1, the string feeding into the inputs of each of the copies of C ′822

has low KT complexity, and consequently (by the definition of C ′) each C ′ outputs 0, and823

thus Dn0 outputs 0.824

If x ∈
∏

YES then, by Claim 47, the distribution represented by each copy of En (using825

random inputs r) has statistical difference from the uniform distribution bounded by 2−nε .826

The strings that are fed into each copy of C ′nt(n) are generated by t(n) independent copies of827

En. By [34, Lemma 3.4], we can conclude that the distribution that is fed into each copy of828

C ′nt(n) has statistical distance from the uniform distribution bounded by t(n)
2nε . We showed829

above that the probability that C ′nt(n) accepts a uniformly-random string of length nt(n) is830

greater than 1
p2(n) . It follows that the probability that C ′nt(n) accepts the string produced831

by t(n) independent copies of En is no less than 1
p2(n) −

t(n)
2nε >

1
np2(n) . Thus the probability832

that none of the n2
0p

2
2(n) independent copies of C ′nt(n) accepts is at most 2−n2

0 .833

A simple counting argument now shows that there is a sequence of probabilistic bits r834

that can be hardwired in to Dn0 so that, for all x of length n0, Dn0(x, r) = 1 if x ∈
∏

YES835

and Dn0(x, r) = 0 if x ∈
∏

NO. It still remains to simplify Dn0 so that it lies in OR ◦ C.836

As in the proof of Corollary 41, each bit that feeds into any of the copies of C ′nt(n) depends837

on at most one bit of x; many of the bits may be set to constants after hardwiring in the838

choice of r. Thus we build the circuit family Fn0 that takes x as input, and projects the bits839

of x into the n2
0p

2
2(n) copies of C ′nt(n), to obtain a OR ◦ C circuit family for

∏
. J840

The following definition is implicit in the work of Bogdanov and Trevisan [14].841

I Definition 48. A worst-case to errorless average-case reduction from a promise problem
∏

842

to a language A is given by a polynomial p and BPP machine M , such that A is accepted by843

MH for every oracle errorless heuristic H for A such that Prx∈Un [H(x) =?] < 1− 1/p(n).844

I Corollary 49. There is a problem A ∈ NP such that there is a non-adaptive worst-case to845

errorless average-case reduction from every problem in SZK to A.846

Proof. We mimic the proof of Theorem 46, and use the same set A. Consider the BPP847

reduction from the NISZK complete problem EA to MKTP given in Corollary 18. This848

reduction takes as input a pair (C, k) (where C is a circuit that produces output of length849

n) and makes a single query along each path, where the query is a string y of length tn850

where t = t(n) is a polynomial in n. (Since SDU is complete for NISZK, we can assume851

that k = n − 3, as in the proof of Theorem 46.) Rather than using MKTP as an oracle,852

instead we will use an errorless heuristic H for A where the Prz[H(z) =?] < 1 − 1/p(|z|),853

interpreting any answer where H(y) = “No” as meaning “KT(y) > θ” and any answer where854

H(y) ∈ {?,Yes} as meaning “KT(y) < θ”. (We will actually replace each query to MKTP by855

a polynomial number of independent queries to the heuristic H, and if any of these queries856

returns H(y) = “No”, we will conclude that (C, k) ∈ EAYES, and otherwise conclude that857

(C, k) ∈ EANO.)858

As in the proof Theorem 46, if the distribution represented by C has low entropy, then859

with probability exponentially close to 1, the query y will have low KT complexity, and860

thus H(y) will return a value in {?,Yes} (and this probability will remain small even if a861

polynomial number of independent trials are made). And if C has high entropy, then (as in862

the proof of Theorem 46) we can assume that the distribution given by C is exponentially863
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close to the uniform distribution, and thus the distribution on the queries y will have small864

statistical difference from the uniform distribution, and hence, with exponentially high865

probability, at least one of the queries will return the value No. Thus every problem in866

NISZK has an errorless non-adaptive worst-case to average-case reduction to A.867

The proof is completed by recalling from [18] that SZK is non-adaptively (deterministically)868

polynomial-time reducible to NISZK. J869

Remark: It is implicitly shown by Hirahara [20] that Corollary 49 holds under adaptive870

reductions. The significance of the improvement from adaptive and non-adaptive reductions871

lies in the fact that Bogdanov and Trevisan showed that the problems in NP for which there872

is a non-adaptive worst-case to errorless average-case reduction to a problem in NP lie in873

NP/poly ∩ coNP/poly [14, Remark (iii) in Section 4]. Thus SZK may be close to the largest874

class of problems for which non-adaptive worst-case to errorless average-case reductions to875

problems in NP exist.876

The worst-case to average-case reductions of Definition 48, must work for every errorless877

heuristic that has a sufficiently small probability of producing “?” as output. If we consider878

a less-restrictive notion (allowing a different reduction for different errorless heuristics) then879

in some cases we can lower the complexity of the reduction from BPP to AC0.880

IDefinition 50. Let D be a complexity class, and let R be a class of reducibilities. We say that881

errorless heuristics for language A are average-case hard for D under R reductions if, for every882

polynomial p and every errorless heuristic H for A where Prx∈U|x| [H(x) =?] < 1− 1/p(|x|),883

and for every language B ∈ D, there is a reduction r ∈ R reducing B to H.884

I Corollary 51. There is a language A ∈ NP, such that errorless heuristics for A are885

average-case hard for SZKL under non-adaptive AC0-Turing reductions.886

Proof. The proof of Theorem 46 introduces a language A ∈ NP that is defined in terms of887

the parameters of the reduction from the NISZKL-complete promise problem EANC0 . We show888

that errorless heuristics for this same A are average-case hard for SZKL under non-adaptive889

AC0-Turing reductions. By Proposition 3 and Theorem 26, every problem in SZKL is non-890

adaptively AC0-Turing-reducible to EANC0 ; let this AC0-Turing reduction be computed by the891

family {Dn : n ∈ N}. In the proof of Theorem 46, if we take the circuit family {Cm : m ∈ N}892

to consist of oracle gates for an errorless heuristic H for A, we obtain that every query that893

Dn makes to EANC0 can be replaced by an OR of queries consisting of oracle gates from894

{Cm : m ∈ N}. This yields the desired non-adaptive AC0-Turing reduction to the errorless895

heuristic for A. J896

I Corollary 52. Let C be any class that is closed under non-adaptive AC0-Turing reductions.897

If SZKL 6⊂ C, then there is a problem in NP that has no average-case errorless heuristic in C.898

Proof. If SZKL 6⊂ C, then by Proposition 3, NISZKL is also not contained in C. The result is899

now immediate from Theorem 46. J900

Remark: Building on earlier work of Goldwasser et al. [19], average-case hardness results901

for some subclasses of P based on reductions computable by constant-depth threshold circuits902

were presented in [2]. We are not aware of any prior work that provides strong average-case903

hardness results based on reductions computable in AC0.3904

3 By “strong” average-case hardness, we mean that we rule out algorithms that have error probability as
large as 1 − 1

nO(1) . Although certain aspects of the reductions presented in [2,19] are computable in AC0,
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8 Conclusion and Open Problems905

By focusing on non-uniform versions of ≤P
m reductions, we have shed additional light on906

how MKTP relates to subclasses of SZK. Some researchers are of the opinion that MCSP907

(and MKTP) are likely complete for NP under some type of reducibility, and some recent908

progress seems to support this [25]. For those who share this opinion, a plausible first step909

would be to show that MKTP is hard not only for co-NISZK, but also for NISZK, under910

≤P/poly
m reductions. (Work by Lovett and Zhang points out obstacles to providing such a911

reduction via “black box” techniques [29].) And of course, it will be very interesting to see if912

our hardness results for MKTP hold also for MCSP.913
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4 Eric Allender, Harry Buhrman, Michal Kouckỳ, Dieter Van Melkebeek, and Detlef Ronneburger.931

Power from random strings. SIAM Journal on Computing, 35(6):1467–1493, 2006. doi:932

10.1007/978-3-662-03927-4.933

5 Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Information and934

Computation, 256:2–8, 2017. Special issue for MFCS ’14. doi:10.1016/j.ic.2017.04.004.935

6 Eric Allender, John Gouwar, Shuichi Hirahara, and Caleb Robelle. Cryptographic hardness936

under projections for time-bounded Kolmogorov complexity. In 32nd International Symposium937

on Algorithms and Computation (ISAAC), volume 212 of LIPIcs, pages 54:1–54:17. Schloss938

Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ISAAC.2021.54.939

7 Eric Allender, Joshua A Grochow, Dieter Van Melkebeek, Cristopher Moore, and Andrew940

Morgan. Minimum circuit size, graph isomorphism, and related problems. SIAM Journal on941

Computing, 47(4):1339–1372, 2018. doi:10.1137/17M1157970.942

8 Eric Allender and Shuichi Hirahara. New insights on the (non-) hardness of circuit minimization943

and related problems. ACM Transactions on Computation Theory, 11(4):1–27, 2019. doi:944

10.1145/3349616.945

in order to obtain strong average-case hardness MAJORITY gates are required in those constructions [36].
The AC0-computable Approximate MAJORITY function is adequate for weak average-case hardness,
ruling out algorithms with very low error probability.

https://doi.org/10.1006/jcss.1998.1583
https://doi.org/10.1098/rsta.2011.0318
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1007/978-3-662-03927-4
https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.4230/LIPIcs.ISAAC.2021.54
https://doi.org/10.1137/17M1157970
https://doi.org/10.1145/3349616
https://doi.org/10.1145/3349616
https://doi.org/10.1145/3349616


E. Allender, J. Gouwar, S. Hirahara, and C. Robelle 23:25

9 Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size946

problem. Computational Complexity, 26(2):469–496, 2017. doi:10.1007/s00037-016-0124-0.947

10 Eric Allender, Rahul Ilango, and Neekon Vafa. The non-hardness of approximating circuit size.948

Theory of Computing Systems, 65(3):559–578, 2021. doi:10.1007/s00224-020-10004-x.949

11 Kazuyuki Amano. On the size of depth-two threshold circuits for the inner product mod950

2 function. In Alberto Leporati, Carlos Martín-Vide, Dana Shapira, and Claudio Zandron,951

editors, Language and Automata Theory and Applications - 14th International Conference952

(LATA), volume 12038 of Lecture Notes in Computer Science, pages 235–247. Springer, 2020.953

doi:10.1007/978-3-030-40608-0\_16.954

12 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM Journal955

on Computing, 36(4):845–888, 2006. doi:10.1137/S0097539705446950.956

13 Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive957

zero-knowledge. SIAM Journal on Computing, 20(6):1084–1118, 1991. doi:10.1137/0220068.958

14 Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for NP problems.959

SIAM Journal on Computing, 36(4):1119–1159, 2006. doi:10.1137/S0097539705446974.960

15 Zeev Dvir, Dan Gutfreund, Guy N Rothblum, and Salil P Vadhan. On approximating the961

entropy of polynomial mappings. In Second Symposium on Innovations in Computer Science,962

2011.963

16 Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakzjanov, Niels964

Schmitt, and Hans Ulrich Simon. Relations between communication complexity, linear965

arrangements, and computational complexity. In Proc. 21st Foundations of Software Technology966

and Theoretical Computer Science (FSTTCS), volume 2245 of Lecture Notes in Computer967

Science, pages 171–182. Springer, 2001. doi:10.1007/3-540-45294-X\_15.968

17 Bin Fu. Hardness of sparse sets and minimal circuit size problem. In Proc. Computing and969

Combinatorics - 26th International Conference (COCOON), volume 12273 of Lecture Notes in970

Computer Science, pages 484–495. Springer, 2020. doi:10.1007/978-3-030-58150-3\_39.971

18 Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be made972

non-interactive? or On the relationship of SZK and NISZK. In Annual International Cryptology973

Conference, pages 467–484. Springer, 1999. doi:10.1007/3-540-48405-1\_30.974

19 Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.975

A (de)constructive approach to program checking. In Proceedings of the 40th Annual ACM976

Symposium on Theory of Computing (STOC), pages 143–152. ACM, 2008. doi:10.1145/977

1374376.1374399.978

20 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In 59th979

IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 247–258. IEEE980

Computer Society, 2018. doi:10.1109/FOCS.2018.00032.981

21 Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudoran-982

dom generator constructions. In 35th Computational Complexity Conference (CCC), volume983

169 of LIPIcs, pages 20:1–20:47. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.984

doi:10.4230/LIPIcs.CCC.2020.20.985

22 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and its986

variants. In 32nd Conference on Computational Complexity (CCC), volume 79 of LIPIcs, pages987

7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:10.4230/LIPIcs.988

CCC.2017.7.989

23 Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle. In990

31st Conference on Computational Complexity (CCC), volume 50 of LIPIcs, pages 18:1–18:20.991

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CCC.2016.18.992

24 John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum circuit993

size problem. In 35th IARCS Annual Conference on Foundation of Software Technology994

and Theoretical Computer Science (FSTTCS), volume 45 of LIPIcs, pages 236–245. Schloss995

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.236.996

CVIT 2016

https://doi.org/10.1007/s00037-016-0124-0
https://doi.org/10.1007/s00224-020-10004-x
https://doi.org/10.1007/978-3-030-40608-0_16
https://doi.org/10.1137/S0097539705446950
https://doi.org/10.1137/0220068
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1007/3-540-45294-X_15
https://doi.org/10.1007/978-3-030-58150-3_39
https://doi.org/10.1007/3-540-48405-1_30
https://doi.org/10.1145/1374376.1374399
https://doi.org/10.1145/1374376.1374399
https://doi.org/10.1145/1374376.1374399
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.4230/LIPIcs.CCC.2020.20
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2016.18
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236


23:26 Cryptographic Hardness under Projections for Time-Bounded Kolmogorov Complexity

25 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit minimization997

for multi-output functions. In 35th Computational Complexity Conference (CCC), volume998

169 of LIPIcs, pages 22:1–22:36. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.999

doi:10.4230/LIPIcs.CCC.2020.22.1000

26 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of the1001

Thirty-Second Symposium on Theory of Computing (STOC), pages 73–79, 2000. doi:10.1145/1002

335305.335314.1003

27 Valentine Kabanets, Daniel M. Kane, and Zhenjian Lu. A polynomial restriction lemma with1004

applications. In Proceedings of the 49th Annual Symposium on Theory of Computing (STOC),1005

pages 615–628. ACM, 2017. doi:10.1145/3055399.3055470.1006

28 Leonid A. Levin. Randomness conservation inequalities; information and independence in math-1007

ematical theories. Information and Control, 61(1):15–37, 1984. doi:10.1016/S0019-9958(84)1008

80060-1.1009

29 Shachar Lovett and Jiapeng Zhang. On the impossibility of entropy reversal, and its application1010

to zero-knowledge proofs. In Theory of Cryptography - 15th International Conference (TCC),1011

volume 10677 of Lecture Notes in Computer Science, pages 31–55. Springer, 2017. doi:1012

10.1007/978-3-319-70500-2\_2.1013

30 Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds on resource-1014

bounded compression imply strong separations of complexity classes. In Proceedings of the1015

51st Annual Symposium on Theory of Computing (STOC), pages 1215–1225, 2019. doi:1016

10.1145/3313276.3316396.1017

31 Cody Murray and Ryan Williams. On the (non) NP-hardness of computing circuit complexity.1018

Theory of Computing, 13(4):1–22, 2017. doi:10.4086/toc.2017.v013a004.1019

32 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-1020

of-the-art lower bounds. In 34th Computational Complexity Conference (CCC), volume1021

137 of LIPIcs, pages 27:1–27:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.1022

doi:10.4230/LIPIcs.CCC.2019.27.1023

33 Michael Rudow. Discrete logarithm and minimum circuit size. Information Processing Letters,1024

128:1–4, 2017. doi:10.1016/j.ipl.2017.07.005.1025

34 Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM,1026

50(2):196–249, 2003. doi:10.1145/636865.636868.1027

35 Michael Saks and Rahul Santhanam. Circuit lower bounds from NP-hardness of MCSP1028

under Turing reductions. In 35th Computational Complexity Conference (CCC), volume1029

169 of LIPIcs, pages 26:1–26:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.1030

doi:10.4230/LIPIcs.CCC.2020.26.1031

36 Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM1032

Journal on Computing, 39(7):3122–3154, 2010. doi:10.1137/080735096.1033

37 Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &1034

Business Media, 1999. doi:10.1007/978-3-662-03927-4.1035

https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/3055399.3055470
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1007/978-3-319-70500-2_2
https://doi.org/10.1007/978-3-319-70500-2_2
https://doi.org/10.1007/978-3-319-70500-2_2
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.1145/3313276.3316396
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.4230/LIPIcs.CCC.2019.27
https://doi.org/10.1016/j.ipl.2017.07.005
https://doi.org/10.1145/636865.636868
https://doi.org/10.4230/LIPIcs.CCC.2020.26
https://doi.org/10.1137/080735096
https://doi.org/10.1007/978-3-662-03927-4

	1 Preface
	2 Introduction
	2.1 Average-Case Complexity

	3 Preliminaries
	3.1 Complexity Classes and Reducibilities
	3.2 KT Complexity
	3.3 Discrete Probability and Entropy

	4 MKTP is Hard For NISZK
	4.1 Flat Distributions
	4.2 Encoding and Blocking
	4.3 Reducing co-NISZK to MKTP

	5 A Complete Problem for NISZKL
	5.1 Membership in NISZKL
	5.2 Hardness for NISZKL
	5.2.1 Perfect Randomized Encodings
	5.2.2 Constructing an NC0 perfect randomized encoding
	5.2.3 SDUNC0 is Complete for NISZKL


	6 Hardness of MKTP under Projections
	7 An Application: Average-Case Complexity
	8 Conclusion and Open Problems

