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—— Abstract

A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past
several years, due to its close connection to circuit complexity and to the Minimum Circuit Size
Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the
problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK
(Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete.

Recently, some hardness results for MKTP were proved that are not (yet) known to hold for

0
MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform <} reductions.
In this paper, we improve this, to show that MKTP is hard for the (apparently larger) class NISZK,

under not only Sr'\flco reductions but even under projections. Also MKTP is hard for NISZK under
P /poly
<m

reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs,
and NISZK| is the non-interactive version of the class SZK| that was studied by Dvir et al.

As an application, we provide several improved worst-case to average-case reductions to problems
in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP).
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1 Preface

Peter Gacs has made important contributions to the study of Kolmogorov complexity. Thus
we are pleased to be able to present this investigation into the computational complexity
of time-bounded Kolmogorov complexity, as part of a special issue celebrating his research
career.

2 Introduction

The study of time-bounded Kolmogorov complexity is tightly connected to the study of
circuit complexity. Indeed, the measure that we study most closely in this paper, denoted
KT, was initially defined in order to capitalize on the framework of Kolmogorov complexity in
investigations of the Minimum Circuit Size Problem (MCSP) [4]. If f is a bit string of length
2F representing the truth-table of a k-ary Boolean function, then KT(f) is polynomially
related to the size of the smallest circuit computing f. Thus the problem of computing KT
complexity (denoted MKTP) was initially viewed as a more-or-less equivalent encoding of
MCSP, and it is still the case that all theorems that have been proved about the complexity
of MCSP hold also for MKTP (such as those in [5,9,10,17,21-24, 30, 31, 33, 35]).

In recent years, however, a few hardness results were proved for MKTP that are not yet
known to hold for MCSP [7,8]. We believe that these results can be taken as an indication
of what is likely to be true also for MCSP. The present work gives significantly improved
hardness results for MKTP.

Reducibility and completeness are the most effective tools in the arsenal of complexity
theory for giving evidence of intractability. However, it is not clear whether MCSP or MKTP
is NP-complete; neither can be shown to be NP-complete — or even hard for ZPP — under
the usual <P reductions without first showing that EXP # ZPP, a long-standing open
problem [17,31].

The strongest hardness results that have been proved thus far for MCSP and MKTP are
that both are hard for SZK under BPP-Turing reductions [5]. SZK is the class of problems
that have Statistical Zero Knowledge Interactive Proofs, and contains many problems of
interest to cryptographers. Indeed, if MCSP (or MKTP) is in P/poly, then there are no
cryptographically-secure one-way functions [26].

Our main results involve improving the hardness results for MKTP, by reducing the
number of queries from polynomially-many, to one. In the paragraphs that follow, we explain
the sense in which we accomplish this goal. Along the way, we also obtain a new circuit lower
bound for MKTP; it remains unknown whether this circuit lower bound also holds for MCSP.

SZK is not known to be contained in NP; until such a containment can be established,
there is no hope of improving the BPP-Turing reduction of [5] to a <P reduction. But
we come close in this paper. NISZK is the “non-interactive” subclass of SZK; it contains

intractable problems if and only if SZK does [18]. We show that MKTP is hard for NISZK
P/poly

under < reductions. (Thus, instead of asking many queries, as in [5], a single query
suffices.’) Our proof also shows that MKTP is hard for NISZK under BPP reductions that
ask only one query. Combined with [18], this shows that MKTP is hard for SZK under
non-adaptive BPP reductions, yielding a modest improvement over [5]; this has implications

1 Some readers may have mistakenly believed that we view our work as a step toward showing that MKTP
(or MCSP) is hard for SZK under (uniform) <%, reductions. We do not. In fact, some of us doubt that
hardness under uniform deterministic reductions holds.
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regarding the study of worst-case to average-case reductions. (See Section 2.1.)

But §§,/ POl reductions are still quite powerful. There is great interest currently in
proving lower bounds for MCSP, MKTP, and related problems such as MKtP (the problem
of computing a different kind of time-bounded Kolmogorov complexity, due to Levin [28]) on
very limited classes of circuits and formulae, as part of the “hardness magnification” program.
For instance, if modest lower bounds can be shown on the size required to compute MKtP
on de Morgan formulae augmented with PARITY gates at the leaves, then EXP is not
contained in non-uniform NC [32]. Also, there is great interest in finding lower bounds
against a variety of other models, such as depth-three threshold gates, or circuits consisting
of polynomial threshold gates [27]. If a lower bound is known against one of these limited
classes of circuits for some problem A that is reducible to, say, MKTP or MKtP under §IF;/ poly
reductions, it implies nothing about the complexity of MKTP or MKtP, since the circuitry
involved in computing the reduction is much more powerful than the circuitry in the class of
circuits for which the lower bound is known.

Thus there is a great deal of interest in considering reductions that are much less powerful
than SIF;/ POl reductions. For extremely weak (uniform) notions of reducibility (such as
log-time reductions), it is known that MCSP and MKTP are not hard for any complexity
class that contains the PARITY function [31]. However, this non-hardness result relies
on uniformity; it was later shown that MKTP is hard for the complexity class DET under
nonuniform <N reductions [8].

However, even §I'\f1c0 reductions are too powerful a tool, when one is interested in lower
bounds against the classes of circuits discussed above, since they do not seem to be closed
under Sr'\flco reductions. This motivates consideration of the most restrictive type of reduction
that we will be considering: projections.

A projection is a reduction that is computed by a circuit consisting only of wires and
NOT gates. Each output bit is either a constant, or is connected by a wire to a (possibly
negated) input bit. All of the classes of circuits mentioned above (and — indeed — most
conceivable classes of circuits) are closed under projections.

Prior to our work, the result of [8] showing that MKTP is hard for DET under <NC¢’
reductions was improved, to show that MKTP is hard for DET even under projections [3].
Since DET is a subclass of P, this provides little ammunition when one is seeking to prove
that MKTP is intractable. One of our main contributions is to show that MKTP is hard for
NISZK_ under projections. As a corollary, we obtain that MKTP cannot be computed by
THRESHOLDoMAJORITY circuits of size 27" . This lower bound relies on the fact that

MKTP is hard under projections.

The reader will not be familiar with NISZK; this complexity class makes its first ap-
pearance in the literature here. It is the “non-interactive” counterpart to the complexity
class SZK| that was studied previously by Dvir et al. [15], and was shown there to contain
several important natural problems of interest to cryptographers (such as Discrete Log and
Decisional Diffie-Hellman). NISZK| contains intractable problems if and only if SZK| does
(see Section 3). Thus, for the first time, we show that MKTP is hard under projections for
a complexity class that is widely believed to contain intractable problems. Our hardness
results carry over immediately to MKtP and to similar problems defined in terms of general
Kolmogorov complexity; no hardness results under projections had been known previously
for those problems. We present some complete problems for NISZK, and establish some
other basic facts about this class in Section 5.
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2.1 Average-Case Complexity

Building on the techniques introduced in [20], we are able to establish new insights regarding
the relationship between worst-case and average-case complexity. In Theorem 46, capitalizing
on the fact that essentially every circuit complexity class C is closed under projections, we
show that if NISZK|_ does not lie in OR o C, then there are problems A in NP that cannot
be solved in the average case by errorless heuristics in C. For instance, if one were able
to show that there is any problem NISZK, (including, but not limited to, some of the
candidate one-way functions believed to reside there) that cannot be solved in the worst
case by depth-four ACCY circuits, it would follow that there are problems in NP that are
hard-on-average for depth-three ACCY circuits. Such conclusions would not follow if our
reductions to MKTP had merely been computable in AC® or NC°.

We are also able to shed more light on worst-case to average-case reductions, in the form
that they were studied by Bogdanov and Trevisan [14]. Bogdanov and Trevisan showed that
there were severe limits on the complexity of problems whose worst-case complexity could
be reduced to the average-case complexity of problems in NP via non-adaptive reductions;
all such problems lie in NP /poly N coNP/poly. But it was not known how large this class of
problems could be. Hirahara showed that every problem in SZK has an adaptive worst-case to
average-case reduction to a problem in NP [20], but the upper bound of NP/poly NcoNP /poly
proved by Bogdanov and Trevisan does not apply for adaptive reductions. As a consequence
of our Corollary 19, showing that MKTP is hard for SZK under nonadaptive BPP reductions,
we are able to show (in Corollary 49) that the class identified by Bogdanov and Trevisan lies
in the narrow range between SZK and NP /poly N coNP/poly.

Remark: This is an illustration of the utility of studying MKTP, as an example of a
theorem that does not explicitly mention MKTP or MCSP, but which was proved via the
study of MKTP. No such argument based on MCSP is known. We believe that MKTP can
in fact be viewed as a particularly convenient formulation of MCSP, since (a) KT complexity
is closely related to circuit size, (b) essentially all theorems known to hold for MCSP also
hold for MKTP, (c) some arguments that one might intend to formulate in terms of MCSP
elude current approaches, but can instead be successfully carried through by use of MKTP.
Furthermore, theorems proved for MKTP may serve as an indication of what is likely to be
true for MCSP as well.

The rest of the paper is organized as follows: Our an/ PolY_hardness theorem for MKTP is
proved in Section 4. Then, after establishing some basic facts about NISZK| in Section 5, in
Section 6 we show that MKTP is hard for NISZK| under projections. We present applications
of our reductions and implications for average-case complexity in Section 7.

3  Preliminaries

3.1 Complexity Classes and Reducibilities

We assume familiarity with the complexity classes P, NP, L, BPP, and P/poly. We also make
use of the circuit complexity classes AC® and NC°. For the purposes of this paper, ACY can
be understood as the set of problems for which there is a family of circuits {C), : n € N}
with unbounded-fan-in AND and OR gates (and NOT gates of fan-in 1) of polynomial size
and constant depth. NC° is defined similarly, but with AND and OR gates of bounded fan-in
(and thus each output bit depends on only a constant number of bits of the input). We deal
primarily with the “nonuniform” versions of these complexity classes (which means that the
mapping n — C,, need not be computable).
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Branching programs are a circuit-like model of computation that can be used to charac-
terize logspace computation. A branching program is a directed acyclic graph with a single
source and two sinks labeled 1 and 0, respectively. Each non-sink node in the graph is labeled
with a variable in {z1,...,z,} and has two edges leading out of it: one labeled 1 and one
labeled 0. A branching program computes a Boolean function f on input z =z ...z, by
first placing a pebble on the source node. At any time when the pebble is on a node v labeled
x;, the pebble is moved to the (unique) vertex u that is reached by the edge labeled 1 if z; = 1
(or by the edge labeled 0 if 2; = 0). If the pebble eventually reaches the sink labeled b, then
f(z) = b. Branching programs can also be used to compute functions f : {0,1}™ — {0,1}",
by concatenating n branching programs p1,...,p,, where p; computes the function f;(x) =
the i-th bit of f(z). For more information on the definitions, backgrounds, and nuances of
these complexity classes, circuits, and branching programs, see the text by Vollmer [37].

A promise problem I is a pair of disjoint sets (Ilygg, Ino). A solution to a promise
problem is any set A such that IIygg C A and Hyo C A. A don’t-care instance of II is any
string that is not in [Iygs UIlyo. A language A can be viewed as a promise problem that
has no don’t-care instances.

Given any class C of functions, there is an associated notion of m-reducibility or many-one
reducibility: For two languages A and B, we say that A<C B if there is a function f in
C such that z € A iff f(x) € B. This notion of reducibility extends naturally to promise
problems, mapping yes-instances to yes-instances, and no-instances to no-instances. The
most familiar notion of m-reducibility is Karp reducibility: <P ; NP-completeness is most
commonly defined in terms of Karp reducibility. However, in this paper, we will frequently
be reducing problems that are not known to reside in NP to MKTP, which does lie in NP.
Thus it is clear that a more powerful notion of reducibility is required. Some of our results
are most conveniently stated in terms of §fn/ POl Leductions (i.e., reductions computed by
nonuniform polynomial-size circuits). We also consider restrictions of gfn/ poly reductions,
computed by nonuniform AC® and NC° circuits: gﬁf” and §r'\rllco. Finally we also consider
projections (<Pr)), which are functions computed by NC° circuits that have only NOT gates.
That is, in a projection, each output bit is either a constant 0 or 1, or is connected by a wire
to an input bit or its negation.

We will also make reference to various types of Turing reducibility, which are defined in
terms of oracle Turing machines, or in terms of circuit families that are augmented with
“oracle gates”. For instance, we say that A<BFP B if there is a probabilistic polynomial time
oracle Turing machine M with oracle B that accepts every x € A with probability % and
rejects every x € A with probability % Note that the computation tree of such a BPP-Turing
reduction can contain an exponential number of queries to different elements of B. Just as
BPP C P/poly, it also holds that A<BPP B implies Ag;/pOIYB. Thus, on any input x, the
circuit computing the P/poly-Turing reduction queries only a polynomial number of elements
of B. It was shown in [5] that every problem in SZK (that is, every problem with a statistical
zero knowledge proof system) is <BPP-reducible (and hence SFF/ poly—reducible) to MCSP and
to MKTP. The question of interest to us here is: Is it necessary to ask so many queries?
What can we do if we ask only one query? What can be reduced to MKTP via a SE{ poly
reduction?

The complexity class with which we are primarily concerned in this paper is the class of
problems that have non-interactive statistical zero knowledge proof systems: NISZK. NISZK
was originally defined and studied by Blum et al. [13]. The definition below (in terms of
promise problems) is due to Goldreich et al. [18].

» Definition 1. A non-interactive statistical zero-knowledge proof system for a promise
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problem 11 is defined by a triple of probabilistic machines P, V, and S, where V and S are
polynomial-time and P is computationally unbounded, and a polynomial r(n) (which will
give the size of the random reference string o), such that:

1. (Completeness:) For all x € Mygg, the probability that V (x, o0, P(x,0)) accepts is at least
1—27ll,

2. (Soundness:) For all x € Ilyo, the probability that V(x, o0, P'(x,0)) accepts is at most
2121 for any prover P’.

3. (Zero Knowledge:) For all x € Ilygg, the statistical distance between the following two
distributions bounded by 1/5(|x|)

(A) Choose o uniformly from {0,1}"1D)  sample p from P(x,0), and output (p,o).
(B) S(x) (where the coins for S are chosen uniformly at random.)

where B(n) is superpolynomial, and the probabilities in Conditions 1 and 2 are taken over
the random coins of V. and P, and the choice of o uniformly from {0,1}7(").

NISZK is the class of promise problems for which there is a non-interactive statistical
zero knowledge proof system.

NISZK is not known to be closed under complementation; co-NISZK is defined as the class
of promise problems IT = (Ilyggs, [Iyo) such that (IIyo, Iygg) is in NISZK. It is known that
SZK = NISZK iff NISZK = co-NISZK, and that every promise problem in SZK efficiently (and
non-adaptively) Turing-reduces to a problem in NISZK [18]. Thus NISZK contains intractable
problems if and only if SZK does. See Fig. 1.

A subclass of SZK, which we will denote by SZK| , in which the verifier V' and simulator
S are restricted to being logspace machines, was defined and studied by Dvir et al. [15].
Among other things, they showed that many of the important natural problems in SZK lie
in SZK|, including Graph Isomorphism, Quadratic Residuosity, Discrete Log, and Decisional
Diffie-Hellman. The non-interactive version of SZK|, which we denote by NISZK, has not
been studied previously, but it figures prominently in our results.

» Definition 2. The formal definition of NISZK( is obtained by replacing each occurrence of
“polynomial-time” in Definition 1 with “logspace”. (It is important to note that, in this model,
the logspace-bounded verifier V. and simulator S are allowed two-way access to the reference
string o and to their polynomially-long sequences of probabilistic coin flips.)

The reduction presented in [18] carries over directly to the logspace setting, showing that
NISZK| contains intractable problems if and only if SZK| does. In particular, we have:

» Proposition 3. Every promise problem in SZK( is non-adaptively AC®-Turing-reducible to
a problem in NISZK.

3.2 KT Complexity

The measure KT was defined in [4]. We provide a reproduction of that definition below.

» Definition 4 (KT). Let U be a universal Turing machine. For each string x, define KTy (x)
to be

min{|d| + T : (Yo € {0,1,%}) (Vi < |z| + 1) U%(i,0) accepts in T steps iff x; = o}

We define x; = * if i > |x|; thus, for i = |x|+ 1 the machine accepts iff o = . The notation
U9 indicates that the machine U has random access to the description d. We fix one universal
Turing machine U, and define KT(x) to be KTy ().
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N

Figure 1 Diagram showing the classes NISZK, co-NISZK, and SZK. The shaded oval represents
NP. Every problem in co-NISZK is <%/P*Y_reducible to MKTP.

To understand the motivation for this definition, see [4]. Briefly: KT is a version of time-
bounded Kolmogorov complexity that (in contrast to other notions of resource-bounded
Kolmogorov complexity that have been considered) is polynomially-related to circuit com-
plexity. The minimum KT problem, henceforth MKTP, is defined below.

» Definition 5 (MKTP). Suppose y € {0,1}™ and 6 € N\ {0}, then
MKTP = {(y,0) | KT(y) < 6}.

In this paper when we view MKTP as a promise problem, yes-instances will be considered
those that are in the language, and no-instances those that are not in the language.

3.3 Discrete Probability and Entropy

» Definition 6. Discrete Random Variables and Distributions

A random variable R : S — T is a function where S is a finite set with a probability
distribution on its elements. We will refer to S as the sample space. R with a uniform
distribution on S will induce a distribution p on T'.

The support of a distribution X, denoted Supp(X), is the set of elements in the distribu-
tion with positive probability. Alternatively, the support of a random variable R can be
understood as the set Im(R).

In an abuse of notation, often given a distribution X, we will refer to X as both the
random variable that induces the distribution, and the distribution itself.

Given a distribution X, we will use the notation X* to denote the k—fold direct product

of X. Alternatively, this can be understood as the concatenation of k independent copies
of X.
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Given a function f : {0,1}™ — {0,1}" we write Uy, to denote the uniform distribution
on m bits, and f(U,,) for the output distribution of f when evaluated on a uniformly
chosen element of {0,1}™. Throughout this paper, our random variables, and in turn the
distributions they induce, will be of the form C(U,,), where C is a multi-output Boolean
circuit C : {0,1}™ — {0,1}™.

The entropy of a distribution can be understood informally as measuring how much
“randomness” is present in the distribution.

» Definition 7. Suppose X is a distribution. The Shannon entropy of X (denoted H(X)) is
the expected value of log(1/Pr[X = x]).

4 MKTP is Hard For NISZK

In this section, we prove our first hardness result for MKTP; MKTP is hard for co-NISZK
under Sil/ PolY reductions. In order to prove hardness, it suffices to provide a reduction from
the entropy approximation problem: EA, which is known to be complete for NISZK under
<P reductions [18].

» Definition 8 (Promise-EA). Let a circuit C : {0,1}™ — {0,1}" represent a probability
distribution X on {0,1}"™ induced by the uniform distribution on {0,1}™. We define Promise-
EA to be the promise problem

EAves ={(C.k) | H(X) >k +1}
EAvo ={(C.k) | H(X)<k—1}

where H(X) denotes the entropy of X.

We will make use of some machinery that was developed in [7], in order to relate the
entropy of a distribution to the KT complexity of samples taken from the distribution.
However, these tools are only useful when applied to distributions that are sufficiently “flat”.
The next subsection provides the necessary tools to “flatten” a distribution.

4.1 Flat Distributions

A distribution is considered flat if it is uniform on its support. Goldreich et al. [18] formalized
a relaxed notion of flatness, termed A-flatness, which relies on the concept of A-typical
elements. The definitions of both concepts follow:

» Definition 9 (A-typical elements). Suppose X is a distribution with element x in its support.
We say that x is A-typical if

278 97 HX) o pr[X =] < 28 . 27H(O,

» Definition 10 (A-flatness). Suppose X is a distribution. We say that X is A-flat if for

every w > 0 the probability that an element of the support, x, is w - A-typical is at least
2
1—27wHl,

» Lemma 11 (Flattening Lemma). [18] Suppose X is a distribution such that for all x in
its support Pr[X = x] > 2=™. Then X* is (Vk - m)-flat.

Observe that if X is a distribution represented by a circuit C': {0,1}"™ — {0,1}", then the
hypothesis of the Flattening Lemma holds for m. Note also that, for any distribution X,
H(X*) =k H(X). Thus the entropy of the distribution X* grows linearly with respect to
k, while the deviation from flatness diminishes much more rapidly with respect to k.
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4.2 Encoding and Blocking

The Encoding Lemma is the primary tool that was developed in [7] to give short descriptions
of samples from a given distribution. Below, we give a precise statement of the version
of the Encoding Lemma that is stated informally as Remark 4.3 of [7]. (Although the
statement there is informal, the proof of the Encoding Lemma that is given there does yield
our Lemma 13.) First, we need to define A-encodings.

» Definition 12 (A-encodings). Let R : S — T be a random variable that induces a distribution
X. The A-heavy elements of T are those elements \ such that Pr[X = A] > 1/2%. A A-
encoding of R is given by a mapping D : [N] — S such that for every A-heavy element
A, there exists i € [N] such that R(D(i)) = A\. We refer to [log(N)] as the length of the
encoding. The function D is also called the decoder for the encoding.

» Lemma 13 (Encoding Lemma). [7, Lemma 4.1] Consider an ensemble {R,} of random
variables that sample distributions on strings of some length poly,(|x|), where there are
circuits Cy of size poly,(|z|) representing each R,. Then there is a polynomial polys such
that, for every integer A, each R, has a A-encoding of length A + log(A) + O(1) that is
decodable by circuits of size polys(|x]).

By itself, the Encoding Lemma says nothing about KT complexity. The other important
ingredient in the toolbox developed in [7] is the Blocking Lemma, which refers to the process
of chopping a string into blocks. Let y be a string of length tn, which we think of as being the
concatenation of ¢ samples y; of a distribution X on strings of length n. Thus y = y1 ... ys.
Let r = [t/b]. Equivalently, we consider y to be equal to z; ...z, where each z; is a string of
length bn sampled according to X°. (In the case when |y| is not a multiple of b, z, is shorter;
this does not affect the analysis. We call the strings z; the blocks of y.)

» Lemma 14 (Blocking Lemma). [7, Lemma 3.8] Let {T;} be an ensemble of sets of strings
such that all strings in T, have the same length poly(|z|). Suppose that for each x € {0,1}*
and for each b € N there is an integer Ay and a random variable Ry, whose image contains
(T,)®, and such that R,y is computable by a circuit of size poly(|z|,b) and has a Ay-encoding
of length s'(x,b) decodable by a circuit of size poly(|z|,b). Then there are constants ¢; and
ca so that, for every constant o > 0, every t € N, every sufficiently large z, and every
[t*]-suitable y € (Ty)*,
KT(y) <t'= ' (z, [t*]) + > - |z

Here, we say that y € (Ty)t is b-suitable if each block of y (of length bn) is Ay-heavy.

With the Encoding and Blocking Lemmas in hand, we can now show how to give upper
and lower bounds on the KT complexity of concatenated samples from a distribution. The
following lemma gives the upper bound.

» Lemma 15. Suppose X is a distribution sampled by a circuit Cy, : {0,1}™ — {0,1}™ of
size polynomial in |z|. For every polynomial w = w(|z|) with |z| < w, there exist constants
co, C2, and ag such that for every sufficiently large polynomial t and for all large x, if y is
the concatenation of t samples from X, then with probability at least (1 — 1/22121),

KT(y) < tH(X) + wm(t' /%) 4 ¢! 70 |g[oFe

Proof. Pick ¢¢ so that |z|® > m + wm + |z|, and observe that for all large « we have
|z > H(X) 4+ wm + O(log(|x])). Let t = t(]z|) be any polynomial. Let b € N with b < ¢,
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and let A, = bH(X) + wmy/b. Then, by the Encoding Lemma X° = @’ X has a Ay-encoding
of length Ay + log(Ap) + O(1) that is decodable by circuits of size poly(b|z|). Let r = [t/b].
Recall that y = y;1...y: where each y; is a string of length n sampled according to the
distribution X. Equivalently, we can consider y to be equal to 27 ...z, where each z; is
a string of length bn sampled according to X?; the strings z; are the blocks of y. By the
Flattening Lemma, the probability that any given z; is not Ap-heavy is at most 2— W+l
Thus, by the union bound, the probability that y is not b-suitable (i.e., the probability that
there is at least one block that is not A,-heavy) is at most r - 2w+l < 4. 92-v" Since
w > |z| and t is polynomial in |z|, it follows that for all large x, with probability at least
(1—1/2%#1), each of the r blocks is Ap-heavy and hence, by the Encoding Lemma, each block
has an encoding of length s’(n,b) = Ay + log(Ap) + O(1). Thus, by the Blocking Lemma, for
certain constants ¢; and ¢o (which do not depend on t), for any constant « > 0 (for all large
enough y),

KT(y) <t' 7.8 (2, [t]) + ¢4 - ||
=l (AH@] + log(A[m) +O(1)) + ¥ - ||
= 17 ([t H(X) + wim/Tto] +log(Ageaq) + O(1)) + 4 - [a]2
<O H (X0 + o]+ wom /) 10 - 2]

Recall that the inequality above holds for all o > 0. If we now pick ap < 1/(1 + ¢1), we
obtain the claimed inequality

KT(y) < tH(z) + wmt!~@0/2 4 1= (|g|c0Fe2),

We now turn to a lower bound on KT(y).

» Lemma 16. Let poly(|z|) denote some fixed polynomial in |x| (where ¥n poly(n) > 1),
and let cg be such that 0 < ag < 1/2. For all large x, if X is a distribution sampled by a
circuit Cy : {0,1}™ — {0,1}™ of polynomial size, then it holds that for every w and every
t > w*, if y is sampled from X, then with probability at least 1 — 2’“’2,

KT(y) > tH(X) - wmv/i — ' poly(|a])

Proof. Consider the distribution X* = ®'X and sample y from it. Recall that H(X") =
tH(z). By the Flattening Lemma, X? is v/t - m-flat. Therefore, the probability that y is
wmy/t-typical is at least 1 — 2-v’+1 We would like to bound the probability that KT(y) <
tH(X) — wmy/t — t1=% . poly(]x|). To bound this probability, note that Pr[KT(y) < k] is
equal to

Pr[KT(y) < k Ay is typical] + Pr[KT(y) < k Ay is atypical]
< Pr[KT(y) < k Ay is typical] + Pr[y is atypical]

where we are interested in k = tH(x) — wmy/t — t1=% . poly(|z|) and “y is typical” means

“y is wm+/t-typical” We have already observed above that the second term is bounded by
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2-w*+1_ For the first term, we have

PriKT(y) < k Ay is typical] = Z Pr[ X" =]
{y:KT(y)<kAy is typical}

{y:KT(y)<kAy is typical}
S 2]€ . 211}771\/2 . 2—H(Xt)

— 2tH(z)7wm\/fft17a0-poly(|x\) . 2wm\/f . 27tH(X)

_ 9—t'"0-poly(|a])

where the first inequality follows from the definition of typicality, and the second inequality
k—

follows since there are only Zi:ol 2! < 2% descriptions of strings with complexity less than k.

Summarizing, we conclude that the probability that KT (y) < tH(x) — wmy/t — t1=0 .
poly(|z|) is at most

2—t1*°‘0 -poly(|z|) + 2—w2+1.

To show that the above probability is less than 1/ 2w s equivalent to showing that

27t1_0‘0 -poly(|z|) < 27w2+1 )

Thus we must show that w? — 1 < t}7%0 . poly(|z|). This holds, since

w? —1<w?
< (t1/4)2
=Vt
S tl—ao
< 172 poly(|z).

4.3 Reducing co-NISZK to MKTP

» Theorem 17. MKTP is hard for co-NISZK under P/poly many-one reductions.

Proof. We prove the claim by reduction from the NISZK-complete problem EA. Let
x = (Cy, k) be an arbitrary instance of Promise-EA, where C, : {0,1}™ — {0,1}" is a circuit
that represents distribution X. Let w = 2|z|, and let ag, c¢g, and ¢y be the constants from
Lemma 15. Let A = wmt'~®°/2, Pick the polynomial ¢ so that t(|z|) > 2(\ + t'=0|z|c0te2)
and w* < t (and note that all large polynomials have this property). Construct y as ¢ samples
from X. Let 0 = tk + \ +t1 =0 |z|Fc2 We claim that, with probability at least 1 — ﬁ, if
(X, k) € EAygg, then (y,G) € MKTPyo and if (X, k) € EAno, then (y,@) € MKTPygs.

If (X,k) € EAyo, then H(X) < k. Then by Lemma 15, we have that, with high
probability,
KT (y) < tH(X) 4 \ + th=o0|g|cotez
<tk 4+ A+ tl_O‘U ‘$|C°+02
=0
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thus KT(y) < 6, and thus (y,0) € MKTPygg.
If (X,k) € EAygs, then H(X) > k + 1. Then by Lemma 16, with probability at least
1—2%" > 1 — 221l we have that

KT(y) > tH(X) — wmy/t — t'=0|g|otez,

> tH(X) — X — o0 |g|cote (since ap < 1/2)
> t(k41) — X — thm0|g|0Fe

> th 4+ A 4 thTo0|g|cote2 (since t > 2(\ 4 t1= 0|y |0 Fe2))
=0

thus KT(y) > 60, and thus (y,0) € MKTPyo.

We have shown that there is a polynomial-time-computable function f, such that, if
x € EAygg, then with high probability (for random r) f(z,7) = (y,6) is in MKTPye, and
if € EAno, then with high probability f(z,r) = (y,0) is in MKTPygs. By a standard
counting argument (similar to the proof that BPP C P/poly), since the probability of success
for either bound is greater than (1 —1/2%"), we can fix a sequence of random bits to hardwire
in to this reduction and obtain a family of circuits computing a S,Pn/ POl peduction from any
problem in NISZK to MKTP. |

» Corollary 18. MKTP s hard for NISZK under BPP reductions that make at most one
query along any path of the BPP machine.

Proof. This follows from the proof of Theorem 17. Namely, on input = (Cy, k), construct
the string y consisting of ¢ random samples from C, and query the oracle on (y,60). On
Yes-instances, y will have KT complexity greater than 6 (with high probability), and on
No-instances, y will have KT complexity less than 6 (with high probability). |

» Corollary 19. MKTP is hard for SZK under non-adaptive BPP-Turing reductions.

Proof. Recall from [18] that SZK reduces to Promise-EA via non-adaptive (deterministic)
reductions. The result is now immediate, from Corollary 18. <

5 A Complete Problem for NISZK_

Having established a hardness result for MKTP under Sﬁl/ poly reductions, we now establish
an analogous hardness result under the much more restrictive <P reductions. For this, we
first need to present a complete problem for NISZK,.

Recall that the NISZK-complete problem EA deals with the question of approximating
the entropy of a distribution represented by a circuit. In order to talk about NISZK|, we
shall need to consider probability distributions that are represented using restricted class of
circuits. In particular, we shall focus on a problem that we denote EAyco.

» Definition 20 (Promise-EAnco). Promise-EAnco is the promise problem obtained from
Promise-EA, by considering only instances (C, k) such that C is a circuit of fan-in two gates,
where no output gate depends on more than four input gates.

It is not surprising that EAnco is complete for NISZK| . The completeness proof that we
present owes much to the proof presented by Dvir et al. [15] (showing that an NCC-variant of
the SZK-complete problem ENTROPYDIFFERENCE is complete for SZK| ) and to the proof
presented by Goldreich et al. [18] showing that EA is complete for NISZK. We will need to
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make use of various detailed aspects of the constructions presented in this prior work, and
thus we will present the full details here.
First, we show membership in NISZK|.

5.1 Membership in NISZK_
» Theorem 21. Promise-EAnco € NISZK|

Proof. In order to show membership, we must show the existence of a non-interactive proof
system where the verifier and simulator are both in logspace. To do this, we adapt the
protocol that is used in [18] to show that EA is in NISZK. Their protocol works by first
transforming an instance (C, k) of EA, of length s, (where C represents a distribution X)
into a representation of a distribution Z on £ bits. The transformation consists of four steps:

1. Take poly(s) samples from X and concatenate them. Call this distribution X’ and let
Cx be the circuit representing X’.

2. Hash the output of X’ with a hash function h chosen at random from a 2-universal family
of hash functions. (The parameters of the hash function depend on the value k of the EA
instance.) Let this distribution be Y, represented by Cy-.

3. Take poly(s) copies of Y and concatenate their output. Call this distribution Y’ repre-
sented by Cy.

4. Hash a sample of Y/ with a hash function h’ chosen at random from a 2-universal family
of hash functions. Let this distribution be Z, represented by Cy.

Section 2 and Appendix C of [18] give a careful proof of the fact that, with Z defined as
above from the EA instance (C, k), a NISZK protocol for EA is given by:

1. With reference string o, the prover selects a string r uniformly at random from the set
{r': Z(r") = c}.
2. The verifier accepts if Cz(r) = o and rejects otherwise.

They also show that the following simulator satisfies the required zero-knowledge proper-
ties:

1. Select an input 7 to Z uniformly at random and let 0 = Cz(r).
2. return (o, 7).

It suffices for us to show that, if (C,k) is an instance of EAyco, then the tasks of the
verifier and the simulator in the protocol above can be implemented in logspace.

First, we observe that, given (C, k), a branching program Py realizing the distribution
Z can be constructed in logspace. Indeed, it is trivial to construct a branching program
Px that realizes X (since each output bit of the NC circuit Z has an easy-to-compute
branching program of constant size). Then a branching program Py realizing X' consists
of several copies of Px concatenated together (where each copy uses independent random
input bits). The hash functions h considered in [18] are represented by Boolean matrices
My}, where computing h(w) is simply multiplying M}, by the vector w. Since Boolean matrix
multiplication is easy to compute in NC' C L, and since the composition of two logspace-
computable functions is also logspace-computable, it is easy to build a branching program Py
representing the distribution Y (That is, given a branching program for computing M}, - w,
for any node v that queries a bit of w, replace the pair of edges leaving v by a branching
program that computes that bit of w (as a sample from X').) In the same way, branching
programs for Y/ and Z are easy to construct, given Py-.
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Hence a logspace verifier, with access to r, o, and an EAyco instance (C, k), can construct
the branching program Pz and compute Pz(r) and check if the output is equal to o. It
is equally easy to see that the simulator can be implemented in logspace. This establishes
membership in NISZK. |

The following corollary is a direct analog to [18, Proposition 1].
» Corollary 22. If1I is any promise problem that is <\ reducible to EAyco, then I1 € NISZK.

We close this section by presenting an example of a well-studied natural problem in
NISZK.. (A graph is said to be rigid if it has no nontrivial automorphism.)

» Corollary 23. The Non-Isomorphism Problem for Rigid Graphs lies in NISZK,

Proof. First note that the proof of Theorem 21 carries over to show that a problem that
we may call EAgp (defined just as EAyco but where the distribution is represented as a
branching program instead of as an NC° circuit) also lies in NISZK|. Now observe that
the reduction given in Section 3.1 of [7] shows how to take as input two rigid graphs on n
vertices (Gp, G1) and build a branching program that takes as input a bitstring w of length ¢
and t permutations 1, ..., 7 and output the sequence of ¢ permuted graphs m;(G.,). It is
observed in [7] that this distribution has entropy #(1+logn!) if the graphs are non-isomorphic,
and has entropy at most tlogn! otherwise. |

5.2 Hardness for NISZK,

In order to re-use the tools developed in [18], we will follow the structure of the proof
given there, showing that EA is hard for NISZK. Namely, we introduce the problem SDU
(STATISTICAL DISTANCE FROM UNIFORM) and its NC” variant, and prove hardness for
SDUpco.

» Definition 24 (SDU and SDUyco). Consider Boolean circuits Cx : {0,1}™ — {0,1}"
representing distributions X. The promise problem

SDU = (SDU ygs, SDU o)

is given by
SDUyss & {Ox : A(X,U,) < 1/n}
SDUno ™ {Ox : A(X,U,) > 1 —1/n}
where A(X,Y) = X,| Pr[X = o] — Pr[Y = o]|/2.
SDUpnco is the analogous problem, where the distributions X are represented by NC°
circuits where no output bit depends on more than four input bits.

It is shown in [18, Lemma 4.1] that Cx is in SDU if and only if (Cx,n —3) is in EA. This
yields the following corollary:

» Corollary 25. SDUyco <P EApco.

Proof. This is trivial if we assume an encoding of SDUyco instances, such that the NC°

circuits Cx : {0, 12}m — {0,1}™ are encoded by strings of length given by the standard
m +3m+2mn+n+n2

pairing function , so that the length of an instance of SDUyco completely
determines n. (An NC° circuit with m inputs and n outputs has a description of size

O(nlogm), and thus it is easy to devise a padded encoding of this much larger length.)
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Thus, in the projection circuit computing the reduction Cx — (Cx,n — 3), the output bits
encoding n — 3 are hardwired to constants, and the input bits encoding C'x are copied directly
to the output. |

» Theorem 26. Promise-EAyco and Promise-SDUyco are hard for NISZK_ under <Pl
reductions.

Proof. By Corollary 25, it suffices to show hardness for SDUyco. In order to establish
hardness, we need to develop the machinery of perfect randomized encodings, which were
developed by Applebaum et al. [12] and then were applied in the setting of SZK_ by Dvir et
al. [15].

5.2.1 Perfect Randomized Encodings

» Definition 27. Let f : {0,1}" — {0,1}* be a function. We say that f : {0,1}" x {0,1}" —
{0,1}* is a perfect randomized encoding of f with blowup b if it is:

Input independent: for every z,z’ € {0,1}" such that f(z) = f(z'), the random
variables f(x,Up) and f(a',Uy,) are identically distributed.
Output Disjoint: for every x,a’ € {0,1}™ such that f(x) # f(z'), Supp(f(z,Un)) N

Supp(f(z',Un)) = 0.

Balanced: for every x,x’ € {0,1}" |Supp(f(x, Un))l = |Supp(f(x’,Um))\ =0
The following property of perfect randomized encodings is established in [15].

» Lemma 28 (entropy). Let f : {0,1}" — {0,1} be a function and let f : {0,1}" x

{0,1}™ — {0, 1}* be a perfect randomized encoding of f with blowup b. Then H(f(U,,Uy)) =
H(f(Un)) + logb

The following two properties are given in Applebaum et al. [12].

» Lemma 29 (concatenation). Fori=1,... ¢ let f; : {0,1}"™ — {0, 1} be the Boolean function
computing the i—th bit of f : {0, 1} — {0, 1}*. If f; : {0,1}" x {0, 1}™ — {0,1}% is a perfect
randomized encoding of fi, then the function f :{0,1}" x {0,1}™+-me — f() 1}s1+--Fse
defined by f(x, (r1,...,r¢)) = (fi(x, 1), ..., fol@,10)) is a perfect randomized encoding of
f-

» Lemma 30 (composition). Let g(x,74) be a perfect randomized encoding of f(x) and
let h((z,7y), 1) be a perfect randomized encoding of g(x,ry) (viewed as a single argument

function). Then, the function f(z, (rg,Tn)) = h((x,7g),71) is a perfect randomized encoding

of f.

5.2.2 Constructing an NC° perfect randomized encoding

The first step in showing completeness of EAnco is to use the following construction of perfect
randomized encodings of functions computed by branching programs, from [12].

» Definition 31. Let Q be a branching program of size £ computing a Boolean function
f:{0,1}™ — {0,1}. Fiz some topological ordering of the vertices of Q where the source
vertex is labelled 1 and the terminal vertex is labelled . Let A(x) be the ¢ x ¢ adjacency
matriz of G, where entry (i,7) is a degree-1 polynomial ¢; ; € {xk, (1 — xx), 1,0}, such that
the transition from node i to node j queries variable xy, and proceeds if g; j(xx) = 1. Define
L(x) as the submatriz of A(x) — I obtained by deleting the first column and last row.
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* * * * %
-1 % * x %
0 -1 = * %
0 0 -1 =% =
0 0 0 -1 =

Let D, and r®) be vectors over GF(2) of length (Zgl) and ¢ — 2 respectively. Let Ry(r())
be an £ x £ matriz with 1’s on the main diagonal, 0’s below it and the elements of ¥V in the
remaining (@51) entries above the main diagonal. Let Ra(r)) be an € x £ matriz with 1’s on
the main diagonal, 0’s below it, and the elements of r?) in the last column.

ro o e 10 0 0 P
0 1 01 00

0 O 1 00 1 0 .
0 0 e I A
0 0 0 0 12 0 0 0 O 1

The following lemma appears as [12, Lemma 4.15].

» Lemma 32. Let QQ be a branching program of size £ computing a Boolean function f :
{0,1}™ — {0,1}. Let the function f(x, (r™,r®3)) produce as output the (g) entries on or
above the main diagonal of the matriz

Ry (rMW)L(z) Ra(r@).
Then f is a perfect randomized encoding of f.

» Lemma 33. There is a function computable in AC® (in fact, it can be a projection) that

takes as input a branching program Q of size £ computing a function f :{0,1}"™ — {0,1},

and produces as output a list (q1, ... ,q(e)) of degree-three polynomials over GF(2), where
2

ai(z, (rM, @) produces the i-th output bit of f(x, (rM ). The blowup of the encoding
A £
f s 2(6)-1,

Proof. The claim regarding blowup follows from inspection of f in Definition 31. Constructing
the three matrices L(x), Ry and Ry can clearly be done in AC, given any reasonable encoding
of the branching program Q. Their product cannot be computed in AC° (since this involves
computing PARITY), but it is easy to compute an encoding of the expression for entry (i, m)
of the product, which is given by the degree-three polynomial ijk Ry (i1 L(k,5) B2 (j,m)- To
see that this can be a projection, note that the entries of the matrices Ry and Ry are entirely
determined by the size ¢ (and thus they depend only on the length of the encoding of the
branching program). The entries of L(xz) are essentially the entries of the adjacency matrix
encoding the branching program @, and thus they can be copied directly via a projection.
Then, given the encodings of the matrices, the encodings of the terms of each polynomial
q; are simply copied from the encodings of the matrices, and thus this can be done via a
projection also. |

Note that each polynomial g; in the statement of the preceding lemma is most conveniently
expressed as a sum of terms. We now show how to replace each ¢; with NC° circuitry, using
the following lemma from [12, Lemma 4.17].
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» Lemma 34. Let f(x) =Ti(x) + ... + Tx(z) where f,T1,..., Ty : GF(2)" — GF(2), and
summation is over GF(2), and each term T; has degree at most 3. Let the local encoding f :
GF(2) k=1 — GF(2)** be such that f(x,(r1,..., Tk, 71, ..., 7 1)) is equal to

(Th(z) —r1, To(z) —roy. .., Ti(x) — 71y

/ / / Vi ! /
7L =TT T =T T F TR — TR, Ty T TR)

Then f is a perfect randomized encoding of f where each bit of the output depends on at most
4 bits of (x, (r1,...,re, T, Th_1))-

» Lemma 35. There is a function computable in AC° (in fact, it can be a projection) that
takes as input a branching program Q of size £ computing a function f : {0,1}" — {0,1},
and produces as output a list p; of NCO circuits, where p; computes the i-th bit of a function
f that is a perfect randomized encoding of f that has blowup 2((5)-DEE-1*-1)  paep Di
depends on at most four input bits from (x,r) (where r is the sequence of random bits in the
randomized encoding).

Proof. This follows immediately by applying the construction of Lemma 34 to the degree-
three polynomials for each entry in the product matrix given by AC-computable function
given by Lemma 33. Each of those polynomials has (¢ — 1)? terms, and it is apparent from
Lemma 34 that each such entry gives rise to 2(¢ —1)? — 1 new random bits in the randomized
encoding. The assertion regarding blowup now follows from inspection of the construction.
The assertions regarding the bits upon which each p; depends follows from inspection. The
construction of Lemma 34 can clearly be accomplished via a projection, and composing that
projection with the projection from Lemma 33 again yields a projection. |

5.2.3 SDUpco is Complete for NISZK_

We now have all of the tools required to complete the proof of Theorem 26.

Let [] be an arbitrary promise problem in NISZK| with proof system (P, V') and simulator
S and let « be an instance of []. Recall that the job of the simulator S is to take a string x
and some uniformly-generated random bits as input, and produce as output a transcript of
the form (o, p), such that the probability that any transcript (o, p) is output by S is very close
to the probability that, on input z with shared randomness o, the prover P sends message
p to the verifier V. Let M,(s) denote a routine that simulates S(z) with randomness s to
obtain a transcript (o, p); if V(z, 0, p) accepts, then M,(s) outputs o, otherwise it outputs
0lol. (We can assume without loss of generality that |o| = |z|*, for some k.) Tt is shown
in [18, Lemma 4.2] that the map z — M, is a reduction of II to SDU:

> Claim 36. Ifz € [[ypg then A(M,, Ujyry) < 1/[2z/*, and © € [] o implies A(M,, Uy ) >
1—1/|xlk.

The proof of the preceding claim in [18, Lemma 4.2] actually shows a stronger result. It
shows that, if the statistical difference between the output distribution of the simulator and
the distribution of true transcripts is at most 1/e(n), then the statistical difference of M,
and the uniform distribution is at most 1/e(n) + 27" on inputs of length n. Thus, using
Definition 1 (which is equivalent to the definition of NISZK given in [18]), the simulator
produces a distribution that differs from the uniform distribution by only 1/n*(). Thus we
have the following claim:

> Claim 37. Let ¢ € N. Then for all large =, if x € [[ygg, then A(M,, Ujgxy) < 1/|x|ke,
and x € [ yo implies A(M, Uypr)) > 1 — 1/]z|*e.
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Furthermore, it is also shown in [18, Lemma 3.1] that EA has a NISZK protocol in which
the completeness error, soundness error, and simulator deviation are all at most 2™ on
inputs of length m. Furthermore, that proof carries over to show that EAgp € NISZK| with
these same parameters. Thus we obtain the following fact, which we will use later in Section 7.

> Claim 38. Let ¢ € N. Then for all large z, if x is a Yes-instance of EAgp, then
A(Mz, Upgpry) < 1/21*1=1 "and if 2 is a No-instance of EAgp, then A(M,, Upglr)) > 1—1/2l=-1,

Since S runs in logspace, each bit of M (s) can be simulated with a branching program
Q.. Furthermore, it is straightforward to see that there is an AC’-computable function that
takes z as input and produces an encoding of @), as output, and it can even be seen that
this function can be a projection. (To see this, note that in the standard construction of a
Turing machine from a logspace-bounded Turing machine S (with input (x,s)) each node
of the branching program has a name that encodes a configuration of the machine, a time
step, and the position of the input head. This branching program can be constructed in AC?,
given only the length of x. In order to construct @Q,, it suffices merely to hardwire in the
transitions from any node that is “scanning” some bit position x;. That is, if the transition
out of node v goes to node vy if ; = 0 and to node v; if z; = 1, then in the adjacency matrix
for Q, entry (v,v1) = z; and entry (v,vg) is —x;. This is clearly a projection.)

Now apply the projection of Lemma 35 to (each output bit of) the branching program
Q. of size ¢, to obtain an NC° circuit C,, computing a perfect randomized encoding with

k(e 2
blowup b = 2/7! ((2)-vee-1?-1), (C, has logb + |z|* output bits.)

Now consider |H(C) — H(Ulog p1|z|%)|- By Lemma 28 this is equal to |H(Q.) + logb —
H(Uyog py|afr)]- Since H(Q.) = H(M,) and H(Uiog pt|g|x) = logb + H (U, x), we have that
|H(Cy) — H(Uiog py|afr)| = |H(M) — H(U)zx|)|- The proof of Theorem 26 is now complete,
by appeal to Claim 37. <

6 Hardness of MKTP under Projections

» Theorem 39. MKTP is hard for co-NISZK_ under nonuniform S&CO reductions.

Proof. We build on the proof of Theorem 17, and present a reduction from the NISZK|-
complete problem EAnco. Let x = (Cy, k) be an arbitrary instance of Promise-EAyco, where
C, : {0,1}™ — {0,1}™ is an NC° circuit that represents distribution X. Let |z| < w < V%,
and let ag, ¢y, and ¢ be the constants from Lemma 15. Let A = wmt'=*°/2 and construct y
as t samples from X. Let 0 = th + \ + t1—0|g|cotez,

As in the proof of Theorem 17, we have that, with probability at least 1 — ﬁ, if (X, k)
is a Yes-instance of EAyco, then (y,6) € MKTP yo and if (X, k) is a No-instance of EAyco,
then (y,&) € MKTPygg.

Thus we have shown that there is a uniform AC’-computable function f, such that, if
x € EAygg, then with high probability (for random ) f(z,7) = (y,0) is in MKTPye, and
if z € EAno, then with high probability f(z,r) = (y,6) is in MKTPygg. (Namely, the AC°
function takes x = (Cy, k) and r as input, computes 6 from k and |z|, and computes y by
feeding ¢ segments of r into the NCY circuit Cy.)

As in the proof of Theorem 17, we can fix a sequence of random bits to hardwire in to
this reduction and obtain a (nonuniform) ggc" reduction from EAyco to MKTP. |

An immediate corollary (making use of the “Gap Theorem” of [1]) is that MKTP is hard
for co-NISZK_ under §§1C0 reductions. Below, we improve this, showing hardness under
projections.
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» Corollary 40. MKTP is hard for co-NISZK| under nonuniform SI'\I'ICO reductions.

Proof. Corollary 22, combined with the NISZK| -completeness of EAyco, implies that co-NISZK
is closed under <L reductions. It is shown in the “Gap Theorem” of [1] that, for any class C
closed under <. reductions, any set that is hard for C under ggc" reductions is also hard
under gﬂf“ reductions. Thus from Theorem 39, we have that MKTP is hard for co-NISZK_
under §r'\lllco reductions. <

» Corollary 41. MKTP is hard for co-NISZK\ under nonuniform <P reductions.

Proof. We now need to claim that the AC’-computable reduction of Theorem 39 can be
replaced by a projection. Note that, since SDUyco is complete for NISZK| under projections,
and since the reduction from SDUyco to EAnco given in Corollary 25 always uses the same
entropy bound n — 3, we have that it suffices to consider EAyco instances x = (Cy, k) where
the bound k depends only on the length of z. Thus the bound 6 produced by our AC’
reduction also depends only on the length of x, and hence can be hardwired in.

We now need only consider the string y. The gff“ reduction presented in the proof of
Theorem 39 takes as input C, and r and produces the bits of y by feeding bits of r into C.
Let us recall where the NCY circuitry producing the i-th bit of y comes from.

Lemma 33 shows how to take an arbitrary branching program and encode the problem
of whether the program accepts as a question about the entropy of a distribution repre-
sented as a matrix of degree-three polynomials. Each term in this matrix is of the form
Zﬁk Ry (3,1 L(k,5) B2 (j,m), where the matrices 1 and Ry are the same for all inputs of the
same length. Thus we need only concern ourselves with the matrix L.

In Section 5.2.3, it is observed that, given an instance z of a promise problem in NISZK|,
the branching program @, that is used, in order to build the matrix L, can be constructed
from x by means of a projection. The “input” to this branching program @, is a sequence
of random bits (part of the random sequence r that is hardwired in, in order to create the
nonuniform ACY reduction in the proof of Theorem 39). Thus, the only entries of the matrix
L that depend on z are entries of the form (u,v) where v and v are configurations of a
logspace machine, where the machine is scanning x; in configuration u, and it is possible
to move to configuration v. Lemma 35 then shows how to construct NC circuitry for each
term in the degree-three polynomial constructed from @, in the proof of Lemma 33. The
important thing to notice here is that each output bit in the NC® circuit depends on at most
one term of one of the degree-three polynomials, and hence it depends on at most one entry
of the matrix L — which means that it depends on at most one bit of the string x.

Thus, consider any bit y; of the string y produced by the nonuniform AC® reduction from
Theorem 39. Either y; does not depend on any bit of z, or it depends on exactly one bit x; of
z. In the latter case, either y; = x; or y; = —x;. This defines the projection, as required. <«

The following corollary was pointed out to us by Rahul Santhanam.
» Corollary 42. MKTP does not have THRESHOLDoMAJORITY circuits of size 27" .

Proof. This is immediate from the lower bound on the Inner Product mod 2 function that
is presented in [16]. (See also [11] for a slightly stronger lower bound.) <

It should be noted that it remains unknown whether MCSP has THRESHOLDoMAJORITY
circuits of polynomial size.
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7 An Application: Average-Case Complexity

The efficient reductions that we have presented have some immediate applications regarding
worst-case to average-case reductions. First, we recall the definition of errorless heuristics:

» Definition 43. Let A be any language. An errorless heuristic for A is an algorithm (or
oracle) H such that, for every x, H(x) € {YES, No, ¢}, and

H(z) = YES implies x € A.
H(z) = No implies x ¢ A.

» Definition 44. A language A has no average-case errorless heuristics in C if, for every
polynomial p, and every errorless heuristic H € C for A, there exist infinitely many n such
where Pryey, [H(xz) =7 > 1—1/p(n).

In order to state our first theorem relating to average-case complexity, we need the
following circuit-based definition:

» Definition 45. Let C be any complexity class. (Usually, we will think of C being a class
defined in terms of circuits, and the definition is thus phrased in terms of circuits, although it
can be adapted for other complexity classes as well.) The class ORoC is the class of problems
that can be solved by a family of circuits whose output gate is an unbounded fan-in OR gate,
connected to the outputs of circuits in the class C.

If problems in NISZK| are hard in the worst case, then there are problems in NP that are
hard on average:

» Theorem 46. Let C be any complexity class that is closed under <P’ reductions. If
NISZK. & OR o C, then there is a set A in NP that has no average-case errorless heuristics
in C.

Proof. Consider the reduction from EAyco to MKTP given in the proof of Corollary 41. This
reduction takes as input a pair (C,n — 3) where C is an NC° circuit that produces output
of length n. The reduction produces as output a string of length ¢n where t = t(n) is a
polynomial in n. The proof of Corollary 41 shows that, if (C,n — 3) is a No-instance (a
low-entropy instance) of EAyco, then concatenating ¢ samples from C(r) (for independent
uniformly random samples ) produces output that, with probability exponentially-close to
1, has KT-complexity less than 6 < (n — 2)t(n) for all large n. Let f be a function computed
as follows: On input d of length m’, compute the smallest n such that m’ < (n — 2)t(n),
and then simulate the universal Turing machine U on d for t(n)? steps, and produce as
output the first nt(n) bits of output that U(d) produces in this amount of time. Let
A ={y:3d f(d) =y} be the range of f. Note that A contains all strings y of length nt(n)
such that KT (y) < (n —2)t(n). Clearly, A € NP. We will show that if A has an average-case
errorless heuristic in C, then NISZK_ € ORo C.2

If A has an average-case errorless heuristic in C, then there is a family {C,, : m € N} of
C circuits (or other algorithms, if C is not a circuit family) with the property that, for all
large n, for all strings = of length n, Cy,(z) € {YES,N0O,?}, where

Cyr(xz) = YEs implies z € A.

2 In fact, A can be taken to be any set in NP that contains all strings of KT complexity below a certain
threshold, while still containing only a small fraction of the strings of any length n.
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Cp(z) = No implies z ¢ A.

Pr,[Cp(x) =7] <1 - ﬁ

for some polynomial p;.

Since there are three possible outputs, there must be two output bits, which we can call a
and b. The encoding of YES, NO and ? below is chosen in order to simplify the statement of
our results. If a different encoding is chosen, then the form of the circuits for NISZK| might
be slightly different.

Now consider the family {C/], : m € N}, where C/, is just like C,, but has only output
bit b.
For any m = nt(n),

P;r[C,'n(x) =1] =1-Pr[Cp,(z) = YES] — Pr[Cp,(z) =7]

L, Mnae 1
om p1(m)
) 9(n=2)t(n) ) 1
>1_2_ _(1_
=t T )
1
 pi(nt(n)) 220
S 1
p2(n)

for some polynomial po.

We now present efficient circuits for promise problems in NISZK|.

Since the NISZK| -complete problem EAyco is a special case of EAgp, we know that EAgp
is also complete for NISZK| (say, under <. reductions). Thus it follows from Claim 38
that, for any problem [] € NISZK, and for any instance = € []y g, the distribution M,
introduced in Section 5.2.3 can actually be assumed to have statistical difference at most
1/21#l° from the uniform distribution, for some e > 0. This in turn implies that the NC®
circuit C, (which is constructed in the paragraphs right after Claim 38) also has statistical
difference at most 1/2/*I° from the uniform distribution (again, if x € []yg). We highlight
this fact, so that we can refer to it more easily later:

> Claim 47. If x € [[ypg, then the NC' circuit C, has statistical difference at most 1/21*I°
from the uniform distribution.

Now consider the circuit family {D,,, : no € N} that has the following form: The input is
a string  of length ng. Recall that the NCY circuit €, from Section 5.2.3 takes “random’
inputs r of length polynomial in |z| and produces output of length n which is also polynomial

)

in |z|. Let {E, : n € N} be a circuit family that takes (z,r) as input and computes Cy(r).
(The family E,, can in fact be chosen to be very efficient, but we do not need that; it will
turn out later that E,, can be replaced by a single wire connected to a possibly-negated bit
of x, or by a constant.) The “bottom layer” of D,,, consists of np3(n)t(n) copies of E,,
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using n3p3(n)t(n) independent random strings ry, ..., Tn2p2(nyt(n)» and producing a string
of length n3p3(n)t(n)n, which is then fed into n3p3(n) copies of Cé(n)n. Finally, the output
gate of each of the copies of C’t’(n)n is fed into an OR gate, which is the output gate of D, .

If # € [[yo then, as in the proof of Theorem 39, with probability (over the random
inputs) exponentially close to 1, the string feeding into the inputs of each of the copies of C”
has low KT complexity, and consequently (by the definition of C’) each C’ outputs 0, and
thus D,,, outputs 0.

If z € [[ypg then, by Claim 47, the distribution represented by each copy of E,, (using
random inputs r) has statistical difference from the uniform distribution bounded by 27™".
The strings that are fed into each copy of C/, t(n) AT€ generated by t(n) independent copies of
E,. By [34, Lemma 3.4], we can conclude that the distribution that is fed into each copy of
cl t(n) has statistical distance from the uniform distribution bounded by tz(,ﬁ). We showed
above that the probability that C/, t(n) AcCepts a uniformly-random string of length nt(n) is

greater than m It follows that the probability that C;, +(n) ACCEDLS the string produced

by ¢(n) independent copies of E,, is no less than p2%n) — tz(fe) > np;(n). Thus the probability

that none of the ngp3(n) independent copies of C, #(n) ACCEPES is at most 271,

A simple counting argument now shows that there is a sequence of probabilistic bits r
that can be hardwired in to D,,, so that, for all z of length ng, Dy, (x,7) =1if x € [[y x5
and Dy, (x,7) =0 if x € [y It still remains to simplify D,,, so that it lies in ORo C.

As in the proof of Corollary 41, each bit that feeds into any of the copies of C’;Lt( ) depends
on at most one bit of x; many of the bits may be set to constants after hardwiring in the
choice of r. Thus we build the circuit family F,,, that takes = as input, and projects the bits

of z into the n2p2(n) copies of C’ to obtain a OR o C circuit family for J]. <

nt(n)’

The following definition is implicit in the work of Bogdanov and Trevisan [14].

» Definition 48. A worst-case to errorless average-case reduction from a promise problem []
to a language A is given by a polynomial p and BPP machine M, such that A is accepted by
MM for every oracle errorless heuristic H for A such that Prycy, [H(z) =?] < 1—1/p(n).

» Corollary 49. There is a problem A € NP such that there is a non-adaptive worst-case to
errorless average-case reduction from every problem in SZK to A.

Proof. We mimic the proof of Theorem 46, and use the same set A. Consider the BPP
reduction from the NISZK complete problem EA to MKTP given in Corollary 18. This
reduction takes as input a pair (C, k) (where C is a circuit that produces output of length
n) and makes a single query along each path, where the query is a string y of length tn
where t = t(n) is a polynomial in n. (Since SDU is complete for NISZK, we can assume
that k = n — 3, as in the proof of Theorem 46.) Rather than using MKTP as an oracle,
instead we will use an errorless heuristic H for A where the Pr,[H(z) =7] < 1 —1/p(|z]),
interpreting any answer where H(y) = “N0O” as meaning “KT(y) > 6” and any answer where
H(y) € {?,YES} as meaning “KT(y) < §”. (We will actually replace each query to MKTP by
a polynomial number of independent queries to the heuristic H, and if any of these queries
returns H(y) = “N0”, we will conclude that (C, k) € EAygg, and otherwise conclude that
(07 k‘) S EAN().)

As in the proof Theorem 46, if the distribution represented by C' has low entropy, then
with probability exponentially close to 1, the query y will have low KT complexity, and
thus H(y) will return a value in {?,YES} (and this probability will remain small even if a
polynomial number of independent trials are made). And if C' has high entropy, then (as in
the proof of Theorem 46) we can assume that the distribution given by C' is exponentially
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close to the uniform distribution, and thus the distribution on the queries y will have small
statistical difference from the uniform distribution, and hence, with exponentially high
probability, at least one of the queries will return the value No. Thus every problem in
NISZK has an errorless non-adaptive worst-case to average-case reduction to A.

The proof is completed by recalling from [18] that SZK is non-adaptively (deterministically)
polynomial-time reducible to NISZK. |

Remark: It is implicitly shown by Hirahara [20] that Corollary 49 holds under adaptive
reductions. The significance of the improvement from adaptive and non-adaptive reductions
lies in the fact that Bogdanov and Trevisan showed that the problems in NP for which there
is a non-adaptive worst-case to errorless average-case reduction to a problem in NP lie in
NP /poly N coNP/poly [14, Remark (iii) in Section 4]. Thus SZK may be close to the largest
class of problems for which non-adaptive worst-case to errorless average-case reductions to
problems in NP exist.

The worst-case to average-case reductions of Definition 48, must work for every errorless
heuristic that has a sufficiently small probability of producing “?” as output. If we consider
a less-restrictive notion (allowing a different reduction for different errorless heuristics) then
in some cases we can lower the complexity of the reduction from BPP to AC®.

» Definition 50. Let D be a complezity class, and let R be a class of reducibilities. We say that
errorless heuristics for language A are average-case hard for D under R reductions if, for every
polynomial p and every errorless heuristic H for A where Pryey, [H(x) =7 <1 —1/p(|z|),
and for every language B € D, there is a reduction r € R reducing B to H.

» Corollary 51. There is a language A € NP, such that errorless heuristics for A are
average-case hard for SZK. under non-adaptive ACO-Tum’ng reductions.

Proof. The proof of Theorem 46 introduces a language A € NP that is defined in terms of
the parameters of the reduction from the NISZK|-complete promise problem EAyco. We show
that errorless heuristics for this same A are average-case hard for SZK_ under non-adaptive
AC’-Turing reductions. By Proposition 3 and Theorem 26, every problem in SZK| is non-
adaptively AC’-Turing-reducible to EAyco; let this AC’-Turing reduction be computed by the
family {D,, : n € N}. In the proof of Theorem 46, if we take the circuit family {C,, : m € N}
to consist of oracle gates for an errorless heuristic H for A, we obtain that every query that
D,, makes to EAyco can be replaced by an OR of queries consisting of oracle gates from
{Cy, : m € N}. This yields the desired non-adaptive AC°-Turing reduction to the errorless
heuristic for A. |

» Corollary 52. Let C be any class that is closed under non-adaptive AC-Turing reductions.
If SZK. ¢ C, then there is a problem in NP that has no average-case errorless heuristic in C.

Proof. If SZK| ¢ C, then by Proposition 3, NISZK| is also not contained in C. The result is
now immediate from Theorem 46. <

Remark: Building on earlier work of Goldwasser et al. [19], average-case hardness results
for some subclasses of P based on reductions computable by constant-depth threshold circuits
were presented in [2]. We are not aware of any prior work that provides strong average-case
hardness results based on reductions computable in AC®.3

3 By “strong” average-case hardness, we mean that we rule out algorithms that have error probability as
large as 1 — ﬁ Although certain aspects of the reductions presented in [2,19] are computable in ACO,
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8 Conclusion and Open Problems

By focusing on non-uniform versions of <P reductions, we have shed additional light on
how MKTP relates to subclasses of SZK. Some researchers are of the opinion that MCSP
(and MKTP) are likely complete for NP under some type of reducibility, and some recent
progress seems to support this [25]. For those who share this opinion, a plausible first step
would be to show that MKTP is hard not only for co-NISZK, but also for NISZK, under
SrPn/ POl reductions. (Work by Lovett and Zhang points out obstacles to providing such a
reduction via “black box” techniques [29].) And of course, it will be very interesting to see if

our hardness results for MKTP hold also for MCSP.
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